

Basic Application Loading Over Serial
Interface for the DaVinci DM644x

Application Report

Literature Number: SPRAAI0
December 2006

Submit Documentation Feedback

2 SPRAAI0 – December 2006

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0

SPRAAI0 – December 2006
Submit Documentation Feedback

Table of Contents 3

Contents

Trademarks .. 5
1 UART Application Boot Overview ... 6
2 ROM Boot Loader Negotiations .. 7

2.1 ACK Header .. 7
2.2 CRC32 Table .. 8
2.3 Application Data .. 10
2.4 Important Notes Regarding CRC32 Checksum .. 10

3 Host Application Example ... 10
3.1 Overview ... 11
3.2 Command-Line Parameters .. 12
3.3 Serial Port Access... 12
3.4 CRC32 Calculation ... 13
3.5 Serial Negotiation With the DM644x RBL ... 13

4 ARM Target Application Example ... 13
4.1 Limitations ... 14
4.2 GNU Toolchain Specifics .. 14
4.3 Discussion of C Code ... 18

5 References ... 25
Appendix A CRC32 Lookup Table .. 26

A.1 CRC32 Lookup Table ... 26

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0

Submit Documentation Feedback

List of Figures

1 ROM Boot Loader UART Mode Program Flow .. 9
2 Console Output ... 12
3 View of Object File Sections ... 17
4 Terminal Output .. 20

List of Tables

1 Boot Modes for DM644x Device ... 7
2 The ACK Header in Detail .. 7
A-1 Lookup Table for CRC32 .. 26

4 List of Figures SPRAAI0 – December 2006

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0

SPRAAI0 – December 2006
Submit Documentation Feedback

List of Tables 5

Trademarks
Code Composer Studio is a trademark of Texas Instruments.
Linux is a registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft, Microsoft Windows are registered trademarks of Microsoft Corporation in the United States
and/or other countries.
MontaVista is a registered trademark of MontaVista Software, Inc..
Novell is a registered trademark of Novell, Inc. in the United States and other countries.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0

6 Basic Application Loading Over Serial Interface for the DaVinci DM644x SPRAAI0 – December 2006
Submit Documentation Feedback

Application Report
SPRAAI0 – December 2006

Basic Application Loading Over the Serial Interface for the

DaVinci TMS320DM644x
Daniel J. Allred

ABSTRACT

This application report describes two related pieces of software that are used together
to download an application over the DM644x UART0 serial interface and run it out of
the ARM internal memory. The discussion begins with a description of a host
application that executes on a user’s PC, and includes a description of how to interface
to the ROM boot loader of the DM644x device. The discussion of the embedded ARM
application that runs on the DM644x describes using the ARM GNU cross-compiler
toolchain provided by MontaVista to generate an appropriate binary file for download.
The target application that is presented provides examples of how to initialize and use
the UART peripheral of the DM644x and the DDR2 memory subsystem that is found on
the DVEVM board.
This application report contains project code that can be downloaded from
http://www.ti.com/lit/zip/SPRAAI0.

1 UART Application Boot Overview
This section gives an overview of the process of sending a binary application image to the DM644x device
over its serial interface for execution. As an example, this scenario would be useful for downloading test
code in a production setting as part of quality control procedures. This section mirrors the presentation
given in the UART Boot Mode section of TMS320DM644x DMSoC ARM Subsystem Reference Guide
(SPRUE14). The reader should be familiar with all the information in the Boot Modes section of that
document. Additional details can be found in the Bootmode section of the TMS320DM6446 Digital Media
System-on-Chip data manual (SPRS283).
Upon reset or power up, the DM644x begins executing code from its ROM boot loader (RBL). The RBL
determines how to boot based on the logic levels at pins BTSEL[1..0]. These values are latched into the
BOOTCFG register bits 7..6 at reset and the RBL reads this register to determine the intended boot mode.
On the Spectrum Digital DVEVM board, these pins are attached to switches S3-2 and S3-1 respectively,
allowing the user to change the intended boot mode while the board is powered off. Table 1 shows the
available boot modes for the DM644x.
The only boot mode of concern for this application report is UART boot. The objective of the UART boot
mode is to interface to a host system via a serial cable and download code that the system can use to
boot. The traditional intention is that a secondary boot loader, referred to as a User Boot Loader (UBL) in
the TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14), would be downloaded. This
UBL would then be used to initialize certain subsystems of the chip, in particular the DDR2 memory
controller, and then download a tertiary boot loader like U-boot, which has been written with the objective
of loading the Linux® kernel onto embedded systems.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/lit/zip/SPRAAI0
http://www-s.ti.com/sc/techlit/SPRUE14
http://www-s.ti.com/sc/techlit/SPRS283
http://www-s.ti.com/sc/techlit/SPRUE14

SPRAAI0 – December 2006
Submit Documentation Feedback

Basic Application Loading Over Serial Interface for the DaVinci DM644x 7

www.ti.com

ROM Boot Loader Negotiations

Table 1. Boot Modes for DM644x Device
BTSEL0 (DVEVM SW3-1) BTSEL1 (DVEVM SW3-2) Boot Mode

0 0 NAND Flash Boot
1 0 NOR Flash Boot
0 1 Reserved
1 1 UART Boot

The code that is downloaded, however, does not have to be a boot loader. It can be an application in its
own right. This document presents a simple application that targets the ARM side of the DM644x and is
downloaded over the UART at boot time. This application is referenced as the UART application for the
remainder of this document and is discussed in Section 4. To assist in the transfer of the UART
application, another program runs on the host system (assumed to be a personal computer) to send the
required data at the appropriate time. This program is called the host application for the remainder of this
document and it is described in Section 3. Section 2 presents details of the RBL’s UART boot process and
the negotiations that the host application needs to understand to deliver the code to the ARM subsystem
of the DM644x device.

2 ROM Boot Loader Negotiations

This section describes the details of the signals the ROM Boot Loader (RBL) of the DM644x transmits and
expects in the UART boot mode. Figure 1 provides a graphical overview of the RBL’s program flow in
UART boot mode. As specified in the TMS320DM644x DMSoC ARM Subsystem Reference Guide
(SPRUE14), the RBL is set up with a UART timeout of 500 ms, which means this program flow restarts
after 500 ms of waiting for an expected byte without receiving it. This timeout is not shown in Figure 1.
The negotiation prompts from the RBL consist of 7-byte strings with an eighth null terminating character.
The carat symbol, “^”, is used to indicate a space in the prompt sequences. The sequence “\0” is the
standard C escape sequence for the NULL (zero) character and therefore represents only a single byte.

2.1 ACK Header
In addition to the prompts sent by the DM644x’s RBL, the RBL also expects to receive an eight byte
sequence, “^^^^ACK\0”, as the beginning of a header describing the application bytes that the user
ultimately wishes to transmit. Following Figure 1, this header should be sent in response to the RBL’s
initiating “^BOOTME\0” sequence. Table 2 gives details of this header and its contents.

Table 2. The ACK Header in Detail

Data Width in Bytes Description
“^^^^ACK\0” 8 Expected character sequence to begin the ACK data header.
CRC-32 Checksum 8 Eight ASCII text characters representing the hexadecimal representation of the 32-bit

CRC32 checksum of the bytes of the application code intended for transmission.
Byte Count 4 Four ASCII text characters representing the hexadecimal representation of the number

of bytes in the binary application code.
Entry Point Address 4 Four ASCII text characters representing the hexadecimal representation of the address

to which the RBL should hand execution upon successful transmission.
“0000” 4 Four terminating ‘0’ characters (Not ‘\0’, or NULL, characters)

One key aspect of the data sent after the “^^^^ACK\0” sequence is that it is all ASCII characters that
represent hexadecimal digits. That is, each byte sent is drawn from the set [0-9a-fA-f] and represent 4 bits
(one hexadecimal digit) of the binary data. As an example, to send a CRC32 checksum of 0x12345678
the host should send the eight bytes 0x31 through 0x38 – the ASCII characters “1” through “8”.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRUE14

8 Basic Application Loading Over Serial Interface for the DaVinci DM644x SPRAAI0 – December 2006
Submit Documentation Feedback

www.ti.com

ROM Boot Loader Negotiations

The RBL checks the validity of the input byte count and the entry point. The input byte count must be less
than 0x3800 = 14 kB. The entirety of the transmitted data is stored in the internal tightly-coupled RAM
(TCM) of the ARM processor starting at address 0x0020. The internal RAM is 16 kB in size, leaving some
space for the 1024-byte CRC lookup table, as well as the stack and un-initialized variables. If the byte
count is too large, the RBL sends the BADCNT sequence. The entry point of the binary application must
be between 0x100 and 0x3800. If it is not in this range, the RBL returns the BADADDR sequence.
The difference between the lowest allowed entry point, 0x100, and the starting memory location of the
binary, 0x20, allows the inclusion of self-copy code at the beginning of the binary application image for use
in multiple circumstances (e.g. NOR boot and UART boot). This is not needed for this example. To make
use of this memory space, the example application places data, instead of code, at these lower
addresses.

2.2 CRC32 Table
If the header data is accepted as valid, then the RBL replies with the BEGIN sequence. This indicates that
the RBL is ready to receive the 1024-byte CRC32 lookup table. The CRC32 value sent in the ACK header
is used to verify that the application data received matches the data transmitted. The RBL expects the
data to be transmitted as 256 four-byte words (the format in which the table is constructed) converted to
their ASCII hexadecimal representation. For example, if the first two words of the table are 0xABCD0123
and 0x1A2B3C4D then the characters to be transmitted are “ABCD01231A2B3C4D”. The actual values
that this table holds are found in Appendix A.
There are two potential pitfalls with this checksum scheme. First, the checksum value sent in the header
could have been corrupted during transmission. Second, one or more elements of the CRC32 lookup table
could be corrupted in transmission, resulting in an incorrect calculation of the checksum on the DM644x.
Either of these results in boot failure, even if all of the bytes of the application code are received error-free.
Using the limited set of ASCII characters to transmit hexadecimal representations of the binary data helps
catch errors of both types. In addition, to protect the transmission of the large CRC32 table, a checksum8
is calculated for all of the bytes of the table. This checksum8 value is the least significant byte of the sum
of all bytes in the lookup table and should be equal to 0x00. As Figure 1 shows, if this checksum8 check
fails, the RBL replies with the CORRUPT sequence and the boot process begins again with BOOTME.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

SPRAAI0 – December 2006
Submit Documentation Feedback

Basic Application Loading Over Serial Interface for the DaVinci DM644x 9

www.ti.com

ROM Boot Loader Negotiations

Application Transfer Successful

Send
"^^^DONE\0"

Figure 1. ROM Boot Loader UART Mode Program Flow

No
"^^^^ACK\0" Sequence

and ACK Header Data (CRC-32
Checksum, Byte Count, Entry Point

Address, Terminating "0000")
Received?

Yes

No Byte Count <
0x3800?

Yes

No Entry Point >= 0x100 and
Entry Point <= 0x3800?

No Checksum8 of
Table = 0?

Yes

No CRC-32
Checksum
Verified?

Yes
Calculate CRC-32

Checksum of Received
Bytes

Receive 'Byte Count' Bytes

of Application Code

Send
"^^^DONE\0"

Send
"CORRUPT\0"

Receive CRC32
Look-Up Table

Send
"^^BEGIN\0"

Send
"^BADADDR\0"

Send
"^BADCNT\0"

Send
"^BOOTME\0"

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

10 Basic Application Loading Over Serial Interface for the DaVinci DM644x SPRAAI0 – December 2006
Submit Documentation Feedback

www.ti.com

Host Application Example

2.3 Application Data
If the CRC32 table is accepted as valid, the RBL indicates this with the DONE sequence. The RBL then
expects to see the transmission of the application code on the serial line. The RBL waits until all bytes,
specified by the byte count sent in the ACK header, are received. As was the case for the CRC32 table,
the data is expected to be transmitted as ASCII hexadecimal representations of four-byte words.
Consequently the binary application image must be four-byte aligned (byte count must be a multiple of
four).
When all expected bytes are received, the CRC32 checksum is calculated on these bytes, starting at the
lowest address filled (0x20) through the highest address filled (0x20 + byte count). It is important to
remember that the order of the bytes as they are stored in memory must be the same as the order of the
bytes as they were used to calculate the CRC32 checksum that was sent in the ACK header. For
example, even though 0x12345678 is sent as “12345678”, it is stored in memory as bytes in the following
order (from low address to high address): 0x78, 0x56, 0x34, 0x12.

2.4 Important Notes Regarding CRC32 Checksum

Note: The standard CRC32 algorithm (used in Ethernet, PKZIP, FDDI, etc.) uses the reflected,
inverted form with the polynomial 0x04C11DB7. But the CRC32 checksum function
performed in the ROM of the DM644x DOES NOT DO THE FINAL BIT INVERSION when
it calculates the CRC on the received data. Consequently, the checksum value that the
host should send in the ACK header should be the bitwise inversion of the checksum
generated by the standard algorithm that is commonly in use. The CRC32 lookup table
that is sent to the DM644x is not affected.

Note: If desired, the CRC32 checksum verification can be bypassed by sending a 1024-byte
table of all zeros and a CRC32 checksum value of 0x00000000 in the ACK header.
However, for maximum data integrity, the CRC32 checksum should be fully and correctly
implemented.

3 Host Application Example

There are two types of host applications that can be created to assist in getting an application binary
transmitted to the DM644x internal memory. The first simple type can input the application data and create
an output text file with all of the sequences and data already converted to hexadecimal ASCII format. This
file could then be downloaded as a text file in its entirety over the serial port using a terminal emulation
program like HyperTerminal or Minicom. If this approach is taken, a character delay of at least 1 ms must
be set to give the RBL time to do its processing.
The second approach to the host application is to create an active application that communicates over the
serial port and responds in real-time to the RBL. In this case, the data transmission can take place at full
speed because the data is ensured to be sent at the correct time. This approach is somewhat more
complicated, but also does not require the use of an additional terminal program. In addition, it provides
the ability to handle errors and gain feedback on the negotiation process that cannot be done with the first
passive approach.
The host application attached to this application report follows the second, active paradigm. This section
describes some details of this host application that is executing on the PC connected to the DM644x
board. The host application handles all the required negotiations described in Section 2, generating
appropriate responses at the appropriate times. This section describes, in general, what the host
application must do and, in specific, how the provided application does these things.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

SPRAAI0 – December 2006
Submit Documentation Feedback

Basic Application Loading Over Serial Interface for the DaVinci DM644x 11

www.ti.com

3.1 Overview
Host Application Example

The host application must first check how it was called and make sure all needed command-line
parameters were provided. Then, it must open the host’s serial port to communicate to the DM644x. Next,
it must load the binary application file and calculate its CRC32 checksum. Finally, the host application
should perform the negotiation over the serial connection as described in Section 2. The following sections
give some details and explanations of the example host application and how it handles these
requirements. The most complete documentation, however, is the source code itself.
The host application was written in the C# language. C# is a standardized object-oriented programming
language (ECMA and ISO standards) that, like Java, aims to be cross platform by targeting a common
language infrastructure (CLI). An implementation of the CLI has been developed for multiple platforms and
programs compiled on one platform for one implementation should work equally well on another. This is
accomplished partially because the compiled code exists as an intermediate language.
Surrounding the CLI, there can be a precompiled framework of classes that are used to perform common
functions and provide basic utilities (much like the standard libraries of C or C++). Microsoft® has provided
a framework of this type known as the Microsoft® .Net Framework, currently at version 2.0. An open
source project sponsored by Novell®, called the Mono Project, has developed an open-source
cross-platform CLI and framework that is mostly compatible (and aims to be fully compatible) with
Microsoft’s closed .Net Framework. The provided host application has been tested and verified to work on
both frameworks. As a result, the application can be used on a host running Microsoft Windows® or any
recent Linux distribution. Under Windows, the application can use either the .Net Framework (provided for
free at http://www.microsoft.com/) or the Mono Framework (available at http://www.mono-project.com/).
Under Linux, the Mono Framework is the only option.
The code is found in the DVLoader.cs file and the compiled executable is DVLoader.exe. The source code
is internally partitioned into two classes – a main program class and a CRC32 class. The program class
consists of the Main() function, where program execution begins, the TransmitSerialApp() function, where
the serial negotiation takes place, and the ReadSeq() function, used as a helper function by
TransmitSerialApp() to wait for the sequences coming from the DM644x RBL. The CRC32 class consists
of a public constructor and a public CalculateCRC() function. When the constructor is called, a private
BuildTable() function is used to generate the CRC32 lookup table. This table is then used for calculating
the CRC locally and is sent to the DM644x’s RBL during the serial negotiation. The console output is
shown in Figure 2.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/
http://www.microsoft.com/
http://www.mono-project.com/

12 Basic Application Loading Over Serial Interface for the DaVinci DM644x SPRAAI0 – December 2006
Submit Documentation Feedback

www.ti.com

Host Application Example

Figure 2. Console Output

3.2 Command-Line Parameters
Calling the host application requires one or two command-line parameters. The first optional parameter is
the absolute entry point (memory address) of the application as a four-character string representing the
address in hexadecimal format. If not present, the entry point address sent in the ACK header defaults to
0x0100, the lowest possible value the RBL accepts.
The required parameter is the filename of the binary application that is to be sent over the UART. The
filename can include a fully qualified or relative path from the current directory. This file should be
byte-for-byte the binary data that is intended for transmission to the DM644x. Therefore, the maximum file
size is 14 kB.
The Main() function parses the command-line arguments and sets internal variables with the appropriate
default or provided values. If the number of command-line arguments is invalid, the program displays a
simple help message.

3.3 Serial Port Access
After parsing the command-line parameters, the Main() function needs to open the serial port of the host.
Opening the port requires the name of the port, which varies depending on which platform the program is
executing. Under Windows, COM1 is the first serial port name. Under Linux, the first serial port is
/dev/ttyS0. The Main() function identifies what platform the system is running on and sets the serial port
name accordingly.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

SPRAAI0 – December 2006
Submit Documentation Feedback

Basic Application Loading Over Serial Interface for the DaVinci DM644x 13

www.ti.com

ARM Target Application Example

The serial port object (part of the Framework) is created using the determined name and with the settings
of 115200 baud, no parity, 8 data bits, 1 stop bit (written 115200 8N1). Before opening the port, the
encoding format is set to ASCII. This ensures that text written to the port is sent as 8-bit ASCII characters.
The timeout for read operations is also set to 500 ms, matching the read timeout of the DM644x RBL.
Finally the port is opened.
The Main() code catches any exceptions thrown by the open command. Specifically, if an
UnauthorizedAccessException occurs, the program warns that the port is most likely already in use by
another application and then terminates. This message would appear, for instance, if HyperTerminal has
an open connection on the port when this program is executed under Windows. To keep this program
simple, there is no command-line option to change the intended host port to a higher number. The first
serial port (COM1 or /dev/ttyS0) is likely to work in most situations. If, however, a higher port number must
be used, the supplied code easily can be modified and recompiled. The README file supplied in the code
archive describes how to do this.

3.4 CRC32 Calculation
If opening the serial port succeeds, the Main() program branches to the TransmitSerialApp() function,
passing the entry point address and the filename of the binary application. The binary application file is
opened and read as a sequence of 32-bit words. As these words are read, the ASCII hexadecimal
representation of the each word is appended to a string. Also, each word is split into its constituent bytes
and these are appended to an array of bytes, with the least significant byte first (same order as in the
memory of the ARM little-endian architecture).
When all of the words have been read from the file, this array of bytes holds the binary image in the host’s
memory. Next a CRC32 object is created. The array of bytes is passed to the CRC32 object’s
CalculateCRC() method and the return 32-bit value is the standard CRC32 checksum. That value is then
bitwise inverted to comply with the special note in Section 2.4. This final value is passed to the RBL in the
ACK header during the serial negotiations.

3.5 Serial Negotiation With the DM644x RBL
The remainder of the TransmitSerialApp() function serves to implement the serial negotiation described in
Section 2. The ReadSeq() function is used to wait for the output sequences of the DM644x RBL. If the
expected output sequence is not received within the timeout period, then the negotiation process begins
again by checking for the BOOTME sequence. This functionality mirrors the boot failure process that takes
place on the DM644x.
The code continues looping indefinitely until the negotiation completes successfully. To end the program
prematurely, you must interrupt execution using the Ctrl-C keystroke. The total execution time to complete
the negotiation and transmit a 14 kB binary application is approximately three to four seconds. The host
application prints status messages indicating how the negotiation process is proceeding. When the binary
application data has been successfully transmitted, the TransmitSerialApp() function completes and
control returns to the Main() function. There, the serial port is properly closed and the program concludes.

4 ARM Target Application Example

In this section, details of the included example UART application are presented. In general the UART
application can do whatever the developer would like, subject to some limitations discussed in the
Section 4.1.
To be useful the application needs to do a few things. One of these things is to initialize the DM644x
UART module and communicate over it to the host PC. This provides an I/O path to view diagnostic
output or show a menu and receive a selection from the user on the host PC. Another useful ability for the
UART application is to enable and use the DDR2 memory interface built-in to the DM644x. This could be
used to download a more extensive ARM-side application (e.g. U-boot) or to download DSP code and
boot the C64+ core out of the DDR2 memory space.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

14 Basic Application Loading Over Serial Interface for the DaVinci DM644x SPRAAI0 – December 2006
Submit Documentation Feedback

www.ti.com

ARM Target Application Example

Because these two items form the basis for a useful UART application, the example application included
with this document does these two things. It is intended that the user on the host PC interacts with the
UART application via a terminal program, such as HyperTerminal or Minicom, after the host application
exits. The code was written with the intention of being compiled using the MontaVista® Linux
cross-compiler GNU toolchain. Texas Instruments Code Composer Studio™ is neither required nor
supported. The included code archive includes a makefile, a linker script, three C files, and three header
files. The contents of these files are discussed in Section 4.2 and Section 4.3.

4.1 Limitations
The main limitation of the UART application is its code size. The application is limited to 14 kB of
instructions and initialized data. Complex applications may need more memory than this. This is why the
UART application can commonly be a User Boot Loader (UBL), whose job is to initialize the external
memory system and then return to the host PC to download a bigger, more complex application.
The only way to overcome this limitation and still run the application out of the internal TCM RAM is to
modularize the application and write a much more extensive host application to load needed modules as
requested over the serial link. Similarly, the application base could be used to initialize the DDR2 memory,
download all modules to the external memory, and then swap them in as necessary. But, for a single
monolithic application, without these types of workarounds, space is limited.
There is also a possible performance limitation that the developer should be aware of. This limitation can
easily be overcome as part of the system initialization (see Section 4.3.1). When the DM644x begins
execution of the downloaded UART application, the ARM core is only operating at half of the oscillator
input frequency. On the DVEVM, the clock source is 27 MHz, so the ARM core is operating at 13.5 MHz
to begin with. This is the processor’s safe mode. The ARM core is designed to run up to 297 MHz, and
can be set to do so by modifying the settings of the PLL1 peripheral. The example code provided does
this as part of the platform initializations.

4.2 GNU Toolchain Specifics
The UART application code is designed to run on the ARM core of the DM644x in what can be called a
“raw” format. There is no underlying operating system or other runtime support. There is no loader to
decode the file format, place sections in memory, and set up the stack. The compiled code must simply be
placed in memory by the RBL and executed as is. This requirement demands particular commands,
settings, and linking to create a binary that can be used in this manner. This section details the way in
which the GNU tools are used to meet this requirement, principally through the use of a linker script, used
to place object code at particular memory locations, and a makefile, used to call certain GNU tools to
generate the appropriate binary file format.

4.2.1 Linker Script
The linker script found in the code archive is uartapp.lds (ld is the GNU linker and s stands for script,
though neither the filename nor the extension is consequential). The purpose of the linker is to organize
the sections of code in the compiled object files into a single executable object file. The linker must
resolve symbol names by replacing them with memory addresses. These addresses are ultimately
determined by the contents of the linker script.
For this application, the linker script is critical for two reasons. The first reason has to do with the internal
memory architecture of the ARM core of the DM644x. The internal RAM consists of two 8 kB pages of
RAM and two buses to access these blocks, one for accessing instructions and one for accessing data.
The two buses access the same physical memory locations, but they are logically mapped to different
address ranges in the system memory space (see Tightly Coupled Memory section of the
TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14)). This organization allows
simultaneous access to an instruction word in one page and a data word in another page. The instruction
bus is mapped to 0x0000-0x3FFF, and the data bus is mapped to 0x8000-0xBFFF. The linker script must
be used to appropriately place data sections into the data memory bus range and instruction sections into
the instruction memory bus range. Additionally, the linker script must be written to insure that the data
sections and instruction sections do not overlap in the physical memory. The linker will not provide any
warning to prevent this because it has no knowledge that the two memory ranges access the same
memory. The developer must prevent this.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRUE14

SPRAAI0 – December 2006
Submit Documentation Feedback

Basic Application Loading Over Serial Interface for the DaVinci DM644x 15

www.ti.com

ARM Target Application Example

The second reason that the linker script is so critical is that there is an offset of 0x20 bytes between the
load address of the binary and the run address of the binary. This is due to the RBL copying the entire
image to the internal memory starting at location 0x0020 (actually 0x8020) instead of 0x0000. The binary
image can and should have code and/or data starting at location 0x0000 of the file, but when this file is
downloaded to the board, the RBL places this code and/or data starting at location 0x0020. The linker
script provides the means to handle the discrepancy.
Next, various parts of the linker script are explained. More information on the format and commands for
GNU linker scripts can be found in the latest GNU documentation. See Section 5 for the location of the
documentation.
This command sets the entry point of the application to be the boot symbol, i.e. the address of the boot()
function.
ENTRY(boot)

The Sections command is used to create the layout of the code and data sections that goes into the
output object file. Within this command, the output code and data sections are created by mapping
sections of the input object files into these output sections.
The first line below sets the location counter (the ‘.’ symbol) to be 0x8020. This means that the next
defined output section, the read-only section .rodata, begins at this address. The AT keyword specifies
that this section should be loaded at the beginning of the output object file, address 0x0. But the linker
resolves any symbols in the code that reference data in this section to the address range beginning at
0x8020. The .rodata output section consists of the .rodata and .rodata* sections taken from each
of the input object files. These sections consist of read-only or constant data, like strings sent by the
UART commands The ALIGN(4)statement forces the location counter to be a multiple of four, so this
section terminates on a 32-bit word boundary.
. = 0x00008020;

.rodata : AT (0x0)
{

(.rodata)
*(.rodata)
. = ALIGN(4);

}

This command creates the .data section in the output object file using the .data sections of each of the
input object files. Its runtime location follows immediately after the end of the .rodata section. The load
address, following the AT keyword, is the sum of the .rodata section’s load address and size. In other
words, the .data section is loaded immediately after the .rodata section. The .data section consists
of global variables that are initialized in the code.
.data : AT (LOADADDR(.rodata) + SIZEOF(.rodata))
{

*(.data)
. = ALIGN(4);

}

The following commands specify the output sections of program instructions. To begin, the location
counter is decremented by 0x8000 to move the run-time address of these sections to the instruction bus
region of the internal RAM. The load addresses of these sections, however, are made relative to the
previous sections, again stacking these sections immediately after the previous ones in the binary output
file. The .boot section, which holds the entry point boot() function is placed second so that it most likely
comes after the 0x0100 lowest allowed entry point address. If that is not the case, then the .boot section
needs to be forced to begin at 0x100 by editing the linker script.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

16 Basic Application Loading Over Serial Interface for the DaVinci DM644x SPRAAI0 – December 2006
Submit Documentation Feedback

www.ti.com

ARM Target Application Example

. -= 0x8000;

.text : AT (LOADADDR(.data) + SIZEOF(.data))
{

*(.text)
. = ALIGN(4);

}
.boot : AT (LOADADDR(.text) + SIZEOF(.text))
{

*(.boot)
. = ALIGN(4);

}

These commands first increment the location counter back up by 0x8000 in order to place this section in
the data bus region of the internal RAM. This .bss section is used as a location to access un-initialized
variables that the code may need to use. Because this section does not actually contain any data at load
time, a load address is unnecessary. This space can even be past the 14 kB RBL limit because it does
not add any size to the binary image that is downloaded. Of course, no data can exist at or above
0xC000, so the developer needs to be aware of how much space un-initialized data might take up.
. += 0x8000;
.bss :
{

*(.bss) *(COMMON)
. = ALIGN(4);

}

The last part of the Sections command specifies a symbol for the location of the top of the stack, and two
other sections corresponding to the AEMIF CS2 memory region (occupied by NOR or NAND flash on the
DVEVM) and the DDR2 memory space. Technically, these sections are not required as the addresses
could be fixed in the C code, but the linker script seems an appropriate centralized place to modify
memory space settings. This is especially true if there is a chance that the sections may move in the
future (if a design uses the AEMIF CS3 space instead of the CS2 space, for example).

The topstack symbol is set to the top of the data bus internal RAM region as 0xBFFC. It is used in
the boot code to set the stack pointer, which grows down from this location. In this case, care must be
taken by the developer to make sure the .bss section and the stack do not overflow into each other.
There is no built-in mechanism to do this. Figure 3 gives a visual overview of how the different sections
are organized, first in the binary application file, and then in memory on the ARM core of the DM644x.
 topstack = 0xC000 - 0x4;

. = 0x02000000;
.aemif :
{

*(.aemif)
}

. = 0x80000000;

.ddrram :
{

*(.ddrram)
}

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

SPRAAI0 – December 2006
Submit Documentation Feedback

Basic Application Loading Over Serial Interface for the DaVinci DM644x 17

www.ti.com

ARM Target Application Example

0x0000
0x0020

0x3800
0x3820

0x4000

0x8000
0x8020

0xB800
0xB820

0xC000

(a) (b) (c)

Figure 3. View of Object File Sections

Figure 3 shows the object file sections in the following views:

(a) Binary Application File
(b) Physical Memory
(c) Logical Memory (showing separate data and instruction bus memory spaces)

stack

.bss

.boot .boot
.boot

.text .text
.te.xt

.data

.data

.rodata

.rodata

stack

.b.ss

.da. ta

.rod.ata

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

18 Basic Application Loading Over Serial Interface for the DaVinci DM644x SPRAAI0 – December 2006
Submit Documentation Feedback

www.ti.com

ARM Target Application Example

4.2.2 Makefile
The makefile controls the build process, including calling the linker that utilizes the linker script discussed
in Section 4.2.1. The GNU tools that it calls are the key to generating the proper output image. The
makefile takes the following steps:
1. Use the cross-compiler gcc executable to compile the *.c files into object files (*.o) files.

The -c flag indicates that the gcc tool should do only compilation and assembly, no linking. The –Os
flag indicates that the compiler should optimize the output for size. The -Wall flag indicates that all
warnings should be produced, where applicable.

2. Generate an ELF executable by using the cross-compiler gcc executable (which internally calls the
GNU linker ld) to link the objects files.
Here gcc is used only for linking the already compiled object files. The -Wl flag passes the
-T$(LINKERSCRIPT) flag directly to the internal call to the GNU linker ld, so that the linker uses the
script in determining the output. The -nostdlib flag is very important for generating a correct “raw”
binary image. It prevents the linker from trying to compile in the system startup libraries, which usually
provides the entry point to a program. The linker script specifies the entry point, and the application
does not need a loader, so these libraries and files are not needed.

3. Use the cross-compiler version of the GNU objcopy tool to convert the ELF executable to the binary
format.
The objcopy command is used to convert from one object file format to another, in this case from ELF
to binary. This essentially produces a memory dump starting at the load address of the lowest section
in the ELF file. According to the linker script, this is the .rodata section at load address 0x0. See
Figure 3(a) for a view of the binary application image structure.
The -R flags are used to remove the .aemif and .ddrram sections because these aren’t in the memory
range of the internal RAM. The --gap-fill 0xFF command fills any empty bytes between sections with
the value 0xFF. The --pad-to 0x3800 pads the binary output file to be exactly 14 kB in length. This
padding is not needed, but does make any binary images consistent. Finally, the -S option tells the
objcopy command to strip all debugging, relocation and symbol information.

4. Use the cross-compiler objdump utility to find the address of the entry point boot() function.
The final step in the makefile is to analyze the ELF executable, which still has its symbol information,
to determine the address of the boot symbol, specified as the entry point in the linker script. Running
the cross-compiler objdump command on the ELF executable with the –t command displays the
symbol table. The makefile pipes this output to the grep command, which finds the line containing the
address of boot. This line is then piped to the sed command, to parse the address out by itself, where
it is displayed. This value can then be used as a parameter on the host application command-line.
The online manuals for the GNU tools can be found at http://www.gnu.org/manual/manual.html. The
objcopy and objdump commands are part of the binutils package, also documented at the GNU
website found at http://www.gnu.org/.

4.3 Discussion of C Code

As with the host application, the best ultimate documentation for the UART application is the code itself.
However, this section attempts to explain in some detail the most important aspects of the code. This
section is divided into four subsections. The first deals with the boot code that must be executed before
the main body of the application can begin. The next section briefly discusses the main program. The
following section concerns the platform initialization, which principally consists of starting the DDR2
memory system. The final section presents some simple functions to send and receive data via the UART.
The code consists of three C files and three corresponding header files. The file dm644x.c contains the
entry point boot() function and the system initialization code. The dm644x.h header file also defines a
number of structures and preprocessor macros for accessing system and peripheral registers. The uart.c
and uart.h files define the functions to use the UART peripheral to send and receive data, though the
UART initialization procedure is found in the dm644x.c file. Finally, the uartapp.c and uartapp.h files
contain the uartapp_main() function, which presents the application menu. The action functions that are
called based on the user’s menu selection also are found in these files.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/
http://www.gnu.org/manual/manual.html
http://www.gnu.org/

SPRAAI0 – December 2006
Submit Documentation Feedback

Basic Application Loading Over Serial Interface for the DaVinci DM644x 19

www.ti.com

ARM Target Application Example

4.3.1 Boot Code
The boot() function is prototyped in the “dm644x.h” header file as follows:
void boot(void) attribute ((naked,section (".boot")));

The attributes attached to the function prototype give the gcc compiler additional information about how to
convert the C function to assembly code. The first attribute, naked, tells the compiler that the function
prologue and epilogue should not be generated. These normally contain the commands to save and
restore registers. Because this function is intended to be the program entry point, these are not needed.
The second attribute specifies that this function should be placed in the .boot section of the object file.
This is used to by the linker script to place the entry point at an appropriate place in the binary application
image.
The boot code must do one important thing so that the further function calls work correctly – it must set
the stack pointer. This can only be accomplished through loading the SP register of the ARM core with the
value given in the linker script.The code below does does this by utilizing the extended ASM capabilities of
the GNU compiler.
extern int topstack;
register int* stackpointer asm ("sp");
stackpointer = &(topstack);

The boot code then calls the uartapp_main() function, found in uartapp.c, to start executing the true
program. When the main function returns, execution enters an infinite loop intended to halt the program
execution so that it does not begin executing undefined instructions after the end of the boot() function.

4.3.2 Main Program

The main function, uartapp_main(), first calls PlatformInit() in dm644x.c to set up the system peripherals
(see Section 4.3.3). Then it displays a prompt for the user to press any key and waits for a single byte to
arrive from the UART system. If the UART receive function times out, then the prompt is displayed again
and the wait starts over. This allows the user to control when the main menu is displayed. This is needed
to give the user time to start a terminal program on the host, after the host console application has
terminated.
The main menu of the program is displayed after the keypress loop is passed. The menu offers three
options to the user and prompts for a choice. The application loops waiting for the UARTRecvData()
function to succeed and return the input choice. A switch-case block checks for the characters 1, 2, or 3
and proceeds to execute the desired choice. If an invalid choice came from the host, a message indicating
this is displayed. After the switch block, the uartapp_main() function terminates and execution returns to
the boot function, where the program enters an infinite while() loop. An example of the terminal output is
shown in Figure 4.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

20 Basic Application Loading Over Serial Interface for the DaVinci DM644x SPRAAI0 – December 2006
Submit Documentation Feedback

www.ti.com

ARM Target Application Example

Figure 4. Terminal Output

The menu choices are:
1. Print “Hello World!”

This displays a simple message over the UART to demonstrate its functionality. This option is
somewhat unnecessary because the display of the menu shows that the UART has been initialized
and is working correctly.

2. Perform a DDR memory test.
This choice executes the DDRTest() function which writes an example pattern to all the memory
locations of the DDR2 memory space and then verifies that pattern via a simple read-back. If the
verification of any memory location fails, then the DDRTest() function exits prematurely returning an
error code.

Note: The DDRTest() function is not meant to represent a robust, valid test of memory. It only
serves as an example to verify that the DDR2 memory controller has been initialized and
is functioning correctly.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

SPRAAI0 – December 2006
Submit Documentation Feedback

Basic Application Loading Over Serial Interface for the DaVinci DM644x 21

www.ti.com

ARM Target Application Example

3. Jump to the CS2 AEMIF memory space to start execution.
This is accomplished by simply calling the function aemif_start(). This function is prototyped in the
header file as
void aemif_start(void) attribute ((naked,section(".aemif")));

and is declared as
void aemif_start(){

asm(“ NOP”);
}

This code says that the aemif_start() function is located in the CS2 AEMIF memory space (as per the
linker script) and, like the boot() entry point function, is naked. This is because this function acts as an
exit point of the application, from which there is no return. The assemply NOP command is inserted to
make sure the function is not optimized out by the compiler. In the makefile, the objcopy command
excludes this function by excluding the .aemif section from the binary output.

Note: The last menu choice requires some executable code to be present at the start of the
CS2 AEMIF memory region. On the DVEVM this might be the U-boot code in the NOR
flash memory.

4.3.3 Platform Initialization

This section describes the important code that is used to initialize the DM644x DMSoC when booting over
the UART. All of this code can be found in the dm644x.c file. The initialization requires reading and writing
a large number of hardware registers. The addresses of these registers are determined by structures and
preprocessor defines in the dm644x.h header file. The header file references the associated peripheral
and subsystem documentation if more information is desired.
The PlatformInit() function, called by the uartapp_main() function, in turn calls five other initialization
functions in order: UARTInit(), PLL1Init(), PLL2Init(), DDR2Init(), and AEMIFInit(). The UARTInit()
command is used to set up the UART0 and TIMER0 peripherals. The TIMER0 peripheral is used by the
UART commands as a timeout timer. PLL1Init() is used to change the ARM core clock from the slow 13.5
MHz to the fast 297 MHz by changing the PLL1 multiplier. PLL2Init() and DDR2Init() are used to configure
the DDR2 memory system. Finally, the AEMIFInit() function is used to set some timing registers for the
AEMIF interface to the worst-case settings.
In this section, only the initializations for the DDR2 memory, found in functions PLL2Init() and DDR2Init(),
and the UART, found in UARTInit(), are discussed. The PLL1 Initialization is similar to that used for the
PLL2. The AEMIF initialization does not require elaboration.

4.3.3.1 DDR2 Memory Initialization
The steps needed to initialize the DDR2 memory are listed in the TMS320DM644x DMSoC DDR2 Memory
Controller User’s Guide (SPRUE22). This section clarifies those listed instructions by providing and
discussing a functioning code example.

4.3.3.1.1 PLL2 Peripheral Initialization
The first step to enabling the DDR2 memory system is to set up the DDR2 memory clock that is generated
by the PLL2 peripheral. Details of how to do this are given in the PLL Controller section of the
TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14). The first step is to make sure
that the PLL is receiving the system clock from the proper source by setting or clearing bit 8 of the PLL2
control register.
PLL2->PLLCTL &= (~0x00000100);

The PLL2 must be put into bypass mode by clearing bit 5 and bit 0 of the PLL control register. Bypass
mode sends the input reference clock to the connected subsystems and disconnects the PLL’s VCO
output from those same systems (i.e. the PLL is bypassed). After the PLL2 is put into bypass mode, a
short amount of time is given to ensure that the switch is complete.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRUE22
http://www-s.ti.com/sc/techlit/SPRUE14

22 Basic Application Loading Over Serial Interface for the DaVinci DM644x SPRAAI0 – December 2006
Submit Documentation Feedback

www.ti.com

ARM Target Application Example

PLL2->PLLCTL &= (~0x00000021);
waitloop(32*11);

Next, the PLL2 is put into reset, disabled, powered-up, and then re-enabled. This leaves the peripheral
device still in reset, but enabled with power.

PLL2->PLLCTL &= (~0x00000008); // Put PLL into reset
PLL2->PLLCTL |= (0x00000010); // Disable the PLL
PLL2->PLLCTL &= (~0x00000002); // Power-up the PLL
PLL2->PLLCTL &= (~0x00000010); // Enable the PLL

In this state the PLL multipliers and dividers can be set. Note that only the PLL2 peripheral has
programmable dividers. The PLL2 provides the input clock to the video processing sub-system (VPSS) as
well as the DDR2 memory controller. The VPSS needs a 54 MHz clock input. The DDR2 memory
controller needs a clock operating at twice the physical memory rate. On the DVEVM, the memory layout
is intended to work up to a rate of 166 MHz. The closest multiple of 27 MHz is 162 MHz. Therefore, the
PLL2 needs to provide 324 MHz to the DDR2 memory controller.
PLL2->PLLM = 23; // 27 Mhz * (23+1) = 648 MHz
PLL2->PLLDIV1 = 11; // 648 MHz / (11+1) = 54 MHz
PLL2->PLLDIV2 = 1; // 648 MHz / (1+1) = 324 MHz

(the PHY DDR rate)

Finally, the PLL dividers are enabled and the output clocks are set to undergo phase alignment to the
input system clock.
PLL2->PLLDIV2 |= (0x00008000); // Enable DDR divider
PLL2->PLLDIV1 |= (0x00008000); // Enable VPBE divider
PLL2->PLLCMD |= 0x00000001; // Tell PLL to do phase alignment
while ((PLL2->PLLSTAT) & 0x1); // Wait until done
waitloop(256*11); // Wait for stability

With the clocks stable, the PLL2 peripheral can be released from reset and switched out of bypass mode.
PLL2->PLLCTL |= (0x00000008); // Take PLL out of reset
waitloop(2000*11); // Wait for locking
PLL2->PLLCTL |= (0x00000001); // Switch out of bypass mode

4.3.3.1.2 DDR Memory Controller Initialization

Once the clocks to the DDR2 memory controller peripheral are correctly set, the memory controller itself
needs to be initialized. The settings for the memory controller are determined by the type and number of
memory devices, as well as the board layout. To begin, the memory controller peripheral is first enabled
via the on-chip power and sleep controller (PSC).
while (PSC->PTSTAT & 0x00000001);
PSC->MDCTL[13] = ((PSC->MDCTL[13]) & (0xFFFFFFE0)) | (0x00000003);
PSC->PTCMD |= 0x00000001;
while ((PSC->PTSTAT) & 0x00000001);
while (((PSC->MDSTAT[13]) & 0x1F) != 0x00000003);

Then, the timing registers need to be programmed with the proper values. The formula for calculating
these values is provided in the DDR2 Memory Controller Registers section of SPRUE22. Next, a dummy
write and read cycle is performed on the DDR memory space to apply the settings.
DDRMem[0] = DDR_TEST_PATTERN;
if (DDRMem[0] == DDR_TEST_PATTERN)

UARTSendInt(DDRMem[0]);

After the timing values are set, the DDR memory controller undergoes a soft reset via the PSC.
PSC->MDCTL[13] = ((PSC->MDCTL[13]) & (0xFFFFFFE0)) | (0x00000001);
PSC->PTCMD |= 0x00000001;
while ((PSC->PTSTAT) & 0x00000001);
while (((PSC->MDSTAT[13]) & 0x1F) != 0x00000001);

PSC->MDCTL[13] = ((PSC->MDCTL[13]) & (0xFFFFFFE0)) | (0x00000003);
PSC->PTCMD |= 0x00000001;
while ((PSC->PTSTAT) & 0x00000001);
while (((PSC->MDSTAT[13]) & 0x1F) != 0x00000003);

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

SPRAAI0 – December 2006
Submit Documentation Feedback

Basic Application Loading Over Serial Interface for the DaVinci DM644x 23

www.ti.com

ARM Target Application Example

The DDR memory controller can now begin the voltage, temperature, and process (VTP) calibration. This
calibration controls the output impedance of the output IO of the DDR pins of the DM644x. This calibration
is begun by clearing and then setting bit 15 of the VTPIOCR. After at least 33 VTP clock cycles, the
calibration is ensured to be complete. The VTP clock is 27 MHz. The calibration data is stored in the
DDRVTPR register, which can only be read by setting the enable bit in the DDRVTPER of the ARM
system module. Once the data is read, it should be written back to the VTPIOCR.
DDR->VTPIOCR = 0x201F; // Clear calibration start bit
DDR->VTPIOCR = 0xA01F; // Set calibration start bit
waitloop(11*33); // Wait for calibration to complete
SYSTEM->DDRVTPER = 0x1; // Enable DDRVTPR access
tempVTPData = 0x3FF & DDRVTPR; // Read calibration data
DDR->VTPIOCR = ((DDR->VTPIOCR) & 0xFFFFFC00) | tempVTPData;
DDR->VTPIOCR = (DDR->VTPIOCR) & (~0x00002000); // Clear calibration enable bit
SYSTEM->DDRVTPER = 0x0; // Disable DDRVTPR access

At this point the DDR2 Memory subsystem is enabled and calibrated. The simple memory test in the
uartapp_main() function can verify that the memory system is functioning correctly.

4.3.3.2 UART Initialization

The UART initialization is, appropriately, much simpler than that for the DDR2 memory system. The code
to perform the initialization is found in the UARTInit() function. It consists of setting the UART control
registers and then the TIMER0 control registers for use as a timeout timer for the UART commands.
Because the UART is used to download the code when interfacing to the RBL, it is actually already
initialized. But this code is included for completeness in case the user wants to change the
communications parameters.
The initialization of the UART needs to be delayed a certain amount of time after the RBL passes control
to the downloaded application. This time allows the final bytes of data the RBL placed in the UART’s FIFO
buffer to be successfully sent. To delay the necessary amount of time, the transmitter empty bit of the
UART line status register (LSR) is polled until it indicates that the transmit shift register and transmitter
FIFO are both empty.

while((UART0->LSR & 0x40) == 0);

The remainder of the UARTInit() function is used to set the appropriate values in the UART configuration
registers.
SYSTEM->PINMUX[1] |= 1; // Make sure the pins are in UART mode
UART0->LCR |= 0x80; // Set DLAB bit to allow setting clock dividers
UART0->DLL = 0x0F; // Set dividers for the UART baud rate
UART0->DLH = 0x00;
UART0->FCR = 0x07; // Enable, clear, and reset FIFOs
UART0->MCR = 0x00; // Disable autoflow control
UART0->PWREMU_MGNT |= 0x8001; // Enable RX, TX and set to run
UART0->LCR = 0x03; // Set word length to 8-bits, clear DLAB bit

After the UART0 peripheral is set up, the TIMER0 mode and period is set. During the UART send and
receive commands, the timer is enabled and its IRQ bit is polled to check if the counter has reached the
specified period count. The timer period register holds the number of cycles that pass until an interrupt is
thrown. The TIMER0 peripheral is clocked from the 27-MHz input reference clock.
TIMER0->TCR = 0x00000000; // Disable the timer
TIMER0->TGCR = 0x00000003; // Set to 64-bit GP Timer mode, enable TIMER12 & 34
TIMER0->TIM34 = 0x00000000; // Reset timer count to zero
TIMER0->TIM12 = 0x00000000; // Reset timer count to zero
TIMER0->PRD34 = 0x00000000; // Set timer period registers
TIMER0->PRD12 = 0x080BEFC0; // 0x080BEFC0 = 5*27x10^6 => 5 seconds

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

24 Basic Application Loading Over Serial Interface for the DaVinci DM644x SPRAAI0 – December 2006
Submit Documentation Feedback

www.ti.com

ARM Target Application Example

4.3.4 UART Commands
This sections details the basic functionality of the UART send and receive code. Details about the
registers used in these function can be found in the TMS320DM644x DMSoC Universal Asynchronous
Receiver/Transmitter (UART) User's Guide (SPRUE33) and in the TMS320DM644x DMSoC 64-Bit Timer
User's Guide (SPRUE26). The UART communications commands consist of four functions:
• UARTRecvData() – This function is used to receive a specified number of bytes.
• UARTSendData() – This function is used to send a null-terminated string.
• UARTSendInt() – This function is used the ASCII hexadecimal representation of an integer.
• GetStringLen() – This function is used to determine the string length for UARTSendData().
In addition there are two simple inline function (found in dm644x.h) that are used to start the timeout timer
and then check its status:
• TIMER0Start() – Clear the timer status, reset the counter, and enable counting.
• TIMER0Status() – Check if the TIMER0 bit of the interrupt controller IRQ1 register is set.

4.3.4.1 UARTRecvData()
The receive function requires the caller to pass the number of bytes that the function should wait to
receive. The function loops this number of times, waiting for a byte to arrive or a timeout to occur.
TIMER0Start(); // Start the timeout timer
do{

status = (UART0->LSR)&(0x01); // Check the data-ready bit of LSR
timerStatus = TIMER0Status(); // Check timout status

} while (!status && timerStatus); // loop until timout or data ready

If a timeout has occurred, then the function should terminate early, returning a timeout error code.
if(timerStatus == 0)

return E_TIMEOUT;

Otherwise, a byte has been received and is ready to be read at the UART receive register.
seq[i] = UART0->RBR;

Finally, this character is echoed back to the host. This step is not required, but does improve the usability
for terminal programs without local echo.
UART0->THR = seq[i];
do{

status = (UART0->LSR)&(0x20); // check transmit register empty bit
} while (!status);

4.3.4.2 UARTSendData()
To send data, a pointer to the start of a byte sequence is passed to the UARTSendData() function. Then
the function must get the length of the string by calling the GetStringLen() function. The returned value
tells the function how many times to loop.
numBytes = GetStringLen(seq);

Then the function loops numBytes times sending a byte each loop iteration, unless a timeout occurs.
TIMER0Start(); // Start the timeout timer
do{

status = (UART0->LSR)&(0x20); // check transmit register empty bit
timerStatus = TIMER0Status(); // Check timout status

} while (!status && timerStatus); // loop until timout or THR empty

As with the receive function, if a timeout occurs the function terminates returning a timeout error code.
if(timerStatus == 0)

return E_TIMEOUT;

If no timeout occurs, then the UART transmit hold register is empty and can accept the next data byte
from our sequence.
(UART0->THR) = seq[i];

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRUE33
http://www-s.ti.com/sc/techlit/SPRUE26

SPRAAI0 – December 2006
Submit Documentation Feedback

Basic Application Loading Over Serial Interface for the DaVinci DM644x 25

www.ti.com

4.3.4.3 UARTSendInt()

References

This function is useful for sending a hexadecimal text representation of an integer variable (or any variable
cast to an integer). This function creates a nine byte, null terminated sequence by examining the integer in
4-bit chunks. Each 4-bit chunk is converted to the appropriate numeral or A-F letter.
for(i = 0; i < 8; i++){

shift = ((7-i)*4); // Most sig 4-bit to least sig 4-bit
temp = ((value>>shift) & (0x0000000F)); // Value of 4-bit chunk
if (temp > 9){ // If it should be in A-F

temp = temp + 55;
}
else{ // If it should be a numeral

temp = temp + 48;
}
seq[i] = temp; // Assign the chractder to seq.

}
seq[8] = 0; // Null-terminate the sequence

Finally, the sequence of characters is passed to the UARTSendData() function for transmission.
return UARTSendData(seq);

4.3.4.4 GetStringLen()
This function helps the send function know how many bytes to send. It returns a zero if no termination is
found within a maximum number of bytes. Otherwise, the number of bytes before the null-termination is
received.
while ((seq[i] != 0) && (i<MAXSTRLEN)){ i++;}
if (i == MAXSTRLEN)

return 0;
else

return i;

The MAXSTRLEN value is a preprocessor macro defined in the uart.h file as 256.

5 References
• TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14)
• TMS320DM644x DMSoC DDR2 Memory Controller User’s Guide (SPRUE22)
• TMS320DM644x DMSoC Universal Asynchronous Receiver/Transmitter (UART) User's Guide

(SPRUE33)
• TMS320DM644x DMSoC 64-Bit Timer User's Guide (SPRUE26)
• GNU Linker Manual, http://www.gnu.org/software/binutils/manual/ld-2.9.1/ld.html.
• GNU Binutils Manual, http://www.gnu.org/software/binutils/manual/html_chapter/binutils_toc.html.
• GNU gcc Manual, http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/.
• A Painless Guide to CRC Error Detection Algorithms, Ross Williams, 1993,

http://www.ross.net/crc/download/crc_v3.txt.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/
http://www-s.ti.com/sc/techlit/SPRUE14
http://www-s.ti.com/sc/techlit/SPRUE22
http://www-s.ti.com/sc/techlit/SPRUE33
http://www-s.ti.com/sc/techlit/SPRUE26
http://www.gnu.org/software/binutils/manual/ld-2.9.1/ld.html
http://www.gnu.org/software/binutils/manual/html_chapter/binutils_toc.html
http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/
http://www.ross.net/crc/download/crc_v3.txt

26 Basic Application Loading Over Serial Interface for the DaVinci DM644x SPRAAI0 – December 2006
Submit Documentation Feedback

www.ti.com

Appendix A CRC32 Lookup Table

This appendix includes the values found in Table A-1 that are sent to the RBL in the application
download process.

A.1 CRC32 Lookup Table

Table A-1. Lookup Table for CRC32

No. Value No. Value No. Value No. Value
0 0x00000000 1 0x77073096 2 0xC30C8EA1 3 0x990951BA
4 0x076DC419 5 0x706AF48F 6 0xE963A535 7 0x9E6495A3
8 0x0EDB8832 9 0x79DCB8A4 10 0xE0D5E91E 11 0x97D2D988
12 0x09B64C2B 13 0x7EB17CBD 14 0xE7B82D07 15 0x90BF1D91
16 0x1DB71064 17 0x6AB020F2 18 0xF3B97148 19 0x84BE41DE
20 0x1ADAD47D 21 0x6DDDE4EB 22 0xF4D4B551 23 0x83D385C7
24 0x136C9856 25 0x646BA8C0 26 0xFD62F97A 27 0x8A65C9EC
28 0x14015C4F 29 0x63066CD9 30 0xFA0F3D63 31 0x8D080DF5
32 0x3B6E20C8 33 0x4C69105E 34 0xD56041E4 35 0xA2677172
36 0x3C03E4D1 37 0x4B04D447 38 0xD20D85FD 39 0xA50AB56B
40 0x35B5A8FA 41 0x42B2986C 42 0xDBBBC9D6 43 0xACBCF940
44 0x32D86CE3 45 0x45DF5C75 46 0xDCD60DCF 47 0xABD13D59
48 0x26D930AC 49 0x51DE003A 50 0xC8D75180 51 0xBFD06116
52 0x21B4F4B5 53 0x56B3C423 54 0xCFBA9599 55 0xB8BDA50F
56 0x2802B89E 57 0x5F058808 58 0xC60CD9B2 59 0xB10BE924
60 0x2F6F7C87 61 0x58684C11 62 0xC1611DAB 63 0xB6662D3D
64 0x76DC4190 65 0x01DB7106 66 0x98D220BC 67 0xEFD5102A
68 0x71B18589 69 0x06B6B51F 70 0x9FBFE4A5 71 0xE8B8D433
72 0x7807C9A2 73 0x0F00F934 74 0x9609A88E 75 0xE10E9818
76 0x7F6A0DBB 77 0x086D3D2D 78 0x91646C97 79 0xE6635C01
80 0x6B6B51F4 81 0x1C6C6162 82 0x856530D8 83 0xF262004E
84 0x6C0695ED 85 0x1B01A57B 86 0x8208F4C1 87 0xF50FC457
88 0x65B0D9C6 89 0x12B7E950 90 0x8BBEB8EA 91 0xFCB9887C
92 0x62DD1DDF 93 0x15DA2D49 94 0x8CD37CF3 95 0xFBD44C65
86 0x4DB26158 97 0x3AB551CE 98 0xA3BC0074 99 0xD4BB30E2

100 0x4ADFA541 101 0x3DD895D7 102 0xA4D1C46D 103 0xD3D6F4FB
104 0x4369E96A 105 0x346ED9FC 106 0xAD678846 107 0xDA60B8D0
108 0x44042D73 109 0x33031DE5 110 0xAA0A4C5F 111 0xDD0D7CC9
112 0x5005713C 113 0x270241AA 114 0xBE0B1010 115 0xC90C2086
116 0x5768B525 117 0x206F85B3 118 0xB966D409 119 0xCE61E49F
120 0x5EDEF90E 121 0x29D9C998 122 0xB0D09822 123 0xC7D7A8B4
124 0x59B33D17 125 0x2EB40D81 126 0xB7BD5C3B 127 0xC0BA6CAD
128 0xEDB88320 129 0x9ABFB3B6 130 0x03B6E20C 131 0x74B1D29A
132 0xEAD54739 133 0x9DD277AF 134 0x04DB2615 135 0x73DC1683
136 0xEAD54739 137 0x94643B84 138 0x0D6D6A3E 139 0x7A6A5AA8
140 0xE40ECF0B 141 0x9309FF9D 142 0x0A00AE27 143 0x7D079EB1
144 0xF00F9344 145 0x8708A3D2 146 0x1E01F268 147 0x6906C2FE

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

SPRAAI0 – December 2006
Submit Documentation Feedback

Basic Application Loading Over Serial Interface for the DaVinci DM644x 27

www.ti.com

CRC32 Lookup Table

Table A-1. Lookup Table for CRC32 (continued)

No. Value No. Value No. Value No. Value
148 0xF762575D 149 0x806567CB 150 0x196C3671 151 0x6E6B06E7
152 0xFED41B76 153 0x89D32BE0 154 0x10DA7A5A 155 0x67DD4ACC
156 0xF9B9DF6F 157 0x8EBEEFF9 158 0x17B7BE43 159 0x60B08ED5
160 0xD6D6A3E8 161 0xA1D1937E 162 0x38D8C2C4 163 0x4FDFF252
164 0xD1BB67F1 165 0xA6BC5767 166 0x3FB506DD 167 0x48B2364B
168 0xD80D2BDA 169 0xAF0A1B4C 170 0x36034AF6 171 0x41047A60
172 0xDF60EFC3 173 0xA867DF55 174 0x316E8EEF 175 0x4669BE79
176 0xDF60EFC3 177 0xBC66831A 178 0x256FD2A0 179 0x5268E236
180 0xCC0C7795 181 0xBB0B4703 182 0x256FD2A0 183 0x5505262F
184 0xC5BA3BBE 185 0xB2BD0B28 186 0x2BB45A92 187 0x5CB36A04
188 0xC2D7FFA7 189 0xB5D0CF31 190 0x2CD99E8B 191 0x5BDEAE1D
192 0x9B64C2B0 193 0xEC63F226 194 0x756AA39C 195 0x026D930A
196 0x9C0906A9 197 0xEB0E363F 198 0x72076785 199 0x05005713
200 0x95BF4A82 201 0xE2B87A14 202 0x7BB12BAE 203 0x0CB61B38
204 0x92D28E9B 205 0xE5D5BE0D 206 0x7CDCEFB7 207 0x0BDBDF21
208 0x86D3D2D4 209 0xE5D5BE0D 210 0x68DDB3F8 211 0x1FDA836E
212 0x81BE16CD 213 0xF6B9265B 214 0x6FB077E1 215 0x18B74777
216 0x88085AE6 217 0xFF0F6A70 218 0x66063BCA 219 0x11010B5C
220 0x8F659EFF 221 0xF862AE69 222 0x616BFFD3 223 0x166CCF45
224 0xA00AE278 225 0xD70DD2EE 226 0x4E048354 227 0x3903B3C2
228 0xA7672661 229 0xD06016F7 230 0x4969474D 231 0x3E6E77DB
232 0xAED16A4A 233 0xD9D65ADC 234 0x40DF0B66 235 0x37D83BF0
236 0xA9BCAE53 237 0xDEBB9EC5 238 0x47B2CF7F 239 0x30B5FFE9
240 0xBDBDF21C 241 0xCABAC28A 242 0x53B39330 243 0x24B4A3A6
244 0xBAD03605 245 0xCDD70693 246 0x54DE5729 247 0x23D967BF
248 0xB3667A2E 249 0xC4614AB8 250 0x5D681B02 251 0x2A6F2B94
252 0xB40BBE37 253 0xC30C8EA1 254 0x5A05DF1B 255 0x2D02EF8D

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAI0
http://www.ti.com/

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Contents
	List of Figures
	List of Tables
	Trademarks

	Basic Application Loading Over the Serial Interface for the
	ABSTRACT
	1 UART Application Boot Overview
	Table 1. Boot Modes for DM644x Device

	2 ROM Boot Loader Negotiations
	2.1 ACK Header
	Table 2. The ACK Header in Detail

	2.2 CRC32 Table
	Figure 1. ROM Boot Loader UART Mode Program Flow

	2.3 Application Data
	2.4 Important Notes Regarding CRC32 Checksum

	3 Host Application Example
	3.1 Overview
	Figure 2. Console Output

	3.3 Serial Port Access
	3.4 CRC32 Calculation
	3.5 Serial Negotiation With the DM644x RBL

	4 ARM Target Application Example
	4.1 Limitations
	4.2 GNU Toolchain Specifics
	4.2.1 Linker Script
	Figure 3. View of Object File Sections
	4.2.2 Makefile

	4.3 Discussion of C Code
	4.3.1 Boot Code
	4.3.2 Main Program
	Figure 4. Terminal Output
	4.3.3 Platform Initialization
	4.3.3.1 DDR2 Memory Initialization

	4.3.3.1.1 PLL2 Peripheral Initialization
	4.3.3.1.2 DDR Memory Controller Initialization
	4.3.3.2 UART Initialization

	4.3.4 UART Commands
	4.3.4.1 UARTRecvData()
	4.3.4.2 UARTSendData()
	4.3.4.3 UARTSendInt()
	4.3.4.4 GetStringLen()

	5 References
	Appendix A CRC32 Lookup Table
	A.1 CRC32 Lookup Table
	Table A-1. Lookup Table for CRC32
	Table A-1. Lookup Table for CRC32 (continued)

