
Application Report
SPRA512

Digital Signal Processing Solutions January 1999

Implementing the
TMS320C6201/C6701/C6211 HPI Boot

Process
Eric Biscondi Digital Signal Processing Solutions

Abstract

The Texas Instruments (TI) TMS320C62x and TMS320C67x digital signal processors (DSPs)
provide a variety of boot configurations that determine which actions the DSP should perform to
prepare for initialization after device reset. The boot process is determined by latching the boot
configuration settings at reset.

The various boot processes load code from an external ROM memory space and from an
external host processor through the host port interface (HPI).

This document describes the following:

� How to connect a host with the C6x HPI

� The host port interface boot process

� An example of C source code for the host processor

� How to create a boot code to be downloaded though the HPI

Contents

Overview 3

Connecting the C6201/C6701/C6211 to a Host Processor.. 3

Using a Host to Boot the TMS320C6201/C6701/C6211.. 4
HPI Boot Process... 4
Host Program to Boot Through the HPI ... 6

Creating a C6x Boot Code to be Downloaded by the Host .. 9

Appendix A. Host Source Code to Boot the C6x Through the HPI .. 12

Appendix B. Building a C Array of Values From a COFF File ... 15

Figures
Figure 1. Connecting Two TMS320C6201 DSPs Through the HPI ... 3
Figure 2. HPI Boot Process Description .. 5
Figure 3. Function Used to Store a Word in C6x Memory Space Through the HPI 7
Figure 4. Function Used to Store a Buffer in C6x Memory Space Through the HPI 8
Figure 5. Command File for Hex Converter Utility (Four 8-Bit EEPROMs) .. 9
Figure 6. Command File for the Linker .. 10
Figure 7. Example Interrupt Vector Table (vector.asm) .. 11
Figure 8. Command File for the Hex Converter Utility .. 15
Figure 9. Example Header File code.h Created by hex2aray.exe ... 16
Figure 10. Source Code for hex2aray.c... 17

Tables
Table 1. HPI Boot Configuration for the TMS320C6201/C6701.. 4
Table 2. HPI Control Signals Function Selection Description.. 5
Table 3. HPI Control Signals Function Selection Description With Host C6x... 6

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 3

Overview
The TMS320C6000 uses various types of boot configurations, including the following:

� The CPU starts direct execution at address 0.

� A 16K x 32-bit word memory block is automatically copied from a ROM memory
space to memory located at address 0.

� A host processor (connected to the DSP through the host port interface) maintains
the DSP core in reset while initializing the DSP memory spaces, including external
memory spaces.

When the HPI boot process is selected, the DSP is held in reset while the remainder of
the device is awakened from reset. This means that a host processor connected to the
TMS320C6201/C6701/C6211 through the HPI may access and initialize the entire DSP
memory space as well as all on-chip peripheral control registers. Once the host has
initialized the entire DSP environment, it writes a 1 to the DSPHINT bit in the HPI control
register.

This document describes the HPI boot process using an example in which one C6201
(host) talks to another C6201 (slave).

Connecting the C6201/C6701/C6211 to a Host Processor
Some systems require the use of a host processor that communicates with the DSP. The
HPI is a dedicated port available on the TMS320C6201/C6701/C6211. The HPI is a 16-
bit-wide parallel port through which a host processor can access all of the DSP memory
space.

Figure 1. Connecting Two TMS320C6201 DSPs Through the HPI

HOST C6201
EA[2]

EA[4:3]
/BE[1:0]

ED[15:0]
ARDY
/CEn

/AWE
/ARE

/EXT_INTm
/EA[5]

C6201
HHWIL
HCNTL[1:0]
/HBE[1:0]
HD[15:0]
/HRDY
/HCS
/HDS1
/HDS2
/HINT
HR/W

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 4

Using a Host to Boot the TMS320C6201/C6701/C6211

HPI Boot Process

A host processor can directly access the C6201/C6701/C6211 address space through
the HPI. This peripheral allows a host processor to exchange information with the DSP.

The HPI can also by used by the host to initialize and load a boot code in the DSP. The
HPI boot configuration is selected by the external pins BOOTMODE[4:0] on the
C6201/C67001 and HD[4:0] on the C6211.

Table 1. HPI Boot Configuration for the TMS320C6201/C6701

BOOTMODE[4:0] Memory Map Memory at Address 0 Boot

00110 MAP 0 External; default values HPI

00111 MAP 1 Internal HPI

Driving the RESET pin on the processor low and then high resets the device. When the
HPI boot process is selected, the DSP core is held in reset while the remainder of the
device awakens from reset. At that time, a host processor (connected to the C6x through
the HPI) can access all of the C6x memory space, including internal, external, and on-
chip peripheral registers.

To release the DSP from its reset state, the host writes a 1 to the DSPINT bit in the HPI
control register (HPIC). The CPU then starts the program execution from address 0.

On the C6201/C6701, the HPI boot process can operate in memory MAP1 (the CPU
starts from internal program memory) or memory MAP0. In this case, the CPU starts from
CE0 with the default values, i.e., 32-bit asynchronous memory with the maximum
read/write setup, strobe, and hold time. Therefore, the host can write to memory mapped
at 0 without initializing the EMIF.

On the C6211, external pull-up and pull-down resistors connected to the HD[4:0] during
reset configure the device. The C6211 operates in one memory MAP only, with internal
memory mapped at address 0.

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 5

Figure 2. HPI Boot Process Description

/RESET

Latches BOOTMODE[4:0] for the ‘C6201/’C6701
Latches HD[4:0] for the ‘C62111

C6000 device is held in reset.
The Host initializes all DSP
memory spaces.

Host writes a 1 to the DSPINT
bit in the HPI control register.

10 CPU cycles min.

DSP begins executing code
from address 0.

Accessing HPI Registers From a Host

Depending on the connection used between the host and the C6000 DSP, the method
used to access HPI registers from the host may differ.

Typically, HPI registers are mapped in the host memory map. HCNTRL[1:0] and HHWIL
are connected to address lines of the host processors as shown in Table 2 to select
which register is accessed.

Table 2. HPI Control Signals Function Selection Description

HCNTL1 HCNTL0 HHWIL HPI Register Accessed

0 0 0 HPIC 1st half-word

0 0 1 HPIC 2nd half-word

0 1 0 HPIA 1st half-word

0 1 1 HPIA 2nd half-word

1 0 0 HPID 1st half-word, HPIA is post-incremented.

1 0 1 HPID 2nd half-word, HPIA is post-incremented.

1 1 0 HPID 1st half-word, HPIA not affected.

1 1 1 HPID 2nd half-word, HPIA not affected.

Even if the HPI is a 16-bit external interface, it provides 32 bits to the CPU by combining
successive 16-bit transfers. HHWIL identifies the first or second halfword of transfer and
the bit HWOB determines the halfword ordering.

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 6

Example

Consider the example in Figure 1, in which one C6201 (host) is connected to the HPI of
an another C6201 (slave). The HPI is mapped into the asynchronous memory space
CE1. The address lines EA[4:2] are used to control the HPI control lines HCNTL[1:0] and
HHWIL.

To access the HPI registers, the host performs a memory access to CE1 space as shown
in Table 3.

Using C language, a pointer can be used as shown below:

#define C6201_HPI 0x01400000 /* Host address on which C6x
HPI is mapped */

int *hpi_ptr; /* define and initialize pointer*/
hpi_ptr = (int *)C6201_HPI;

Then, following Table 3, the following piece of code can be used to access the HPIA
register:

/* Write dest_address to HPIA, with HOB=1 */

ptr_hpi[2] = (int)(dest_address & 0x0ffff);
ptr_hpi[3] = (int)((dest_address>>16)&0x0ffff);

Table 3. HPI Control Signals Function Selection Description With Host C6x

Address Generated by HPI Control Lines HPI Register Accessed

Host HCNTL[1:0] HHWIL

HPI Base address + 0x00 00 0 HPIC 1st halfword

HPI Base address + 0x04 00 1 HPIC 2nd halfword

HPI Base address + 0x08 01 0 HPIA 1st halfword

HPI Base address + 0x0C 01 1 HPIA 2nd halfword

HPI Base address + 0x10 10 0 HPID 1st halfword, HPIA is
post-incremented.

HPI Base address + 0x14 10 1 HPID 2nd halfword, HPIA is
post-incremented.

HPI Base address + 0x18 11 0 HPID 1st halfword, HPIA not
affected.

HPI Base address + 0x1C 11 1 HPID 2nd halfword, HPIA not
affected.

Host Program to Boot Through the HPI

This section considers the example shown in Figure 1 to describe a host program used
to boot the C6201. This particular example considers the EMIF of a host DSP C6000
communicating with the HPI of a slave C6000 DSP. The C code presented in Figure 3
can be run without any modifications on the C6000.

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 7

You can control the HPI through minor modifications to the C code presented in the
example. The main modification required to port this code on another host is to change
the way the HPI registers are accessed in accordance with the host memory map, the
host-specific data types.

Initializing the TMS320C6000 Through the HPI

In addition to writing code into internal memory, the host may have to download code or
data sections into one of the external memory spaces. The host must initialize EMIF
registers prior to accessing any external memory spaces.

Figure 3 shows an example of C code that may be run on the host to write a single 32-bit
value to the HPI. The host first writes the HPIC setting the HWOB bit, then writes the
HPIA and then the HPID.

Figure 3. Function Used to Store a Word in C6x Memory Space Through the HPI

void C6x_write_word(int *ptr_hpi, int source_word, int dest_address)
{

/* Write HPIC with HWOB=1,1st halfword transferred is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[0] = 0x0001; /* 1st halfword 0 0 0 */
ptr_hpi[1] = 0x0001; /* 2nd halfword 0 0 1 */

/* Write destination address to HPIA, 1st halfword is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[2] = (int)(dest_address & 0x0ffff);/* 0 1 0 */
ptr_hpi[3] = (int)((dest_address>>16)&0x0ffff);/* 0 1 1 */

/* Write source_word to HPID without address post-increment */
/* 1st half-word transferred is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[6] = (int)(source_word&0x0ffff); /* 1 1 0 */
ptr_hpi[7] = (int)((source_word>>16)&0x0ffff);/*1 1 1 */

}

Appendix A provides a complete example. Lines 46 to 52 correspond to the EMIF
initialization performed by the host processor through the HPI.

During the HPI boot process, only the CPU is maintained in reset. All the peripherals may
be active. By accessing the on-chip peripheral registers, the host can initialize and start
any C6201 peripheral. For example, depending on the system requirements, the host
may have to initialize and start one serial port or DMA transfer.

Transferring Code and Data Sections

A program is composed of initialized sections and non-initialized sections. The host
processor must load sections in the C6000 DSP to the correct address in accordance
with the link command file.

The host must write a complete section at a given address. Figure 4 shows an example
of C function that reads length 32-bit words of data from *source and then writes through
the HPI to the C6000 DSP address, dest_addr.

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 8

Figure 4. Function Used to Store a Buffer in C6x Memory Space Through the HPI

void C6x_write_section(int *ptr_hpi, short *source, int dest_add, int length)
{
int i;

/* Write HPIC with HWOB=1,1st halfword transferred is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[0] = 0x0001; /* 1st halfword 0 0 0 */
ptr_hpi[1] = 0x0001; /* 2nd halfword 0 0 1 */

/* Write destination address to HPIA, 1st halfword is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[2] = (int)(dest_add & 0x0ffff); /* 0 1 0 */
ptr_hpi[3] = (int)((dest_add>>16)&0x0ffff);/* 0 1 1 */

 for(i=0 ; i < length ; i++)
 {

/* Write source_word to HPID with address post-increment */
/* 1st half-word transferred is least significant */
/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[4] = (int) *source++; /* 1 0 0 */
ptr_hpi[5] = (int) *source++; /* 1 0 1 */

 }
}

The pointer *source points to the location where the boot code for the slave C6000 DSP
is stored. For example, the pointer might point to:

� External ROM mapped in the host memory map and containing the C6x boot code

� Data array (linked with host code) containing the boot code of the slave C6000 DSP

� Host peripheral that can receive the boot code of the slave C6000 DSP (for example,
a serial port)

The second option is used in the complete example shown in Appendix A. Lines 21 and
22 give the inclusion of the header files containing the code (code.h) and the initialized
data (initia.h).

Notice that this solution requires a recompilation of the host code each time the DSP
code is modified. It also requires an automatic way to create a C array (containing the
C6x program and initialized data) from a COFF file. Please refer to Appendix B for a
complete description of this process.

Remove the Slave TMS320C6000 From Its Reset State

Once the host processor has performed all initialization and loaded all of the code and
data sections into the C6201 memory spaces, it must release the C6201 from its reset
state by writing a 1 in the DSPINT bit.

In the example we are considering:

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 9

/* Write HPIC with DSPINT=1 */

/* HCNTRL1 HCNTRL0 HHWIL */
/* 1st halfword 0 0 0 */
/* 2nd halfword 0 0 1 */

ptr_hpi[0] = 0x0002; /* 1 st halfword */
ptr_hpi[1] = 0x0002; /* 2 nd halfword */

Once DSPINT is written to 1, the CPU starts at address 0.

Creating a C6x Boot Code to be Downloaded by the Host
This section discusses how to built DSP code to be downloaded from the host through
the host port interface.

As shown in the previous sections, the host processor has to write all code sections and
all initialized data sections through the HPI to the C6000 memory space. The C6000
code has to be linked with the initialization of variables at load time (by invoking the linker
with the option –cr), which enhances performance by reducing boot time and saving the
memory used by the initialized data sections.

Figure 6 shows an example of a linker command file. (Figure 7 shows the beginning of a
vector table example.) After linking C6x code, it has to be stored in a memory accessible
by the host processor.

Basically, there are two main cases:

� If the host reads C6x code from an external memory containing only the DSP code,
the user first has to program ROM with the C6x code.

Texas Instruments provides a hex conversion utility that converts the output of the
linker (a COFF object file) into one of the several standards suitable for loading into
an EEPROM programmer. Figure 5 shows an example of a command file for the hex
conversion utility that builds four files to program four 8-bit EEPROMs (assuming the
host is connected to four 8-bit EEPROMs).

Figure 5. Command File for Hex Converter Utility (Four 8-Bit EEPROMs)

main.out
-i
-byte
-image
-memwidth 32
-romwidth 8
-order L

ROMS
{
 EPROM: org = 0x0, length = 0x20000
 files = {u22.int, u24.int, u23.int, u25.int}
}

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 10

� If the host reads C6000 code from an external memory that does not contain only the
DSP code, the user has to include both the host code and the DSP code into the
same memory. In this case, the user has to link the C6000 code and the host code
together.

We have to convert the C6000 COFF file into a suite of data that can be linked with
the host program. As most of the host applications are written in C language, we
decided to develop a tool to convert a COFF file into a C array of bytes.

This is typically the option used in the example described in Appendix A, in which the
C6000 code sections are included in the header file code.h and C6000 initialized
data sections are included in the file initia.h. Appendix B describes the procedure to
build code.h and initia.h. This method requires a re-compilation of the host code each
time the DSP code is modified.

Figure 6. Command File for the Linker

/***/
/* lnk.cmd */
/* Copyright © 1996-1997 Texas Instruments Inc. */
/***/
-cr
vector.obj
main.obj

-o main.out
-heap 0x0200
-stack 0x0200
-l rts6201.lib

MEMORY
{
 VECS: o = 00000000h l = 0000200h
 PMEM: o = 00000200h l = 000FC00h
 DMEM: o = 80000000h l = 0010000h
 CE0: o = 00400000h l = 1000000h
 CE1: o = 01400000h l = 0010000h
 CE2: o = 02000000h l = 1000000h
 CE3: o = 03000000h l = 1000000h
}

SECTIONS
{
 vectors > VECS
 .text > PMEM
 .far > DMEM
 .stack > DMEM
 .bss > DMEM
 .sysmem > DMEM
 .cinit > DMEM
 .cio > DMEM
 .const > DMEM
 .data > DMEM
}

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 11

Figure 7. Example Interrupt Vector Table (vector.asm)

/***/
/* vector.asm */
/* Copyright © 1996-1997 Texas Instruments Inc. */
/***/
.ref _c_int00,_c_nmi01,_c_int04,_c_int05,

.ref _c_int06,_c_int07,_c_int08,_c_int09,

.ref _c_int10,_c_int11,_c_int12,_c_int13

.ref _c_int14, _c_int15

.sect vectors
RESET: B .S2 _c_int00

NOP
NOP
NOP
NOP
NOP
NOP
NOP

NMI: B .S2 _c_nmi01
NOP
NOP
NOP
NOP
NOP
NOP
NOP

RESV1: B .S2 RESV1
NOP
NOP
NOP
NOP
NOP
NOP
NOP

RESV2: B .S2 RESV2
NOP
NOP
NOP
NOP
NOP
NOP
NOP

INT4: B .S2 _c_int04
NOP
NOP
NOP
NOP
NOP
NOP
NOP

INT5: B .S2 _c_int05
NOP

NOP ……

)

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 12

Appendix A. Host Source Code to Boot the C6x Through
the HPI

/**/
/* Host.c: Host program to boot load the C6x through the HPI. */
/* This program is an example which assumes that host needs to */
/* initialize first the external memory configuration registers */
/* and then needs to download the .text, .cint and .const */5
/* */
/* Author : Eric Biscondi */
/* Date : 24 dec 97 */
/* Modifications: */
/* */10
/* */
/* (c) Texas Instruments France */
/***/
#include <stdio.h>
#include <stdlib.h>15

/* Header files containing the code to program into the flash */
#include "code.h" /* contains initialized sections of code */
#include "initia.h" /* contains initialized sections of data */

20
#define C6201_HPI 0x01600000 /* Address of the 'C6201 HPI*/
#define DEBUG 0 /* Flag for conditional DEBUG info */

void C6x_write_section(int *ptr_hpi, short *source, int dest_add, int length);25

void C6x_write_word(int *ptr_hpi, int source_word, int dest_address);

void init_host(void);
30

void main(void)
{
int *ptr_hpi;
int i, number_code, number_init;35

ptr_hpi = (int *)C6201_HPI;

init_host(); /* Initialization of the Host processor */
40

/* Initialization of the 'C6201 's EMIF */

C6x_write_word(ptr_hpi, 0x0000377d, Emif_global_control);
C6x_write_word(ptr_hpi, 0x00000040, Emif_CE1_control);
C6x_write_word(ptr_hpi, 0x00000030, Emif_CE0_control);45
C6x_write_word(ptr_hpi, 0x00000030, Emif_CE2_control);
C6x_write_word(ptr_hpi, 0xffffff23, Emif_CE3_control);
C6x_write_word(ptr_hpi, 0x03166000, Emif_SDRAM_control);
C6x_write_word(ptr_hpi, 0x00000aaa, Emif_SDRAM_refresh);

50

/* Determine the number of halfword contained in the code section */
number_code = sizeof(code) / sizeof(code[0]);

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 13

/* Write the code sections into the C6x memory mapped at 0 */55
C6x_write_section(ptr_hpi, (short *)&code , 0x0, number_code);

/* Determine the number of halfword contained in the data section */
number_init = sizeof(initia) / sizeof(initia[0]);60

/* Write the cinit sections into the C6x internal data memory */
C6x_write_section(ptr_hpi,(short*)&initia,0x80000000, number_init);

#if DEBUG65
printf("TMS320C6201 boot code loaded\n");

#endif

/* Wake up TMS320C6201 */
ptr_hpi[0] = 0x0003; /* Writes 1st half to HPIC - 0x01600000 */70

ptr_hpi[1] = 0x0003; /* Writes 2nd half to HPIC - 0x01600004 */

#if DEBUG
printf("TMS320C6201 is running \n");75

#endif
}

void init_host(void)80
{

/* Initialize CE1 as an Asynchronous memory space */
*(int *)0x01800004 = 0x00e20322;

}
85

/** */
/* C6x_write_word */
/* This routine is downloading data from source address to the C6x */
/* dest_address through the C6x Host Port Interface. */90
/* This routine accesses the HPID without automatic address increment */
/* */
/* Inputs: */
/* ptr_hpi: pointer to the C6x HPI vase address */
/* source_word: address of the data to transfer to the C6x */95
/* dest_address: destination address to write to the C6x HPIA */
/* */
/* (c) Texas Instruments France */
/**/
void C6x_write_word(int *ptr_hpi, int source_word, int dest_address)100
{
 /* Write HPIC with HWOB=1,1st halfword transferred is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[0] = 0x0001; /* 1st halfword 0 0 0 */105
ptr_hpi[1] = 0x0001; /* 2nd halfword 0 0 1 */

/* Write destination address to HPIA, 1st halfword is least significant */
110

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[2] = (int)(dest_address & 0x0ffff);/* 0 1 0 */
ptr_hpi[3] = (int)((dest_address>>16)&0x0ffff);/* 0 1 1 */

115

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 14

/* Write source_word to HPID without address post-increment */
/* 1st half-word transferred is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[6] = (int)(source_word&0x0ffff); /* 1 1 0 */120
ptr_hpi[7] = (int)((source_word>>16)&0x0ffff);/*1 1 1 */

}

/** */125
/* C6x_write_section */
/* This routine is downloading data from source address to the C6x */
/* dest_address through the C6x Host Port Interface. */
/* This routine accesses the HPID with automatic address increment */
/* */130
/* Inputs: */
/* ptr_hpi: pointer to the C6x HPI vase address */
/* source_word: address of the data to transfer to the C6x */
/* dest_address: destination address to write to the C6x HPIA */
/* length: number of data to transfer */135
/* */
/* (c) Texas Instruments France */
/** */
void C6x_write_section(int *ptr_hpi, short *source, int dest_add, int length)
{140
int i;

/* Write HPIC with HWOB=1,1st halfword transferred is least significant */

/* HCNTRL1 HCNTRL0 HHWIL */145
ptr_hpi[0] = 0x0001; /* 1st halfword 0 0 0 */
ptr_hpi[1] = 0x0001; /* 2nd halfword 0 0 1 */

/* Write destination address to HPIA, 1st halfword is least significant */
150

/* HCNTRL1 HCNTRL0 HHWIL */
ptr_hpi[2] = (int)(dest_add & 0x0ffff); /* 0 1 0 */
ptr_hpi[3] = (int)((dest_add>>16)&0x0ffff);/* 0 1 1 */

155
 for(i=0 ; i < length ; i++)
 {

/* Write source_word to HPID with address post-increment */
/* 1st half-word transferred is least significant */
/* HCNTRL1 HCNTRL0 HHWIL */160
ptr_hpi[4] = (int) *source++; /* 1 0 0 */
ptr_hpi[5] = (int) *source++; /* 1 0 1 */

 }
}

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 15

Appendix B. Building a C Array of Values From a COFF File
To build a C array of values from a COFF file, the first step is to use the hex conversion
utility to convert the COFF file into hexadecimal files. Figure 8 shows an example of a
command file for the hex converter utility to convert the COFF file C6201code.out into
two hex files: one for the code sections and another for the initialized data sections.

The code section is included in a file called C6201code.a00. The initialized data sections
are included in a file called C6201code.a01.

Figure 8. Command File for the Hex Converter Utility

Then we developed a tool (hex2aray.exe) that takes a hexadecimal file as input and
produces a C array of data included into a header file.

hex2aray –i <hex_input_file_name> –o <header_file_name>

In our example, we must invoke hex2aray to build code.h from C6201code.a00 and
initia.h from C6201code.a01.

Figure 9 gives an example of a header file created by:

hex2aray –i C6201code.a00 –o code.h

C6201code.out
-a
-byte
-image
-memwidth 32
-romwidth 32
-order M

ROMS
{
 /* Size of the internal pgm memory */
 PGM: org = 0x00000000, length = 0x10000

 /* Size of the internal data memory */
 DATA: org = 0x80000000, length = 0x10000
}

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 16

Figure 9. Example Header File code.h Created by hex2aray.exe

/***/
/* Header file containing C6x code generated from HEX2ARAY.EXE */
/* */
/* */
/* Date/Time created: 02/23/1998 15:40:16 */
/* */
/* (c) Copyright Texas Instruments */
/***/

const char code[]={0x12,0x18,0x01,0x00,0x28,0x00,0x00,0x00,0x2A,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x12,
 0xE0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x12,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x12,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

 …

};

 CC AA UU TT II OO NN ::
Note that the name of the array is the same as the file name.

The source code for hex2aray.exe is shown in Figure 10.

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 17

Figure 10. Source Code for hex2aray.c
/*==
//File : hex2aray.c
//Take an ASCII file generated by hex6x converter and convert it
//in an array of byte in C language.
//
//Date : November 26, 1997
//Author : Eric Biscondi
//Modification :
//
// (c) Copyright Texas Instruments France
//==*/

#include <stdlib.h>
#include <stdio.h>
#include <dos.h>
#include <conio.h>
#include <string.h>

extern directvideo;

void main(int argc,char *argv[])
{
FILE *out_file,*in_file;
char chn_fileo[32],chn_filei[32], name_array[32], charac;
int i,i1,in,out,out1,out2,line_count, zero_count, j, zero;
struct time t;
struct date d;

zero = 0x30;

/*arguments coming from the shell -------------------------------*/
if ((argc>0)&&(strcmp(argv[1],"?")==0))
{

printf ("dspc6x [-i <file_in>] [-o <file_out>]\n");
}

/*initialisation with shell's arguments----------------------------*/
for (i=1; i<(argc); i++)
{

if (!strcmp(strlwr(argv[i]),"-i"))
{

if (++i<=argc)
{

strcpy(chn_filei,argv[i]);
}

}
else if (!strcmp(strlwr(argv[i]),"-o"))

{
if (++i<=argc)
{

strcpy(chn_fileo,argv[i]);
}

}
else
{

printf ("dspc6x [-i <file_in>] [-o <file_out>]\n");
}

}

/*open in file---*/

if ((in_file = fopen(chn_filei,"rb")) == NULL)
{

printf("Unable to open input file \n");
exit (1);

}
if ((out_file = fopen(chn_fileo,"wb")) == NULL)
{

printf("Unable to open output file \n");
exit (1);

}

gettime(&t);
getdate(&d);

fprintf(out_file,"/***/\n");

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 18

fprintf(out_file,"/* Header file containing C6x code generated from HEX2ARAY.EXE */\n");
fprintf(out_file,"/* */\n");
fprintf(out_file,"/* */\n");
fprintf(out_file,"/* Date/Time created: %02d/%02d/%02d %2d:%02d:%02d */\n",

 d.da_mon, d.da_day, d.da_year, t.ti_hour, t.ti_min, t.ti_sec);
fprintf(out_file,"/* */\n");
fprintf(out_file,"/* (c) Copyright Texas Instruments*/\n");
fprintf(out_file,"/***/\n");

/* Suppress the file name extension */
i=0;
do
{
sscanf(chn_fileo,"%1s %s", &name_array[i], &chn_fileo);
}while(name_array[i++] != '.');

name_array[i-1]='\0';

fprintf(out_file, "\n\n\nconst char %s[]={",name_array);

line_count = 0;
zero_count = 0;
while((in = fgetc(in_file)) != EOF)
{

i = in&0x0ff;
switch(i) {

case(0x02):
break;

case(0x20):
break;

case(0x0d):
break;

case(0x0a):
break;

case(0x24): /* Case $ */
while((in=fgetc(in_file)) != 0x0a);
break;

default:
if((in = fgetc(in_file)) == EOF) break;
i1 = in&0x0ff;

if((i==0x30) && (i1==0x30)) /* Zero detection */ {
zero_count++;

}
else {

if(zero_count != 0) {
for(j=0 ; j < zero_count ; j++) {

line_count++;
fprintf(out_file,"0x");
fputc(zero, out_file);
fputc(zero, out_file);
fprintf(out_file,","); /* Printf "," */
if (line_count>10) {

line_count = 0;
fprintf(out_file,"\n ");

}
}
zero_count=0;

}
line_count++;
fprintf(out_file,"0x");
fputc(i, out_file);
fputc(i1, out_file);
fprintf(out_file,","); /* Printf "," */
if (line_count>10) {

line_count = 0;
fprintf(out_file,"\n ");

}
}

}
}
fprintf(out_file,"0x00};");
fcloseall();

}

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 19

References
[1] TMS320C62xx Peripherals Reference Guide, Texas Instruments 1997, Literature

number SPRU190.

[2] TMS320C6x Optimizing C Compiler User’s Guide, Texas Instruments 1997,
Literature number SPRA187.

[3] TMS320C6x Assembly Language Tools–User’s Guide, Texas Instruments 1997,
Literature number SPRU186.

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 20

TI Contact Numbers

INTERNET
TI Semiconductor Home Page
www.ti.com/sc

TI Distributors
www.ti.com/sc/docs/distmenu.htm

PRODUCT INFORMATION CENTERS
Americas
Phone +1(972) 644-5580
Fax +1(972) 480-7800
Email sc-infomaster@ti.com
Europe, Middle East, and Africa
Phone

Deutsch +49-(0) 8161 80 3311
English +44-(0) 1604 66 3399
Español +34-(0) 90 23 54 0 28
Francais +33-(0) 1-30 70 11 64
Italiano +33-(0) 1-30 70 11 67

Fax +44-(0) 1604 66 33 34
Email epic@ti.com
Japan
Phone

International +81-3-3457-0972
Domestic 0120-81-0026

Fax
International +81-3-3457-1259
Domestic 0120-81-0036

Email pic-japan@ti.com

Asia
Phone

International +886-2-23786800
Domestic

Australia 1-800-881-011
TI Number -800-800-1450

China 10810
TI Number -800-800-1450

Hong Kong 800-96-1111
TI Number -800-800-1450

India 000-117
TI Number -800-800-1450

Indonesia 001-801-10
TI Number -800-800-1450

Korea 080-551-2804
Malaysia 1-800-800-011

TI Number -800-800-1450
New Zealand 000-911

TI Number -800-800-1450
Philippines 105-11

TI Number -800-800-1450
Singapore 800-0111-111

TI Number -800-800-1450
Taiwan 080-006800
Thailand 0019-991-1111

TI Number -800-800-1450
Fax 886-2-2378-6808
Email tiasia@ti.com

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

Application Report
SPRA512

Implementing the TMS320C6201/C6701/C6211 HPI Boot Process 21

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their
products or to discontinue any product or service without notice, and advise customers to
obtain the latest version of relevant information to verify, before placing orders, that
information being relied on is current and complete. All products are sold subject to the
terms and conditions of sale supplied at the time of order acknowledgement, including
those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at
the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS"). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE
SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS
IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design
and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does
not warrant or represent that any license, either express or implied, is granted under any
patent right, copyright, mask work right, or other intellectual property right of TI covering
or relating to any combination, machine, or process in which such semiconductor
products or services might be or are used. TI's publication of information regarding any
third party's products or services does not constitute TI's approval, warranty, or
endorsement thereof.

Copyright 1999 Texas Instruments Incorporated

