
Application Report
SPMA039A–December 2011–Revised July 2013

Stellaris® Graphics Library Display Drivers

DaveWilson

ABSTRACT
The Stellaris Graphics Library (grlib) offers a compact yet powerful collection of graphics functions
allowing the development of compelling user interfaces on small monochrome or color displays attached
to Stellaris microcontrollers. This application report describes how to support a new display device in the
Stellaris Graphics Library.

Contents
1 Introduction .................................................................................................................. 1
2 Library Structure ............................................................................................................ 2
3 Display Driver API .......................................................................................................... 3
4 Conclusion ................................................................................................................... 8
5 References ................................................................................................................... 9

1 Introduction
The Stellaris Graphics Library (grlib) is included in all StellarisWare® firmware development packages
supporting evaluation or development kits that include color displays. The Graphics library provides a
collection of graphics functions that allow you to develop user interfaces on small monochrome or color
displays attached to Stellaris microcontrollers. This list includes ek-lm3s3748, dk-lm3s9b96, rdk-idm, rdk-
idm-l35 and rdk-idm-sbc. StellarisWare releases for these kits can be downloaded from Tools & Software
for StellarisWare® LM3S MCUs.

Following installation of your StellarisWare package, the graphics library source can be found in the
C:\StellarisWare\grlib directory (assuming you installed in the default location) and various example
applications using the library can be found in the C:\StellarisWare\boards\<your board name> directory.
The example applications provided vary from board to board, but a version of “grlib_demo” is included in
all kits supporting the graphics library.

This application report provides information on the lowest layer of the Stellaris Graphics Library
architecture: the display driver. This layer acts as the interface between the common code of the graphics
library and the display controller in use on a particular board. A new or modified display driver is required
to support the Stellaris Graphics Library on a new board design or when using a graphics display
controller other than those supported on existing Stellaris development kits.

Source code for the display driver for each supported board can be found in the
C:\StellarisWare\boards\<your board name>\drivers directory.

Stellaris, StellarisWare are registered trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

1SPMA039A–December 2011–Revised July 2013 Stellaris® Graphics Library Display Drivers
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com/tool/sw-lm3s
http://www.ti.com/tool/sw-lm3s
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA039A


Widget Manager

Input Driver
(for example, buttons

or touchscreen)

Application

Widget Classes

Graphics Functions

Display Driver

Display Hardware
Input Hardware

Library Structure www.ti.com

2 Library Structure
The Stellaris Graphics Library is a layered library offering four main application programming interfaces
(APIs) for the application developer to choose from. Figure 1 shows the organization of the Stellaris
Graphics Library.

Figure 1. Organization of Stellaris Graphics Library

The right side of the figure shows the layers of the graphics stack. APIs are provided at the widget level
(the Widget API), the graphics function level (the Low-Level Graphics API) and at the display driver level
(the Display Driver API). Additionally, a standard user-input driver interface (the Input Driver API) is also
provided. Depending upon the requirements of a given application, some portions of the library can be
omitted if their functions are not required. All type definitions, labels, macros, and function prototypes for
the graphics functions and display driver layers can be found in the grlib.h file. Definitions relating to the
higher level widget library can be found in widget.h and individual headers such as canvas.h and
pushbutton.h, contain definitions for each supported widget class.

2.1 Display Driver Overview
The display driver layer provides a standard programming interface to the graphics library code allowing it
to draw actual pixels on the display. The API is very simple (draw horizontal and vertical lines, copy a line
of pixels to a position on the screen, plot a single pixel) and is not typically accessed directly by the
application since it is missing many of the graphics primitives that an application is likely to require such
as slanted lines, rectangles, circles, text, and image support.

This application report provides additional information on the display driver API and offers suggestions on
how to develop a new display driver for your particular board and display controller.

2.2 Low-Level Graphics API Overview
The first API that is intended for application use is the low-level graphics API. This gives access to
functions that draw the major graphics primitives: lines, rectangles, circles, text, and images. In addition,
functions and macros are provided to perform coordinate checking and rectangle processing (for example,
checking for intersection and overlap, determining whether a point lies within a rectangle, and so on).

The low-level graphics API is concerned only with drawing to the display and has no knowledge of user
input or any high-level controls.

2.3 Widget API Overview
Above the low-level graphics API and the input driver, the widget API offers a high-level interface that
allows you to build a complex user interface that includes individual controls such as buttons, sliders,
checkboxes, and other high-level widgets (controls).

2 Stellaris® Graphics Library Display Drivers SPMA039A–December 2011–Revised July 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA039A


www.ti.com Display Driver API

This layer ties the graphical display to your input system. It manages the input and updates the displayed
widgets according to button or touch screen presses made by you. Application interaction with widgets is
via callback functions provided during initialization. These callbacks are specific to the type of widget but
would include functions called when a button is pressed or a slider is moved.

2.4 Input Driver Overview
The input driver, like the display driver, is responsible for managing a block of hardware and translating
user interaction into a standard format that the widget manager can understand. An application will not
typically call the input driver other than during startup when a call is made to initialize the device.

Input devices may include touch screens or navigation buttons.

3 Display Driver API
The lowest level of the graphics library stack is the display driver. Although the display driver API is
specified by the graphics library, the source is specific to the board and display hardware and can be
found in the C:\StellarisWare\boards\<your board>\drivers directory. The driver source file name is
typically derived from the display manufacturer, supported display controller part, display resolution, and
bit depth. For example, the display driver for the rdk-idm is named formike240x320x16_ili9320.c since it
supports a Formike display using an ILI9320 controller, and offers 240x320 resolution at 16 bits per pixel.

The display driver’s responsibility is to translate calls made to the standard display driver API into orders
to draw pixels or lines on the display. The interface to the driver is intended to offer the absolute minimum
subset of drawing orders required to support the main graphics library and, as a result, make it extremely
straightforward to develop a driver for a new display very quickly.

The display driver API includes the following basic functions that must be supported by every display
driver:
void PixelDraw(void *pvDisplayData, long lX, long lY,

unsigned long ulValue);

void PixelDrawMultiple(void *pvDisplayData, long lX, long lY,
long lX0, long lCount, long lBPP,
const unsigned char *pucData,
const unsigned char *pucPalette);

void LineDrawH(void *pvDisplayData, long lX1, long lX2,
long lY, unsigned long ulValue);

void LineDrawV(void *pvDisplayData, long lX, long lY1,
long lY2, unsigned long ulValue);

void RectFill(void *pvDisplayData, const tRectangle *pRect,
unsigned long ulValue);

unsigned long ColorTranslate(void *pvDisplayData,
unsigned long ulValue);

void Flush(void *pvDisplayData);

The actual names of these functions are not important since they are provided to the graphics library by
means of a function pointer table. This table can be found in the tDisplay structure that the display driver
exports and which the application uses when calling the graphics API function. This structure is defined in
grlib.h.

Additionally, the display driver typically provides an initialization function that the application is expected to
call prior to initializing the graphics library. This call is used to initialize the underlying graphics hardware
and clear the screen.

3SPMA039A–December 2011–Revised July 2013 Stellaris® Graphics Library Display Drivers
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA039A


Display Driver API www.ti.com

Notice that the driver API contains significantly fewer graphics primitives than the low-level graphics API.
Most graphics primitives are broken down by the higher level code and passed to the driver in pieces. For
example, an unfilled rectangle is drawn using two calls to the LineDrawV function and two calls to the
LineDrawH function. Similarly, text is rendered using multiple calls to the PixelDraw and LineDrawH
functions. This model works well with small, low-cost displays which do not typically include any graphics
acceleration hardware but do often include the ability to choose drawing direction and copy lines of pixels.

The other higher level feature carried out by the low-level graphics layer on behalf of the display driver is
clipping. No coordinates that are outside the bounds of the display are ever passed to the display driver
since this is checked for and handled in the layer above. Using this approach, it becomes quick and easy
to produce a new graphics driver since only a small number of simple functions need to be developed.

3.1 Off-Screen Display Drivers
Although most display drivers are intended to allow specific hardware displays to be used with the Stellaris
Graphics Library, three special drivers are included within the library itself. These drivers are intended for
off-screen graphics rendering in 1 bpp (bit per pixel), 4 bpp, and 8 bpp formats and are typically used in
combination with a driver which supports the physical display. These drivers support the standard display
driver interface and may be used alongside other display drivers.

The main use for an off-screen display driver is to support applications which require smooth animation or
which render an image slowly. In these cases, an image is drawn into a memory buffer using the off-
screen display driver and, once the image is completed, it is transferred to the physical display in one
operation. Since the rendering of the image takes many steps and may include erasing the entire buffer
before starting to redraw, using an off-screen display driver allows flicker-free operation. The physical
display continues to show the previous image until a new one is ready for display, at which point the
image is updated so quickly that you do not see any of the intervening graphic operations that were
required to generate the new image.

For an example of the use of the off-screen display driver, see the source for the qs-scope example
application from the ek-lm3s3748 StellarisWare release. This application implements a simple oscilloscope
and renders the waveform into an off-screen buffer before updating the actual display, resulting in smooth,
flicker-free display updates.

Source for the off-screen display drivers can be found in the offscr1bpp.c, offscr4bpp.c, and offscr8bpp.c
files in the C:\StellarisWare\grlib directory.

3.2 Individual Display Driver Functions
This section describes the individual display driver functions in detail. Note that the first parameter to each
function, pvDisplayData, is a pointer that the driver itself provides in the tDisplay structure it exports. The
driver does not need to use this parameter, but it is provided to support drivers which must maintain state
data.

3.2.1 Init
The prototype for the driver initialization function is driver-specific. An application calls this function directly
prior to initializing the low-level graphics API layer and the function then initializes the display hardware
and blanks the screen in preparation for receiving other calls.

3.2.2 ColorTranslate
unsigned long ColorTranslate(void *pvDisplayData,

unsigned long ulRGBColor);

The higher level graphics driver APIs make use of a standard 24-bit RGB color description with the color
described in a single, unsigned long value with the red component in bits 16 to 23, green in bits 8 to 15,
and blue in bits 0 to 7. Different displays, however, describe color in different ways so the ColorTranslate
function allows the graphics library to obtain a representation of a given RGB24 color in the native format
supported by the display.

4 Stellaris® Graphics Library Display Drivers SPMA039A–December 2011–Revised July 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA039A


www.ti.com Display Driver API

For monochrome displays, the returned value should represent the brightness of the supplied RGB color.
For color displays, the returned value should represent the original color as closely as possible given the
constraints of the display. If the display supports 16-bit RGB, for example, the returned color value
truncates, masks, and shifts the supplied 8-bit R,G, and B samples into a correctly packed 16-bit value.

All other calls to the display driver will be passed pre-translated colors (that is, colors that have been
returned from a previous call to this ColorTranslate function), so the overhead of color translation is kept to
a minimum.

3.2.3 PixelDraw
void PixelDraw(void *pvDisplayData, long lX, long lY,

unsigned long DispColor);

The simplest function that a display driver must support is the ability to plot a single pixel at a given
position on the display. This function plots a pixel using color ulDispColor at position (lX, lY) on the screen.
Note that the color passed has already been translated into the display-dependent format using a previous
call to the ColorTranslate function.

3.2.4 PixelDrawMultiple
void PixelDrawMultiple(void *pvDisplayData, long lX, long lY,

long lX0, long lCount, long lBPP,
const unsigned char *pucData,
const unsigned char *pucPalette);

The PixelDrawMultiple function is used when displaying images. A block of pixel data representing a given
horizontal span is passed to the display driver, which renders the pixel data onto the display at the
specified position. In this case, the driver must support 1 bpp, 4 bpp, and 8 bpp pixel formats. Displays
supporting 16 bpp formats may also support native 16 bpp pixels (since these are output by, for example,
the JPEG image decoder included in the StellarisWare release for dk-lm3s9b96 and rdk-idm-sbc.

For the 1 bpp pixel format, the pucPalette points to a 2-entry array containing pre-translated colors for
background and foreground pixels.

For 4 bpp and 8 bpp formats, the pucPalette parameter points to a color table containing RGB24 colors
which the driver must translate to the native color format during the drawing process.

The palette is ignored for the 16 bpp formats since it is assumed that the pixels passed are in the native
color format of the display.

When using 1 bpp and 4 bpp formats, the lX0 parameter indicates where the first pixel to draw is within
the first byte of supplied pixel data. For 1 bpp, valid values are 0 through 7 and for 4 bpp, values 0 or 1
may be used. In each case, pixels are packed with the leftmost pixel in the most significant bit or nibble of
the byte. Taking 1bpp as an example, if lX0 is 5 this indicates that we skip the 5 leftmost pixels in the first
byte passed and will draw 3 pixels from that byte. These will be taken from bits 2 , 1 and 0 of the byte.

5SPMA039A–December 2011–Revised July 2013 Stellaris® Graphics Library Display Drivers
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA039A


Display Driver API www.ti.com

3.2.5 LineDrawH
void LineDrawH (void *pvDisplayData, long lX1, long 1X2

long lY, unsigned long ulDispColor);

This function draws horizontal lines using the supplied, display-dependent color. Note that the line drawn
includes both the first and last pixels specified by parameters lX1 and lX2, which means that the number
of pixels written is ((lX2 – lX1) + 1). The graphics library ensures that lX2 is always greater than lX1, so no
parameter sorting is required in the display driver.

3.2.6 LineDrawV
void LineDrawV (void *pvDisplayData, long 1X, long 1Y1,

long lY2, unsigned long ulDispColor);

This function draws vertical lines using the supplied, display-dependent color. As for LineDrawH, the line
drawn includes both the first and last pixels specified by parameters lY1 and lY2 meaning that the number
of pixels written is ((lY2 – lY1) + 1). The graphics library ensures that lY2 is always greater than lY1 so no
parameter sorting is required in the display driver.

3.2.7 RectFill
void RectFill(void *pvDisplayData, const tRectangle *pRect,

unsigned long ulDispColor);

This function fills a rectangle on the display with the solid color provided in the ulDispColor parameter.

Note that the tRectangle type uses a bottom-right inclusive definition so the width of the rectangle to draw
is given by ((pRect->sXMax – pRect->sXMin) + 1) and the height is ((pRect->sYMax – pRect->sYMin) +
1). This is different from Windows and various other graphics libraries that use a bottom-right exclusive
rectangle definition.

3.2.8 Flush
void Flush(void * pvDisplayData);

The flush function is provided to support display hardware that does not contain an integrated frame buffer
and where the display driver must keep the display contents in a local RAM buffer. In this model, the
drawing functions provided by the driver update the contents of the RAM buffer instead of updating the
display. These changes are flushed to the actual display using the Flush API.

In drivers that update the display on each call to any of the driver drawing APIs, this call can be a stub that
returns without performing any action.

Note that the widget classes do not currently make use of the Flush() driver API so, if you plan to use a
driver that performs off-screen rendering with the widget layer, you must update the widget classes you
are using to call Flush() at appropriate points in their paint functions.

6 Stellaris® Graphics Library Display Drivers SPMA039A–December 2011–Revised July 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA039A


www.ti.com Display Driver API

3.3 Existing StellarisWare Display Drivers
Table 1 shows a list of the graphics library-compatible display drivers provided in StellarisWare and
information on the type of hardware (if any) they support and the connection method to the Stellaris
microcontroller.

Table 1. Stellaris Graphics Library-Compatible Display Drivers

Driver Name Board(s) Part Number Conn. Type
offscr1bpp.c All N/A N/A 1bpp off-screen rendering driver within

grlib.
offscr4bpp.c All N/A N/A 4bpp off-screen rendering driver within

grlib.
offscr8bpp.c All N/A N/A 8bpp off-screen rendering driver within

grlib.
cfal96x64x16.c ek-lm4f232 Crystalfontz SSI 96x64 16bpp OLED display. SSD1332

CFAL9664B-F-B1 controller.
formike128x128x16.c ek-lm3s3748 KWH015C04-F01 GPIOx8 128x128 16bpp color CSTN display.
formike240x320x16_ili9320.c rdk-idm KWH028Q02- GPIOx8 320x240 16bpp TFT display with touch

F03/F05 screen. ILI9320 and ILI9325 controllers.
kitronix320x240x16_ rdk-idm-l35 K350QVG-V1-F GPIOx16 320x240 16bpp TFT display with touch
ssd2119.c screen. SSD2119 controller.
kitronix320x240x16_ssd2119_ rdk-idm-sbc K350QVG-V1-F GPIOx8 320x240 16bpp TFT display with touch
idm_sbc.c screen. SSD2119 controller.
kitronix320x240x16_ssd2119_ dk-lm3s9b96 K350QVG-V1-F GPIOx8 + EPI 320x240 16bpp TFT display with touch
8bit.c HB8 screen. SSD2119 controller.

EPI HB8 connection used when optional
SRAM/Flash/LCD or FPGA expansion
board is installed.

kitronix320x240x16_fpga.c dk-lm3s9b96/ K350QVG-V1-F + EPI (GP mode) 320x240 TFT display with touch screen.
dk-lm3s9d96 + DK-LM3S9B96- Display interface via control registers
FPGA expansion FPGA implemented in the expansion board
board FPGA. Contains extensions for video

image mixing.

In addition to the grlib-compatible drivers, other drivers for lower resolution monochrome displays are also
included. Although these do not operate with the Stellaris Graphics Library, they may be of use as
examples if developing a driver for a similar display or using a similar hardware connection. Table 2 shows
these sample drivers.

Table 2. Sample Lower Resolution Monochrome Displays

Driver Name Board(s) Part Number Conn. Type
display96x16x1.c ek-lm3s811 RIT 9913701000 I2C 96x16 OLED monochrome display.

OSRAM OS096016
rit128x96x4.c ek-lm3s6965 RGS13128096WH000 SSI 128x96 OLED display supporting 4bpp

ek-lm3s8962 (16 grey levels).
ek-lm3s1968
ek-lm3s2965

osram128x96x4.c ek-lm3s2965_revA OS128064PK10MG1B10 SSI 128x96 OLED display supporting 4bpp
ek-lm3s6965_revA (16 grey levels).

3.4 Writing Your Own Display Driver
Working from an existing Stellaris Graphics Library display driver as an example and assuming that you
already have an understanding of the new display hardware you are trying to support, you can typically
develop a new display driver in a day or less. The recommended steps are:
1. Find an existing StellarisWare display driver that is as close as possible to the hardware you are trying

to support.
2. Take a copy of the existing driver’s C and H source files, renaming them to something suitable for your

7SPMA039A–December 2011–Revised July 2013 Stellaris® Graphics Library Display Drivers
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA039A


Conclusion www.ti.com

new hardware.
3. Search for and replace all instances of the previous driver’s function name prefix with one suitable for

your new hardware. Using the Formike 128x128 CSTN driver shipped with ek-lm3s3748 as an
example, all its exported function names begin “Formike128x128x16”.

4. Rename the global tDisplay structure containing the driver entry points and screen dimensions to
something suitable for your new hardware.

5. Update the contents of the tDisplay structure to include the correct dimensions for your new display
and ensure that the function pointers it contains have been correctly updated to reflect your newly
named functions.

6. Replace the function bodies for each of the driver functions with code suitable for your new hardware.
Depending on how closely your new hardware matches the device supported by the driver you are
using as an example, you may be able to retain the low-level general-purpose input/output (GPIO),
synchronous serial interface (SSI), or inter-integrated circuit (I2C) communication functions in the
driver. If this is the case, you must update the GPIO and peripheral pins used to match your own
board.

7. Create a copy of the “hello” example application from a StellarisWare release and modify it to use your
new driver. This should involve changing the function call that initializes the display driver and
changing the name of the global tDisplay structure whose pointer you pass to GrContextInit. You may
have to modify the coordinates of the various elements drawn by the application depending upon the
dimensions of your new display compared to the previous one that the application was using.

8. Build your new “hello” version and debug your driver using this as a starting point. Once “hello” is
running, move on to the “grlib_demo”, which is more complex but exercises a lot more of the graphics
library and display driver including the widget layer.

4 Conclusion
With its simple API and sample source code for several existing displays, the Stellaris Graphics Library
display driver layer provides an easy way to offer graphics support on your new board with minimal
software development required to get a new display up and running.

8 Stellaris® Graphics Library Display Drivers SPMA039A–December 2011–Revised July 2013
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA039A


www.ti.com References

5 References
• Stellaris Graphics Library User’s Guide (SPMU018)
• Stellaris Graphics Library Standalone Package
• StellarisWare Driver Library

9SPMA039A–December 2011–Revised July 2013 Stellaris® Graphics Library Display Drivers
Submit Documentation Feedback

Copyright © 2011–2013, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPMU018
http://www.ti.com/tool/sw-grl
http://www.ti.com/tool/sw-drl
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA039A


IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Stellaris Graphics Library Display Drivers
	1 Introduction
	2 Library Structure
	2.1 Display Driver Overview
	2.2 Low-Level Graphics API Overview
	2.3 Widget API Overview
	2.4 Input Driver Overview

	3 Display Driver API
	3.1 Off-Screen Display Drivers
	3.2 Individual Display Driver Functions
	3.2.1 Init
	3.2.2 ColorTranslate
	3.2.3 PixelDraw
	3.2.4 PixelDrawMultiple
	3.2.5 LineDrawH
	3.2.6 LineDrawV
	3.2.7 RectFill
	3.2.8 Flush

	3.3 Existing StellarisWare Display Drivers
	3.4 Writing Your Own Display Driver

	4 Conclusion
	5 References


