I3 TEXAS
INSTRUMENTS

Sharing Exception Vectors on Hercules™-Based
Microcontrollers

Application Report
SPNA236—March 2017

Christian Herget

ABSTRACT

Some applications require sharing the exception vectors between different applications, like a bootloader
and the main application (firmware). This application report describes a software-based approach to move
the exception vector table from the flash into the SRAM, to allow for a flexible assignment scheme and
ultimately sharing of the exception vectors.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/spna236.

Contents
1 Y10} 1177 11 [0 o 1
2 How to Efficiently Move the Exception Vector Table into the RAMuviiiiiiiiiiiiiiiriiris i aaeeas 2
3 2o (o [11T0] g F= U @0 g 1=y o [=T = 1] o 1< 5
4 D 0]][8
5 S (= (=] 1 12
List of Figures
1 Concept With LDR PC, Label ...uiuiiiiiiiiiiiiiii i s 3
2 Concept With Two Tables in Flash and SRAMuiiiiiiiiiii i s s raas 4
3 Flow Chart With Two Tables in Flash and SRAM ...iiiiiiiiiiiii i iiisssiietsa st ssssaaasssreeesennnnnnns 5
Trademarks

Hercules is a trademark of Texas Instruments.
ARM, Cortex are registered trademarks of ARM Limited.
All other trademarks are the property of their respective owners.

1 Motivation

Customers often ask how the exception vectors can be shared and more importantly the handler routines
can be switched between different applications running on the same controller. The background often is,
that the customers have up to three applications, a bootloader, the main application (firmware) and a
fallback application. Each of the three applications might come with their own exception and interrupt
handers and therefore need to share the exception vectors of the ARM® Cortex®-R CPU cores.

However, the handlers for the following four exceptions, the Undefined Instruction Abort, the Super Visor
Call, the Prefetch Abort and the Data Abort are usually hardcoded in the exception vector table, which is
always located at the start of the flash memory at address 0x0. The so called HIVECS feature of the used
ARM Cortex-R CPU cannot be used for this purpose on Hercules-based controllers as these have no
memory implemented at the HIVECS address (OxFFFF0000).

To overcome this limitation the approach described on the following pages was developed to allow for
efficient relocation of the four mentioned exception vectors into the embedded SRAM, where they can
then flexibly be assigned to a specific handler routine by each of the different applications.

SPNA236—March 2017 Sharing Exception Vectors on Hercules™-Based Microcontrollers 1

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236
http://www.ti.com/lit/zip/spna236

13 TEXAS
INSTRUMENTS

How to Efficiently Move the Exception Vector Table into the RAM www.ti.com

2 How to Efficiently Move the Exception Vector Table into the RAM

The exception vector table consists out of eight entries that are usually simple branch instructions to the
exception handlers. For more details about the exception handling, see Interrupt and Exception Handling
on Hercules™ ARM® Cortex®-R4/5-Based Microcontrollers.

A typical exception vector table (@ address 0x0) on Hercules ARM Cortex-R based MCU'’s look similar to
Example 1.

Example 1. Typical Exception Vector Table

; interrupt vectors

resetEntry:

0x00 b _c_int00
undefEntry:

0x04 b undefEntry
SvCEntry:

0x08 b svcEntry
prefetchEntry:

0x0C b prefetchEntry

0x10 b _dabort

0x14 b phantomlnterrupt

0x18 Idr pc, [pc,#-0x1b0]

0x1C Idr pc, [pc,#-0x1b0]

The first five entries are direct branches to the exception handlers or themselves, in the case they are not
implemented (endless loop). The sixth entry is reserved on Cortex-R4/5 CPU’s and usually contains a
branch to a handler for so called phantom interrupts. The last two entries are for the Interrupt Request
(IRQ) and Fast Interrupt Request (FIQ) and are usually implemented as load instructions with the Program
Counter (PC) register as target.

2.1 Some Notes About the Reset, IRQ and FIQ Vectors

As you can see from the vector table in Example 1, the first entry (reset vector) is implemented as a
simple branch and the last two entries for the IRQ and FIQ are implemented as load instructions with the
PC register as target.

The first entry, the reset vector, has to always point to the main hardware initialization routine, typically to
the one from the bootloader, as it has to be executed right after any reset. Note that a CPU reset might
need special handling in the bootloader as this is usually triggered within the LBIST sequence.

The last two entries are used to load the interrupt vector address from the Vectored Interrupt Manager
(VIM) into the PC register. The load addresses are also relative to the PC to be able to efficiently address
the right registers in the VIM memory space. Fore more details, see Interrupt and Exception Handling on
Hercules™ ARM® Cortex®-R4/5-Based Microcontrollers.

Because, that the vectors for the IRQ and FIQ interrupt handlers are usually dispatched by the VIM, it is
not necessary to relocate these vectors to the RAM as the VIM already offers grate flexibility on
remapping and prioritizing interrupts (IRQ and FIQ).

2.2 First Approach (Direct Branch)

One approach to switch between different handlers could be, to replace the entries with a branch
instruction to a location in the SRAM with a similar table which then could easily be reconfigured during
runtime.

A simple branch instruction in the ARM instruction set takes a 24-bit value to perform a PC relative jump
to a specific address (+-32MB). A 24-bit value is not large enough to bridge the gap between the vector
tables at address 0x00000000 in the flash to the start of the SRAM at address 0x08000000. By trying to
insert a branch which exceeds the 24-bits the Linker will automatically insert a so called trampoline
function to perform the jump. Also this might work, using a trampoline function will not be very efficient as
it will add extra cycles and will be needed for each of the entries so potentially up to eight times.

2 Sharing Exception Vectors on Hercules™-Based Microcontrollers SPNA236—March 2017

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236
http://www.ti.com/lit/pdf/SPNA218
http://www.ti.com/lit/pdf/SPNA218
http://www.ti.com/lit/pdf/SPNA218
http://www.ti.com/lit/pdf/SPNA218

13 TEXAS
INSTRUMENTS

www.ti.com How to Efficiently Move the Exception Vector Table into the RAM

2.3 Second Approach (PC relative load)

To overcome the 24-bit (+-32MB) limitation of a branch instruction a load instruction with the PC as the
target register can be used. This is similar to what is shown in Example 2 for the IRQ and FIQ. However,
this approach requires a small additional (vector) table storing the vectors of the exception handlers in the
SRAM memory. Figure 1 shows how this concept works.

Table in Flash

0x00 resetEntry: b _c_intee ; Reset Vector, thuss constant target
ox04 undefEntry: ldr pc, tab_undef

ox08 svcEntry: ldr pc, tab_svc

oxeC prefetchEntry: / 1dr pc, tab_pref

ox10 dabtEntry: ldr pc, tab_dabt

ox14 phantomEntry: b #-8 ; reserved en should never been hit
ox18 irqEntry: 5 ldr pc,[pc,#-0x1b@] ; Load from Q@%a

ox1C figEntry: 8 1dr pc,[pc,#-8x1b0] ; Load from VIr,

; Table with the addreasses of the vectors in the SRAM

ox20 tab_undef: .word ram_undef

ox24 tab_svc: .word ram_svc

ox28 tab_pref: .word r‘am_pr~e1=‘\4
ox2C tab_dabt: .word ram_dabt e

swi_func:
0x08000000 nop
0x08000004 movs PC, LR

SWI Function in SRAM
Figure 1. Concept With LDR PC, Label

The method with the load (Idr) instruction discussed in this section has one big advantage compared to
the one with the direct branches discussed in Section 2.2, as it keeps the linker from generating additional
code for the so called trampolines and therefore is faster and slimmer.

With this approach the exception handlers can already be placed in the RAM, but the start addresses of
the routines have to be on fixed known places in the SRAM as the table in the flash can’t be changed
during runtime. This has the disadvantage that the largest size for each of the exception handlers of the
different application images has to be known or that the size of the handlers has to be restricted, both
requirements aren’t very practical. To overcome this issue the same table based approach can be used to
place yet another table in the SRAM. The table in the SRAM can then be dynamically adjusted to the
applications needs.

SPNA236—March 2017 Sharing Exception Vectors on Hercules™-Based Microcontrollers 3

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236

How to Efficiently Move the Exception Vector Table into the RAM

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 2 shows the enhanced concept:

Table in Flash
0x00 resetEntry: b _c_intee ; Reset Vector, thuss constant target
oxoe4 undefEntry: ldr pc, [pc, #0x14]
0x08 svcEntry: ldr pc, [pc, #0x14]
oxeC prefetchEntry: /1dr pc, [pc, #0x14]
ox10 dabtEntry: ldr pc, [pc, #0x14]
ox14 phantomEntry: b #-8 ; reserved entry should never been hit

ox18 irqEntry:
ox1C figEntry:

ldr pc,[pc,#-0x1b0] ; Load \from VIM
ldr pc,[pc,#-0x1b@] ; Load |from VIM

peot

; Table with the addrdsses of the vectors in the SRAM

0x20 tab_undef: .word ram_undef
ox24 tab_svc: .word ram_svc 2
ox28 tab_pref: .word ram_pref g
ox2C tab_dabt: .word ram_dabt &
g
§§ﬁ
Table in SRAM
Ox0803FFEQ /r‘a/m_undef: dr pc, ram_tab_undef
Ox0803FFE4 ‘ram_svc: dr pc, ram_tab_swi
Ox0803FFE8 ram_pref: ldr pc, ram_tab_pref
Ox0803FFEC ram_dabt: _ ldr pc, ram_tab_dabt
o
; Table with the address S'of the exception handlers
Ox0803FFFO ram_tab_undef: .word ram_undef
Ox0803FFF4 ram_tab_swi: .word swi_func
Ox0803FFF8 ram_tab_pref: .word ram_pref Addregs swi_func:
Ox0803FFFC ram_tab_dabt: .word _dabort \\\\\\\\\exeSGOGOGO nop
0x08000004 movs PC, LR

SWI Function in SRAM

Figure 2. Concept With Two Tables in Flash and SRAM

4

Sharing Exception Vectors on Hercules™-Based Microcontrollers

Copyright © 2017, Texas Instruments Incorporated

SPNA236—-March 2017
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236

13 TEXAS
INSTRUMENTS

www.ti.com How to Efficiently Move the Exception Vector Table into the RAM

This concept can now easily be adapted to the applications needs as the actual exception handlers can be
placed in either the Flash or SRAM and flexibly assigned by the application by simply altering the table in
the SRAM. Figure 3 shows another way to look at this flow, for the example of a Software Interrupt (SWI)

(sometimes called Super Visor Call (SVC)).
SWI Instruction

Load Instruction ox08 svcEntry: ldr pc, tab_svc
in Flash 0x24 tab_svc: .word ram_svC (@xe803FFE4)
Load Instruction Ox0803FFE4 ram_svc: 1dr pc, ram_tab_swi
in SRAM Ox0803FFF4 ram_tab_swi: .word swi_func (ox08000000)
SWI Handler in |ox08000000 swi_func: nop
Flash or SRAM |0x08000004 movs PC, LR

Back to Normal
Program Flow

Figure 3. Flow Chart With Two Tables in Flash and SRAM

2.4 Third Approach (Mem Swap)

The Hercules architecture offers the possibility to swap the flash and the SRAM memory locations. With
this memory swap, the SRAM starts at address 0x0 where the exception vectors are placed. However, this
approach alters the default memory map and comes with its own set of issues that are not discussed
further at this point.

3 Additional Considerations

Section 1 discusses how the exception vectors can efficiently be moved to another memory location, for
example, into the SRAM. The method with the PC relative load instructions discussed in Section 2.3 were
proposed as the preferable approach as it involves the least amount of code and yet is very efficient.

However, there is more to consider then just adding this table, especially when the exception handlers are
located in the SRAM. The following sections describe some of these considerations; more might need to
be considered on an application level.

SPNA236—March 2017 Sharing Exception Vectors on Hercules™-Based Microcontrollers 5

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236

13 TEXAS

INSTRUMENTS
Additional Considerations www.ti.com
3.1 Uninitialized Exception Vector Table
3.1.1 SRAM Content is Unpredictable After a Power On Reset (POR)

It has to be mentioned that the SRAM content is unpredictable after a power on reset. Therefore, it is
unpredictable what happens if the CPU takes an exception before the SRAM was initialized with the right
content.

Note that an unexpected abort, in general, and before the SRAM got initialized usually indicates a severe
issue such as a corrupted memory cell. Expected aborts happen as part of the (initial) self-test routines.
Therefore, it can be said that it is unlikely that an abort happens at all during this short time period (reset
to start of the software driven self-test routines that caused the aborts).

3.1.1.1 Different Types of Aborts

An undefined instruction abort indicates that the CPU tried to execute an undefined instruction. A prefetch
abort indicates an issue while the CPU tried to fetch instructions, which can be caused by corrupted
memory cells. A data abort indicates issues with the data load or store unit in the CPU and also can be
caused by corrupted memory cells. It has to be mentioned that all these aborts can also be caused by
systematic faults in the code.

3.1.1.2 Where to Place the Vector Table in the SRAM

If the exception vector table in the SRAM is placed at the top of the SRAM (high addresses), the CPU
executes only a few of these unpredictable instructions before it tries to fetch from an unimplemented
memory location, which causes a prefetch abort ideally resulting in an endless loop of prefetch aborts.

This also has the advantage in that the stack typically grows towards the low addresses. Placing the table
at the high addresses and the stack at the low addresses therefore ensures that a stack overrun can not
accidently overwrite the vector table in the SRAM.

3.1.2 PBIST
The Hercules MCU can test the SRAM cells with an integrated Built-In Self-Test (BIST) module. The
SRAM content changes while the test is running and also depends on the selected RAM test algorithm.
Therefore, the content can be threaded as unpredictable while the BIST is running. For more details, see
Section 3.1.1. The content after the test execution depends on the selected test. Running the
recommended MARCH13N on a RM42 results in all 0xC3, the value 0OXC3C3C3C3 represents the
following ARM instruction:
BICGT R12 R3 #0xC000003
This is a data processing instruction and, therefore, does not cause branches to other places in the
memory.

NOTE: Check the data left in the SRAM after executing the test algorithm of your choice and on the
device of your choice.

3.1.3 TCRAM Auto-Initialization
The Hercules MCU can initialize the SRAM cells to all zero by using the dedicated auto-initialization
hardware. This process has to be triggered by software and is usually done early during the boot process.
If an abort occurs, the CPU tries to execute the value all zero in the exception vector table that is in the
SRAM. The value all zero represents the following instruction:
ANDEQ RO RO, RO

6 Sharing Exception Vectors on Hercules™-Based Microcontrollers SPNA236—March 2017

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236

I

TEXAS
INSTRUMENTS

www.ti.com Additional Considerations

3.14

3.2

This is a conditionally (equal) executed AND instruction without the S suffix (condition code flags are not
updated), where the target and source registers are all the same; this instruction can also be interpreted
as a No Operation (NOP). If the exception vector table in the SRAM is placed at the top of the SRAM
(high addresses), the CPU executes a few of these instructions before it tries to fetch from an
unimplemented memory location, which causes a prefetch abort resulting in an endless loop of prefetch
aborts.

Adding a Magic Number or Checksum

The proposed mechanisms could be made more robust by adding a magic number or checksum to the
table in the SRAM. With this, it would be possible to detect if the table was already loaded with valid
content. Note that doing so adds more code and increases the complexity and execution time; therefore,
delay association with calling the abort handlers.

When to Load the Vector Table to the SRAM?

To mitigate the effect of unpredictable SRAM content after a power on reset (see Section 3.1.1), the table
should be loaded as early as possible into the SRAM, but only after the SRAM has been (optionally)
tested (PBIST), (see Section 3.1.2) and initialized by the TCRAM auto-initialization feature (see

Section 3.1.3) and the ECC for the BTCM interfaces are enabled in the CPU.

In the HALCoGen (v04.05.02) supplied startup routine, User Code Section 39 is a good place to add the
function call to initialize the exception vector table in the SRAM this is shown in Example 2.

Example 2. Vector Table Copy

/* Initialize CPU RAM.

* This function uses the system module®s hardware for auto-initialization of memories and their
* associated protection schemes. The CPU RAM is initialized by setting bit 0 of the MSIENA

register.

* Hence the value 0Ox1 passed to the function.

* This function will initialize the entire CPU RAM and the corresponding ECC locations.
*/

memory Init(0x1U);

/* USER CODE BEGIN (38) */
/* USER CODE END */

/* Enable ECC checking for TCRAM accesses.
* This function enables the CPU"s ECC logic for accesses to BOTCM and B1TCM.
*/

_coreEnableRamEcc_Q);

/* USER CODE BEGIN (39) */

copy_in(&ramintvecsCpyTbl);

/* USER CODE END */

3.3

How to Protect the Table in the SRAM?

The SRAM content itself is monitored for bit flips by the ECC functionality. However, the ECC functionality
does not protect against unintentional overwriting the table. To mitigate this risk, it is possible to program
the MPU inside the CPU to block write accesses to the memory region that the vector table is in. Another
method would be to periodically read back the content of the table and compare it against the copy in the
flash or to periodically calculate and compare a checksum.

The ECC mechanism is not able to correct multi bit errors and might not detect more than the two bit flips
in a word. As exceptions like the data abort, prefetch abort undefined instruction abort are expected to
occur very rarely, multi bit errors might build up overtime, if not tested (forced, fault injection) periodically.
Periodic read back of the entire table can also help to prevent multi bit errors to build up overtime, as the
ECC is checked on each read and corrected data word is written back, if needed.

SPNA236—March 2017 Sharing Exception Vectors on Hercules™-Based Microcontrollers 7
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236

13 TEXAS
INSTRUMENTS

Example www.ti.com

4

4.1

Example
The example supplied with this application report implements the concept as discussed in Section 2.3.

There are two example projects: one for RM48L952 and one for TMS570LS3137. The projects have been
tested using CCS 7.0.0 with TI ARM compiler v16.9.2.LTS and v5.2.9 using two standard development
boards (TMDSRM48HDK and TMDS570LS31HDK) both equipped with the respective silicon revision C.
Both projects are sharing three major source files for this example:
* Linker Command Files

— RM48_LS31_linker_command_file.cmd — Shared, see Section 4.2
» Support Functions

— intvecs.asm — Shared, see Section 4.1

— main.c — Shared, see Section 4.1

The folders for the CCS projects are as following:
e LS31_Exception_Table_in_RAM — CCS Project for TMS570LS3137
« RMA48_ Exception_Table_in_ RAM — CCS Project for RM48L952

Source Code

The file intvecs.asm contains the assembly language code needed to implement the vector forwarding
(vector tables). The default section .intvecs containing the interrupt vectors at address 0x0 is linked into
the Flash memory and the ramintvecs section containing the adjustable vectors into the SRAM.

Example 3 shows the code for the .intvecs section. The first entry in the reset vector is a branch directly to
the _c_int0O0 function that is used to initialize the controller. The following four entries are forwarded into
the SRAM: Undefined Instruction Abort, Software Interrupt (or Super Visor Call), Prefetch Abort and Data
Abort. The actual addresses are defined in the four entry table shown at the bottom of Example 3. The
sixth entry is an endless loop (phantomEntry) this should never be taken by the CPU as it is a reserved
entry. The last two entries are the entries for the IRQ and FIQ that are dispatched by the VIM, therefore,
these two do not need to be forwarded in software.

Example 3. Code for Section .intvecs

; interrupt vectors in Flash

.sect ".intvecs"
.retain ".intvecs"
.arm
resetEntry: b c_int00 ; Reset Vector, thuss constant target
undefEntry: Idr pc, tab_undef
swiEntry: Idr pc, tab_swi
prefetchEntry: Idr pc, tab_pref
dabtEntry: Idr pc, tab_dabt
phantomEntry: b phantomEntry ; Endless Loop, reserved entry should never been hit
irgEntry: Idr pc, [pc,#-0x1b0] ; Load from VIM
figEntry: Idr pc,[pc,#-0x1b0] ; Load from VIM

; Table with the addresses of the vectors in the SRAM

tab_undef: -word ram_undef
tab_swi: -word ram_swi
tab_pref: -word ram_pref
tab_dabt: -word ram_dabt
8 Sharing Exception Vectors on Hercules™-Based Microcontrollers SPNA236—March 2017

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236

13 TEXAS
INSTRUMENTS

www.ti.com Example

Example 4 shows the code for the section ramintvecs. It contains the entries for the three aborts and the
software interrupt as discussed in the previous paragraph. The entries for the Undefined Instruction Abort
and the Prefetch Abort are endless loops in the example. The entries for the software interrupt and the
data abort are pointing to the associated handlers. For the data abort handler, the handler supplied with
HALCoGen is used, it is placed in the Flash memory. The software interrupt handler is only a stub doing
nothing it is placed in the SRAM for demonstration purposes only.

Example 4. Code for Section ramintvecs

; Table in RAM

.sect "ramlntvecs"

-retain "ramlntvecs"

.arm
ram_undef: Idr pc, ram_tab_undef
ram_swi: Idr pc, ram_tab_swi
ram_pref: Idr pc, ram_tab_pref
ram_dabt: Idr pc, ram_tab_dabt

Table with the addresses of the exception handlers

ram_tab_undef: _word ram_undef
ram_tab_swi: -word swi_funcl
ram_tab_pref: -word ram_pref
ram_tab_dabt: -word _dabort
SPNA236—March 2017 Sharing Exception Vectors on Hercules™-Based Microcontrollers 9

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236

13 TEXAS
INSTRUMENTS

Example www.ti.com

Example 5 shows the code for main() and two software interrupt handlers called swi_handler_ram and
swi_handler_flash in this example. The main function simply calls swi_handler_ram and swi_handler_flash
and, thus, triggers a software interrupt in the CPU. The attribute keyword is used to tell the compiler that
swi_handler_ram and swi_handler_flash are of the interrupt type SWI and that swi_handler_ram should be
placed in the SRAM (ramfunc) rather than in the flash (.text).

Example 5. Code From main.c

#include "hal_stdtypes.h"

/* Define two handlers for the Software Interrupt (Super Visor Call) */
__attribute__((interrupt("SWI"), ramfunc)) void swi_handler_ram(void);
__attribute__((interrupt("SWI™))) void swi_handler_flash(void);

extern volatile uint32 ram_tab_swi;

int main(void)

{
/* Call swi_handler_flash() from Flash */
_call_swi(0);
/* Change the address of the SWI handler */
ramTabChangeEntry(ENTRY_SWI, &swi_handler_ram);
/* Call swi_handler_ram() from SRAM */
_call_swi(0);
return O;
}
void swi_handler_ram(void)
{
return;
3
void swi_handler_flash(void)
{
return;
b
The data abort is triggered during the startup of the device by Flash ECC Check self-test supplied with
HALCoGen. The software interrupt handlers are triggered in the main function as shown in Example 5,
swi_handler_flash() is linked into the flash and swi_handler_sram() is linked into the SRAM memory. The
vector for the software interrupt gets updated (switched) in main() between the two SWI calls
(_call_swi(0)).
This example shows how two exception handlers can be placed in the flash and SRAM and how to
dynamically switch between the two handlers. For this to work, it is necessary to copy the vector table and
the function swi_handler_sram() into the SRAM. The vector table and initial vector table are copied during
the initialization of the microcontroller after the SRAM was initialized to all zero and the ECC was enabled,
as shown in Example 2. The function ramTabChangeEntry() is used to modify the vector table and switch
between two handlers.
The code in the project was updated compared to what is shown in Example 2. It now triggers the three
aborts (Undefined Instruction, Data, Prefetch) too, in order to be able to test the method of forwarding
these exceptions. These changes are not documented here in order to keep the complexity of this
documentation low.
4.2 Linker Command File
The linker command file has to be changed compared to the default file supplied with HALCoGen in order
to make this example work. Therefore, a new linker command file called
RM48 LS31 linker_command_file.cmd was created.
10 Sharing Exception Vectors on Hercules™-Based Microcontrollers SPNA236—March 2017

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236

13 TEXAS
INSTRUMENTS

www.ti.com

Example

4.2.1 Memory Map

The size of the .intvecs section has to be increased to 64 byte in order to fit the code shown in Example 3.
Theoretically, 48 bytes would be enough to fit the .intvecs section. However, experiments have shown that
the current linker versions do have issues with calculating the ECC bits if the memories are not aligned to

32 bytes. A range for the vector table in the SRAM should be added at the end of the SRAM memory

(high addresses, RAMVECTORS).

Example 6 shows the modified memory map. There are more changes and additions than described in the
previous paragraph, mainly the addition of memory ranges for the ECC bits.

Example 6. Memory Map

/* Memory Map

#define RAM_SIZE (256 * 1024) /* 256kB */
#define RAM_STACK_SIZE (0x1500) /* 5.25kB */
#define RAM_INT_VEC_SIZE (0x20) /* 32Byte*/

MEMORY

{

/* Flash Memory */
/* Bank 0 */

VECTORS (X) : origin=0x00000000
Fil I=OxFFFFffff /* 64Byte */
FLASHO (RX) : origin=(end(VECTORS))
size(VECTORS)) vEi L I=OxfFFFFFff /= 1.5MB */
/* Bank 1 */
FLASH1 (RX) : origin=0x00180000
vEi L I=OxfFFFFFff /> 1.5MB */
/* Bank 7 (FEE) */
FLASH7 (R) : origin=0xF0200000
vEi L I=OxFFFFFfff /* 64kB */
/* Bank 0 ECC */
ECC_VEC (R) : origin=(0xf0400000 + (start(VECTORS) >> 3))
ECC={algorithm=algoR4F021, input_range=VECTORS, fill=false}
ECC_FLAO (R) : origin=(0xf0400000 + (start(FLASHO) >> 3))
ECC={algorithm=algoR4F021, input_range=FLASHO, fill=Ffalse}
/* Bank 1 ECC */
ECC_FLA1 (R) : origin=(0xf0400000 + (start(FLASH1) >> 3))
ECC={algorithm=algoR4F021, input_range=FLASH1 }
/* Bank 7 ECC */
ECC_FLA7 (R) : origin=0xF0100000
ECC={algorithm=algoR4F021, input_range=FLASH7 }
/* embedded SRAM */
STACKS (RW) : origin=0x08000000
RAM (RWX) : origin=(end(STACKS))
RAM_INT_VEC SIZE) /* 256kB - xyz */
RAMVECTORS (RWX) : origin=(end(RAM))
}

1ength=0x00000040

length=(0x0180000 -

1ength=0x00180000

1ength=0x00010000

length=(size(VECTORS) >> 3)

length=(size(FLASHO) >> 3)

length=(size(FLASH1) >> 3)

length=(size(FLASH7) >> 3)

length=(RAM_STACK_SI1ZE)

length=(RAM_SIZE - RAM_STACK_SIZE -

length=(RAM_INT_VEC_SIZE)

SPNA236—-March 2017
Submit Documentation Feedback

Sharing Exception Vectors on Hercules™-Based Microcontrollers 11

Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236

13 TEXAS
INSTRUMENTS

References www.ti.com

422

Sections Configuration

Several sections have to be added to the SECTIONS configuration in the linker command file. This is
mainly necessary because of the use of Linker Generated Copy tables and RAM functions. For more
information on copy tables and RAM functions, see the ARM Assembly Language Tools User’'s Guide.
These sections are .ovly and .binit for the copy tables and .Tl.ramfunc for the RAM functions. To place the
vector table in the SRAM another section has to be added (ramintvecs).

Example 7 shows the modified sections configuration.

Example 7. Sections Configuration

/* __ */
/* Section Configuration */
SECTIONS

{

/* Flash based sections */

-intvecs : {3 palign=16, fill=0xff, > VECTORS

-text : {3 palign=8 > FLASHO | FLASH1 /* Executable code and constants */

.const : {} palign=8 > FLASHO | FLASH1 /* Global and static const variables
that are explicitly initialized */

-binit : {3 palign=8 > FLASHO | FLASH1 /* Boot time copy tables */

.ovly : {} palign=8 > FLASHO | FLASH1 /* User defined Copy Tables */

.cinit : {3 palign=8 > FLASHO | FLASH1 /* Tables for explicitly initialized

global and static variables */
#ifdef __ TI_EABI_SUPPORT__

-init_array : {} palign=8 > FLASHO | FLASH1 /* C++ global constructor addresses */
#else /* TI_ARM9_ABI and TIABI */

.pinit : {} palign=8 > FLASHO | FLASH1 /* C++ global constructor addresses */
#endif

/* Special Tl Sections */
-Tl_ramfunc : {} palign=8, load=FLASHO, run=RAM, table(BINIT) /* Section for the ramfunc

attribute */

.Tl.crctab : {} palign=8 > FLASHO | FLASH1 /* The CRC tables generated by the

linker */

/* RAM based sections */
.stack : {_ STACK_START = .;} type=NOINIT > STACKS /* Stack */
-bss : {3 palign=8 > RAM /* Uninitialized global and static

variables */

.data : {} palign=8 > RAM /* Global and static non-

const variables that are explicitly initialized. */

.sysmem {3 > RAM /* Memory pool (heap) for dynamic memory

allocation */

/* run (HIGH) to place the table at the top of the RAM */
ramlntvecs : {} load=FLASHO, run=RAMVECTORS, palign=8, table(ramlntvecsCpyTbl)

3
5 References
1. Interrupt and Exception Handling on Hercules™ ARM® Cortex®-R4/5-Based Microcontrollers
2. ARM Assembly Language Tools User’'s Guide
12 Sharing Exception Vectors on Hercules™-Based Microcontrollers SPNA236—March 2017

Submit Documentation Feedback
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNA236
http://www.ti.com/lit/pdf/SPNU118
http://www.ti.com/lit/pdf/SPNA218
http://www.ti.com/lit/pdf/SPNU118

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “Tl Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.

TI's provision of Tl Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for Tl
products, and no additional obligations or liabilities arise from TI providing such Tl Resources. Tl reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such Tl products as used in such applications. Tl has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the Tl product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TlI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS I1S” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, Tl products and services.
These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Sharing Exception Vectors on Hercules-Based Microcontrollers
	1 Motivation
	2 How to Efficiently Move the Exception Vector Table into the RAM
	2.1 Some Notes About the Reset, IRQ and FIQ Vectors
	2.2 First Approach (Direct Branch)
	2.3 Second Approach (PC relative load)
	2.4 Third Approach (Mem Swap)

	3 Additional Considerations
	3.1 Uninitialized Exception Vector Table
	3.1.1 SRAM Content is Unpredictable After a Power On Reset (POR)
	3.1.1.1 Different Types of Aborts
	3.1.1.2 Where to Place the Vector Table in the SRAM

	3.1.2 PBIST
	3.1.3 TCRAM Auto-Initialization
	3.1.4 Adding a Magic Number or Checksum

	3.2 When to Load the Vector Table to the SRAM?
	3.3 How to Protect the Table in the SRAM?

	4 Example
	4.1 Source Code
	4.2 Linker Command File
	4.2.1 Memory Map
	4.2.2 Sections Configuration

	5 References

	Important Notice

