
SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 1

Application Report
SPRAAA5 – November 2005

How to Create Delay-based Audio Effects on the

TMS320C672x DSP
Zhengting He DSP 6000

ABSTRACT

TMS320C672x is a floating point device family from Texas Instruments that provides
high quality audio performance at low prices. The price/performance ratio makes C672x
well suited for numerous audio applications. This application note shows how to use
C672x to efficiently create delay-based audio effects. The application note explains:
• How to leverage the data movement accelerator (dMAX) to move data for delay

based applications.
• How to implement efficient block processing techniques in delay-based audio

effects processing.
Along with this application note, an example application is provided that consists of the
following four effects: equalizer, chorus, delay, and reverb.
This application report contains source code that can be downloaded from
http://www.ti.com/lit/zip/SPRAAA5.

Contents
Trademarks ... 2

1 Introduction to C672x .. 3
2 Application Algorithm Description ... 7
3 Implementation Considerations .. 11
4 Pseudo Code Example ... 22
5 Performance Analysis ... 26
6 Code User's Guide ... 27
7 Reference ... 35

List of Figures
1 C672x Block Diagram ... 4
2 dMAX Block Diagram .. 5
3 General Purpose (3-dimensional) Transfer from McASP to Memory 6
4 FIFO Read Example ... 7
5 Application Block Diagram .. 7
6 Equalizer Block Diagram .. 8
7 Block-Processing Diagram for Equalizer Module .. 8
8 Chorus Effect Algorithm Block Diagram ... 8
9 Block-Processing Diagram for Chorus Module ... 9
10 Delay Effect Algorithm Block Diagram .. 9
11 Block-Processing Diagram for Delay Module ... 10
12 Reverb Effect Block Diagram .. 10
13 Block-Processing Diagram for Reverb Module ... 11
14 Processing Buffer Organization .. 14
15 Circular Buffer Organization ... 15

http://www.ti.com/lit/zip/SPRAAA5

2 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

16 FIFO Write .. 16
17 FIFO Read .. 18
18 Optimized Processing Buffer Organization ... 19
19 PING-PONG Buffer Scheme Flow .. 21
20 Hardware Connection Example .. 27
21 appBuf Organization ... 29
22 cirBuf Organization ... 30
23 Main GUI .. 32
24 Equalizer Window ... 33
25 Chorus Window .. 33
26 Delay Window ... 34
27 Reverb Window .. 35

List of Tables

1 Processing Buffer Summary ... 13
2 FIFO Write Delay Table Values .. 16
3 FIFO Read Delay Table Values .. 17
4 Optimized FIFO Read Between the Circular Buffer and Processing Buffers 20
5 Optimized FIFO Write Between the Circular Buffer and Processing Buffers 20

Trademarks
C67x, PowerPAD, Code Composer Studio are trademarks of Texas Instruments.

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 3

www.ti.com

Introduction to C672x

1 Introduction to C672x

1.1 C672x Overview

C672x is a low cost high performance floating point device from Texas Instruments Inc for high quality
audio application.
Figure 1 shows the C672x block diagram. The key features of C672x are:
• C672x: 32-/64-bit 300-MHz floating-point DSPs
• upgrades to C67x+ CPU from C67x™ Family

– 2X CPU registers [64 general-purpose]
– new audio-specific instructions
– compatible with the C67x CPU

• enhanced memory system
– 256K-byte unified program/data RAM
– 384K-byte unified program/data ROM
– single-cycle data access from CPU
– large program cache (32K byte) supports RAM, ROM, and external memory

• external memory interface (EMIF) supports:
– 100-MHz SDRAM (16- or 32-bit)
– asynchronous flash/SRAM (8-, 16-, or 32-bit)

• enhanced I/O system
– high-performance crossbar switch
– dedicated McASP DMA bus
– deterministic I/O performance

• dual data movement accelerator (dMAX) supports:
– 16 independent channels
– concurrent processing of two transfer requests
– 1-, 2-, and 3-dimensional memory-to-memory and memory-to-peripheral data transfers
– circular addressing where the size of a circular buffer (FIFO) is not limited to 2n

– table-based multi-tap delay read and write transfer from/to a circular buffer
• three multichannel audio serial ports

– six clock zones and 16 serial data pins
– supports TDM, I2S, and similar formats
– DIT-capable (McASP2)

• universal host-port interface
– 32-bit-wide data bus for high bandwidth
– muxed and non-muxed address and data options

• two SPI ports with 3-,4- and 50pin options
• two inter-integrated circuit (I2C) ports
• real-time interrupt counter/./watchdog
• oscillator- and software-controlled PLL
• applications

– professional audio
• mixers
• effects boxes
• audio synthesis
• instrument/amp modeling
• audio conferencing
• audio broadcast
• audio encoder

http://www.ti.com/

4 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Introduction to C672x

64 256

32

32
64 256

32

32

256 32

32

32 32 32

32

32
32

32
32

32 32 32 32
32

32

32

32 PLL

I/O Interrupt MAX0 CONTROL MAX1 Events
out in

dMAX

UHPI

RTI

I2C1

I2C0

SPI0

SPI1

McASP2
2 serializers

+ DIT

McASP1

6 serializers

McASP0
16 serializers

EMIF

Program/data
ROM page0
256K bytes

JTAG EMU Program/data
RAM

256K bytes

I/O

32

High performance
crossbar switch

Program
cache

32K bytes

Program/data
ROM page1
128K bytes

Memory
controller

CSP

PMP DMP

Program
INT fetch

D2
data
R/W

V67x+ CPU

D1
data
R/W

256

– emerging audio applications
– biometrics
– medical
– industrial

• commercial or extended temperature
• 144-pin, 0.5-mm, PowerPAD™ thin quad flatpack (TQFP) [RFP suffix]
• 256-terminal, 1.0-mm, 16x16 array plastic ball grid array (PBGA) [GDH and ZDH suffixes]
This document explains how to efficiently create delay-based effects using dMAX. For other details of
C672x, please refer to TMS320C6727, TMS320C6726, TMS320C6722 Floating-Point Digital Signal
Processors (SPRS268).

Figure 1. C672x Block Diagram

Peripheral interrupt and DMA events

1.2 Introduction to dMAX

The dMAX is a module which can be programmed to handle data movement to/from any addressable
memory space, including internal memory, peripherals, and external memory. The dMAX controller in the
C672x has a different architecture from the previous EDMA controller in the C621x/C671x devices.
Figure 2 shows a high level block diagram of dMAX.

M
cA

SP
 D

M
A

bu
s

25
6

Pe
rip

he
ra

l c
on

fig
ur

at
io

n b
us

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 5

www.ti.com

Introduction to C672x

HiMAX
Master
Crossbar
Switch
Port

Interrupt
lines to
the CPU

To/from

Crossbar
Switch

Events

LoMAX
Master
Crossbar
Switch
Port

Figure 2. dMAX Block Diagram

There are two data movement engine in the dMAX module: HiMAX and LoMAX. Both modules are
associated with an event group and dedicated to serve requests coming from the group. If requests occur
at the same time, the event encoder sorts out all the events and picks out the two highest priority requests
– one from each priority group, and serves them simultaneously. If the two requests compete for the same
source and/or destination module, (i.e. they both access the internal memory), request from HiMAX
completes first, followed by the transfer from LoMAX.

High priority PaRAM dMAX

Event
entry
table

HiMAX
RAM
R/W

Transfer
entry
table

High
priority
REQ

Control
R/W

Transfer entry #7

Low
priority
PaRAM Event entry #0

Event
entry
table

LoMAX
RAM
R/W

Low
priority
REQ

Transfer
entry
table

LoMAX
(MAX1)

Event
encoder

+
event and
interrupt
registers

HiMAX
(MAX0)

Transfer entry #7

Transfer entry #k

Transfer entry #0

Reserved

Event entry #31

Event entry #k

Transfer entry #k

Transfer entry #0

Reserved

Event entry #31

Event entry #k

Event entry #0

http://www.ti.com/

6 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Introduction to C672x

L1

L0

L,k 2

R, k 2

The dMAX controller supports two transfer modes:
• general purpose transfers which can be used to move audio samples multiplexed in one serial port

to/from memory.
• FIFO transfers which manage a section of memory as a circular buffer for delay-tap based reading and

writing of data.
Figure 3 illustrates how dMAX transfers a block of 2N samples from 2 channels multiplexed on one
McASP port to the memory. The receiving buffer for each channel is size N and the two buffers are
consecutive in memory.

RN−1, LN−1, ... R1,L1,R0,L0

LN−1

R0

R1

count0=1, count1=2, count2=n

 src_idx0=0, src_idx1=0, src_idx2=0
dst_idx0=0, dst_idx1=N, dst_idx2=1−N

Figure 3. General Purpose (3-dimensional) Transfer from McASP to Memory

Figure 4 shows how a FIFO read transfer pulls data from a circular buffer to the processing buffer to
implement the following two echo equations.

Y = (Lk + Lk − D1) , k = n, n − 1,..., n − (N − 1)

Y = (Rk + Rk − D 2) , k = n, n − 1..., n − (N − 1)

There are two channels, each of which has a section with size T in the circular buffer. N output samples (
k=n, n–1,…, n-(N–1)) are computed for each channel. YL,k (YR,k) is the kth output of the left (right)
channel. Lk (Rk) denotes the kth input of the left (right) channel. Lk-D1 (Rk-D2) is the kth delay sample of the
left (right) channel, where D1 (D2) is the delay tap value for the left (right) channel.
For YL,k, the D1th previous sample Lk-D1 is summed with the current input sample Lk and the result is
divided by 2 to produce the echo effect.
For YR,k, the D2th previous sample Rk-D2 is summed with the current input sample Rk and the result is
divided by 2 to produce the echo effect.
For the left channel, both the current block of inputs (Ln, Ln–1, …, Ln–(N–1)) and delay samples (Ln-D1, Ln-D1-1,
…, Ln-D1-(N–1)) are transferred from the circular buffer into the processing buffer. Similarly for the right
channel, both the current block of inputs (Rn, Rn–1, …, Rn–(N–1)) and delay samples (Rn-D2, Rn-D2-1, …,
Rn-D2-(N–1)) are transferred from the circular buffer into the processing buffer.

RN−1

dMAX McASP

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 7

www.ti.com

Application Algorithm Description

McASP

McASP

Equalizer

Chorus

YR,n = (R n + R n−D2)/2

YR,n−N+1 = (R n−(N−1) + R n−D2−(N−1))/2

YL,n = (L n + L n−D1)/2

YL,n−N+1 = (L n−(N−1) + L n−D1−(N−1))/2

Rn−D2

Rn−D2−(N−1)

Rn

Rn−(N−1)

Ln−D1

Ln−D1−(N−1)

Ln

Ln−(N−1)

processing buffer

section R,

size T

Rn−(N−1)

Rn

Ln−D1−(N−1)

Ln−D1

section L,

size T

Rn−D1
Rn−D1−(N−1)

Ln−(N−1) Ln

Figure 4. FIFO Read Example

For further details on dMAX data transfers, please refer to TMS320C672x DSP Dual Data Movement
Accelerator (dMAX) Reference Guide (SPRU795).

2 Application Algorithm Description

The example application consists of four effects which are cascaded in serial as shown in Figure 5. It
covers some of the typical delay-based effects in the professional audio space. Free source code is
provided which can be used as is or modified to create a new application. Samples from the two input
channels (left and right) are time-multiplexed on the same McASP and processed through the identical
algorithms. However, the two channels are separated for processing so that the parameters for each one
of the channels can be changed without affecting the other.

Left channel

Input Output

Right channel

Figure 5. Application Block Diagram

Reverb Delay Chorus Equalizer

Delay Reverb

http://www.ti.com/

8 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Application Algorithm Description

−b2 Z(−2)

0 +

a1

a2 Z(−2)

Z(−1)

−b2 Z(−2)

0 + EqOutBuf
N

a1

a2 Z(−2)

Z(−1)

2.1 Equalizer
Equalizers are used to adjust the amplitude of a signal within selected frequency ranges. Figure 6 shows a
bi-quad IIR filter used to implement the equalizer in our example. Depending on the filter parameters
configured by the user, the filter can be high pass, low pass or band pass.

 in[n] + w[n] a out[n]

−b1 Z(−1)

Computing each out[n] requires 5 multiplications and 4 additions. Two middle stage results (w[n] and
w[n-1]) need to be saved.
Figure 7 shows the block-processing diagram. Assuming a block of N samples are processed at a time for
each channel, the size of EqInBuf and EqOutBuf are N samples each. The size of EqWBuf is 2 samples.
Thus, the total data buffer size for this equalizer is 2 X N + 2.

EqWBuf a
2

−b1 Z(−1)

Figure 7. Block-Processing Diagram for Equalizer Module

2.2 Chorus Effect

Chorus is a time delay algorithm used to “thicken” sounds. It duplicates the effect that occurs when many
musicians play the same instrument and same music part simultaneously. Musicians are usually
synchronized with one another, but there are always slightly differences in timing, volume and pitch
between each instrument. Such chorus effect can be re-created digitally by adding time-varying delayed
result together with the input signal.
Figure 8 shows the chorus algorithm implemented in the example.

+

in[n] gd

+ out[n]

delay modulation

Figure 8. Chorus Effect Algorithm Block Diagram

The LFO module is a software implemented low-frequency oscillator for generating time-varying delayed
samples. A typical and efficient implementation is to use a periodical waveform to modulate the delay.
When the waveform reaches a maximum, then the delay is at its largest value. Four LFO waves are
provided in the program: sine wave, square wave, triangle wave and sawtooth wave. User can select any
one of them to produce desired effect.

LFO

EqInBuf
N +

fb delay stored samples
gw

sample

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 9

www.ti.com

Application Algorithm Description

w(n)

fb g

One thing to note is that Figure 8 is a diagram showing single-sample processing, which implies one
time-varying delay value is computed for each input sample using LFO. To update the stored sample it
takes 1 multiplication and 1 addition each round. To compute each output sample, it takes 2
multiplications and 1 addition. Thus, the total computation for each sample consists of 3 multiplications, 2
additions and 1 LFO modulation.
Figure 9 shows the block-processing diagram for chorus. To process a block of N samples at a time, one
time-varying delay value has to be generated for each block. The generated delay is used by the dMAX to
pull in the block of required samples from the circular buffer using a FIFO read transfer. Three blocks of
processing buffers are necessary for this example:
• ChoInBuf is the output from the equalizer (EqOutBuf) and the input to the chorus module.
• ChoOutBuf is the output of the chorus module.
• ChoDlyBuf saves the delayed samples received from the circular buffer using FIFO read before

processing starts. It is updated during the processing. After processing, it will be transferred to the
circular buffer by FIFO write.

Figure 9. Block-Processing Diagram for Chorus Module

2.3 Delay Effect

Figure 10 shows the delay effect implemented in the example. Compared to chorus, the delay D is fixed in
this case and typically represents tens of milliseconds of delay. Compared to the equalizer shown in
Section 2.1, a block of N samples can be processed at a time as long as D > N-1. This is because if D > N-
1, for every block of N input samples in[n] … in[n-(N–1)], w[n-D] … w[n-D-(N–1)] are already in the circular
buffer, and thus they can be transferred to the processing buffer and processed with the input samples
together.

in[n] out[n]

Figure 10. Delay Effect Algorithm Block Diagram

Computing each w(n) and out[n] requires 2 multiplications and 2 additions. One middle stage result w[n]
needs to be saved.
Figure 11 shows the block-processing diagram. Three blocks of processing buffers are necessary to
process a block of N samples
• DlyInBuf is the output from the chorus (ChoOutBuf) and input to the delay module.
• DlyOutBuf is the output of the delay module
• DlyWBuf saves the delay samples received from the circular buffer using a FIFO read transfer before

processing starts. The updated samples will be transferred to the circular buffer by a FIFO write
transfer.

fb
ChoDlyBuf

N
Circular
buffer

(EqOutBuf)
gw

ChoInBuf
N

gd ChoOutBuf
N LFO

Z(−D) Z(−D)

http://www.ti.com/

10 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Application Algorithm Description

out[n]

APF 3 APF 2 APF 1 APF 0

Figure 11. Block-Processing Diagram for Delay Module

2.4 Reverberation Effect

The reverberation algorithm simulates the effect of sound reflections in a large concert hall or room.
Instead of using only a few discrete repetitions of a sound like a multi-tap delay effect, the reverb effect
implements many delayed repetitions so close together in time that the ear cannot distinguish the
differences between the delays. The repetitions are blended together to sound continuous.
Figure 12 shows a simple reverb algorithm implemented in our example. It consists of a 6-tap echo filter
and four all-pass filters (APFs).

in[n]

Figure 12. Reverb Effect Block Diagram

APF k, k=0...3

For each input sample, the 6-tap echo filter takes 6 multiplications and 6 additions to compute an output.
To update bufA[n] and lp[k] for each APF, it takes 4 multiplications and 2 additions. To compute an output
for each APF, it takes 2 multiplications and 1 addition. The reverb output is the summation of all the APFs
which requires 4 additions. Thus, the total computation for each sample takes 30 multiplications and 28
additions.

DlyInBuf
N

 DlyWBuf
N

g DlyOutBuf
N

(ChoOutBuf)
fb

FIFO read/write

1−fb

in[n] −fb out[n]

Z(−D0)
ge[0]

Z(−D1)
ge[1]

Z(−D2)
ge[2]

Z(−D3)
ge[3]

Z(−D4)
ge[4]

Z(−D5)
ge[5]

b

a

Z(−D5)

g

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 11

www.ti.com

Implementation Considerations

Figure 13 shows the block-processing diagram. 12 blocks of processing buffers are necessary to process
a block of N samples at a time.
• EchoInBuf is the output from the delay module and input to the echo filter in the reverb module.
• RevOutBuf is the output of the reverb module.
• EchoDlyDkBuf (k=0…5) saves the delay samples received from the circular buffer for the echo filter.
• APFkBuf (k=0…3) saves the delay samples for the APF k before processing starts from the circular

buffer. After processing, the updated samples are transmitted to the circular buffer by FIFO write.

Note: Because each APF output is computed sample by sample, no processing buffer is
needed. For each APF, only one sample for lp needs to be buffered.

(DlyOutBuf)

FIFO
read

FIFO write/read

Figure 13. Block-Processing Diagram for Reverb Module

3 Implementation Considerations

The performance of an embedded system depends not only on how the hardware is designed, but also on
how the software utilizes the hardware. Generally speaking, the architecture of C672x suggests the
following choices to implement a delay-based audio effect algorithm such as the one described in
Section 2.
• Block processing instead of single-sample processing. There are several folds of benefits from block

processing which will be described in Section 5. However, one thing to note is that the block size is
constrained both by the on-chip memory size and the latency requirement. The latency requirement
often imposes the more stringent limitation. For example, some professional audio systems require the
latency to be smaller than 10ms, which is about 480 sample periods for a 48-KHz sample rate. Since a
latency of 20 to 100 sample periods are always caused due to the hardware limitations, i.e., the D/A
converter latency, for this case it is safe to set the block size up to 256 samples. Too fulfill a stricter
latency requirement, the block size has to be smaller.

EchoInBuf

ge[0]
EchoDlyD0Buf

ge[1]
EchoDlyD1Buf RevOutBuf

ge[2]
EchoDlyD2Buf

1−fb

ge[3]
EchoDlyD3Buf b

APFkBuf lp[k]
fb

ge[4] g
EchoDlyD4Buf a

in
ge[5] −fb

out

EchoDlyD5Buf
APF k, k=0...3

Z(−1)

APF 3 APF 2 APF 1 APF 0

http://www.ti.com/

12 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Implementation Considerations

• Saving delay samples in off-chip memory and processing samples in on-chip memory. The off-chip
SDRAM has relatively larger size but significantly lower speed compared to on-chip SRAM. It can be
used to store the delay samples for the algorithm. To process a block of data, it is recommended to
transfer the delay samples to SRAM which runs at the same frequency as the DSP core. If the
algorithm program size is less 32KB, it can completely fit into the L1P cache.

• Moving data using dMAX.
– The FIFO transfer mode in dMAX is well designed for efficiently transferring data between a circular

buffer in the SDRAM and a processing buffer in the SRAM. One obvious benefit is that DSP can be
used to do the processing work while dMAX is transferring the data. Compared to the EDMA
architecture in some other C6000 DSPs, the FIFO transfer feature of dMAX has another advantage
for audio systems. Imagine using EDMA to perform the transfer shown in Figure 4, which would
require the use of four linked 1-D transfers*. However, since the circular buffer’s read/write pointers
are not updated by EDMA automatically, the DSP must manually update them. Also, every time a
transfer is completed the DSP needs to update the source/destination address for each block.
Things get even worse if one block rolls over from the bottom to the top of the circular buffer,
because the transfer has to be manually split into two transfers.

Note: It is not always possible to use a 2-D EDMA transfer in this case because it is often
T!=D1 !=D2.

– For any FIFO transfer, rolling over the read/write pointer in the middle of a block transfer should be
avoided as much as possible. Although dMAX can automatically handle this situation by it splitting
one transfer into two, this increases the transfer overhead. To avoid this situation, it is
recommended to make the circular buffer size a multiple of the processing block size. Also, the
read/write pointer should be aligned to the processing block size. This ensures that the read/write
pointer will only be rolled over in-between block transfers.

– The dMAX general purpose transfer is designed to efficiently transfer input/output audio samples
to/from memory. The general purpose transfer can automatically de-multiplex/multiplex samples of
different channels from/to the same serial port.

• Pipelined processing. The dMAX in the C672x is naturally designed to support a PING-PONG buffer
scheme for pipelined processing. While the DSP is processing the PING (PONG) buffer, data can be
transferred to/from the PONG (PING) buffer for the next round of processing.

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 13

www.ti.com

Implementation Considerations

3.1 Buffer Organization
Section 2 explained the necessary processing buffers for each effect module to be implemented. Table 1
summarizes these processing buffers. Please refer to Figure 5 for all the effect modules.

Table 1. Processing Buffer Summary

Buffer Name Description
InBuf, EqInbuf This is the buffer used to receive the input samples from the McASP and also serves as the input buffer

to the equalizer module.
EqOutBuf, ChoInBuf This is the output buffer for the equalizer module and also the input buffer for the chorus module.
ChoDlyBuf This buffer saves the delay samples received from the circular buffer for the chorus module using FIFO

read before processing starts. After processing, the updated ones will be transferred to the circular buffer
by FIFO write.

ChoOutBuf, DlyInBuf This is the output buffer for the chorus module and also the input buffer for the delay module.
DlyWBuf This buffer saves the delay samples received from the circular buffer for the delay module using FIFO

read before processing starts. After processing, The updated samples will be transferred to the circular
buffer by FIFO write.

DlyOutBuf, EchoInBuf This is the output buffer for the delay module and also the input buffer for the echo filter in the reverb
module.

EchoDlyDkBuf, K=0…5 These 6 buffers save the delay samples received from the circular buffer for the echo filter in the reverb
module before processing starts.

APFkBuf, k=0…3 These 4 buffers save the delay samples received from the circular buffer for the 4 APFs in the reverb
module before processing starts. After processing, The updated samples will be transferred to the
circular buffer by FIFO write.

OutBuf, RevOutBuf This is the output buffer of the reverb module. It also serves as the output buffer for the system to
transmit output samples to the McASP.

Since we separate the left and right channels and use PING-PONG buffer scheme, 4x the number of
processing buffers are needed. To identify a particular buffer for a particular channel in the particular
PING/PONG set, we use the following naming convention in the rest of the document.

[SET = PING or PONG]_"buffer name"_[CHAN = L or R]

For example, to refer to the input buffer to the equalizer module of the left channel in the PING set, we
use PING_L_EqInbuf.
Figure 14 shows all the processing buffers which reside in on-chip SRAM.
For the buffers in pattern 1, data is transferred between the buffers and the circular buffer bi-directionally
using dMAX FIFO read and FIFO Write Transfers.
For the buffers in pattern 2, data is transferred to the buffers from the circular buffer by dMAX FIFO read
transfer.
For the buffers in pattern 3, data is transferred between the buffers and the McASP by dMAX general
purpose transfers.
For the buffers in pattern 4, no dMAX transfers are involved.

http://www.ti.com/

14 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Implementation Considerations

Left channel Right channel
buffers related to FIFO read/write (PING set)

Left channel Right channel

buffers related to FIFO read/write (PONG set)

Figure 14. Processing Buffer Organization

There are seven sections for each channel in the circular buffer. Due to processing separation for the left
and right channel, the number of sections in the circular buffer is 14 in total. For each channel, the data
sections to be saved in the circular buffer include:
1. Delay line for the chorus module. Before a round of processing starts, delay samples are transferred to

ChoDlyBuf by FIFO read. After processing, updated samples are transferred from ChoDlyBuf to it by
FIFO write. We use L_ChoDlySect and R_ChoDlySect to denote this section for the left and right
channel, respectively.

2. Delay line for the delay module. Before a round of processing starts, delay samples are transferred to
DlyWBuf by FIFO read. After processing, updated samples are transferred from DlyWBuf to it by FIFO
write. We use L_DlyWSect and R_DlyWSect to denote this section for the left and right channel,
respectively.

3. Delay line for the echo filter in the reverb module. Before a round of processing starts, delay samples
are transferred to EchoDlyDkBuf (k=0…5) by FIFO read. After processing, latest samples in EchoInBuf
are transferred to it by FIFO write. We use L_EchoDlySect and R_EchoDlySect to denote this section
for the left and right channel, respectively.

4. Delay line for each APFk (k=0…3) in the reverb module. Before a round of processing starts, delay
samples are transferred to APFkBuf by FIFO read. After processing, updated samples are transferred
from APFkBuf to it by FIFO write. We use L_APFkSect and R_APFkSect to denote this section for the
left and right channel, respectively.

Since a delay line often needs to keep tens of thousands of samples, the circular buffer is put in SDRAM.
The following figure shows the circular buffer organization.

pattern 4 pattern 3 pattern 2 pattern 1

PONG_L_EchoDlyD0Buf PONG_R_ChoDlyBuf

PONG_L_EchoDlyD1Buf PONG_R_DlyWBuf
PONG_L_EchoDlyD2Buf PONG_R_APF0Buf

PONG_L_EchoDlyD3Buf PONG_R_APF1Buf

PONG_L_EchoDlyD4Buf PONG_R_APF2Buf

PONG_L_EchoDlyD5Buf PONG_R_APF3Buf

PONG_L_dlyOutBuf PONG_R_dlyOutBuf

PONG_L_APF0Buf PONG_R_EchoDlyD0Buf

PONG_L_APF1Buf PONG_R_EchoDlyD1Buf

PONG_L_APF2Buf PONG_R_EchoDlyD2Buf
PONG_L_APF3Buf PONG_R_EchoDlyD3Buf

PONG_L_ChoDlyBuf PONG_R_EchoDlyD4Buf
PONG_L_DlyWBuf PONG_R_EchoDlyD5Buf

PING_L_EchoDlyD0Buf PING_R_ChoDlyBuf

PING_L_EchoDlyD1Buf PING_R_DlyWBuf
PING_L_EchoDlyD2Buf PING_R_APF0Buf

PING_L_EchoDlyD3Buf PING_R_APF1Buf

PING_L_EchoDlyD4Buf PING_R_APF2Buf

PING_L_EchoDlyD5Buf PING_R_APF3Buf

PING_L_dlyOutBuf PING_R_dlyOutBuf

PING_L_APF0Buf PING_R_EchoDlyD0Buf

PING_L_APF1Buf PING_R_EchoDlyD1Buf

PING_L_APF2Buf PING_R_EchoDlyD2Buf
PING_L_APF3Buf PING_R_EchoDlyD3Buf

PING_L_ChoDlyBuf PING_R_EchoDlyD4Buf
PING_L_DlyWBuf PING_R_EchoDlyD5Buf

PING_L_InBuf
PING_R_InBuf
PONG_L_InBuf
PONG_R_InBuf

PING_L_OutBuf
PING_R_OutBuf

PONG_L_OutBuf

PONG_R_OutBuf

 PING_L_EqOutBuf
PING_R_EqOutBuf

PONG_L_EqOutBuf

PONG_R_EqOutBuf
PING_L_DlyInBuf
PING_R_DlyInBuf

PONG_L_DlyInBuf

PONG_R_DlyInBuf

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 15

www.ti.com

Implementation Considerations

Figure 15. Circular Buffer Organization

In each processing round for a FIFO write transfer, seven blocks for the left channel and seven blocks for
the right channel need to be transferred to the circular buffer. Table 2 shows the entry values in the FIFO
write transfer’s delay table in which size(“section name”) denotes the size of a particular section.

Left channel Right channel

Sect 6: Sect 7:
L_DlyWSect R_ChoDlySect
delay samples delay samples

Sect 5: for delay for chorus Sect 8:
L_Cho_DlySect: R_DlyWSect:
delay samples delay samples

for chorus for delay

Sect 4:
L_APF3Sect delay
samples for APF3

in reverb

Sect 9:
R_APF0Sect delay
samples for APF0

in reverb

Sect 3: L_APF2Sect
delay samples

for APF2 in reverb

Sect 10: R_APF1Sect
delay samples

for APF1 in reverb

Sect 2: L_APF1Sect
delay samples for

APF1 in
reverb

Sect 1:
L_APF0Sect

delay samples
for APF0
in reverb

Sect 0:
L_EchoDlySect
delay samples
for echo filter

in reverb

Sect 13:
R_EchoDlySect
delay samples
for echo filter

in reverb

Sect 11: R_APF2Sect
delay samples for

APF2 in
reverb

Sect 12:
R_APF3Sect
delay samples

for APF3
in reverb

Read/write pointer

http://www.ti.com/

16 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Implementation Considerations

left channel right channel

sect 7:

sect 6: R_ChoDlySect
L_DlyWSect delay samples
delay samples for chorus

for delay
sect 5:

L_ChoDlySect:
delay samples

for chorus

sect 8:
R_DlyWSect
delay samples

for delay

sect 4:
L_APF3Sect
delay samples
for APF3 in

reverb

sect 9:
R_APF0Sect
delay samples
for APF0 in

reverb

PING_L_EchoDlyD0Buf
PING_L_EchoDlyD1Buf
PING_L_EchoDlyD2Buf
PING_L_EchoDlyD3Buf
PING_L_EchoDlyD4Buf
PING_L_EchoDlyD5Buf

PING_L_DlyOutBuf
PING_L_APF0Buf
PING_L_APF1Buf
PING_L_APF2Buf
PING_L_APF3Buf

PING_L_ChoDlyBuf
PING_L_DlyWBuf

sect 3:
L_APF2Sect
delay samples
for APF2 in

reverb

sect 2:
L_APF1Sect
delay samples
for APF1 in

reverb

sect 10:
R_APF1Sect
delay samples

for APF1 in rever

sect 11:

R_APF2Sect
delay samples for
APF2 in reverb

sect 1:
L_APF0Sect

delay
samples

for APF0 in
reverb

sect 0:
L_EchoDlySect
delay samples
for echo filter

in reverb

sect 13:
R_EchoDlySect
delay samples
for echo filter

in reverb

sect 12:
R_APF3Sect
delay samples
for APF3 in

reverb

contiguous memory write pointer

Table 2. FIFO Write Delay Table Values

Entry ID Entry Value Comment
FIFOW_Entry[0] 0 Transfer from L_EchoInBuf
FIFOW_Entry[1] size(L_EchoDlySect) Transfer from L_APF0Buf

FIFOW_Entry[2] FIFOW_Entry[1] + size(L_APF0Sect) Transfer from L_APF1Buf

FIFOW_Entry[3] FIFOW_Entry[2] + size(L_APF1Sect) Transfer from L_APF2Buf
FIFOW_Entry[4] FIFOW_Entry[3] + size(L_APF2Sect) Transfer from L_APF3Buf

FIFOW_Entry[5] FIFOW_Entry[4] + size(L_APF3Sect) Transfer from L_ChoDlyBuf
FIFOW_Entry[6] FIFOW_Entry[5] + size(L_ChoDlySect) Transfer from L_DlyWBuf

FIFOW_Entry[7] FIFOW_Entry[6] + size(L_DlyWSect) Transfer from R_ChoDlyBuf

FIFOW_Entry[8] FIFOW_Entry[7] + size(R_ChoDlySect) Transfer from R_DlyWBuf

FIFOW_Entry[9] FIFOW_Entry[8] + size(R_DlyWSect) Transfer from R_APF0Buf

FIFOW_Entry[10] FIFOW_Entry[9] + size(R_APF0Sect) Transfer from R_APF1Buf
FIFOW_Entry[11] FIFOW_Entry[10] + size(R_APF1Sect) Transfer from R_APF2Buf

FIFOW_Entry[12] FIFOW_Entry[11] + size(R_APF2Sect) Transfer from R_APF3Buf

FIFOW_Entry[13] FIFOW_Entry[12] + size(R_APF3Sect) Transfer from R_EchoInBuf

Figure 16 shows how a FIFO write transfer fills the circular buffer from the PING set processing buffers.
Again, since a FIFO write transfer requires index0 and index1 to be fixed, we place all the processing
buffers associated with FIFO write contiguously so that index1 = 1.

PING_R_ChoDlyBuf

PING_R_DlyWBuf
PING_R_APF0Buf
PING_R_APF1Buf
PING_R_APF2Buf
PING_R_APF3Buf

PING_R_DlyOutBuf
PING_R_EchoDlyD0Buf
PING_R_EchoDlyD1Buf
PING_R_EchoDlyD2Buf

PING_R_EchoDlyD3Buf
PING_R_EchoDlyD4Buf
PING_R_EchoDlyD5Buf

FIFO write, count0 = N, count1 = 14, index0=1, index1=1

Figure 16. FIFO Write

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 17

www.ti.com

Implementation Considerations

In a processing round for a FIFO read transfer, 13 blocks for data for each channel need to be transferred
from the circular buffer to the processing buffers. Table 3 shows the entry values in the FIFO read
transfer's delay table.

Table 3. FIFO Read Delay Table Values

Entry ID Entry Value Comment
FIFOR_Entry[0] L_D0 Transfer from L_EchoDlySect to L_EchoDlyD0Buf. L_D0 is the

1st delay tap for the echo filter of the left channel.
FIFOR_Entry[1] L_D1 Transfer from L_EchoDlySect to L_EchoDlyD1Buf. L_D1 is the

2nd delay tap for the echo filter of the left channel.
FIFOR_Entry[2] L_D2 Transfer from L_EchoDlySect to L_EchoDlyD2Buf. L_D2 is the

3rd delay tap for the echo filter of the left channel.
FIFOR_Entry[3] L_D3 Transfer from L_EchoDlySect to L_EchoDlyD3Buf. L_D3 is the

4th delay tap for the echo filter of the left channel.
FIFOR_Entry[4] L_D4 Transfer from L_EchoDlySect to L_EchoDlyD4Buf. L_D4 is the

5th delay tap for the echo filter of the left channel.
FIFOR_Entry[5] L_D5 Transfer from L_EchoDlySect to L_EchoDlyD0Buf. L_D5 is the

6th delay tap for the echo filter of the left channel.
FIFOR_Entry[6] L_D5 Transfer from L_EchoDlySect to L_DlyOutbuf. It is an

unnecessary transfer.
FIFOR_Entry[7] FIFOW_Entry[1] + L_APF0Dly Transfer from L_APF0Sect to L_APF0Buf. L_APF0Dly is the

delay tap for the APF 0 of the left channel.
FIFOR_Entry[8] FIFOW_Entry[2] + L_APF1Dly Transfer from L_APF1Sect to L_APF1Buf. L_APF1Dly is the

delay tap for the APF 1 of the left channel.
FIFOR_Entry[9] FIFOW_Entry[3] + L_APF2Dly Transfer from L_APF2Sect to L_APF2Buf. L_APF2Dly is the

delay tap for the APF 2 of the left channel.
FIFOR_Entry[10] FIFOW_Entry[4] + L_APF3Dly Transfer from L_APF3Sect to L_APF3Buf. L_APF3Dly is the

delay tap for the APF 3 of the left channel.
FIFOR_Entry[11] FIFOW_Entry[5] + L_ChoDly Transfer from L_ChoDlySect to L_ChoDlyBuf. L_ChoDly is the

delay (modulated by LFO) for the chorus of the left channel.
FIFOR_Entry[12] FIFOW_Entry[6] + L_DlyD Transfer from L_DlyWSect to L_DlyWBuf. L_DlyD is the delay

for the delay module of the left channel.
FIFOR_Entry[13] FIFOW_Entry[7] + R_ChoDly Transfer from R_ChoDlySect to R_ChoDlyBuf. R_ChoDly is the

delay (modulated by LFO) for the chorus of the right channel.
FIFOR_Entry[14] FIFOW_Entry[8] + R_DlyD Transfer from R_DlyWSect to R_DlyWBuf. R_DlyD is the delay

for the delay module of the right channel.
FIFOR_Entry[15] FIFOW_Entry[9] + R_APF0Dly Transfer from R_APF0Sect to R_APF0Buf. R_APF0Dly is the

delay tap for the APF 0 of the right channel.
FIFOR_Entry[16] FIFOW_Entry[10] + R_APF1Dly Transfer from R_APF1Sect to R_APF1Buf. R_APF1Dly is the

delay tap for the APF 1 of the right channel.
FIFOR_Entry[17] FIFOW_Entry[11] + R_APF2Dly Transfer from R_APF2Sect to R_APF2Buf. R_APF2Dly is the

delay tap for the APF 2 of the right channel.
FIFOR_Entry[18] FIFOW_Entry[12] + R_APF3Dly Transfer from R_APF3Sect to R_APF3Buf. R_APF3Dly is the

delay tap for the APF 3 of the right channel.
FIFOR_Entry[19] FIFOW_Entry[13] + R_D0 Transfer from R_EchoDlySect to R_DlyOutbuf. It is an

unnecessary transfer.
FIFOR_Entry[20] FIFOW_Entry[13] + R_D0 Transfer from R_EchoDlySect to R_EchoDlyD0Buf. R_D0 is the

1st delay tap for the echo filter of the right channel.
FIFOR_Entry[21] FIFOW_Entry[13] + R_D1 Transfer from R_EchoDlySect to R_EchoDlyD1Buf. R_D1 is the

2nd delay tap for the echo filter of the right channel.
FIFOR_Entry[22] FIFOW_Entry[13] + R_D2 Transfer from R_EchoDlySect to R_EchoDlyD2Buf. R_D2 is the

3rd delay tap for the echo filter of the right channel.
FIFOR_Entry[23] FIFOW_Entry[13] + R_D3 Transfer from R_EchoDlySect to R_EchoDlyD3Buf. R_D3 is the

4th delay tap for the echo filter of the right channel.
FIFOR_Entry[24] FIFOW_Entry[13] + R_D4 Transfer from R_EchoDlySect to R_EchoDlyD4Buf. R_D4 is the

5th delay tap for the echo filter of the right channel.
FIFOR_Entry[25] FIFOW_Entry[13] + R_D5 Transfer from R_EchoDlySect to R_EchoDlyD5Buf. R_D5 is the

6th delay tap for the echo filter of the right channel.

http://www.ti.com/

18 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Implementation Considerations

Unnecessary

FIFO read FIFO red, count0=N, count1=26, index0=1, index1=1

Figure 17. FIFO Read

Unnecessary
FIFO read

Figure 17 shows how a FIFO read transfer fills the PING set processing buffers. A FIFO read
transfer requires index0 and index1 to be fixed for all blocks, which is why we put all the processing
buffers associated with FIFO read contiguously so that index1 = 1.
L_DlyOutBuf and R_DlyOutBuf are actually for saving the output of delay modules and do not need
to be filled by FIFO read (see the dash lines arrows in Figure 17). However, the data in them need
to be transferred to circular buffer by the FIFO write transfer. By putting them in such places and
copying two extra buffers, only one FIFO read transfer (and thus only one interrupt) is necessary to
fill all the necessary processing buffers for two channels. Otherwise, two FIFO transfers (one for
each channel) are needed. Since usually the processing buffer size is small (about 4 - 256
samples) for targeted application, the performance will gain by reducing an interrupt.
Copying extra buffers is not the only method to save an interrupt as described above. In the
provided application, we encounter such a scenario because we want to separate the processing
buffers for each channel to give user a clear view. The following are general guidance of how to
place the processing buffers in order.
For each PING or PONG set,
1. For all the processing buffers involved with FIFO read only

a. Place them contiguously.
b. Place all the buffers accessing the same section in the circular buffer contiguously.
c. Record the order of the circular buffer section.

2. For all the processing buffers involved with FIFO write only
a. Place them contiguously. The order is the same as the one recorded in 1-c.

3. For all the processing buffers involved with both FIFO read and write
a. Place them contiguously.
b. Place all the buffers accessing the same section in the circular buffer contiguously.

4. Place 3 between 1 and 2.

Left channel Right channel

Sect 6: Sect 7:
L_DlyWSect R_ChoDlySect

delay samples delay samples
Sect 5: for delay for chorus Sect 8:

L_Cho_DlySect: R_DlyWSect:
delay samples delay samples

for chorus for delay

Sect 4:
L_APF3Sect delay
samples for APF3

in reverb

Sect 9:
R_APF0Sect delay
samples for APF0

in reverb

PING_R_ChoDlyBuf
PING_R_DlyWBuf
PING_R_APF0Buf
PING_R_APF1Buf
PING_R_APF2Buf
PING_R_APF3Buf
PING_R_dlyOutBuf

PING_R_EchoDlyD0Buf
PING_R_EchoDlyD1Buf
PING_R_EchoDlyD2Buf
PING_R_EchoDlyD3Buf
PING_R_EchoDlyD4Buf
PING_R_EchoDlyD5Buf

PING_L_EchoDlyD0Buf
PING_L_EchoDlyD1Buf
PING_L_EchoDlyD2Buf
PING_L_EchoDlyD3Buf
PING_L_EchoDlyD4Buf
PING_L_EchoDlyD5Buf

PING_L_dlyOutBuf
PING_L_APF0Buf
PING_L_APF1Buf
PING_L_APF2Buf
PING_L_APF3Buf

PING_L_ChoDlyBuf
PING_L_DlyWBuf

Sect 3: L_APF2Sect
delay samples

for APF2 in reverb

Sect 10: R_APF1Sect
delay samples

for APF1 in reverb

Sect 2: L_APF1Sect
delay samples for

APF1 in
reverb

Sect 1:
L_APF0Sect

delay samples
for APF0 Sect 0: Sect 13:

Sect 11: R_APF2Sect
delay samples for

APF2 in
reverb

Sect 12:
R_APF3Sect

delay samples
for APF3

in reverb L_EchoDlySect R_EchoDlySect in reverb
delay samples delay samples
for echo filter for echo filter

in reverb in reverb

Read/write
pointer

Contiguous memory

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 19

www.ti.com

Implementation Considerations

5. The section order of the circular buffer follows the processing buffer orders.
6. For those processing buffers not involved with FIFO transfer, we do not care about their

placement order.
For example, an optimized processing buffer placement order for this application is shown in
Figure 18.

working buffer placement (PING set)
PONG set is the same

Figure 18. Optimized Processing Buffer Organization

All the buffers in pattern 2 are involved with FIFO read transfer only and are placed contiguously
(rule 1-a).
PING_L_EchoDlyDkBuf (k=0…5) receive samples from L_EchoDlySect and they are placed
contiguously (rule 1-b). PING_R_EchoDlyDkBuf receive samples from R_EchoDlySect and are
placed contiguously too (rule 1-b).
The order of the involved circular buffer sections is L_EchoDlySect -> R_EchoDlySect (rule 1-c).
PING_R_DlyOutBuf and PING_L_DlyOutBuf (in pattern 3) are involved with FIFO write only and
are placed contiguously. Their order is the same as L_EchoDlySect -> R_EchoDlySect (rule 2-a).
All the buffers in pattern 1 are involved with both FIFO read and write. They are put contiguously
(rule 3-a). Since each one corresponds to a section in the circular buffer, rule 3-b is automatically
met.
All the buffers in pattern 1 are placed between the ones in pattern 2 and the ones in pattern 3 (rule
4).
The section order in the circular buffer is shown in Figure 18. It is the same order as the processing
buffers (rule-5).
Table 4 and Table 5 show the one-to-one correspondence between the circular buffer sections and
processing buffers for the FIFO read and FIFO write transfer.

pattern 1

pattern 2

pattern 3

sect 5:
L_APF3Sect
delay samples
for APF3 in

reverb

sect 6:
R_APF0Sect
delay samples
for APF0 in

reverb

sect 7:
R_APF1Sect
delay samples
for APF1 in

reverb
sect 8:

R_APF2Sect
delay samples

for APF2
in reverb

sect 4:
L_APF2Sect
delay samples
for APF2 in

reverb

sect 3:
L_APF1Sect
delay samples
for APF1 in

reverb
sect 2:

L_APF0Sect
delay samples
for APF0 in

reverb
sect 1:

R_EchoDlySect
delay samples
for echo filter

sect 9:
R_APF3Sect
delay samples
for APF3 in

reverb

sect 10:
L_ChoDlySect:
delay samples

for chorus

sect 11:
R_ChoDlySect
delay samples

for chorus

write pointer in reverb
sect 0:

L_EchoDlySect
delay samples
for echo filter

in reverb

sect 12:
L_DlyWSect
delay samples

for delay
sect 13:

R_DlyWSect
delay samples

for delay

read pointer

PING_R_EchoDlyD5Buf

PING_R_EchoDlyD4Buf

PING_R_EchoDlyD3Buf

PING_R_EchoDlyD2Buf

PING_R_EchoDlyD1Buf

PING_R_EchoDlyD0Buf

PING_L_EchoDlyD5Buf

PING_L_EchoDlyD4Buf

PING_L_EchoDlyD3Buf
PING_L_EchoDlyD2Buf

PING_L_EchoDlyD1Buf

PING_L_EchoDlyD0Buf

PING_R_dlyOutBuf

PING_L_DlyOutBuf

PING_R_DlyWBuf

PING_L_DlyWBuf

PING_R_ChoDlyBuf

PING_L_ChoDlyBuf

PING_R_APF3Buf

PING_R_APF2Buf

PING_R_APF1Buf

PING_R_APF0Buf

PING_L_APF3Buf
PING_L_APF2Buf

PING_L_APF1Buf

PING_L_APF0Buf

FI
FO

 re
ad

 on
ly

FI
FO

 w
rit

e
on

ly

FI
FO

 re
ad

 &
 w

rit
e

http://www.ti.com/

20 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Implementation Considerations

Table 4. Optimized FIFO Read Between the Circular Buffer and Processing Buffers

Processing Buffers Data Direction Sections in the Circular
Buffer

PING_L_EchoDlyDkBuf (k=0...5) ← Sect 0: L_EchoDlySect
PING_R_EchoDlyDkBuf (k=0...5) ← Sect 1: R_EchoDlySect

PING_L_APF0Buf ← Sect 2: L_APF0Sect
PING_L_APF1Buf ← Sect 3: L_APF1Sect
PING_L_APF2Buf ← Sect 4: L_APF2Sect
PING_L_APF3Buf ← Sect 5: L_APF3Sect
PING_R_APF0Buf ← Sect 6: R_APF0Sect
PING_R_APF1Buf ← Sect 7: R_APF1Sect
PING_R_APF2Buf ← Sect 8: R_APF2Sect
PING_R_APF3Buf ← Sect 9: R_APF3Sect

PING_L_ChoDlyBuf ← Sect 10: L_ChoDlySect
PING_R_ChoDlyBuf ← Sect 11: R_ChoDlySect
PING_L_DlyWBuf ← Sect 12: L_DlyWSect
PING_R_DlyWBuf ← Sect 13: L_DlySect

Table 5. Optimized FIFO Write Between the Circular Buffer and Processing Buffers

Processing Buffers Data Direction Sections in the Circular
Buffer

PING_L_APF0Buf → Sect 2: L_APF0Sect
PING_L_APF1Buf → Sect 3: L_APF1Sect
PING_L_APF2Buf → Sect 4: L_APF2Sect
PING_L_APF3Buf → Sect 5: L_APF3Sect
PING_R_APF0Buf → Sect 6: R_APF0Sect
PING_R_APF1Buf → Sect 7: R_APF1Sect
PING_R_APF2Buf → Sect 8: R_APF2Sect
PING_R_APF3Buf → Sect 9: R_APF3Sect

PING_L_ChoDlyBuf → Sect 10: L_ChoDlySect
PING_R_ChoDlyBuf → Sect 11: R_ChoDlySect
PING_L_DlyWBuf → Sect 12: L_DlyWSect
PING_R_DlyWBuf → Sect 13: L_DlyWSect
PING_L_DlyOutBuf → Sect 0: L_EchoDlySect
PING_R_DlyOutBuf → Sect 1: R_EchoDlySect

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 21

www.ti.com

Implementation Considerations

McASP_in −−> PING set input buffers

PING set output
bufs −−>

McASP_out
PONG set output bufs −−> McASP_out PING set output bufs −−> McASP_out

event 4/6/8 (McASP0/1/2 TX event)
depending on which McASP being used

trigger
FIFO
write

process PONG
processing

bufs

trigger
FIFO
write

process PING
processing

bufs

trigger
FIFO
read

FIFO read
circular buf. −−> PONG
set processing buffers

McASP_in −−> PONG set input buffers

CPU triggered event (event 0/1/17/18/23/
24/30/31 depending on which one is used)

CPU
task

dMAX
task

trigger
FIFO
read

FIFO read
circular buf. −−> PING set

processing buffers

Also a CPU triggered event which cannot
be the same as the one triggers FIFO read

FIFO write
PING set processing
bufs −−> circular buf.

FIFO write
PONG set processing
bufs −−> circular buf.

event 5/7/9 (McASP0/1/2 RX event)
depending on which McASP being used

3.2 PING-PONG Scheme
Figure 19 illustrates how the PING-PONG buffer scheme works.

interrrupt
dMAX event

Figure 19. PING-PONG Buffer Scheme Flow

1. CPU starts processing the data in the PING (PONG) set processing buffers after the following four
transfers are completed. Transfer a is the last one to finish.
a. A block of input samples are transferred from McASP_in to PING (PONG) input buffers by dMAX.

The input samples will be processed by the CPU.
b. All the PING (PONG) set processing buffers associated with FIFO read have been filled by dMAX.

These buffers will be used with input samples for processing by the CPU.
c. The circular buffer has been updated in the last round. It is updated by a FIFO write which

transfers data from associated PONG (PING) set processing buffers to the circular buffer.
d. The output samples (which are generated during the one before the last round) in the PING

(PONG)` set output buffer have been transferred to McASP_out.
2. When CPU starts processing the data in the PING (PONG) set processing buffer, another FIFO read is

triggered by CPU to prepare for the processing buffers for the next round. dMAX will perform the
transfer to fill the PONG (PING) set processing buffers associated with FIFO read.

3. After CPU finishes processing the PING (PONG) set data, the output data are put in the PING (PONG)
set output buffer which will be transferred to McASP_out by dMAX when the previous transfer is
completed. Meanwhile, another FIFO write is triggered by CPU to update the circular buffer. The new
data in the PING (PONG) set processing buffers associated with FIFO write are transferred to the
circular buffer by dMAX.

The PING-PONG scheme described above assumes that the following conditions are met.

t(get_input_block) > t(FIFO_read)

where t(get_input_block) is the time interval to transfer a block of input samples from McASP_in to the
input processing buffer, and t(FIFO_read) is the time interval for a FIFO Read Transfer.

t(get_input_block) > t(processing) + t(FIFO_write)

http://www.ti.com/

22 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Pseudo Code Example

96KHz

where t(processing) is the time interval DSP takes to process 2 blocks (one for left and one for right
channel) of input samples, and t(FIFO_write) is the time interval for a FIFO Write Transfer.
Given the audio sample rate as 96-KHz, we can show that these two conditions can easily be met on
C672x.
Let us assume that it takes 30* dMAX cycles in average to move a sample between on-chip SRAM and
SDRAM. Given the dMAX frequency is 150-MHz, for a block of size 32, the FIFO Read Transfer takes
26 × 32 × 30

150MHz = 0.1664ms
, where 26 is the number of blocks to be transferred.

Note: An experiment shows that to transfer a block of 32 sequential samples (each of which is
32-bit) between the SDRAM and internal memory, it takes about 273 dMAX cycles if the
QTSL is set to 16 and there is no resource competition. Here, we loosely assume it takes
30 dMAX cycles in average to transfer per sample to take into account the fact that FIFO
read and FIFO write transfer may compete for accessing the SDRAM and internal
memory.

To transfer two input blocks from McASP_in to the input processing buffers, it takes
2 × 32 = 0.6667ms

Thus, the 1st condition can be easily met.

The FIFO Write Transfer will take
14 × 32 × 30

150MHz = 0.0896ms
, where 14 is the number of blocks to

be written to the circular buffer. Thus, the number of DSP cycles left for processing is (0.6667ms -
0.0896ms) x 300 MHz = 0.17313 x 106 cycles. For fully optimized code on C672x, computing the product
of two 32-element floating vectors takes less than 50 cycles. Thus, the cycles left for processing are more
than enough for the example application.

4 Pseudo Code Example

The following pseudo code example shows the overall application behavior.

Example 1. Pseudo Code

Variables:
Int currWkBufs; // the current buffer being processed, PING or PONG
Int currInBuf; // the current input buffer being processed, PING or PONG
Int currOutBuf; // the current output buffer being processed, PING or PONG
Int allBufRdyFlg; // flag indicating buffer transfer status:

// input, output, FIFO write, FIFO read
Function:
// application kernel function
void app() {

app_start:

// wait for the following events:
// a new frame of input samples are received;
// the previous frame of output samples are transmitted
// the circular buffer has been updated (triggered in the previous round)
// the processing buffer has been filled (triggered in the previous round)
while (!allBufRdyFlg);
allBufRdyFlg = 0; // clean the flag
if (parameters_changed())

apply_change(); // if any parameter is changed by user, apply the change.

// decide which set to be processed and updated

SWITCH_PINGPONG(currWkBufs); // the set to be computed
SWITCH_PINGPONG(nextWkBufs); // the set to be filled by FIFO read for the

// next round

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 23

www.ti.com

Pseudo Code Example

Example 1. Pseudo Code (continued)
// trigger FIFO read to prepare processing buffers for next round
trigger_FIFO_read(nextWkBufs);

// call equalizer module for left and right channel

if (parameter_changed(eqParamL))
equalizer_design(eqParamL); // translate the parameters for the algorithm

equalizer(inputBufL[currInBuf], eqOutL[currWkBufs]);
if (parameter_changed(eqParamR))
equalizer_design(eqParamR); // translate the parameters for the algorithm

equalizer(inputBufR[currInBuf], eqOutR[currWkBufs]);

// call chorus for left and right channel
if (parameter_changed(choParamL))
chorus_design(choParamL); // translate the parameters for the algorithm

chorus(eqOutL[currWkBufs], choDlyL[currWkBufs], choOutL[currWkBufs]);
if (parameter_changed(choParamR))
chorus_design(choParamR); // translate the parameters for the algorithm

chorus(eqOutR[currWkBufs], choDlyR[currWkBufs], choOutR[currWkBufs]);

// call delay for left and right channel
if (parameter_changed(dlyParamL))
delay_design(dlyParamL); // translate the parameters for the algorithm

delay(choOutL[currWkBufs], dlyWL[currWkBufs], dlyOutL[currWkBufs]);
if (parameter_changed(dlyParamR))
delay_design(dlyParamR); // translate the parameters for the algorithm

delay(choOutR[currWkBufs], dlyWR[currWkBufs], dlyOutR[currWkBufs]);
// call reverb for left and right channel
if (parameter_changed(revParamL))
reverb_design(revParamL); // translate the parameters for the algorithm

reverb(dlyOutL[currWkBufs], echoDlyL[currWkBufs][6],
apfDlyL[currWkBufs][4], outputBufL[currOutBuf]);

if (parameter_changed(revParamR))
reverb_design(revParamR); // translate the parameters for the algorithm

reverb(dlyOutR[currWkBufs], echoDlyR[currProcSet][6],
apfDlyR[currWkBufs][4], outputBufR[currOutBuf]);

// trigger FIFO write to update the circular buffer
trigger_FIFO_write(currWkBufs);

goto app_start; // go back to start next round
}

interrupt void DMAX_isr () { // dMAX ISR

if (input_received ()) { // a new frame of samples received
allBufRdyFlag |= INPUT_RCV_BIT;
SWITCH_PINGPONG (currInBuf);
}
if (output_transmitted()) { // A frame of output samples have been transmitted
allBufRdyFlag |= OUTPUT_XMT_BIT;
SWITCH_PINGPONG (currOutBuf);
}
if (FIFOwrite_finished()) { // FIFO Write Transfer is finished
allBufRdyFlag |= UPDATED_CIR_BUF_BIT;
}
if (FIFOread_finished()) { // FIFO Read Transfer is finished
allBufRdyFlag |= UPDATED_WK_BUF_BIT;
}

}

http://www.ti.com/

24 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Pseudo Code Example

Example 2. Equalizer Implementation

Example 3. Chorus Implementation

Variables:
float a1, a2, b0, b1, b2; // filter coefficients
float w[2]; // "w" variables

Function:
void equalizer(Int *in, Int *out) {

float w, w1, w2; // temporary variables

w1 = w[0]; w2 = w[1]; // get previously saved "w"

for(i = 0; i < Ns; i++) {
w = in[i] - a1*w1 - a2*w2;
out[i] = b0*w + b1*w1 + b2*w2;
w2 = w1;
w1=w;

}

w[0] = w1; w[1] = w2; // save updated "w"
}

Variables:
float fb, gd, gw; // coefficients for chorus (feedback, dry gain and wet gain)
float frac; // variable for sample interpolation; updated in cho_mod_delay()

Function:
void chorus(Int *in, Int *buffer, Int *out) {

// "buffer" contains the delay samples obtained by FIFO read
// the delay for FIFO read is modulated in cho_mod_delay() function.
// After computation, the updated "buffer" will be transferred to circular buffer
// by FIFO write.

float delSample; // temporary variables

// compute for sample 0

buffer[0] = in[0]) + fb * buffer[0];
out[0] = gd*in[0] + gw*buffer[0];

// compute for sample 1 ... Ns-1

for (i = Ns-1; i >= 0; i--) {
// sample interpolation
delSample = buffer[i] + frac*(buffer[i-1]-buffer[i]);

buffer[i] = in[i] + fb * delSample;
out[i] = gd* in[i] + gw*delSample;

}

// modulate the FIFO read delay value for the next round
cho_mod_delay(handle);
}

Variables:

float pd; // periodic delay for chorus
Int *FIFOR_DelayTableEntry; // entry for chorus in the FIFO read delay table
Int32 FIFOR_ChorusDelayStartOffset; // offset which points to the beginning of

// the circular buffer section used by this
// chorus module

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 25

www.ti.com

Pseudo Code Example

Example 3. Chorus Implementation (continued)

Example 4. Delay Implementation

Example 5. Reverb Implementation

Function:
void cho_mod_delay() {

float mod; // temporary variable
Int32 d1;

mod = lfo_get_Sample(); // get the delay value from the LFO
d1 = (int)floorf(mod); // get the integer part of mod
frac = mod - d1; // get the fraction part of mod which will

// be used for sample interpolation in chorus()
d1 = pd - d1; // d1 is the new delay value

// write the new delay value to the delay table entry
*FIFOR_DlyTabEntry = d1 + FIFOR_DelayStartOffset;

}

Variables:
float g, fb; // coefficients for gain and feedback

Function:
void delay (Int *in, Int *w, Int *out){

// "w" contains the delay samples obtained by FIFO read

// After computation, the updated "w" will be transferred to circular buffer
// by FIFO write.
for(i = 0; i < Ns; i++) {;

out[i] = in[i] + g * w[i];
w[i] = in[i] + fb * w[i] ;

}
}

Variables:
float gainE[6]; // ge[0..5] in figure xxx
float lp[4]; //
float fbA[4]; // feedback coefficients for APF
float acoef; // for APF
float gain; // APF
Function:

void reverb(Int *in, Int *echoBuf[6], Int *apfBuf[4], Int *out) {
float tempin, tempout; // temporary variable
float b = 1-a;

// for echo effects: echoBuf[] are filled by dMAX using FIFO read
// for all-pass filters: apfBuf[] are filled by dMAX using FIFO read
// After computation, apfBuf[] are transferred to circular buffer using FIFO write
for(i=0; i<Ns; i++) {

tempin = in[i];

// echoe filter (6 taps)
for(k=0; k<6; k++) {

in[i] = in[i] + gainE[k] * echoBufE[k][i];
}
// All-pass filters

http://www.ti.com/

26 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Performance Analysis

Example 5. Reverb Implementation (continued)

5 Performance Analysis

In this section, the performance of block processing vs. single-sample processing will be compared and
analyzed where the benefits of block processing come.

5.1 Utilizing DSP Pipeline & Reduced Function Call Overhead
Generally speaking, the DSP instructions can be more efficiently pipelined by performing the block
processing. The main benefit comes from the possibility to unroll the loop so that computation instructions
can be inserted in the slots while DSP is loading/storing data.
Another benefit comes from reduced function call overhead. Many audio effect algorithms look similar to a
filter and are implemented as a compact function. For block-processing, the function is called once every
N samples; while for single-sample processing it is called once per sample.

5.2 Interrupt and Program Cache
For single-sample processing, one interrupt is generated for each input sample received and the sample
needs to be processed before the next sample comes in. Suppose the audio sample rate is 192-KHz and
DSP runs at 300-MHz, this period is about 1563 DSP cycles.
When an interrupt occurs, a few operations need to be performed, like register saving, stack saving etc.
before the DSP jumps into the interrupt service routine (ISR). To make it worse, the processing task which
was processing the input sample is swapped out of the program cache and will be swapped back in later
after ISR completes. These operations can waste hundreds of DSP cycles. Thus, there is not much room
left to implement any complicated processing algorithm for single-sample processing. For block
processing, one interrupt is generated after a block of samples are received.
For a block of size N, say N=32, the interrupt handling overhead is distributed to the 32 samples which
significantly increases the room for sample processing.

5.3 dMAX and SDRAM Performance
Some delay based audio algorithms such as chorus need to randomly access the delay line on SDRAM to
fetching delay samples. For single-sample processing, since these accesses cannot be bursted, each
single access can take almost about 100 dMAX cycles. For block processing, since a block of consecutive
samples are accessed for each delay tap, the average time it takes to access each sample can be
significantly reduced by such burst accesses.
dMAX also makes the performance different between single-sample processing and block processing due
to its event processing overhead which mainly comes from parsing the parameters in the event entry. For
single-sample processing, one parsing is needed for each sample while for block processing, one parsing
is needed for the whole block.
A simple experiment on C6727 has shown that the dMAX takes about 95 dMAX cycles to move a single
32-bit sample from SDRAM to on-chip SRAM, while it only takes about 156 dMAX cycles to move a block
of 16 sequential samples each of which is 32-bit. For details of dMAX performance, please refer to [2].

tempout = tempin;

for(k=0; k<4; k++) {
lp[k] = b * apfBuf[k][i] + a * lp[k];
apfBufA[k][i] = (1-fbA[k])*tempin + fbA[k] * lp[k];
tempin = gain * lp[k] - fbA[k] * tempin;
tempout = tempout + tempin;

}
out[i] = tempout; // output

}
}

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 27

www.ti.com

Code User's Guide

6 Code User's Guide
The provided software consists 2 parts: 1) A TI Code Composer Studio™ (CCS) project which implements
all the effect modules on PADK; 2) a PC side graphic user interface (GUI) which communicates to the
PADK board via USB interface and is used to dynamically control each effect module.

6.1 Hardware Requirement
The following hardware is necessary to execute the provided software project:
• A PC with Windows 2000 or XP installed
• Professional Audio Development Kit (PADK) board and power supply from LYRTECH
• XDS510USB JTAG USB emulator or XDS378 JTAG parallel port emulator
• Analog input audio source generator
• Speaker with amplifier
• An audio cable connecting the source generator with the "analog in" ports 1 and 2 on the PADK
• An audio cable connecting the speaker with the "analog out" ports 1 and 2
• A USB cable connecting between the PC USB port and the PADK USB port.

Figure 20. Hardware Connection Example

Figure 20 shows a hardware connection example. The laptop plays music and transmits the audio input
signal to the PADK board via the audio input ports (analog in 1 and 2). The laptop is also connected with
the PADK board via the USB port through which parameters can be sent to the board to dynamically
control each effect module. The audio output ports (analog out 1 and 2) are connected with the speakers.

6.2 Software Requirement
• TI CCS 3.1 installed on PC
• TI chip support library (CSL) 3.0 for C672x (provided with the project)
• PADK.lib from PADK (provided with the project)
• C672xROMPatchV1_00_00.lib and applyPatch.obj (provided with the project)

6.3 Step to Run
The following steps show how to run the project with the hardware:
1. Hardware setup

a. Connect the JTAG emulator with the PADK board from PC
b. Connect the audio source generator with the PADK board ("analog in" port 1 and 2)

USB port

Audio Input Audio output

http://www.ti.com/

28 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Code User's Guide

c. Connect the speaker with the PADK board ("analog out" port 1 and 2).
d. Power on the PADK board.

2. Turn on the audio source generator.
3. Launch CCS 3.1 on PC and open the provided CCS project.
4. Build the project and load the .out file to the board through JTAG emulator. Run the code.
5. Run the GUI program.
6. Turn on the speaker. Now you can listen to the music with the implemented effects. Each effect for

each channel can be dynamically controlled through the GUI.

6.4 Description of the DSP Side Software
The provided DSP project shows how to efficiently perform delay-based audio effects on the PADK
hardware.
There are two independent channels in the system each of which passes through the following 4 effect
module.

Equalizer→chorus→delay→reverb

Any effect module on any channel can be individually disabled or reconfigured by modifying its
parameters.
The sampling rate is set to 96 kHz and will be generated by one of the onboard oscillators. The sampling
frequency source will be configured using the module CLKGEN of the PADK library.
The data are received on the ADC1 input. They are demuxed by dMAX and placed to different input
buffers for further processing. The output for each channel will be muxed by dMAX and sent to DAC1.
The ADC and the DAC devices will be initialized using the functions of the PADK library. These devices
are connected to the DSP through the serializers of the McASP #0 as following.
ADC #1 -> McASP0 Serializer 0 (AXR0_0)
DAC #1 -> McASP0 Serializer 4 (AXR0_4)
The samples received are 32 bits each with 24 effective bits. They are truncated and processed as 16 bits
samples. The data stored in the circular buffer are 16 bits too. Each output sample is shifted 16 bits left
before being transmitted out.

6.4.1 "app.h"

This file mainly defines macros related to buffer organization and dMAX transfer. All the macros are
explained inside the file. The following is a brief description to some key macro definitions.

6.4.1.1 Frame and Sample Size

#define BYTES_PER_SAMPLE 4
// Each sample received from and transmitted to McASP is 4 bytes.
#define BYTES_PER_SAMPLE_STORED 2
// The size of each sample stored in the processing buffers are circular buffer is
// 2 bytes.

#define SAMPLES_PER_FRAME 32
// This macro defines the number of samples per frame each of which contains samples
// for both the left and right channel. It can be modified by user to tradeoff between
// performance and latency.
// The frame size for each channel is half, i.e.
// SAMPLES_PER_CHANFRM = (SAMPLES_PER_FRAME/2)

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 29

www.ti.com

Code User's Guide

6.4.1.2 dMAX Events
#define INPUT_RCV_BIT 0
#define OUTPUT_XMT_BIT 1
#define UPDATE_CIR_BUF_BIT 2
#define UPDATE_WK_BUF_BIT 3
// These 4 macros define the TCC bit to be set when a dMAX transfer is finished.
// They are also used to indicating the various buffer status by setting the variable
// "bufRdyFlag".
// When a frame of input samples are received from McASP, bit INPUT_RCV_BIT is set.
// When a frame of output samples are transmitted to McASP, bit OUTPUT_XMT_BIT is set.
// When a FIFO Write Transfer is completed, bit UPDATE_CIR_BUF_BIT is set.
// When a FIFO Read Transfer is completed, bit UPDATE_WK_BUF_BIT is set.

6.4.1.3 appBuf Organization
The appBuf contains data which are accessed frequently and resides in the DSP internal memory. It is
organized as shown below.

appBuf base

appBuf end

32 bytes

14 entries
14x4=56 bytes

26 entries
26x4=104 bytes

8 buffers, each is
SAMPLES_PER_CHANFRM x 4 bytes

8 buffers, each is
SAMPLES_PER_CHANFRM x 4 bytes

26 for PING and 26 for PONG,
52 buffers in total, each is
SAMPLES_PER_CHANFRM x 4 bytes

Figure 21. appBuf Organization

Refer to Figure 14 to see how the input/output buffers and processing buffers are organized.

FIFO descriptor

FIFO write
delay table

FIFO read
delay table

Input & output
PING/PONG

buffers

Processing buffers
not related to FIFO

transfer

Processing buffers
related to FIFO

transfer

http://www.ti.com/

30 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Code User's Guide

6.4.1.4 cirBuf Organization
cirBuf contains the stored delay samples which consumes a fair mount of memory. It resides in the
external memory and organized as shown below.

cirBuf base

Sections for
left channel

Sections for
right channel

cirBuf end=
cirBuf base
+ 32000x14

Figure 22. cirBuf Organization

There are 14 sections in total and each section size is defined as 48000 elements. User is allowed to
modify the sizes appropriately based on the delay line length required.

6.4.2 "AEL.h"

This file defines various structs for the effect algorithms. For each effect module, there are a parameter
struct which is configured by the user and a handle struct which contains all the information needed by the
algorithm for processing. The following is the example of the delay module.

#define FIFO_SECT_NUM 14
#define FIFO_SIZE_SECT0 48000
...
#define FIFO_SIZE_SECT13 48000

// parameter for the delay module; configured by the user
typedef struct AEL_TIF_DelParams {
Int16 enable; // is the module enable? If not, the module simply does loopback.
Int16 changed; // Has any parameter been changed?
float gain, feedback, delay; // actual parameters for the delay module.
} AEL_TIF_DelParams;
// handle for the delay module algorithm
typedef struct AEL_TIF_DelHandle {
Int16 chan; // is this handle for the left or right channel?
Int16 enable; // is the module enabled?
float gain, feedback; // algorithm parameters?
Int16 *delBuf; // buffer pointers to the delay samples
Int32 sampDelay; // delay length
AEL_TIF_DelDlyTbAcc dlyTblAcc; // struct for accessing the FIFO delay tables
} AEL_TIF_DelHandle;

L_EchoDlySect

L_APF0Sect

L_APF1Sect

L_APF2Sect

L_APF3Sect

L_ChoDlySect

L_DlyWSect

R_ChoDlySect

R_DlyWSect

R_APF0Sect

R_APF1Sect

R_APF2Sect

R_APF3Sect

R_EchoDlySect

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 31

www.ti.com

Code User's Guide

6.4.3 "presets.h"
This file defines all the parameter macros to configure each effect module. User is allowed to modify those
parameters following the corresponding struct format defined in the “AEL.h”.

6.4.4 "main.c"

This file contains three functions: main(), nmi_isr() and setup_interrupts().

6.4.4.1 main()

This is the entry function of the whole application. It does the following:
• Initialize and configure the McASP device using CSL.
• Initialize the USB module on PADK.
• Initialize and configure the dMAX using CSL.

– The two general transfers are configured to use HiMAX (high priority) to receive transmit
input/output samples from/to McASP. dMAX synchronizes with McASP for every sample transfer.
After one frame of samples are transferred, an interrupt is generated to notify the DSP.

– The FIFO read and write transfers are configured to use LoMAX (low priority). After the whole
transferred is finished, dMAX synchronizes with McASP and an interrupt is generated to notify the
DSP.

– At the beginning, PING input buffers are used for receiving samples; PING output buffers are used
to transmit samples; PING processing buffers are used by DSP for computation and PONG
processing buffers are filled by samples in the circular buffer using FIFO read for the next round.

• Initialize the A/D and D/A device on PADK using PADK.lib.
• Hook the ISR routines to NMI and dMAX interrupt by calling setup_interrupts().
• Initialize the application by calling app_init(). This function mainly does the following.

– Configure each effect module. All the parameters configurable by user are translated to the handle
structs by the effect algorithms.

– Clear the circular buffer and processing buffers.
• Start the application by calling app().

6.4.5 “app.c”

There are two key functions in this file: app() and DMAX_isr(). Their behaviors are described in section 4.

6.4.6 Miscellaneous

• “eq.c”: this file implements the equalizer effect algorithm.
• “chorus.c”: this file implements the chorus effect algorithm.
• “LFO.c”: this file implements the LFO module for the chorus effect. The LFO can be realized by one of

the following four waveforms: sine, triangle, square or sawtooth. User can select any of them by
configuring the chorus parameter.

• “delay.c”: this file implements the delay effect module.
• “rev.c”: this file implements the reverb effect module.

http://www.ti.com/

32 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Code User's Guide

6.5 Description of GUI

6.5.1 Main Window

Figure 23 shows the main control interface. The functionality of each button is explained as following.
• “EQUALIZER config”: clicking it will pop out a dialog to control the equalizer module for the left or right

channel.
• “ CHORUS config”: clicking it will pop out a dialog to control the chorus module for the left or right

channel.
• “DELAY config”: clicking it will pop out a dialog to control the chorus module for the left or right

channel.
• “ REVERB config: clicking it will pop out a dialog to control the reverb module for the left or right

channel.
• “Bypass Left” / “Bypass Right”: clicking it will disable all the effect modules for the left / right channel so

that the audio signal simply loops back on the channel.
• “Unbypass Left” / “Unbypass Right”: clicking it will enable all the effect modules for the left / right

channel.
• “Reset Left” / “Reset Right”: clicking it will reset all the modules to the start state for the left / right

channel. In the start state, each module is enabled and all the parameters are set to the pre-configured
values.

• “Quit”: clicking it will quit the GUI.

Figure 23. Main GUI

6.5.2 Equalizer Window

Figure 24 shows the configuration window for the equalizer module. The “LEFT” and “RIGHT” radio button
on the top allows select the channel to be configured. Selecting / Deselecting the “enable” button will
enable / disable the module for the channel.
The configurable parameters are: dBGain, Q, frequency and EQ type as displayed. The EQ type can be
“LO_SH”, “HI_SH” or “PEAK”. By changing any of these parameters, the bi-quard filter coefficients (b1, b2,
a0, a1, a2) will change appropriately.
By clicking the “Submit” button, all the parameters for the selected channel will be transmitted to the board
and the effect will take place.
By clicking the “Reset” button, all the parameters for the selected channel will be set to pre-configured
values and transmitted to the board.
Clicking the “Quit” button will kill the equalizer window.

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 33

www.ti.com

Code User's Guide

Figure 24. Equalizer Window

6.5.3 Chorus Window

Figure 25. Chorus Window

Figure 25 shows the configuration window for the chorus module. The functionalities of “LEFT”, “RIGHT”
and “enable” buttons are the similar as the ones in the equalizer window.

http://www.ti.com/

34 How to Create Delay-based Audio Effects on the TMS320C672x DSP SPRAAA5 – November 2005

www.ti.com

Code User's Guide

The configurable parameters are: gd, gw, fb, predelay, depth, rate, and wave as displayed. The wave
parameter allows select the wave table for LFO modulation and can be “SINE”, “SQUARE” , “TRIANGLE”
or “SAWTOOTH”.
The functionalities of “Submit”, “Reset” and “Quit” buttons are similar as the ones in the equalizer window.

6.5.4 Delay Window

Figure 26. Delay Window

Figure 26 shows the configuration window for the delay module. The functionalities of “LEFT”, “RIGHT”
and “enable” buttons are the similar as the ones in the equalizer window.
The configurable parameters are: fb, g, and D as displayed.
The functionalities of “Submit”, “Reset” and “Quit” buttons are similar as the ones in the equalizer window.

6.5.5 Reverb Window

Figure 27 shows the configuration window for the reverb module. The functionalities of “LEFT”, “RIGHT”
and “enable” buttons are the similar as the ones in the equalizer window.
The configurable parameters are: g, ge[0] … ge[5], D0 … D5, DA[0] … DA[3], delay and cut freq as
displayed. By changing g, delay or cut freq, the coefficients a, b and lp[k] (k=0…3) for the all pass filter
(APF) k will change appropriately.
The functionalities of “Submit”, “Reset”, and “Quit” buttons are similar as the ones in the equalizer window.

http://www.ti.com/

SPRAAA5 – November 2005 How to Create Delay-based Audio Effects on the TMS320C672x DSP 35

www.ti.com

Figure 27. Reverb Window

Reference

7 Reference

1. TMS320C6727, TMS320C6726, TMS320C6722 Floating-Point Digital Signal Processors, (SPRS268).
2. TMS320C672x DSP Dual Data Movement Accelerator (dMAX) Reference Guide (SPRU795).
3. Remi Payan, “DSP software and hardware trade-offs in Professional Audio Applications”, 112th audio

engineering society convention.

http://www.ti.com/

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	Trademarks
	1 Introduction to C672x
	1.1 C672x Overview
	Figure 1. C672x Block Diagram

	1.2 Introduction to dMAX
	Figure 2. dMAX Block Diagram
	Figure 3. General Purpose (3-dimensional) Transfer from McASP to Memory
	Figure 4. FIFO Read Example

	2 Application Algorithm Description
	Figure 5. Application Block Diagram

	in[n] +
	out[n]
	Figure 7. Block-Processing Diagram for Equalizer Module

	+
	+ out[n]
	Figure 8. Chorus Effect Algorithm Block Diagram
	Figure 9. Block-Processing Diagram for Chorus Module
	Figure 10. Delay Effect Algorithm Block Diagram
	Figure 11. Block-Processing Diagram for Delay Module
	Figure 12. Reverb Effect Block Diagram
	Figure 13. Block-Processing Diagram for Reverb Module
	3 Implementation Considerations
	Table 1. Processing Buffer Summary
	Figure 14. Processing Buffer Organization
	Figure 15. Circular Buffer Organization
	Table 2. FIFO Write Delay Table Values
	Figure 16. FIFO Write
	Table 3. FIFO Read Delay Table Values
	Figure 17. FIFO Read
	Figure 18. Optimized Processing Buffer Organization
	Table 4. Optimized FIFO Read Between the Circular Buffer and Processing Buffers
	Figure 19. PING-PONG Buffer Scheme Flow

	2  32  0.6667ms
	4 Pseudo Code Example
	Example 1. Pseudo Code
	Example 2. Equalizer Implementation
	Example 5. Reverb Implementation (continued)

	5 Performance Analysis
	5.2 Interrupt and Program Cache
	5.3 dMAX and SDRAM Performance

	6 Code User's Guide
	6.1 Hardware Requirement
	Figure 20. Hardware Connection Example

	6.2 Software Requirement
	6.3 Step to Run
	6.4 Description of the DSP Side Software
	6.4.1 "app.h"
	6.4.1.1 Frame and Sample Size
	6.4.1.3 appBuf Organization

	Figure 21. appBuf Organization
	6.4.1.4 cirBuf Organization

	Figure 22. cirBuf Organization
	6.4.2 "AEL.h"
	6.4.3 "presets.h"
	6.4.4 "main.c"
	6.4.4.1 main()

	6.4.5 “app.c”
	6.4.6 Miscellaneous

	6.5 Description of GUI
	6.5.1 Main Window
	Figure 23. Main GUI
	Figure 24. Equalizer Window
	6.5.4 Delay Window
	6.5.5 Reverb Window
	Figure 27. Reverb Window

	7 Reference

