
Application Report
SPRAAF6–September 2006

DaVinci System Level Benchmarking Measurements
Zhengting He, Mukul Bhatnagar, Jackie Brenner ..

ABSTRACT

The DaVinci™ platform offers a complete solution for many multimedia applications
requiring advanced video codecs. The solution consists of a DM644x dual core
architecture that offers high performance along with a rich mix of peripherals and a
complete software environment. This environment includes inter-processor
communication software via DSP/BIOS™ Link, and a codec framework that enables
customers to use a variety of codec options.

As with any system many developers would like to understand the performance taking
into account processor loading, memory usage and power consumption. In critical
applications performance and power consumption analysis is often necessary to
evaluate a device within a system context.

The Digital Video Evaluation Module (DVEVM) is an evaluation platform that
showcases the DM644x architecture and the associated digital video and audio system
software solutions. It is packaged and designed to enable users to evaluate both
performance and power (energy) usage of the DM644x solution.

This document describes how the performance and power consumption can be
evaluated in a system context making use of the components available with the
DVEVM and Digital Video Software Development Kit (DVSDK). The performance/ CPU
loading and power consumption is measured for the H.264 audio/video demonstration
software that is offered with the DVEVM. This methodology can also be utilized to
measure performance and power for a developer’s own application software on the
DVEVM within the above context.

Contents
Trademarks.. 2

1 Introduction .. 2
2 DVEVM Demonstration Software Descriptions ... 4
3 Necessary Equipment and Software ... 8
4 Measuring the Processor Loading on the Demo Programs................................... 9
5 Demo Memory Usage ... 22
6 Power Measurements on the Demos... 25
7 Summary .. 31
8 Conclusion ... 32
9 References... 32

List of Figures

1 Demo Software Architecture .. 4
2 Decode Demo Block Diagram .. 5
3 Encode Demo Block Diagram... 6
4 Encode/Decode Demo Block Diagram .. 7
5 Measurement Setup.. 8
6 DM644x SoC Analyzer Control Panel .. 10
7 Find tstart for the Encode Demo.. 12

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

Trademarks

1 Introduction

Introduction

8 Find tend for the Encode Demo: tend = Start+TotalTime....................................... 13
9 Processing Time for Each Frame (Encode Demo Example); Note t_frame labels

added for clarity ... 14
10 DSP Processing Time Statistics for Encode Demo... 15
11 Overall Processing Time Statistics for Encode Demo.. 16
12 H.264 Encoder and Decoder Block Diagram.. 21
13 Test Points for Power Measurements on DM644x DVEVM 28

List of Tables

1 Loading Measurement Results for Decoder Demo ... 18
2 Loading Measurement Results for Encoder Demo ... 19
3 Loading Measurement Results for Encode/Decode Demo 19
4 ARM Static Memory Usage for Decoder Demo ... 22
5 ARM Stack Memory Usage for Decoder Demo ... 23
6 DSP Static Memory Usage for Decoder Demo ... 23
7 Dynamic Memory Usage for Decoder Demo .. 23
8 ARM Static Memory Usage for Encoder Demo ... 23
9 ARM Stack Memory Usage for Encoder Demo ... 23
10 DSP Static Memory Usage for Encoder Demo.. 23
11 Dynamic Memory Usage for Encoder Demo .. 24
12 ARM Static Memory Usage for Encode/Decode Demo 24
13 ARM Stack Memory Usage for Encode/Decode Demo 24
14 DSP Static Memory Usage for Encode/Decode Demo 24
15 Dynamic Memory Usage for Encode/Decode Demo ... 24
16 Power Supply Terminal Function ... 25
17 List of Test Points to Measure DM644x Power Consumption on the DVEVM............ 26
18 H.264 Decode Demo Power Measurements at Individual Test Points on the

DVEVM .. 29
19 H.264 Encode Demo Power Measurements at Individual Test Points on the DVEVM .. 29
20 Encode/Decode Demo Power Measurements at Individual Test Points on the DVEVM 29
21 Average ARM and DSP Loading for the H.264 Decode Demo Including AAC 31
22 Static Memory Usage for ARM and DSP for the H.264 Decode Demo Including AAC.. 31
23 Total DM644x Power Consumption for the H.264 Decode Demo 31
24 Average ARM and DSP Loading for the H.264 Encode Demo 31
25 Static Memory Usage for ARM and DSP for the H.264 Encode Demo 31
26 Total DM644x Power Consumption for the H.264 Encode Demo 31
27 Average ARM and DSP Loading for the H.264 Encode/Decode Demo 32
28 Static Memory Usage for ARM and DSP for the Encode/Decode Demo.................. 32
29 Total DM644x Power Consumption for the Encode/decode Demo 32

DaVinci, DSP/BIOS are trademarks of Texas Instruments.

The DaVinci platform offers a complete solution for many multimedia applications requiring advanced
video codecs. The solution consists of a DM644x dual core architecture that offers high performance
along with a rich mix of peripherals and a complete software environment including inter-processor
communication software via DSP/BIOS Link and a codec framework that enables customers to use a
variety of codec options. The heterogeneous multiprocessor system also runs under a Linux environment
allowing many applications to be built on top of the multimedia codec base.

2 DaVinci System Level Benchmarking Measurements SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

Introduction

As with any system many developers would like to understand the performance taking into account
processor loading, memory usage and power consumption. In critical applications performance and power
consumption analysis is often necessary to evaluate a device within a system context.

In order to evaluate performance and understand the loading on the CPU(s), visualization of the
interactions of the various hardware and software components is necessary to identify contentions and
bottlenecks. Developers also want to “time-stamp” process intensive critical threads/functions to ensure
they design an application with efficient resource utilization. Similarly understanding the power
consumption is necessary for battery life estimates, power supply design, thermal analysis and
comprehending the overall cost and complexity of a system.

The Digital Video Evaluation Module (DVEVM) is an evaluation platform that showcases the DM644x
architecture and the associated digital video system software solutions. It is packaged and designed to
enable users to evaluate both performance and power (energy) usage of the DM644x solution. The
performance and power consumption can be evaluated in a system context making use of the
components available with the DVEVM and Digital Video Software Development Kit (DVSDK). The
performance/CPU loading and power consumption is measured for the audio/video demonstration
software that is offered with the DVEVM. Specifically, the following three demos were used for the
measurement:

• Decode demo configured as a H.264 decoder (30 fps and NTSC D1 resolution) plus an AAC decoder
(160 kbps) running.

• Encode demo configured as a H.264 encoder (4Mbps, 30 fps and NTSC D1 resolution) running
• Encode/Decode demo configured as a H.264 encoder (1 Mbps, 30 fps and CIF resolution) and a H.264

decoder (30 fps and CIF resolution).

The H.264 algorithm demos were selected because they are relatively more complex and processing
intensive compared to other video algorithms like MPEG4, MPEG2, etc. Therefore, the H.264 demos are
an appropriate vehicle for measuring performance and power in a system context for the purposes of this
application report.

The CPU loading is measured by utilizing the DM644x System on a Chip (SoC) Analyzer, which is a
real-time graphical interface tool that provides system level analysis and visualization capabilities for
developer's digital video and audio applications running on DM644x devices.

This application note provides the following:

• Section 2 provides a brief overview of the demonstration software that comes with the DVEVM.
• Section 3 outlines the software and hardware requirements to perform the analysis.
• Section 4 describes the methodology to calculate ARM and DSP loading making use of the DM644x

SoC Analyzer and provides the loading measured on specific DVEVM demos.
• Section 5 describes the memory usage for the demo application software.
• Section 6 describes the provisions available on the DVEVM to measure power and provides power

consumption data measured for some of the DVEVM demos.
• Section 7 provides a summary of the key data presented in Section 4, Section 5, and Section 6.

This document is written so that a developer can use the DVEVM/DVSDK hardware and software to
reproduce the documented results to evaluate TI DM644x system solutions. This methodology can also be
utilized to measure performance and power for a developer’s own application software on the DVEVM
within the above context.

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

2 DVEVM Demonstration Software Descriptions

2.1 Demo Software Architecture

ARM Application Program codec algorithm

codec stub

Core Engine Runtime

Core Engine APIs VISA APIs

Core Engine Runtime

codec skeleton

VISA SPIs

Codec Engine

ARM driver DSP driver

DSP link

ARM

software

DSP

software

DVEVM Demonstration Software Descriptions

Figure 1 shows the demo software architecture running on the DaVinci processor. The codec algorithms
execute on the DSP processor. The ARM side application program executes the DSP side codec via the
Codec Engine. The Codec Engine calls the DSP link driver to realize the ARM-DSP communication.

Figure 1. Demo Software Architecture

From the application developer’s perspective, the Codec Engine provides a set of XDM APIs that can be
used to instantiate and run eXpress DSP Algorithm Interface Standard (known as XDAIS) algorithms.
XDM is used for the eXpressDSP Algorithm Interface Standard for Digital Media. An XDM algorithm is
compliant with XDAIS. Additionally, it implements an extension of digital media APIs to support multimedia
codecs. The XDM interfaces divide codec algorithms into four classes: Video, Image, Speech, and Audio
(VISA). One set of APIs is provided per codec class.

XDM does not prevent users from creating a codec which does not belong to a VISA class. However, the
developer needs to use the same methodology to create his/her own codec stub and skeleton to allow the
application program to access the codec. For details on the Codec Engine, please refer to the Codec
Engine Application Developer User’s Guide (SPRUE67) [1].

DaVinci System Level Benchmarking Measurements4 SPRAAF6–September 2006
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRUE67
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

2.2 Decode Demo

DVEVM Demonstration Software Descriptions

Figure 2 shows the block diagram of the decode demo.

Figure 2. Decode Demo Block Diagram

This first demo utilized in this application report can simultaneously decode a video stream file and an
audio or speech stream file. The files are read from the hard disk by the ARM processor and delivered to
the DSP frame-by-frame via the Codec Engine. After a video frame is decoded by the DSP, the raw video
data are delivered back to the ARM. The video driver on ARM will transmit the video frame to the LCD for
display. Similarly, after an audio (speech) frame is decoded by the DSP, the raw audio (speech) data are
delivered back to ARM which then transmits the data to the speakers.

The specific set up for the decoder benchmark data collection is described in Section 4.2.

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

2.3 Encode Demo

DVEVM Demonstration Software Descriptions

Figure 3 shows the block diagram of the encoder demo.

Figure 3. Encode Demo Block Diagram

The second demo utilized in this application report can simultaneously encode a video channel and a
speech channel.

For the video channel, the raw video data are captured from the composite video interface to which either
a CCDC camera or a DVD output can be connected. The data collected for this application report uses the
camera input. The ARM processor delivers the raw video data to the DSP frame-by-frame via the Codec
Engine. Meanwhile, the captured frame is also transmitted to the LCD for display by the video port driver.
After a video frame is encoded, the DSP delivers the compressed frame back to ARM which writes it to
the hard disk.

For the speech channel, the raw speech samples are captured from the ASP interface which connects to
a microphone. Similarly, the ARM processor delivers the raw speech samples block-by-block to the DSP
for encoding via the Codec Engine. After the samples are encoded, the DSP delivers the compressed
data back to ARM which writes it to the hard disk.

The specific set up for the encoder benchmark data collection is described in Section 4.2.

DaVinci System Level Benchmarking Measurements6 SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

2.4 Encode/Decode Demo

DVEVM Demonstration Software Descriptions

Figure 4 shows the block diagram of the Encode/Decode demo.

Figure 4. Encode/Decode Demo Block Diagram

The Encode/Decode demo allows you to record and playback video. The supported encode and decode
algorithms are H.264 Baseline Profile. It does not encode and decode audio or speech.

The raw video data are captured from the composite video interface. The ARM processor delivers the raw
video data to the DSP frame-by-frame via the Codec Engine. The DSP encodes and then decodes the
frame. After that the decoded frame is delivered back to ARM. The video port driver will transmit the
decoded frame to the LCD for display.

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

3 Necessary Equipment and Software

DaVinci EVM Board

DaVinci

D
A

C

o
u

t

S
V

H
S

o
u

t

U
S

B

S
V

H
S

in

v
id

e
o

in

a
u

d
io

in

H
P

o
u

t

a
u

d
io

o
u

t

S
P

D
IF

o
p

ti
c
a

l

S
P

D
IF

a
n

a
lo

g

E
N

E
T

U
A

R
T

+
5

V
hyper-

terminal

DSA

ethernet cables

serial

cable

1
0

0
0

multimeter

CCDC

Camera

LCD

router

3.1 Equipment

Necessary Equipment and Software

Figure 5 shows a diagram of the measurement setup. The measurement was performed on DaVinci
DVEVM with silicon revision 1.3. The ARM, DSP and DDR2 memory were running at 297 MHz, 594 MHz
and 162 MHz, respectively. The reported measurement results were measured from demo version 1.10,
using DM644x SoC Analyzer version beta. The Linux kernel version is 2.6.10_mvl401-davinci-evm which
can be found in file /proc/version on the target Linux system.

Figure 5. Measurement Setup

The following hardware equipment is necessary to measure the power and processor loading for the three
demos.

• DVEVM board
• CCDC camera which captures the input video source to execute the encode and encode/decode

demos.
• LCD monitor which displays the video and audio output for the three demos.
• Two Ethernet cables: one is for the DVEVM board, and the other is for your host PC. The DM644x

SoC Analyzer runs on the host PC and is used to measure demo loadings. It needs to establish an
HTTP connection to the Linux HTTP server running on the target. Timestamps of events of interest will
be logged to the target file system. The Analyzer pulls the log files from the DVEVM, performs some
post-processing and then displays the results on the PC.

• Serial cable that connects the DVEVM UART0 port to any COM port on the host PC.
• Multimeter to measure the power for the three demos. (See Section 6.1)

DaVinci System Level Benchmarking Measurements8 SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

3.2 Software

4 Measuring the Processor Loading on the Demo Programs

4.1 Approach to Measure the Processor Loading

Measuring the Processor Loading on the Demo Programs

The following software needs to be installed on the host PC before measuring the loadings for the three
demos:

• A terminal program for windows. The recommendation is to use hyperterminal which comes with
default windows installation.

• DM644x SoC Analyzer which comes with the DVEVM package. It is a JAVA based program which
virtually can run on any host PCs.

The Linux version on target needs to be 2.6.10_mvl401-davinci_evm or later. The DVEVM Getting Started
Guide (SPRUE66) [2] provides instructions on how to build a Linux kernel using the default configuration.
To measure the processor loadings for the demos, a new Linux kernel needs to be built with two
additional modules included in the kernel: (1) the Linux Trace Toolkit (LTT) and (2) the relay file system
support.

The following are the instructions for building the new kernel.

• Switch to the directory which contains the Linux kernel source. By default, it is .
/home/[YOUR_USER_ACCOUNT]/workdir/lsp/ti-davinci
Type:
make ARCH=arm CROSS_COMPILE=arm_v5t_le- menuconfig

• Go to Device Drivers → File systems → Pseudo filesystems → Relayfs file system support, and select
it as built-in.

• Go to General Setup → Linux Trace Toolkit support and select it as built-in.
• Type:

make ARCH=arm CROSS_COMPILE=arm_v5t_le- checksetconfig
• Type:

make ARCH=arm CROSS_COMPILE=arm_v5t_le- uImage

The DM644x SoC Analyzer is used to measure the processor loadings for the three demos. This section
will not explain the details on how to use the analyzer, but will focus on the methodologies utilized and
some common errors made by first time users. The DM644x SoC Analyzer online documentation [3]
provides details on its usage.

Before booting the DVEVM board, the host PC needs to establish a serial connection with the board. The
terminal program on the PC allows the user to boot and control the Linux running on the board.

After the Linux kernel has booted on the DVEVM, an HTTP connection needs to be established between
the DM644x SoC Analyzer on the host PC and the DVEVM. A demo can be initiated by typing the
appropriate commands in the terminal program or using the remote controller.

The DM644x SoC Analyzer allows the developer to control when to start/stop measurement of the
loadings while the demo is running. The analyzer sends the commands to the DVEVM via the HTTP
connection. While the loadings are being measured, timestamps of all events of interest are logged to files
on the target file system. The typical events of interest are as follows:

• ARM process and DSP task events. For example, the event can be an ARM thread that starts
pre-processing the data for the next frame.

• Events of ARM-DSP inter-processor call (IPC) made in Codec Engine. For example, the event can be
the ARM issuing a command via Codec Engine to the DSP to process the next frame.

• Linux file system events, i.e., ARM writing the encoded stream to hard disk and etc.

The default location for the log files are in the /tmp directory; a RAM disk is mounted there and the data
logging impacts the demo performance less when the disk I/O is avoided. The logging mechanism is

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 9
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRUE66
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

Measuring the Processor Loading on the Demo Programs

based on the Linux Trace Toolkit (LTT) which needs to be enabled in the Linux kernel. LTT requires a
memory buffer pinned in the Linux kernel space for logging events. Generally speaking, the more types of
events the user wants to capture and/or the longer the interval the user wants to measure, the bigger the
buffer needs to be. Usually it is safe to allocate two buffers with 262,144 bytes each to measure about 20
seconds.

After the measurement is performed, all the log files can be transferred to the host PC. The log files are
post processed and the results will be displayed in the window. These are the processing steps:

• Launch DM644x SoC Analyzer on a windows host and open the control panel by clicking the Control
Panel button as shown in Figure 6.

• Select Online Capture in the Action box.
• Input a desirable session name in the Session box.
• Input your target board’s IP address into the Target IP Address box.
• Select the appropriate symbol file in the Symbol File box for your measurement, i.e., use file

encodeCombo.x64P if the encode demo is to be measured.
• Input the interval (in seconds) to be measured in the time box. In Figure 6, it is 20 seconds as an

example.
• Start the demo on your target board.
• Start measuring by clicking the "start" button in the control panel.
• Wait until the timer expires or click the “stop” button to terminate the measurement. The logged data

will be pulled from the target board to the windows host. After the post-processing is done by the
DM644x SoC Analyzer, the results will be displayed.

Figure 6. DM644x SoC Analyzer Control Panel

For further details please refer to The DM644x SoC Analyzer online documentation [3].

Some common errors which can be made when using the DM644x SoC Analyzer are listed below:

• The HTTP connection between the DM644x SoC Analyzer and the DVEVM board is not established.
The DM644x Soc Analyzer will generate an error log message indicating that the web server cannot be
reached. This error is typically caused by the following reasons:

1. The http server was not started on the DVEVM.

10 DaVinci System Level Benchmarking Measurements SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

4.2 Demo Configuration for Measurement

4.2.1 Decoder Demo Setup

4.2.2 Encoder Demo Setup

4.2.3 Encode/Decode Demo Setup

Measuring the Processor Loading on the Demo Programs

2. The correct IP address of the DVEVM was not provided.
• The measured results cover a time interval that is smaller than expected. This can typically be caused

by two reasons:

1. Not enough memory was allocated for LTT. To remedy this either allocate a bigger buffer or reduce
the number of events to be logged.

2. The demo already terminated before event logging was stopped. To correct this, please make sure
to start and stop logging while the demo is still running.

• Log files are not generated for the measurement. It is typically because the Linux kernel was not built
to support LTT and/or relays. Try to follow the instructions in Section 3.2 to build a kernel which
supports loading measurement.

• The results shown by DM644x SoC Analyzer are not valid. This is typically because the symbol file run
by the demo does not match the one used by the SoC analyzer for data post-processing. Please make
sure to use the same symbol file for both the demo and the SoC Analyzer.

The following subsections describe the setup and measurement methodology for each of the demos used.

The configuration for the decoder demo measurements is as follows: Linux kernel version
2.6.10_mvl401-davinci_evm, demo version 1.10 and DM644x SoC Analyzer version beta was used.

This demo executes an H.264 video decoder and an AAC audio decoder. Files davincieffect_ntsc.264 and
davincieffect.aac are used as video and audio input, respectively.

The H.264 stream is NTSC D1 resolution (720x480 pixels/frame), 4 mbps, and being decoded at 30 fps.

The AAC stream is 160 kbps. Given the fact that the audio sample frequency is 48 KHz and the AAC
decoder roughly produces 1K samples each frame, its frame rate can be considered as 48 fps.

The measurement starts after the demo has been run for about 15s and ends at 35s, which makes the
measurement interval about 20s.

The command to start the demo from command line is as follows:

./decode -a data/sounds/davincieffect.aac -v data/videos/davincieffect_ntsc.264

The configuration for the encoder demo measurements is as follows: Linux kernel version
2.6.10_mvl401-davinci_evm, demo version 1.10 and DM644x SoC Analyzer version beta was used.

It executes an H.264 video encoder to encode video at D1 resolution (720x480 pixels/frame), 4 mpbs and
30 fps. The input raw video frames are captured by the camera. During the measurement, a human hand
waves about twice per second in front of the camera. The distance between the hand and the camera is
about 1 foot.

The measurement starts after the demo running for about 5s and lasts about 20s

The command to start the demo from command line is as follows:

./encode -v output.264 -b 4000000 -r 720x480

The configuration for the encode/decode demo measurements is as follows: Linux kernel version
2.6.10_mvl401-davinci_evm, demo version 1.10 and DM644x SoC Analyzer version beta was used.

This demo executes an H.264 video encoder and decoder at CIF resolution, 1 mbps and 30 fps. Frames
are captured from the camera at D1 resolution with the same human gesture as described in
Section 4.2.2. Before being delivered to DSP, they are cropped to CIF resolution.

The measurement starts after the demo running for about 5s and lasts about 20s.

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

4.3 Terminology Important in Interpreting DM644x SoC Analyzer Results

4.3.1 Measurement Interval

Measuring the Processor Loading on the Demo Programs

The command to start the demo from command line is as follows:.

./encodedecode -b 1000000 -r 352x240

The DM644x SoC Analyzer logs the timestamp (in microseconds) of all the events of interest and displays
them in a GUI window. The following important information can be derived from these event timestamps.

Although the user can control roughly how long he/she needs to measure the demo, the actual
measurement interval can be derived from the DM644x SoC Analyzer results.

Let tstart denote the time that the measurement starts for a demo. tstart can be found in the 1st row of one of
the channel processing column, indicating the time when the first video (audio) frame starts to be
processed. For the encode demo in which only one channel is available, tstart is the Start value in the 1st
row of the Ch1 processing table. Figure 7 shows an example.

Figure 7. Find tstart for the Encode Demo

12 DaVinci System Level Benchmarking Measurements SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

tend = Start + TotalTime

= -T t tmeasure end start (1)

Measuring the Processor Loading on the Demo Programs

For the demo with two channels, such as the decode demo or the encode/decode demo, each channel
has a start timestamp denoted as tstart_ch1 and tstart_ch2, respectively. Similarly, tstart_ch1 (tstart_ch2) is the
“Start” value in the 1st row of the Ch1 (Ch2) processing table. The demo measurement start timestamp is
the minimum of the two start timestamps. That is, tstart = min{ tstart_ch1, tstart_ch2 }

Let tend denote the time that the measurement ends for a demo. tend can be found in the last row of the
channel processing column, indicating the time when the last video (audio) frame was processed. It is
calculated as the Start value plus the TotalTime value. Figure 8 shows how to calculate tend for the encode
demo.

Figure 8. Find tend for the Encode Demo: tend = Start+TotalTime

For the demo with two channels, each channel has an end timestamp denoted as tend_ch1 and tend_ch2,
respectively. Similarly, tend_ch1 (tend_ch2) can be calculated as the “Start” value plus the “TotalTime” value in
the last row of the Ch1 (Ch2) processing table. The demo measurement end timestamp is the maximum of
the two end timestamps. That is, tend = max{ tend_ch1, tend_ch2 }

Let Tmeasure denote the measurement interval for a demo. Tmeasure can be calculated as

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

4.3.2 Processing Time for Each Frame

Measuring the Processor Loading on the Demo Programs

DM644x SoC Analyzer also displays the processing time for each video or audio frame in the
corresponding channel processing table. The frame processing time consists of the following three parts:

• tframe_ARM_pre which indicates the time that ARM spent on preprocessing the data before they are
delivered to DSP for processing.

• tframe_DSP which indicates the time that DSP spent on processing the data.
• tframe_ARM_post which indicates the time that ARM spent on postprocessing the data after receiving the

processed data from DSP.

For each frame, the DM644x SoC Analyzer visualizes three parts in the Codec Engine Analysis Graph. It
also shows two processing intervals in separate columns in the channel processing table: TotalTime and
DSP ProcessingTime.

TotalTime can be expressed as TotalTime = tframe_ARM_pre + tframe_DSP + tframe_ARM_post.

And DSP ProcessTime = tframe_DSP.

Figure 9 shows an example for the encode demo.

Figure 9. Processing Time for Each Frame (Encode Demo Example); Note t_frame labels added for clarity

DaVinci System Level Benchmarking Measurements14 SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

4.3.3 Processing Time Statistics

Measuring the Processor Loading on the Demo Programs

The DM644x SoC Analyzer also shows the processing time statistics for each channel. The statistics
includes:

• Count which indicates the number of frames being processed.
• Min which indicates the minimum time interval to process a frame.
• Max which indicates the maximum time interval to process a frame.
• Average which indicates the average time interval to process a frame.
• Total which indicates the total time interval spent on processing all the frames.

Both the DSP processing time statistics and the overall processing time statistics are shown in two
separate tables. The former are calculated only based on DSP processing time (tframe_DSP) while the latter
are calculated including the ARM pre- and post-processing time (TotalTime = tframe_ARM_pre + tframe_DSP +
tframe_ARM_post).

Figure 10 and Figure 11 show the DSP processing time statistics and overall processing time statistics for
the encode demo.

Figure 10. DSP Processing Time Statistics for Encode Demo

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

4.4 Loading Calculation

4.4.1 Min/Max/Average DSP Loading for a Video (Audio) Channel

= / 33,333 SmL min{t }min_video_DSP video_frame_DSP
(2)

= / 33,333 SmL max{t }max_video_DSP video_frame_DSP
(3)

= / 33,333 SmL tavg_video_DSP video_frame_avg_DSP
(4)

Measuring the Processor Loading on the Demo Programs

Figure 11. Overall Processing Time Statistics for Encode Demo

As described previously, the DM644x SoC Analyzer records the timestamp (in microseconds) for all the
events of interest and displays the measurement results in the time domain. Processor loadings as a
percentage can be computed based on these timing results.

Given the fact that the video channel is processed at 30 fps in all the three demos, the real time budget for
each video frame is 33,333 µS. The min/max DSP loading for a video channel is calculated using the
min/max DSP processing time for a video frame divided by the real time budget. That is,

where Lmin_video_DSP (Lmax_video_DSP) represents the min (max) DSP loading for the video channel; and

min{tvideo_frame_DSP} (max{tvideo_frame_DSP}) is the min (max) time for DSP to process a video frame which can
be found in the DSP processing time statistics table as shown in Figure 10.

Let Lavg_video_DSP denote the average DSP loading for a video channel. It can be calculated as the average
DSP processing time for a video frame divided by the real-time budget. That is,

where tvideo_frame_avg_DSP represents the average time for DSP processing a video frame which can also be
found in the DSP processing time statistics table.

16 DaVinci System Level Benchmarking Measurements SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

= / 20,833 SmL min{t }min_aac_DSP aac_frame_DSP
(5)

= / 20,833 SmL max{t }max_aac_DSP aac_frame_DSP
(6)

= / 20,833 SmL tavg_aac_DSP aac_frame_avg_DSP
(7)

4.4.2 Average DSP Loading

L Lavg_DSP avg_ i_DSP
ch i

=

=

å

(8)

4.4.3 Min/Max/Average Overall Loading for a Video (Audio) Channel

= / 33,333 SmL min{t }min_video_overall video_frame_overall
(9)

= / 33,333 SmL max{t }max_video_overall video_frame_overall
(10)

= / 33,333 SmL tavg_video_overall video_frame_avg_overall
(11)

= / 20,833 SmL min{t }min_aac_overall aac_frame_overall
(12)

= / 20,833 SmL max{t }max_aac_overall aac_frame_overall
(13)

= / 20,833 SmL tavg_aac_overall aac_frame_avg_overall
(14)

Measuring the Processor Loading on the Demo Programs

The decode demo has an AAC audio channel. For this demo implementation, the frame rate is 48 fps and
the real time budget is 20,833 µS. Similarly, Lmin_aac_DSP, Lmax_aac_DSP and Lavg_aac_DSP can be calculated as
follows:

The average DSP loading for a demo is the summation of the average DSP loading for all the channels.
That is,

where Lavg_DSP is the average DSP loading for the demo, and Lavg_i_DSP represents the average DSP
loading for channel i.

For the encode demo in which only one video channel is available, Lavg_video_DSP = Lavg_DSP.

Compared to the DSP loading calculation which is only based on DSP processing time for each frame, the
overall loading computation includes the ARM pre- and post-processing time in addition to the DSP
processing time. In other words, the min/max/average DSP loading for a particular channel measures the
min/max/average loading imposed only to DSP by the channel while the min/max/average overall loading
measures the min/max/average loading imposed both to ARM and DSP by the channel.

For a video channel, let Lmin_video_overall, Lmax_video_overall and Lavg_video_overall denote the min, max and
average overall loading, respectively. They can be calculated as follows:

where min{tvideo_frame_overall}, max{tvideo_frame_overall} and tvideo_frame_avg_overall is the min, max and average time
to process a video frame. They can be found in the overall processing time statistics table as shown in
Figure 11.

Similarly, Lmin_aac_overall, Lmax_aac_overall and Lavg_aac_overall can be calculated as follows:

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

4.4.4 Average ARM Loading for a Video (Audio) Channel

= -L L Lavg_video_ARM avg_video_overall avg_video_DSP
(15)

= -L L Lavg_aac_ARM avg_aac_overall avg_aac_DSP
(16)

4.4.5 Average ARM Loading

L Lavg_ ARM avg_ i_ ARM
ch i

=

=

å

(17)

4.5 Loading Results

4.5.1 Decoder Demo Loading Results

Measuring the Processor Loading on the Demo Programs

The average ARM loading for a channel represents the average loading imposed to ARM by the channel
for each frame processing. In these demos, the pre-/post-processing work done by ARM mainly involves
delivering/receiving data to/from DSP and transmitting the output data to appropriate devices for display.
The real processing work is done by DSP only. Therefore, the average ARM loading can be considered as
the overhead.

For a video channel, let Lavg_video_ARM denote the average ARM loading. It is computed as follows:

Similarly, for an AAC channel, Lavg_aac_ARM is computed as follows:

The average ARM loading for a demo is defined as the summation of the average ARM loading for all the
channels. That is,

where Lavg_ARM is the average ARM loading for the demo, and Lavg_i_DSP represents the average ARM
loading for channel i.

For the encode demo in which only one video channel is available, Lavg_video_ARM = Lavg_ARM.

One thing to note is that Lavg_ARM represents the loading imposed to the ARM only by the demo
processing work. Things that are not part of Lavg_ARM include the loadings imposed by other Linux
processes, i.e., the HTTP server process, the shell process etc. In other words, the actual ARM loading
will be higher than Lavg_ARM.

Table 1 demonstrates the decoder loading measurement results.

Table 1. Loading Measurement Results for Decoder Demo

Lmin_H264_DSP Lmax_H264_DSP Lavg_H264_DSP

33.02% 67.59% 49.03%

Equation 2 Equation 3 Equation 4

Lmin_aac_DSP Lmax_aac_DSP Lavg_aac_DSP

3.12% 5.23% 3.51%

Equation 5 Equation 6 Equation 7

Lavg_DSP

52.50%

Equation 8

Lavg_H264_ARM Lavg_aac_ARM

3.24% 7.09%

Equation 15 Equation 16

DaVinci System Level Benchmarking Measurements18 SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

4.5.2 Encoder Demo Loading Results

4.5.3 Encode/decode Demo Loading Results

Measuring the Processor Loading on the Demo Programs

Table 1. Loading Measurement Results for Decoder Demo (continued)

Lavg_ARM

10.33%

Equation 17

Lmin_H264_overall Lmax_H264_overall Lavg_H264_overall

36.41% 79.72% 52.27%

Equation 9 Equation 10 Equation 11

Lmin_aac_overall Lmax_aac_overall Lavg_aac_overall

7.79% 74.53% 10.67%

Equation 12 Equation 13 Equation 14

Table 2 demonstrates the encoder loading measurement results.

Table 2. Loading Measurement Results for Encoder Demo

Lmin_H26_DSP Lmax_H264_DSP Lavg_H264_DSP

74.63% 103.10% 87.54%

Equation 2 Equation 3 Equation 4

Lavg_DSP = Lavg_H264_DSP

87.54%

Equation 8

Lavg_H264_ARM = Lavg_ARM

3.20%

Equation 15

Lmin_H264_overall Lmax_H264_overall Lavg_H264_overall

77.73% 106.36% 90.74%

Equation 9 Equation 10 Equation 11

Table 3 demonstrates the encode/decode loading measurement results.

Table 3. Loading Measurement Results for Encode/Decode Demo

Lmin_H264enc_DSP Lmax_ H264enc_DSP Lavg_H264enc_DSP

26.51% 36.10% 31.88%

Equation 2 Equation 3 Equation 4

Lmin_H264dec_DSP Lmax_H264dec_DSP Lavg_H264dec_DSP

11.75% 17.24% 15.44%

Equation 2 Equation 3 Equation 4

Lavg_DSP

47.28%

Equation 8

Lavg_H264enc_ARM Lavg_H264dec_ARM

3.20% 3.04%

Equation 15 Equation 15

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

4.6 Reproducing the Loading Measurement Results

4.7 Loading Results Analysis

4.7.1 Overhead Sources

4.7.2 Explanation of Greater than 100% Loading

Measuring the Processor Loading on the Demo Programs

Table 3. Loading Measurement Results for Encode/Decode Demo (continued)

Lavg_ARM

6.24%

Equation 17

Lmin_H264enc_overall Lmin_H264enc_overall Lavg_H264enc_overall

29.69% 39.29% 35.08%

Equation 9 Equation 10 Equation 11

Lmin_H264dec_overall Lmax_H264dec_overall Lavg_H264dec_overall

14.69% 20.22% 18.48%

Equation 9 Equation 10 Equation 11

For the same video decoder implementation, the DSP loading mainly depends on the bit rate and the
amount of motion in the input video stream. For the decode demo, users can easily reproduce the results
shown in Section 4.2.1 as long as the same audio/video input file are used and the measurement is
carried roughly from 15s to 35s.

Generally speaking, the DSP loading for video encoding depends on various factors such as the amount
of motion in the captured frames, the background texture, brightness, noise and etc. Therefore, for the
encode and encode/decode demos, the user may get different results since the human gesture (literally
hand waving) captured by the input camera will not likely be exactly the same. For example, waving the
hand faster and closer to the camera produces more motion and increases the DSP loading. To reproduce
the results for the encode and encode/decode demos shown in Table 2 and Table 3, please follow the
instructions in Section 4.2.2 and Section 4.2.3 .

Most results show that the video processing overhead on ARM takes about 3% of the time budget per
frame. The demo implementation makes an ARM-DSP Inter-Processor Call (IPC) every 33 ms to process
a video frame. Therefore, the rule of thumb is that every time an IPC is made from ARM to DSP, a 1 ms
overhead is introduced.

Note that the DM644x SoC Analyzer itself adds overhead to the loading since it needs to collect the traces
on both the ARM and DSP processors. These tasks are not trivial since they involve string
parsing/formatting, timestamp reading and writing all the trace data to files. Currently, the overhead added
by the DM644x SoC Analyzer itself is about 400 µs for each audio/video frame.

Sometimes the loading result is more than 100%, i.e., Lmax_h264_overall in Table 2. It does not represent the
actual loading of the ARM or DSP since processor loading can never be larger than 100%. It means that
the processing time for a frame is more than the real-time budget. An occasional and small amount of
real-time deadline violation has little impact if the subsequent frames are processed within the real-time
budget and if the data buffering scheme allow all the buffered frames to fit into the time budget as a
whole. However, if several frames violate the real-time deadline in sequence, frame drops may be noticed
by the user.

DaVinci System Level Benchmarking Measurements20 SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

4.7.3 H.264 Encoder Loading vs. H.264 Decoder Loading

F(n)

current

ME

MCF'(n-1)

reference

intra

prediction

pick intra

prediction

F'(n) re-

construct filter IDCT

DCT

Q

IQ

reorder
entropy

encode

+

-

+

+

MCF'(n-1)

reference

intra

prediction

F'(n) re-

construct filter IDCT

IQ

reorder
entropy

decode

+
+

H.264 encoder

H.264 decoder

M

inter

intra

P

D

Measuring the Processor Loading on the Demo Programs

It can be observed that for the same frame rate and resolution, i.e. 30 fps and D1 in the measurement
setup, the DSP loading of H.264 encoder is significantly higher than that of H.264 decoder. Figure 12
shows the block diagram of an H.264 encoder and an H.264 decoder to help illustrate the differences.

The H.264 encoder processes each frame macroblock by macroblock (16 × 16 pixels), similar to other
video encoding standards. It has a forward path and a reconstruction path. The forward path encodes a
frame into bits. The reconstruction path generates a reference frame from the encoded bits.

In the forward path, each macroblock can either be encoded in intra mode or inter mode when the current
frame (F(n)) is presented for encoding. In either case, the difference between the current macroblock and
the prediction macroblock (M) is computed. The difference is further passed through the DCT, quantization
(Q), recorder and entropy encode module to become encoded bits. In inter mode, M is found in other
encoded frames by the ME (motion estimation) module. In intra mode, M is formed from samples in the
current frame.

In the reconstruction path, D (which is the difference between the current macroblock and M after passing
module Q) is passed through the inverse quantization (IQ) and inverse DCT (IDCT) module. Then it is
added with M and further filtered by a loop filter to produce the reference frame F’(n). The purpose of the
reconstruction path is to ensure that the encoder and decoder will use the identical reference frame to
create the prediction macroblock M. Otherwise the error between the encoder and decoder will
accumulate.

It is apparent in Figure 12 that the reconstruction path in the encoder contains more modules than in the
decoder. Another difference is the entropy encode module in encoder vs. the entropy decode module in
decoder. In reality, these two modules require very similar DSP loadings. Therefore, we can conclude that
H.264 encoder has higher loading compared to H.264 decoder since additionally it needs to perform ME,
DCT, quantization and inter vs. intra mode decision.

The exact loading difference between an H.264 encoder and an H.264 decoder depends on the
implementation. The tradeoff is mainly related to the ME module. An ME requiring higher/lower loading
may find better/worse prediction macroblock M to achieve better/worse video quality.

Figure 12. H.264 Encoder and Decoder Block Diagram

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

4.7.4 H.264 Encoder/Decoder Loading at Different Resolution

5 Demo Memory Usage

5.1 Decoder Demo Memory Usage

Demo Memory Usage

The size ratio between a CIF frame and a D1 frame is approximately ¼. However, it is noticeable that the
H.264 encoder loading in the encode/decode demo (at CIF resolution) is higher than ¼ of the H.264
encoder loading in the encode demo (at D1 resolution). Similarly, the H.264 decoder loading in the
encode/decode demo is higher than ¼ of the H.264 decoder loading in the decode demo.

The reasons can be explained as follows:

• In the encode/decode demo where the H.264 encoder and decoder execute simultaneously, the cache
miss penalty can downgrade their performance, compared to the case when each of them executes
alone. For details on cache performance analysis, please refer to TMS320 C6000 DSP Cache User’s
Guide (SPRU656) [4].

• Some modules such as ME, entropy encode/decode in the H.264 encoder/decoder do not scale
linearly on frame size.

This section describes the memory usage by the three demos. The types of memory used are described
below:

• ARM static memory includes the code (.text) section and the data section. The static memory usage
information for an ARM demo binary can be found by running the Linux host utility arm_vt5_le_size
included in the DVEVM package. For example, assuming the DVEVM package has been installed on
the Linux host and the demo binaries, to find the ARM static memory usage for the encode demo,
switch to the directory containing the demo binaries and type command “arm_vt5_le-size encode”.

• ARM program stack is automatically allocated by Linux. This information can be found in the status file
for the corresponding process. For example, if the demo process id is 1000, its stack size can be found
in file “/proc/1000/status”.

• DSP static memory includes the code section and the data section. They can be found in the
generated memory map file of the corresponding DSP program.

• Demo dynamic memory is limited in this application note to the memory allocated by the audio/video
processing algorithms and related drivers. Dynamic memory allocated by other processes, i.e. interface
process, is not taken into account. The reported dynamic memory usage information is collected from
the demo source code and includes the following 3 types:

– Dynamic memory allocated and used by the ARM application program. The memory allocated by
the interface program is not counted.

– Dynamic memory allocated by the ARM application program but shared both by the ARM and DSP.
This memory includes the input/output buffers for the corresponding DSP codecs.

– Dynamic memory allocated by various related drivers in the Linux kernel space. The related drivers
are the video capture driver, video display driver and OSD driver.

One thing to note is the DSP codec may allocate additional memory for its own purpose, i.e., allocating
memory for a task stack etc. Such memory allocation is codec specific and will not be reported in this
document. For codec specific memory footprint information on the DSP, please refer to the H.264 codec
data sheets.

Table 4. ARM Static Memory Usage for Decoder Demo

Code Data Total

121,707 bytes 11,320 bytes 133,027 bytes

DaVinci System Level Benchmarking Measurements22 SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

5.2 Encoder Demo Memory Usage

Demo Memory Usage

Table 5. ARM Stack Memory Usage for Decoder Demo

ARM Program Stack Size

84K bytes

Table 6. DSP Static Memory Usage for Decoder Demo

Code Data Total

555,264 bytes 553,480 bytes 1,108,744 bytes

Table 7. Dynamic Memory Usage for Decoder Demo

Name Bytes Type Comments

readBuffer for H.264 decoder 3,145,728 ARM-DSP This buffer is 3Mbytes and stores the encoded video data.
share

frameBuf for H.264 decoder 2,488,320 ARM-DSP This buffer can hold up to 3 decoded video frame in PAL D1 size
share (YUV 4:2:2 data). The data are copied to displayBuf for display.

DisplayBuf for video 2,488,320 Driver This buffer is allocated in kernel by the video display driver. It can hold
up to 3 D1 frames. The decoder demo uses all of them.

OSDframeBuf 1,658,880 Driver This buffer is allocated by the OSD driver in kernel. It can hold up to 2
D1 frames.

OSDframeBuf 184,320 Driver This buffer is allocated by the OSD driver in kernel used for its
transparency functionality.

OSDframeBuf 61,440 ARM-DSP This buffer is 60K bytes and stores the encoded audio data.
share

rawBuffer 10,240 ARM-DSP This buffer is 10K bytes to store up to 5 blocks of decoded audio
share samples.

Total 9,965,568 The total allocated memory is about 9.5M bytes for this demo
configuration.

Table 8. ARM Static Memory Usage for Encoder Demo

Code Data Total

117,109 bytes 11,088 bytes 128,197 bytes

Table 9. ARM Stack Memory Usage for Encoder Demo

ARM Program Stack Size

84K bytes

Table 10. DSP Static Memory Usage for Encoder Demo

Code Data Total

341,248 bytes 479,769 bytes 821,017 bytes

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

5.3 Encode/Decode Demo Memory Usage

Demo Memory Usage

Table 11. Dynamic Memory Usage for Encoder Demo

Name Bytes Type Comments

encodedBuf for H.264 691,200 ARM-DSP This buffer is used to store the encoded data. It can hold up to 1
encoder share uncompressed D1 frame.

captureBuf for video 2,488,320 Driver This buffer is allocated in kernel by the video capture driver. It can
hold up to 3 video frames in PAL D1 size (YUV 4:2:2 data). The demo
only uses 2 of them.

capCtrlBuf 16 ARM only This buffer is used by ARM only for controlling the captureBuf.

displayBuf for video 2,488,320 Driver This buffer is allocated in kernel by the video display driver. It can hold
up to 3 D1 video frames. The demo uses all of them.

OSDframeBuf 1,658,880 Driver This buffer is allocated by the OSD driver in kernel. It can hold up to 2
D1 frames.

OSDtransBuf 184,320 Driver This buffer is allocated by the OSD driver in kernel used for its
transparency functionality.

Total 7,511,056 The total allocated memory is about 7.2M bytes for this demo
configuration.

Table 12. ARM Static Memory Usage for Encode/Decode Demo

Code Data Total

114,000 bytes 11,040 bytes 125,040 bytes

Table 13. ARM Stack Memory Usage for Encode/Decode Demo

ARM Program Stack Size

84K bytes

Table 14. DSP Static Memory Usage for Encode/Decode Demo

Code Data Total

381,088 bytes 468,545 bytes 849,633 bytes

Table 15. Dynamic Memory Usage for Encode/Decode Demo

Name Bytes Type Comments

encodedBuf for H.264 1,658,880 ARM-DSP This buffer is used to store the encoded data. It can hold up to 1
encoder share uncompressed D1 frame.

captureBuf for video 2,488,320 Driver This buffer is allocated in kernel by the video capture driver. It can
hold up to 3 video frames in PAL D1 size (YUV 4:2:2 data). The demo
uses all of f them.

capCtrlBuf 24 ARM only This buffer is used by ARM only for controlling the captureBuf.

frameBuf for H.264 decoder 506,880 ARM-DSP This buffer can hold up to 3 decoded video frame in CIF size (YUV
share 4:2:2 data). The data are copied to displayBuf for display.

displayBuf for video 2,488,320 Driver This buffer is allocated in kernel by the video display driver. It can hold
up to 3 D1 video frames. The demo uses all of them.

OSDframeBuf 1,658,880 Driver This buffer is allocated by the OSD driver in kernel. It can hold up to 2
D1 frames.

OSDtransBuf 184,320 Driver This buffer is allocated by the OSD driver in kernel used for its
transparency functionality.

Total 8,985,624 The total allocated memory is about 8.6 M bytes for this demo
configuration.

DaVinci System Level Benchmarking Measurements24 SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

6 Power Measurements on the Demos

6.1 Terminology

6.2 DM644x Power Supply Pins and Description

Power Measurements on the Demos

The overall average power consumption for a complementary metal-oxide semiconductor (CMOS) circuit
is the sum of static and active power consumption.

Ptotal = Pstatic + Pactive

The static power consumption, as the name suggests, is the component that is independent of the
processor activity. This is the power dissipated when the transistors are not switching; it is essentially the
“leakage” current, due to the gate current and source to drain current elements of the transistors and
additionally due to DC currents in some analog components. The static power consumption is primarily the
function of both the supply voltage and the operating temperature within a given process technology. The
static power consumption increases as the temperature and/or supply voltage is increased.

The static power consumption is defined as follows:

Pstatic ~ V × I leakage

Pstatic = V × I leakage (V,temp)

where V is the supply voltage and is the Ileakage current at that voltage and a given temperature.

The active or dynamic power consumption is attributed to processor activity. It is the power dissipated in
CMOS circuits due to switching of the device core and I/O which result from charging and discharging the
node capacitances (mostly gate and wire capacitance). The active power component is largely
independent of the operating temperature; it is primarily a function of the supply voltage and switching
frequency, and is calculated as follows:

Pactive ~ Core(A × CV2f) + I/O(N×Cio Vio
2 fio)

where C is node capacitance, V is the core supply voltage, f is the switching frequency and A is the
fraction of gates actively switching. Similarly, Cio is pin/pad capacitance, Vio is the I/O supply voltage, fio is
the toggle rate for the I/O pins and N is the number of bits/pins switching.

The DM644x has different operating voltages for core and I/O. The voltage supplies can be broadly
divided into three categories, namely:

• Core supply
• 1.8 V I/O supply
• 3.3 V I/O supply

Within these categories, there are dedicated power pins on the DM644x for supplying voltage to a
particular power domain, module, peripheral I/O etc, please refer to the DM6446 data manual
TMS320DM6446 Digital Medial System-On-Chip (SPRS283) [5].

Table 16 provides the list of the power pins on the DM644x, along with the description and pin numbers.

Table 16. Power Supply Terminal Function

Type Name Description Pin No.

Core Supply CVDD Core supply voltage. Powers the “Always On” domain. The F15, K12, M12, L11,
majority of DM644x modules (including ARM subsystem , M10, L10, K10, L9, L8,
peripherals etc) lie in the “Always On” power domain, and are M8
powered by these pins

CVDDDSP DSP subsystem (SS) core supply voltage. Powers the “DSP” J13, H12, H11, J11,
power domain. The DSP subsystem including the c64x+ and K11, J10, H10, J9, K9,
VICP are powered by these pins K8, H8

VDDA_1P1V DAC analog core supply voltage P16

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 25
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRS283
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

6.3 Power Measurements on the DM644x DVEVM

Power Measurements on the Demos

Table 16. Power Supply Terminal Function (continued)

Type Name Description Pin No.

1.8 V I/O Supply DVDD18 1.8 V I/O supply voltage. These pins are for all the 1.8 V N5, G15, F14, J15, H14,
peripheral I/O. Most of the peripherals on DM644x have 1.8 V K14, M14, L13, G9, F8,
i/o (except for EMAC, MDIO, MMC/and GPIOV33) E7, G7, J7, L7, F6, H6,

K6, M6

DVDDR2 1.8 V DDR2 I/O supply voltage. These pins are for exclusively T5, P6, N7, P8, N9, R9,
for the DDR2 I/O P10, N11, R11, P12,

N13, R13, P14, R15

DDR_VDDLL 1.8 V supply voltage for DDR2 Digital Locked Loop (DLL) T10

VDDA_1P8V DAC 1.8 V Analog I/O supply voltage R18

PLLVDD18 1.8 V Power supply voltage for the PLL1 (System PLL) and M2
PLL2 (clocks for DDR2 EMIF and optional VPBE clocks)

MXVDD 1.8 V supply voltage for MX oscillator L5

M24VDD 1.8 V supply voltage for M24 (USB) oscillator F16

USB_VDD1P8 1.8 V I/O supply voltage for the USB PHY H17

3.3 V I/O Supply DVDD33 3.3 V I/O supply voltage. These pins are for all the 3.3 V F10, F11, F12, F13
peripheral i/o. i.e. EMAC, MDIO, MMC/ and GPIOV33.

USB_VDDA3P3 3.3 V analog voltage supply for USB PHY J19

The DM644x DVEVM board is designed such that it allows you to conveniently measure the power
consumption for both the DM644x SoC and the board itself. For additional details on the board, please
refer to the Davinci EVM technical reference guide [6], on Spectrum Digital support website. For almost all
important power pins on the DM664x, there are test points with current sensing resistors in between.

These current sensing resistors are designed for low ohmic value (low resistance) and tight tolerance (±1
percent) so as to minimize power consumption. As a result, these resistors are used to monitor the current
in a circuit and translate the amount of current in that circuit into a voltage that can be easily measured
and monitored (e.g., using a multimeter).

By measuring the voltage drop across these resistors at the given test points on the board, you can
deduce the amount of current fed to the various power pins on the DM644x and calculate the overall
power consumption.

Table 17 provides the list of test points that were used to measure the power consumption for the demos
on the DM6446 DVEVM. For ease of use and reference in this document, a naming convention was
added (first column) to refer to the power consumption at these test points.

Figure 13 shows the location of various test points on the DM644x DVEVM.

Table 17. List of Test Points to Measure DM644x Power Consumption on the DVEVM

Name Test Points Resistor Description

Core Supply Measurements

PTOT_CORE TP35-TP44 R59 (0.025) DM644x total core supply voltage. The voltage drop at this test point gives the
total core power consumption, this includes the consumption by the “Always
On” Domain, the DSP Subsystem domain and DAC analog core power
consumption (CVDD + CVDDDSP + VDDA_1P1V) .

1.8 V I/O Supply Measurements

PPLL TP19-TP8 R35 (0.22) The voltage drop at this point gives the power consumed by the by PLL1 and
PLL2 (PLLVDD18).

PIO_18 TP21-TP11 R37 (0.025) The voltage drop at this test point gives the power consumption for sum of the
1.8V I/O, the DDR2 I/O, System oscillator and USB Oscillator (DVDD18 +
DVDDR2. + MXVDD + M24VDD)

PDDR_DLL TP39-TP40 R53 (0.22) The voltage drop at this test point gives the power consumed by the DDR2
DLL (DDR_VDDLL).

26 DaVinci System Level Benchmarking Measurements SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

Power Measurements on the Demos

Table 17. List of Test Points to Measure DM644x Power Consumption on the DVEVM (continued)

Name Test Points Resistor Description

PDAC_IO18 TP53-TP54 R63 (0.22) The voltage drop at this test point gives the power consumed by the DAC
analog I/O (VDDA_1P8V).

PUSB_IO18 TP46-TP47 R60 (0.22) The voltage drop at this test point gives the power consumption for the 1.8 V
I/O of the USB PHY (USB_VDD1P8).

3.3 V I/O Supply Measurements

PIO_33 TP32-TP22 R36 (0.025 The voltage drop at this test point gives the power consumption for all the 3.3
V I/O (DVDD33)

PUSB_IO33 TP48-TP49 R61 (0.22) The voltage drop at this test point gives the power consumed by the analog
portion of the USB PHY (USB_VDDA3P3) .

Note: There are dedicated test points for measuring CVDD (TP41-TP42) and CVDDDSP
(TP30-TP31). However, there is an internal shorting-switch between the Always On and
DSP power domains, controlled by a system module register, Chip Shorting Switch
Control (CHP_SHRTSW) register. This switch needs to be closed (DSPPWRON = 1)
before enabling the DSP power domain in ARM boot modes (in DSP self boot mode
DSPPWRON = 1, by default). Once the switch is closed/shorted for DSP operations, the
two supply voltage rails are internally shorted and the current is shared between the two
rails. Thus for conditions where DSPWRON = 1, it is not beneficial to monitor the CVDD
and CVDDDSP power consumption separately. The DAC analog core supply power
consumption can also be separately (VDDA_1P1V) measured at TP61-TP55, but is negligible
as compared the consumption seen on the other pins. Therefore, the total core power
consumption can be measured at TP35-TP44.

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

TP19-8 TP21-11 TP32-22

TP39-40 TP46-47 TP53-54 TP48-49 TP35-TP44

6.4 Results

Vvd
Px () V

Rs
= ´

Power Measurements on the Demos

Figure 13. Test Points for Power Measurements on DM644x DVEVM

Power measurements were performed on the demos. All numbers reported in the following tables were
collected under these conditions:

• Platform: DM6446 DVEVM (Silicon Revision 1.3)
• Temperature: Room Temp
• Operation Frequency: C64x+: 594 MHz, ARM: 297 MHz, DDR2: 162 MHz
• Operating Core Voltage : CVDD/CVDDDSP = 1.2 V
• Multimeter: Fluke 79 III True RMS Multimeter, to measure voltage drop across the shunt resistors

between various test points on the DVEVM.

All power measurements are reported in milliWatts and calculated as follows:

Where Vvd is the voltage drop (in mV) measured across the test point, Rs is value of the shunt resistor at
the test point and Vx is the supply voltage.

28 DaVinci System Level Benchmarking Measurements SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

6.4.1 H.264 Decode Demo

6.4.2 H.264 Encode Demo

6.4.3 Encode/decode Demo

6.5 Analysis/Observations

Power Measurements on the Demos

Table 18 provides the power consumption measured at each test point.

Table 18. H.264 Decode Demo Power Measurements at
Individual Test Points on the DVEVM

Core Power
1.2 V 1.8 V IO Power 3.3 V IO Power

PTOT_CORE PPLL PIO_18 PDDR_DLL PDAC_IO18 PUSB_IO18 PIO_33 PUSB_IO33
Description (mW) (mW) (mW) (mW) (mW) (mW) (mW) (mW)

Decode Demo 686 76 58 10 8 37 13 12

Table 19 provides the power consumption measured at each test point.

Table 19. H.264 Encode Demo Power Measurements at
Individual Test Points on the DVEVM

Core Power
1.2 V 1.8 V IO Power 3.3 V IO Power

PTOT_CORE PPLL PIO_18 PDDR_DLL PDAC_IO18 PUSB_IO18 PIO_33 PUSB_IO33
Description (mW) (mW) (mW) (mW) (mW) (mW) (mW) (mW)

Encode Demo 782 76 58 11 8 37 13 12

Table 20 provides the power consumption measured at each test point.

Table 20. Encode/Decode Demo Power Measurements at
Individual Test Points on the DVEVM

Core Power
1.2 V 1.8 V IO Power 3.3 V IO Power

PTOT_CORE PPLL (mW) PIO_18 PDDR_DLL PDAC_IO18 PUSB_IO18 PIO_33 PUSB_IO33
Description (mW) (mW) (mW) (mW) (mW) (mW) (mW)

Encode Demo 686 76 50 11 8 37 13 12

Following are some analysis and observations for the power measured for the various demos:

1. The total power on these demos essentially vary due to differences in ARM and DSP CPU loading.
This is seen on PTOT_CORE and IO activity on the DDR2, and on PIO_18 based on image resolution
CIF/D1, buffering schemes, reads versus writes (i.e., VFE writes to the DDR2 , VBE reads from DDR2
) .

2. The average core power consumption is highly dependent on both the cycle efficiency (instructions per
cycle) and the relative time the CPU(s) spends in active processing threads versus idle threads (also
equivalent to the loading measurements). The total core power consumption observed for decode and
encode/decode demo is nearly identical; the core power consumption is higher for the encode demo.
Based on the results and analysis in Section 4.6 and Section 4.7, the power measurement data shows
variations with the CPU loading on ARM and DSP; the loading values are nearly identical for the
decode and encode/decode demo, but higher for the encode demo.

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

6.6 General Considerations

Power Measurements on the Demos

Note: A high CPU loading does not necessarily imply high power consumption, because the
power consumption also depends on the instructions executed per cycle. For processor
architectures with a high degree of parallelism, the instructions per cycle can have a
bigger impact on power consumption. As an example a C64x+ CPU spending 90% of time
in active processing threads but executing control code which is only one or two
instructions per cycle would consume much less power than if the C64x+ CPU was
spending 70% of time executing code like an FIR filter where six to seven instructions per
cycle are executed. In general, when analyzing application power like the DVEVM demos,
there are several functions/kernels being executed with different cycle efficiencies and
memory usage. Therefore, the total power is dependent both on processor loading and
the types of algorithms being executed.

3. The total core power is also affected by whether or not the algorithm makes use of the VICP. The
VICP is used for H.264 encode but not for H.264 decode.

4. The power consumption on the PLL and DDR2 DLL is dependent only on the configuration of PLL1
and PLL2, therefore for a fixed frequency of operation for the DSP/ARM and DDR2, the consumption
on these power rails do not vary with activity.

5. There is finite power consumption observed on the USB power pins PUSB_IO18 and PUSB_IO33 , even
though the USB module is not used in these demos. This power consumption is close to negligible if
the USB module and PHY were appropriately powered down via the power sleep controller (PSC) and
the USB PHY Control register. The USB module is clocked but idled.

6. There is a finite I/O power consumption observed on 3.3V I/O pins. The demo does not actively make
use of any 3.3 V I/Os (except for EMAC that is used for DSA data logging to host), and the finite power
consumption seen on these pins is primarily due to the pull-up/pull down configuration of the 3.3 V I/O
on the DVEVM.

1. The primary intention for this application note is to familiarize end user with the provisions available on
the DVEVM to measure power consumption. The total power consumption measured could be slightly
different based on factors like leakage on the device, measuring conditions, version of DVEVM demos,
etc.

2. The reported power consumption data can have some degree of error (less then ±2-5%).
3. All measurements were performed on a nominal device.
4. For higher accuracy in measurements one could run the same tests under more stringent conditions,

e.g.

a. Accurately control the case temperature of device and remove inaccuracies in results due to self
heating etc.

b. Make use of current probes.
c. Incorporate the setup to monitor the actual supply voltage at all test points.
d. Average the readings over several runs.

DaVinci System Level Benchmarking Measurements30 SPRAAF6–September 2006
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

7 Summary

7.1 H.264 Decode Demo

7.2 H.264 Encode Demo

Summary

The following section summarizes the key results for CPU loading, memory usage and power
consumption for the H.264 audio/video demonstration software used in this application report.

• Average ARM and DSP CPU loading

Table 21. Average ARM and DSP Loading for the H.264 Decode Demo Including AAC

Average DSP Loading Average ARM Loading

Decode Demo 52.50% 10.33%

• Static Memory Usage by ARM and DSP (see Section 5.1 for dynamic memory usage)

Table 22. Static Memory Usage for ARM and DSP for the H.264 Decode Demo Including AAC

Code Data Total

ARM 121,707 bytes 11,320 bytes 133,027 bytes

DSP 555,264 bytes 553,480 bytes 1,108,744 bytes

• Total power consumption

Table 23. Total DM644x Power Consumption for the H.264 Decode Demo

1.2 V Core Power (mW) Total 1.8 V IO Power (mW) Total 3.3 V IO Power Total Power (mW)
(mW)

Decode Demo 686 189 25 900

• Average ARM and DSP CPU loading

Table 24. Average ARM and DSP Loading for the H.264 Encode Demo

Average DSP Loading Average ARM Loading

Decode Demo 87.54% 3.20%

• Static Memory Usage for ARM and DSP (see Section 5.2 for dynamic memory usage)

Table 25. Static Memory Usage for ARM and DSP for the H.264 Encode Demo

Code Data Total

ARM 117,109 bytes 11,088 bytes 128,197 bytes

DSP 341,248 bytes 479,769 bytes 821,017 bytes

• Total power consumption

Table 26. Total DM644x Power Consumption for the H.264 Encode Demo

1.2 V Core Power (mW) Total 1.8 V IO Power (mW) Total 3.3 V IO Power Total Power (mW)
(mW)

Encode Demo 782 190 25 997

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

7.3 H.264 Encode/Decode Demo

8 Conclusion

9 References

Conclusion

• Average ARM and DSP CPU loading

Table 27. Average ARM and DSP Loading for the H.264 Encode/Decode Demo

Average DSP Loading Average ARM Loading

Encode/Decode Demo 47.28% 6.24%

• Static Memory Usage for ARM and DSP (see Section 5.3 for dynamic memory usage)

Table 28. Static Memory Usage for ARM and DSP for the Encode/Decode Demo

Code Data Total

ARM 114,000 bytes 11,040 bytes 125,040 bytes

DSP 381,088 bytes 468,545 bytes 849,633 bytes

• Total power consumption

Table 29. Total DM644x Power Consumption for the Encode/decode Demo

1.2 V Core Power (mW) Total 1.8 V IO Power (mW) Total 3.3 V IO Power Total Power (mW)
(mW)

Encode Demo 686 182 25 893

This application note discusses ways to analyze performance and power using the hardware and software
provided with the DM644x DVEVM/DVSDK. The demonstration software that is available with the DVEVM
was used as an example to evaluate the performance and power consumption.

For performance, both the individual loading for each codec channel and the overall loading for the demo
were calculated for ARM and DSP processors making use of DM644x SoC Analyzer. Analysis was also
given to help understand the results. Additionally, both the static and dynamic memory usage was
reported for each demo for both the ARM and DSP .

For power consumption, the various core and I/O power supply pins on DM644x were listed and
corresponding test points on the DVEVM that allow measuring the power consumption were highlighted.
The power consumption was measured for the above mentioned demos along with an analysis section to
understand the measured data.

The methodology outlined in this application note can be applied by developers to evaluate and
understand performance and power consumption requirements in a system context for their own DM644x
based application software.

Evaluating performance and power consumption in a system context is critical at both the device selection
stage and at the actual application development stage. This application note highlights how the DM644x
hardware and software development resources allow both the assessment and monitoring of performance
and power consumption with a methodical approach and tools to enhance the user experience. This
enables system developers to improve performance and optimize utilization of critical resources in their
own system reducing time to market and development costs.

1. Codec Engine Application Developer User’s Guide, SPRUE67.
2. DVEVM Getting Started Guide, SPRUE66.
3. DSA online documentation available from the help menu in the DM644x SoC Analyzer tool.
4. TMS320 C6000 DSP Cache User’s Guide, SPRU656.

32 DaVinci System Level Benchmarking Measurements SPRAAF6–September 2006
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRUE67
http://www-s.ti.com/sc/techlit/SPRUE66
http://www-s.ti.com/sc/techlit/SPRU656
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

www.ti.com

References

5. TMS320DM6446 Digital Media System-On-Chip SPRS283.
6. DaVinci EVM Technical Reference Guide (Spectrum Digital)

SPRAAF6–September 2006 DaVinci System Level Benchmarking Measurements 33
Submit Documentation Feedback

http://www-s.ti.com/sc/techlit/SPRS283
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAF6

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2006, Texas Instruments Incorporated

	Trademarks
	1 Introduction
	2 DVEVM Demonstration Software Descriptions
	2.1 Demo Software Architecture
	2.2 Decode Demo
	2.3 Encode Demo
	2.4 Encode/Decode Demo

	3 Necessary Equipment and Software
	3.1 Equipment
	3.2 Software

	4 Measuring the Processor Loading on the Demo Programs
	4.1 Approach to Measure the Processor Loading
	4.2 Demo Configuration for Measurement
	4.2.1 Decoder Demo Setup
	4.2.2 Encoder Demo Setup
	4.2.3 Encode/Decode Demo Setup

	4.3 Terminology Important in Interpreting DM644x SoC Analyzer Results
	4.3.1 Measurement Interval
	4.3.2 Processing Time for Each Frame
	4.3.3 Processing Time Statistics

	4.4 Loading Calculation
	4.4.1 Min/Max/Average DSP Loading for a Video (Audio) Channel
	4.4.2 Average DSP Loading
	4.4.3 Min/Max/Average Overall Loading for a Video (Audio) Channel
	4.4.4 Average ARM Loading for a Video (Audio) Channel
	4.4.5 Average ARM Loading

	4.5 Loading Results
	4.5.1 Decoder Demo Loading Results
	4.5.2 Encoder Demo Loading Results
	4.5.3 Encode/decode Demo Loading Results

	4.6 Reproducing the Loading Measurement Results
	4.7 Loading Results Analysis
	4.7.1 Overhead Sources
	4.7.2 Explanation of Greater than 100% Loading
	4.7.3 H.264 Encoder Loading vs. H.264 Decoder Loading
	4.7.4 H.264 Encoder/Decoder Loading at Different Resolution

	5 Demo Memory Usage
	5.1 Decoder Demo Memory Usage
	5.2 Encoder Demo Memory Usage
	5.3 Encode/Decode Demo Memory Usage

	6 Power Measurements on the Demos
	6.1 Terminology
	6.2 DM644x Power Supply Pins and Description
	6.3 Power Measurements on the DM644x DVEVM
	6.4 Results
	6.4.1 H.264 Decode Demo
	6.4.2 H.264 Encode Demo
	6.4.3 Encode/decode Demo

	6.5 Analysis/Observations
	6.6 General Considerations

	7 Summary
	7.1 H.264 Decode Demo
	7.2 H.264 Encode Demo
	7.3 H.264 Encode/Decode Demo

	8 Conclusion
	9 References

