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Reduce buck-converter EMI and voltage 
stress by minimizing inductive parasitics

Introduction
High-frequency conducted and radiated emissions from 
synchronous buck converters occur based on the transient 
voltage (dv/dt) and transient current (di/dt) generated 
during hard switching. Such electromagnetic interference 
(EMI) is an increasingly vexing issue in the design and 
qualification cycle, especially given the increased switch-
ing speed of power MOSFETs. This article identifies the 
significant role of power-stage inductive parasitics in EMI 
generation and offers suggestions for their minimization to 
reduce the broadband EMI signature.

Critical converter loops with high  
slew-rate currents
A compact, optimized layout of a power stage lowers EMI 
for easier regulatory compliance. In translating a converter 
schematic to a board layout, one essential step is to 
pinpoint the high slew-rate current loops, with an eye to 
recognizing the layout-induced parasitic or stray induc-
tances that cause excessive noise, overshoot, ringing and 
ground bounce.[1]

Consider the turn-on of the high-side MOSFET, Q1, in 
the synchronous buck converter of Figure 1. Current 
flowing originally from source to drain of the synchronous 
MOSFET, Q2, ramps to zero, and the current in Q1 
increases to the inductor current level. Hence, the loop 
shaded in red and labeled “1” in Figure 1 is designated as 
the high-frequency switching power loop (or “hot” loop).

In contrast, the current flowing in the inductor, LF, is 
largely DC with superimposed triangular ripple. The rate 
of change of the current is inherently limited by the induc-
tor and any parasitic inductance contributed by the series 
connections is essentially benign.

Loops 2 and 3 in Figure 1 are classified as gate loops for 
the power MOSFETs. Specifically, loop 2 represents the 
high-side MOSFET’s gate driver supplied by bootstrap 
capacitor, CBOOT. Likewise, loop 3 corresponds to the low-
side MOSFET’s gate driver supplied by VCC. The gate 
turn-on and turn-off current paths are delineated in each 
case by solid and dashed lines, respectively.
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Figure 1. Critical high-frequency AC loops with high slew-rate 
currents are the power loop and gate-drive loops
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Parasitic inductances
In general, the behavior of MOSFET switching and the 
consequences for waveform ringing, power dissipation, 
device stress, and EMI are correlated with the parasitic 
inductances of the power-loop and gate-drive circuits. 
Figure 2 provides a comprehensive illustration of the para-
sitic elements arising from component placement, device 
package, and printed circuit board (PCB) layout routing 
that affect switching performance and EMI of the synchro-
nous buck converter.

The effective high-frequency power-loop inductance, 
LLOOP, is the sum of the total drain inductance, LD, and the 
common-source inductance, LS, that results from the 
series inductance of the input capacitor and PCB traces, 
and the package inductances of the power MOSFETs. As 

expected, the power-loop inductance is highly related to 
the layout geometry of the input capacitor-MOSFET loop 
denoted by the red-shaded area in Figure 1.

Meanwhile, the gate-loop self-inductance, LG, includes 
lumped contributions from the MOSFET package and PCB 
trace routing. An inspection of Figure 2 reveals that the 
common-source inductance of Q1 exists mutually in both 
the power and gate loops. It increases switching loss 
because the di/dt of the power loop creates a negative 
feedback voltage that impedes rise and fall times of the 
gate-source voltage. Another factor that leads to increased 
component stress is the common-source inductance of Q2, 
which contributes to spurious turn-on of the low-side 
MOSFET during body-diode reverse recovery.[2]

Figure 2. MOSFET and gate-driver stage with inductive and capacitive parasitic elements
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EMI frequencies and coupling modes
Delineated in Table 1 are the three loosely-defined 
frequency ranges over which a synchronous buck 
converter excites and propagates EMI. During MOSFET 
switching, where the slew rate of the commutating current 
may exceed 5 A/ns, just 2 nH of parasitic inductance 
results in a voltage overshoot of 10 V. Furthermore, the 
current waveforms in the power loop with fast switching 
edges and leading-edge resonant ringing are rich in 
harmonic content, posing a severe threat of magnetic field 
coupling and radiated EMI.

Table 1. Converter EMI frequency classification

Converter  
Noise Type

Dominant Noise 
Source

Frequency 
Range

Conducted/ 
Radiated 

Emissions

1
Low-

frequency 
noise

Switching-frequency 
harmonics

150 kHz to 
50 MHz Conducted

2 Broadband 
noise

MOSFET voltage 
and current rise/

fall times, resonant 
ringing

50 MHz to 
200 MHz Both

3
High-

frequency 
noise

Body-diode reverse 
recovery 

Above  
200 MHz Radiated

To get an idea of the harmonic frequency amplitudes of 
the switch (SW) voltage waveform, consider an input 
having a periodic trapezoidal pulse with finite rise and fall 

times (Figure 3). Using Fourier analysis, it is shown that 
the harmonic-amplitude envelope is a double-sinc function 
with corner frequencies of f1 and f2, depending on the 
pulse width and rise/fall time of the time-domain 
 waveform.[3] A similar analysis applies for the instanta-
neous current in the power loop.

Three dominant noise-coupling paths are identified as: 
(1) conducted noise through the DC input lines;  
(2) magnetic field coupling from the power loop; and  
(3)  electric field coupling from the SW-node copper 

surface.[4]

Power-loop inductance, LLOOP, increases MOSFET 
switching loss and the peak drain-to-source voltage spike. 
It also exacerbates SW-voltage ringing, affecting broad-
band EMI in the 50- to 200-MHz range. Clearly, it is vital to 
minimize the effective loop length and enclosed area of 
the power loop. This reduces parasitic inductance and 
magnetic field self-cancellation, and makes it possible to 
reduce the magnetically-coupled radiated energy emanat-
ing from what effectively is a loop antenna structure.[3, 4, 5]

Conducted noise coupling is most likely on the 
converter input side as the ratio of loop inductance and 
input-capacitor series inductance (ESL) determines the 
filtering. Reducing LLOOP increases the input-filter attenu-
ation requirement. Fortunately, the noise conducted to the 
output is minimal if the filter inductor has a high self- 
resonant frequency (SRF) and also provides high transfer 
impedance from the SW to VOUT nets. The output noise is 
additionally filtered by low-impedance output capacitor(s).

Figure 3. The switch-voltage waveform and spectral 
envelope that depends on pulse width and rise/fall times
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Equivalent resonant circuit
Referring to the SW voltage waveform in Figure 4, a reso-
nance is excited by the parasitic energy stored during 
MOSFET switching. Simplified equivalent circuits are 
included on the right side of Figure 4 for analyzing the 
switching behavior. The switch-voltage overshoot above 
VIN and undershoot below ground (GND) are evident 
during the rising and falling edges, respectively. The oscil-
lation amplitude depends on the distribution of partial 
inductances within the loop, and the subsequent ringing is 
damped by the effective loop AC resistance. This 

contributes to voltage stress of the MOSFETs and gate 
drivers, and it also correlates to the frequency at which 
the broadband-radiated EMI is centered.[4]

Note that two important aspects during resonance are 
the resonant frequency and the loss or damping factor at 
that resonance. The main design goal is to push the reso-
nant frequency as high as possible by minimizing the 
power-loop inductance. This decreases the stored reactive 
energy and lowers the resonant peak voltage. Also, the 
damping factor is increased at a higher frequency due to 
the skin effect.

Figure 4. Practical SW-node voltage waveform and equivalent 
RLC circuits for a synchronous buck
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EMI mitigation begins at the schematic
When studying a converter schematic prior to PCB layout, 
it is often convenient to highlight the high-current traces, 
the high-dv/dt circuit nodes, and the noise-sensitive nets, 
as shown in Figure 5. This example shows a 2.2-MHz 
converter intended for noise-sensitive automotive applica-
tions that uses a current-mode synchronous-buck control-
ler, such as TI’s LM5141-Q1.

EMI mitigation at the PCB
Minimizing the physical size of the loop by paying atten-
tion to component placement is central to reducing power-
loop impedance. Noise coupling also depends on field 
distribution and orientation, making design of the PCB’s 
inner layers also important.

A passive shield layer (Figure 6) is established using a 
ground plane as close as possible to the switching loop by 

using minimum dielectric thickness. The horizontal 
current flow on the top layer sets up a vertical flux 
pattern. The resultant magnetic field induces a current in 
the shield layer opposite in direction to the current in the 
switching loop. By Lenz’s law, the current in the shield 
layer generates a magnetic field to counteract the originat-
ing magnetic field. The result is H-field self-cancellation 
that results in lower parasitic inductance relative to what 
the loop area would suggest.[4]

Having an uninterrupted, continuous shield plane on 
layer 2 with close proximity to the switching loop offers 
optimal performance for enhanced suppression of RF 
energy, and its importance cannot be overstated. Low 
intra-layer z-axis spacing is specified in the PCB stack-up 
specification, for example by using a 5-mil core dielectric.[6] 
Shield-layer effectiveness is maximized by avoiding vias  
to the extent that all of the noise current is kept on the 
top layer.

Figure 5. Schematic of synchronous buck converter that shows EMI-related circuit areas

U

LM
1

5141-Q1

VOUT

GND

SYNC

VIN

PGOOD

Compensation

Bootstrap for
Gate Drive

VDD

Bias Rail

PWM Controller
VCC

Bias Rail

Dither
Oscillator

Synchronization
f AdjustSW

Low-Side
MOSFET

High-Side
MOSFET

V = 5 VOUT

I = 8 AOUT

V = 3.8 V to 65 VIN

RES

AGND

SS

COMP

PGND

VOUT

CS

LO

SW

HO

HB
VINVCC

HOL

LOL

EN

DEMB

VCCX

VDDA

PG

FB

DITH

* V tracks V if V < 5.5 VOUT IN IN

COUT

CIN

CSS CRES CVDD

LF RS

Q1

Q2

RHO

RLO

RT

RC1
CC1

CC2

OSCVDDA

CVCC

High-Current Trace

Noise-Sensitive Trace

High dv/dt Node

CBOOT

Figure 6. Single-sided power stage component placement (top view)

Inductor

High-side

MOSFET

Low-side

MOSFET

VIN

GND

Input

Capacitors

Output

Capacitors

VOUT

GND

G

G

D
S

S
D

SW

Copper
Power

Loop
Top Layer Copper

Layer2 GND Plane

Top Solder

Legend

http://www.ti.com/aaj


Texas Instruments 6	 AAJ 3Q 2016

AutomotiveAnalog Applications Journal

Provisioning for EMI also places an emphasis on a small 
SW-node copper area to reduce capacitive coupling 
related to high-dv/dt SW-node voltage swings. The 
SW-node copper pour should be short and wide. A full 
ground plane under the SW node contributes a very small 
increase in SW-to-GND parasitic capacitance, but is 
recommended for a multi-layer stack-up PCB to diminish 
the electrically-coupled radiated energy.[5] A copper-pour 
keepout is maintained on the top layer under the inductor 
to minimize capacitive coupling from SW to VOUT.

EMI mitigation using controller features
When the PCB layout is fixed, various noise-reduction 
features integrated in synchronous buck controllers are 
most useful when dealing with EMI in the latter design 
stages. For example, the LM5141-Q1 includes asymmetric 
gate-drive slew-rate control, external clock synchroniza-
tion, an internal oscillator, and on-the-fly frequency 
hopping for adaptive tuning to avoid sensitive AM radio 
bands in automotive systems. Pulse skipping at light loads 
is inhibited during synchronization, or when the DEMB/
SYNC pin is pulled low to reduce noise and RF interference. 
For added reliability, this device is rated for negative 
SW-node and gate-drive transients of –5 V with up to 
20-ns duration.

To further diminish the EMI signature, a novel tech-
nique of spread-spectrum frequency modulation (SSFM), 
also known as dithering, disperses the spectral energy of 
the switching signal. Based on the CISPR 25 class 5 auto-
motive specification, Figure 7 shows a substantial improve-
ment in conducted emissions when spread-spectrum is 
enabled with the LM5141-Q1.

Conclusion
Synchronous buck converters generally switch under  
3 MHz, but generate broadband noise and EMI up to 1 GHz. 
Understanding the key converter switching loops from the 
schematic and diligently minimizing these loop areas 
during PCB design is imperative to reduce both conducted 
and radiated EMI. Controller-integrated EMI mitigation 
techniques, such as dither and slew-rate control, are 
convenient options in the latter design phases when a PCB 
spin is unacceptable.
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