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Introduction

Analog Applications Journal is a collection of analog application articles
designed to give readers a basic understanding of TI products and to provide
simple but practical examples for typical applications. Written not only for
design engineers but also for engineering managers, technicians, system
designers and marketing and sales personnel, the book emphasizes general
application concepts over lengthy mathematical analyses.

These applications are not intended as “how-to” instructions for specific
circuits but as examples of how devices could be used to solve specific design
requirements. Readers will find tutorial information as well as practical
engineering solutions on components from the following categories:

e Data Acquisition

e Power Management

e Interface (Data Transmission)
e Amplifiers: Audio

e Amplifiers: Op Amps

e Low-Power RF

e General Interest

Where applicable, readers will also find software routines and program
structures. Finally, Analog Applications Journal includes helpful hints and
rules of thumb to guide readers in preparing for their design.
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Data Acquisition

How delta-sigma ADCs work, Part 2

By Bonnie Baker
Signal Integrity Engineer

A strong addition to the process-control design environ-
ment is the delta-sigma (AXY) analog-to-digital converter
(ADC). This device’s claim to fame is its high 24-bit reso-
lution, which provides 224 or about 16 million output
codes. Granted, not all of the lower bits are noise-free,
but it is not unusual for a AX ADC to have 20 noise-free
bits, or about 1 million noise-free output codes. This is at
least four times better than the performance of 16-bit
converters.

Figure 1 shows a block diagram of a AX ADC. As
explained in Part 1 of this article series (see Reference 1),
the modulator of a AX converter shapes the data in such a
way as to allow high resolution by reducing low-frequency
noise. Part 1 also pointed out that the undesirable charac-
teristics of the modulator output are high-frequency noise
and a high-speed, 1-bit output rate. Once the signal resides
in the digital domain, a low-pass digital-filter function can
be used to attenuate the high-frequency noise, and a

Figure 1. Block diagram of A ADC

Analog v AY

decimator-filter function can be used to slow down the
output-data rate. This article, Part 2, will consider each
function independently, although real-world designs inter-
twine them in the same silicon.

The digital-filter function

The digital-filter function implements a low-pass filter by
first sampling the modulator stream of the 1-bit code.
Figure 2 shows a first-order, low-pass averaging filter. An
averaging filter is the most common filter technique used
in AY converters. As can be seen, the digital filter in
Figure 2 is a weighted averaging filter. Almost all AX ADCs
incorporate a class of averaging filters called sinc filters,
named for their frequency response. Many AZ devices,
especially audio devices, use other filters in conjunction
with sinc filters as part of a process called two-stage deci-
mation. Low-speed industrial AX ADCs usually use only
the sinc filter.
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The output rate of a digital filter is th
€ output rate ol a qiglla’ Iiiter 1s the Figure 3. Outputs of a digital filter

same as the sampling rate. Figure 3 shows
a digital filter’s outputs. In the time domain

(Figure 3a), the digital filter is responsible A
for the high resolution of the AX converter. 7FFFFF
Notice that the 24-bit code train resembles
the original signal. However, in the frequency
domain (Figure 3b), the digital filter applies 0000000
only a low-pass filter to the signal. In so doing,
it attenuates the modulator’s quantization
noise; but it also reduces the frequency
bandwidth, as any good low-pass filter will. L
With the quantization noise reduced, the sig-
nal re-emerges in the time domain.

version of the input signal, but it is still too

800000

The signal is now a high-resolution, digital
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A Signal
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fg

Quantization
Noise

(a) Time domain (b) Frequency domain

fast to be useful. The designer could have
the converter deliver every one of the samples, but it
would be pointless to do so because:

This converter would require a very fast controller or
processor.

While it might appear that there is an abundance of
high-quality samples at the high sampling rate of the
modulator, most of them don’t provide any useful infor-
mation, since a low-pass filter has been applied. In other
words, the extra samples are interpolations or interme-
diate results.

The decimator-filter function

The second function of the digital/decimation filter is the
decimator. The word “decimate” was originally used by the
Roman army to mean the killing of every tenth man of a
group that was guilty of mutiny. In the case of the digital/
decimation filter, the “decimation” of the digital filter’s
samples is much more dramatic. In the decimation circuit,
the digital signal’s output rate is reduced by throwing
away or “killing” portions of the output data. The way to
do this is to discard some of the samples.

High-Performance Analog Products

Figure 4. Digital/decimation filter's o
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(a) Input sampling rate (fg)

This may seem a bit distressing. Previously, there was a
beautiful sine wave that was well-defined with a large
number of samples. Throwing away a large number of
those samples leaves a skeleton of the original signal; but,
remember, most of those samples are not “real.” They can
be thought of as the filter’s work-in-process samples. In
fact, according to the Nyquist theorem, the new “skeletal”
version of the signal has exactly the same informational
content as the previous waveform, but now it is at a
manageable data rate. Decimating some of the samples
has not caused any information to be lost.

Figure 4 conceptually shows the decimation process.
The digital filter’s time-domain output in Figure 3a has
been brought forward to Figure 4a. Figure 4b shows the
decimator-filter function’s output signal.

This completes the description of the digital-filter and
decimator-filter functions in a AX converter.

Pulling the AX ADC together

Part 1 of this series showed the inner workings of the
modulator in the time and frequency domains. It also
showed how the modulator shaped noise into higher

utput from decimation process

4 fg/fy) = Decimation Ratio (DR)

7FFFFF

0000000 T T >
S

800000

v

(b) Output-data rate (fp)
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frequencies because of an oversampling sys-
tem with negative feedback. As previously
stated in the present article, the digital/
decimation filter reduces high-frequency
noise and passes the input signal to the out- 4
put of the converter at a reduced data rate. 4 ]
The combination of these two components :
provides a high-resolution ADC. |
The meaningful variables in this system |
are the modulator’s sampling rate (fg) and :

Figure 5. Increased DR provides a lower-noise, slower
output signal

Data Acquisition

the digital/decimation filter’s output-data fp
rate (fp). The ratio between these two vari-
ables is defined as the decimation ratio
(DR). The decimation ratio is equal to the
number of modulator samples per data out-
put. Decimation ratio values range anywhere
from 4 in the Texas Instruments (TI)
ADS1605 ADC to a maximum of 32,768 for

Quantization

(a) High DR decreases noise

»

fg

Quantization
Noise Noise

fg/fp) = Decimation Ratio (DR)

(b) Low DR increases noise

TI's ADS1256 ADC.

Consider the output spectrum of the AX
modulator in Figure 5. The modulator samples at a fre-
quency of fg and, in doing so, shapes the quantization
noise into higher frequencies. Many AX converters permit
the designer to program the data rate directly by adjusting
the decimation ratio. Suppose the data rate is chosen to
be some fraction of fg, as shown in Figure 5a. The fre-
quencies from 0 to fp, which constitute the output, are in
the signal band. Note the noise level in the signal band.

In Figure 5a, the effective number of bits (ENOB) is
very high. Since the output-data rate (fp) is determined
by the decimator-filter function, it depends on the decima-
tion ratio (DR), where DR = fg/fyy. Figure 5b shows that
the value for f), which has moved to the right, is now
higher. Unfortunately, there is also more noise. Most of the
noise is in the higher frequencies, decreasing the signal-to-
noise ratio and the ENOB.

There is a way to increase the sampling speed (fg) while
keeping the ENOB the same, and that is to increase the
master-clock rate. This will also increase fp, but will not
decrease the decimation ratio. Unfortunately, increasing
the master-clock rate will also increase power consump-
tion. Additionally, most converters have a practical limit
for fg beyond which they will not function properly.

Conclusion

A AY ADC fundamentally includes a modulator and a digi-
tal/decimation filter. The modulator converts the analog
signal directly into the digital domain by using a 1-bit ADC
and oversampling. The modulator topology implements a
noise-shaping function that drives the lower-frequency
quantization noise into higher frequencies. The low-pass
digital/decimation filter throws away the high-frequency

Analog Applications Journal 40 2011
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noise that was shaped by the modulator stage and reduces
the data-output rate of the device to a usable frequency.

There is a strong relationship between the output-data
rate and the converter’s resolution. If the sample rate is
kept constant, lower data rates provide high effective
resolution, or ENOB, at the output of the converter.

AY ADCs have other functions besides the basics in these
two articles, acting as current sources, voltage sources,
input buffers, etc. However, examining any AX ADC will
always reveal a modulator and a digital/decimation filter.
In choosing a AX ADC, it is best to start with the funda-
mentals and then see what else the device has to offer.
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Solar charging solution provides narrow-
voltage DC/DC system bus for multicell-

battery applications

By Wang Li, Battery Power Applications Engineer,
and Michael Day, Power Applications Manager

Introduction

Solar-powered systems typically must operate from a very
wide input-voltage range due to the large variations in a
solar panel’s output voltage. This wide operating range
limits the system’s ability to consume maximum power
from the solar cell under all light conditions. The ideal
solar charging application operates the solar cell at its
maximum power point (MPP) while simultaneously limit-
ing the input-voltage range of the system. This goal is
achieved by integrating a narrow-voltage DC/DC (NVDC)
battery-charging architecture with a solar-charger design.
The narrow voltage range for the system power bus pro-
vides higher system efficiency, minimizing battery charging
times and extending battery run times.! This article shows
the NVDC charging architecture in a solar charging appli-
cation and introduces a circuit that provides acceptable
charger operation under several operating conditions,
such as battery overtemperature, a discharged battery, a
fully charged battery, and a system-current overload.

Conventional charger topology

Figure 1 shows a conventional charger topology used with
high-power switching chargers. Notebook charging is a
typical application for this topology. One drawback is the
system’s wide operating voltage range, which requires more
expensive, less efficient power supplies to generate the

Figure 1. Conventional charger topology

Inputc Q1 Q2

power rails for the downstream circuitry.! The system volt-
age ranges from the highest AC adapter voltage (typically
22V for a lightly loaded adapter) to the lowest battery
voltage, which is 9 V for a 3S2P laptop battery pack. (3S2P
is an abbreviation for three batteries in series with two of
these series connections in parallel.) When the AC adapter
is present, the power-path-selector MOSFETs (Q1 and

Q2) turn on, and the battery MOSFET (Q3) turns off. The
AC adapter voltage is applied to both the system voltage
and the battery charger’s input, delivering power to both
circuits simultaneously. If the AC adapter voltage drops
due to a brownout, an overcurrent condition, or unplug-
ging the adapter, Q1 and Q2 turn off to prevent battery
power from flowing backwards into the adapter. Q3 turns
on and connects the battery-pack voltage directly to the
system. In this way, the system is always supplied with
power—either from the adapter or the battery.

Requirements of a solar-powered charger

The battery-charger architecture in Figure 1 is acceptable
for systems that use an AC adapter, but it is not ideal for
solar charging applications because there is no way to limit
the input current. To keep the solar cell always operating
at its MPP, which will minimize battery charge time and
the solar cell’s size and cost, the charger needs a current-
limiting mechanism. Unlike a conventional AC wall adapter,
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a solar cell should be operated with very tight
control over its load current. Figure 2 shows the
V-I characteristics of a typical solar cell under

one light condition and helps explain this concept.
The solid line represents the output current of
the solar panel as its voltage varies, while the
dashed line represents the output power. Because
the panel’s voltage drops as the current it delivers
increases, an MPP is created at a specific voltage
and current. A solar cell's MPP varies with differ-
ent light conditions and temperatures. If very little
charging and system current are required, the
solar cell may operate at Point A in Figure 2,
which is below its MPP. The solar cell delivers
less than its maximum power, which is acceptable
because the system is getting the power it needs.
However, if the battery charge current or system
power requirements increase, the charger pulls
more current and the solar cell operates at Point B
in Figure 2. At Point B, the solar cell’s output
current has increased, but the actual delivered
power has gone down because of the drop in volt-
age. With reduced power from the solar cell, it
takes longer to charge the battery. A well-designed

Power Management

Figure 2. Solar panel’s V-l curve and output-power curve
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solar-cell charger should contain circuitry that separates

the solar cell from the system as well as circuitry that con-

trols the solar cell’s total current so the cell can be oper-
ated at its MPP. This combination of circuitry can fully
utilize the solar cell’s available power, resulting in a less
expensive system because the designer does not have to
oversize the solar cell to meet charging requirements.

Basics of maximum-power-point tracking
Solar-cell chargers include special circuitry called

maximum-power-point tracking (MPPT) circuitry that
prevents the charger from consuming more than the solar

cell’s maximum power. This is typically implement
setting the minimum operating voltage that
corresponds with the solar cell’s MPP.

A design using the solar cell in Figure 2
allows the charger and system to draw any
current from the solar cell as long as the
solar cell’s voltage remains above Vypp.
When the current increases to the point
where the voltage drops to Vypp, a special
control loop in the charger takes over and
regulates the total current from the solar
cell to maintain the solar cell’s voltage at
Vupp- At this operating point, the solar cell
delivers its maximum power. Any power
not required for the system load is used

to charge the battery. This voltage-based
MPPT circuitry is fairly accurate at provid-
ing maximum power, even with varying
solar-cell illumination levels. Although
reduced light lowers the solar cell's maxi-
mum power and current capability, the

ed by

Input
Source

MPP is still achieved at approximately the same voltage.2
Voltage-based MPPT circuitry typically consists of only
two resistors external to the battery charger.3 All other
circuitry is integrated into the charger IC itself. A solar
cell’s Vypp does vary significantly with temperature. If
desired, additional circuitry can be added to track a solar
cell’s Vypp change with temperature. Tracking MPP over
temperature can reduce charging times by 40% .4

Adding NVDC charging architecture

Figure 3 shows how a narrow-voltage DC/DC (NVDC)
charging architecture can separate the solar cell from the
system. Rather than being connected to the solar cell via

Figure 3. NVDC architecture with MPPT circuitry
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the power-path-selector FETs, the system is connected

directly to the battery. The system voltage is now equal to

the battery voltage, regardless of the input voltage of the
adapter or solar cell. The narrow operating voltage allows
the designer to optimize the system power supplies for
size, cost, and efficiency.! It also eliminates the need for
the battery FET. The NVDC architecture is useful for solar
charging because it routes all current through the charger.

This allows the MPPT circuitry to effectively control the

total current from the solar cell and maintain operation at

the maximum rated power.

Connecting the system directly to the battery as in
Figure 3 has significant advantages, but it also has dis-
advantages under certain operating conditions that should
be considered. These conditions are as follows:

1. When the battery voltage is lower than the battery’s
precharge voltage, the battery current must be limited
to the precharge current, which may not be sufficient to
operate the system.

2. When the battery temperature is outside the allowable
range for charging, the charger must disable charging,
which also disables the system’s power.

3. When the battery is fully charged, it should be discon-
nected from the charging source to extend battery life,
but the system should remain on.

All of these conditions can be addressed with the addi-
tion of FETs Q4 and Qb5 to the NVDC architecture (see
Figure 4). A gas gauge or a host controller monitors volt-
ages, current, and battery temperature and uses these
inputs to control the FETs, which connect or disconnect
the battery to or from the charger depending on the oper-
ating conditions. The host can be as complicated as a micro-
processor with analog-to-digital converters that continu-
ously monitors operating conditions and adjusts charger
performance based on the system’s needs, or it can be

Texas Instruments Incorporated

simple, discrete circuitry that monitors only battery voltage
and temperature.

A deeply discharged battery requires preconditioning
prior to being charged. Typical Lithium-Ion (Li-Ion) batter-
ies require the charger to apply a precharge current that is
1/10 of the fast-charge current until the battery voltage
rises above a specific voltage, typically 3 V/cell. When the
host detects a battery voltage that is less than the specified
precharge voltage (Vgat < VprrcHg), it turns Q5 on and
provides a precharge current through Rpgpcpa- The value
of RprecHg is chosen to provide the maximum allowable
precharge current when the battery voltage is fully dis-
charged. In this operating mode, the system is effectively
isolated from the battery voltage, which allows the charger
to maintain the NVDC regulation voltage even with a dis-
charged battery. When the battery voltage increases above
the precharge voltage, the host turns Q5 off and Q4 on,
effectively shorting the battery and the system together.
The battery’s charge current increases to the charger’s
maximum output current minus the current into the
system. If the system current exceeds the charger’s fast-
charge current, the battery enters supplement mode
where current flows out of the battery to the system.

If the host detects an over- or undertemperature fault
condition, it turns off both Q4 and Q5. This stops the
battery charging while still allowing the charger to power
the system. The host can also turn Q4 and Q5 off when
the battery reaches its full-charge voltage to increase
battery life. Detailed information on the battery-disconnect
circuitry can be found in Reference 5.

Conclusion

The NVDC charger architecture coupled with MPPT and
the battery-disconnect circuitry provides several advan-
tages over standard charging architectures. It intelligently
connects and disconnects the battery from the system

Figure 4. NVDC architecture with battery-disconnect circuitry
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under the appropriate operating conditions, allowing the
designer to optimize the solar panel’s output power for the
system’s needs. The charger also provides a narrow system
operating voltage, which optimizes efficiency and extends
battery life.
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Solar lantern with dimming achieves

92% efficiency

By Chris Glaser

Applications Engineer

Solar lanterns are becoming increasingly popular, especially
for decorative nighttime lighting or in areas with unreliable
or nonexistent electrical service. These lanterns charge a
battery during the day and then use that stored energy
during the night to provide light on outdoor paths and side-
walks, or for indoor activities such as cooking or reading.
Since the lanterns typically are powered by low-cost and
robust multicell lead-acid batteries, a common problem
encountered is how to efficiently convert this chemical
energy to lumens (visible light output). To solve this, LEDs
are frequently used because they produce many lumens per
watt of energy consumed. A switching regulator is usually
employed to efficiently convert the variable battery voltage
to a regulated yet changeable (dimmable) current in the
LED, which creates light. Efficiency must remain high over
the battery voltage and dimming range in order to prolong
battery life. A complete, cost-effective solution is needed
to efficiently convert the 6, 9, 12, or 15 V of a common
lead-acid battery pack to light with dimming capabilities.

Single LED versus an LED string

When designing a solar-lantern system, designers must
choose whether to produce the desired amount of light
with multiple smaller, lower-power LEDs or one larger,
high-brightness LED. Typically, a single LED driver drives
a string of smaller LEDs in a series configuration. The
advantages of this approach are that the current in each
LED is exactly the same and the LEDs can be positioned
to illuminate a wider area than is possible with a single
LED. However, even with equal currents, the LEDs cannot
each emit exactly the same color of light unless they are
tested and binned before assembly. This is more costly.

A single high-brightness LED emits light to a smaller
area, but this can be overcome by a diffuser cover placed
over the LED. When pick-and-place costs in assembly are
considered, a single high-brightness LED is usually more
cost-effective overall than several smaller LEDs. A single
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LED does not need to be binned, which also reduces
costs. This article discusses use of the low-cost, single
high-brightness LED. The LED current is set to 800 mA
for a dimmable 2.8-W power output, which is typical for
solar lanterns.

Easily dimmable

The light output of the solar lantern must be adjustable
according to the needs of the user. For instance, more light
might be required for reading than for cooking. Dimming
the light output draws less energy from the battery and
results in a longer battery run time.

Analog dimming and pulse-width-modulator (PWM)
dimming are two methods that can be implemented to
reduce the LED’s light output. Analog dimming reduces
the average current in the LED, while PWM dimming
operates the LED at full current but varies the duty cycle
at which this full current is applied. Thus, PWM dimming
creates an average LED current equivalent to the full cur-
rent multiplied by the duty cycle of the applied PWM sig-
nal. The PWM dimming frequency should be above the
bandwidth detectable by the human eye so that the viewer
does not notice any flicker. In general, analog dimming is
more efficient, but PWM dimming eliminates the LED
color shift that occurs when the LED is driven at different
currents (as in analog dimming). So, the LED light color
remains the same across the dimming range. Since both
dimming methods have advantages and disadvantages, the
ideal solar-lantern LED driver should accommodate both
dimming methods. A PWM signal from a microcontroller,
which typically is present in the solar-lantern system for
battery management and other tasks, should be the single
dimming interface with the LED driver for both methods.
The Texas Instruments TPS62150 supports analog and
PWM dimming from a PWM signal, as shown in Figures 1
and 2 (see next page). Detailed design equations are
found in References 1 and 2.
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The advantage of these circuits is their similarity. Only
small schematic changes and a change to the PWM signal’s
frequency are needed to implement analog or PWM dim-
ming in a given design. This means that the same LED
driver circuit can be used for multiple solar-lantern designs.
Simply populate the circuit with different components and
load a slightly different code to the microcontroller, and
the solar lantern is optimized for either highest efficiency
or most constant light color through the use of either ana-
log or PWM dimming,

Power Management

Another major concern is the dimming linearity. Does
the rate of change in the LED current (and thus the light
output) across the dimming range correspond to the rate
of change of the input signal (in this case, the duty cycle
of the PWM signal)? If this is true for the given LED driver,
then the code development is quite simple, as a 10%
increase in duty cycle results in a 10% increase in light
output. If this were not true, then additional testing and
code would be needed to correlate a given change in the
input signal to the desired change in light output. This

Figure 1. Circuit schematic for analog dimming
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correlation might also vary across the
dimming range, resulting in further
complications to the dimming algorithm.
Fortunately, the circuits in Figures 1 and
2 support very high dimming linearity, as
shown in Figures 3 and 4. Each circuit has
a coefficient of determination (R? value)
of 1, which indicates perfect linearity. (The
R2 value is a statistical measure of the
variability in a data set, and a value of 1
indicates zero variability.) This results in a
very simple code development for the dim-
ming algorithm and provides a pleasant
user experience in the smooth dimming
behavior of the lantern.

However, for analog dimming, the linear
equations modeling this linearity have a
y-axis intercept of 94 mA. This shows
another limitation of analog dimming—an
inability to dim the LED at very low out-
put currents. To solve this, PWM dimming
is used, with a y-axis intercept of -7 mA.
This allows very low LED currents to be
achieved at very low PWM duty cycles.

Achieving high efficiency

Efficiency is critical in any battery-
powered system, but especially in a solar
lantern. Since it cannot be assumed that
every day will have sunlight, the batteries
have to last for more than one day at a
time without a recharge. By an efficient
conversion of stored chemical energy to
light and a reduction of the light output
through dimming, the LED driver increases
the battery run time. In addition to sup-
porting dimming, an efficient LED driver
should (1) operate at a relatively low
switching frequency to reduce the switch-
ing losses, (2) have a power-save mode to
boost the efficiency at low light levels, and
(3) have a cost-effective method to
reduce the losses in the current-sensing
resistor, R1 in Figure 1. The TPS62150 is
a good choice because it has these three
features and produces the efficiency

14
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Figure 3. Analog dimming linearity
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shown in Figures 5 and 6. Due to a higher
voltage drop when the LED is driven at
its full current, and due to reduced effi-

ciency during the turn-on and turn-off of 100

Power Management

Figure 5. Analog dimming efficiency
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Extending the SPI bus for
long-distance communication

By Thomas Kugelstadt

Senior Applications Engineer

The serial peripheral interface (SPI) bus is an unbalanced
or single-ended serial interface designed for short-distance
communication between integrated circuits. Typically, a
master device exchanges data with one or multiple slave
devices. The data exchange is full-duplex and requires syn-
chronization to an interface clock signal. However, recent
trends in the design of industrial data-acquisition systems
have not taken this synchronization requirement into
account, and distances between the microcontroller and
the corresponding analog-to-digital and digital-to-analog
converters (ADCs and DACs) can reach 100 m or more.
The impact of the added propagation delay on the data-
to-clock synchronicity is often ignored, and interface
designs that operate perfectly in the lab environment cease
operation when implemented on the factory floor. There
can be multiple reasons for the interface malfunction. This
article tries to shed light on the major ones, including;:
e Lack of synchronization due to large propagation delays
of the signal path
e Reduced noise immunity due to long-distance,
unbalanced signal paths
e Damaged transceivers due to large ground-potential
differences (GPDs)

e Data transmission errors due to unterminated data lines

e Transceiver latch-up and network downtime due to
large electrical transients

Synchronicity
An SPI primarily uses three interface lines:

e An interface clock initiated by the master device to
ensure synchronous data transfers

e A data line for data sent from the master to a slave
e A data line for data sent from a slave to the master

A fourth wire that carries what is known as the slave-
select signal is not required for controlling interface flow
but is needed for addressing a specific slave out of a range
of slave devices. Figure 1a shows a simplified schematic of
a microcontroller unit (MCU) operating as the master that
controls two data converters representing the slaves.

With byte lengths ranging from 8 to 12 bits and multiples
thereof, and data rates ranging from 1 to 20 Mbps, the
standard SPI configuration allows for short propagation
times and hence only short distances in order to maintain
synchronicity between the interface clock and the data
transmitted in both directions. Figure 1b shows the inter-
face timing of the first three data bits when the SPI is
configured to change data at the rising clock edge and to
sample data at the falling clock edge.
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Over long distances, however, the transmission cable
introduces significant propagation delay into the signal
path. Assuming a typical signal velocity of 5 ns/m, a 100-m
cable will cause a propagation delay of 500 ns. Because the
data sent from the master to the slave experiences the
same delay as the master-initiated interface clock, both
will remain in sync across the entire data link. In the oppo-
site direction, however, the slave sends data to the master
only when the first clock edge reaches the slave. Further-
more, this data will experience a second delay on its way
back to the master, so the slave data will be out of sync by
twice the cable’s propagation delay.

Of course, communicating across a 100-m cable won’t
be possible without appropriate line drivers and receivers.
These components will further increase the propagation
delay by about another 50 ns, for a total of 550 ns. The
slave data will therefore lag behind the first clock edge by
a total of 1100 ns, or 11 bits when a data rate of 10 Mbps
is assumed.

Figure 1. Simplified schematic of an SPI
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The only possible solution for restoring
synchronicity between the slave data and
the interface clock while maintaining a

Interface (Data Transmission)

Figure 2. Clock-feedback path restores synchronicity

high data rate is to feed the clock signal
from the slave back to the master. Figure 2
clarifies the benefit of clock feedback. Here
t( represents the first rising clock edge, or

the start of a data transmission, and tp is SPI1 = )

the data-link propagation delay. After tra- Master

versing the data link, both the master clock
(SCK,p and the master data (MOSI)
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ment is that the master provide two inde-
pendent SPI ports, one configured as a
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master (SPI1) and the other configured as

a slave (SPI2). Most modern microcontrol-
lers possess two or more SPI ports, so this
requirement poses no problem.

Nevertheless, implementing a long-distance, SPI-
compatible interface in the real world is not a trivial task.
Long-distance data links are always subject to external
noise sources, ground-potential differences (GPDs), volt-
age and current surges due to inductive load switching,
and often even reflections due to wrong or no termination.
The flowing schematic in Figure 3 (see next page) tries to
cover all of these aspects by showcasing the various trans-
ceiver and protection circuits that can counteract the
derogating effects.

Increasing noise immunity

Unbalanced or single-ended drivers and receivers are
inadequate for accomplishing a robust data link over long
distances, as they are susceptible to common-mode noise.
An excellent method to eliminate common-mode noise in
a synchronous, full-duplex interface such as an SPI is the
use of RS-422 differential driver and receiver circuits in
combination with twisted-pair cable.

Figure 4. TEM-wave radiation effects

Because the conductors of twisted-pair cable are closely
electrically coupled, external noise induced equally into
both conductors appears as common-mode noise at the
receiver input. Although differential receivers are sensitive
to signal differences, they are immune to common-mode
signals. The receiver therefore rejects common-mode
noise, and signal integrity is maintained.

Another benefit of close electric coupling is that the
currents in the two conductors create magnetic fields that
cancel each other. The initial transversal electromagnetic
(TEM) waves of the two conductors are therefore largely
reduced to electric fields that cannot radiate into the envi-
ronment (see Figure 4). Only the far smaller fringing fields
outside the conductor loop can radiate, thus yielding
much lower electromagnetic interference (EMI).

Eliminating ground loops and GPDs

While the RS-485 and RS-422 standards specify that a data
link without a ground wire can be operated with a GPD of
up to £7V, it is advisable not to assume that these values
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Figure 3. SPI extended via RS-422 data link
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represent the maximum GPD. Much higher values are often
encountered in industrial plants, sometimes reaching sev-
eral hundreds and even thousands of volts. Because GPDs
largely depend on factors outside the system designer’s
control, such as the electric installation and/or the number
of electric motors and generators, the most secure way to
prevent transceiver damage from large ground-potential
variations is to galvanically isolate any remote network node
from the bus. The circuit in Figure 3 demonstrates this by
having only the remote transceiver connected to the bus,
while the data-converter circuit is galvanically isolated.
Also, to provide the input and output signals of the
remote transceiver with a stable ground reference, the
transceiver’s ground terminal as well as the digital isola-
tor’s ground terminal (GND1) are connected to the master
ground potential via a separate ground conductor. This
form of grounding is known as a single ground reference.

Avoiding antennas through line termination

The data link in Figure 3 is terminated with 100-Q resis-
tors, as suggested by the RS-422 standard, matching the
characteristic impedance of the bus cable. A myth exists
that bus cables of a few meters in length or data links
operating at low data rates don’t need termination. Don’t
believe it. Operating the bus without termination can turn
the transmission line into a nasty receiver/transmitter
antenna. The lack of termination resistors, which usually
absorb the incident wave power sent by the driver, causes
standing waves to occur; and the entire incident wave is
reflected into the bus. The reflected waves mix with other
incident waves, thus yielding standing waves for signal fre-
quencies whose quarter wavelengths, or multiples thereof,
equal the length of the data link.

Interface (Data Transmission)

Depending on their location, the wave nodes (Iinima)
and antinodes (maxima) can have varying effects on the
bus transceivers (see Figure 5). A driver close to an anti-
node sees a high impedance and therefore transfers insuf-
ficient energy to the bus. A driver close to a node sees a
very low impedance or a short. The resulting output current
can exceed the driver’s maximum drive capability and
even trigger its current limit at around 250 mA. Receivers
located at antinodes can be damaged by excessively large
input signals that exceed the receiver’s common-mode
input range. Receivers close to nodes experience insuffi-
cient signal strength and are highly susceptible to noise
and EMI. Any of the foregoing events will result in data
errors from either the transmission or the reception of
wrong data.

Protecting the network against
damaging transients

Electrical overstress transients caused by electrostatic dis-
charge (ESD), switching of inductive loads, or lightning
strikes will corrupt data transmission and damage bus
transceivers unless effective measures are taken to dimin-
ish their impact. Modern transient-voltage suppressors,
such as the ones in Figure 3, are the preferred protection
components for high-speed data transmission due to their
low capacitance, which allows them to be designed into
every node of a multinode network without requiring a
reduction in data rate.

Depending on the power rating of the transient-voltage
suppressor chosen, the maximum clamp voltages can
range from 25 to 35 V, which is higher than a standard
transceiver’s maximum bus voltage of 14 V. In this case,
the internal protection circuit of the transceiver must

Figure 5. Effects of an unterminated bus
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absorb the remaining clamp energy to protect the device
from damage.

For ESD and burst transients, the clamp energy is rather
low due to the short pulse duration and does not pose a
problem to the internal ESD cells. Clamp energy from
surge transients, however, can present a serious challenge
due to the much longer pulse duration. For transceivers
specified with low ESD immunity, series resistors might be
necessary to reduce the remaining current flowing into the
transceiver. Common resistor values range from 5 to 10 Q.
Note that these resistors must be surge-rated to provide
high pulse robustness.

Although the transient-voltage suppressor’s diodes divert
large transient currents to ground, it must be ensured that
these currents are further diverted to true earth potential
without disturbing the ground reference of the remaining
circuitry. Often this is accomplished by implementing a
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high-voltage capacitor that has one plate connected to
ground and the other plate connected to a protective-
earth (PE) island. This island is then connected via a
short, low-inductance earthing wire to the PE terminal of
the local mains supply.

In addition to the suppressor’s action on the bus side,
further protection against signal degradation is required on
the transceiver’s single-ended sides. This is accomplished
with R-C low-pass filters, which filter transient remnants
in the reception path and stop high-frequency noise from
entering the transmission path.
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Analog linearization of resistance
temperature detectors

By Bruce Trump
Staff Technologist
are commonly used in industrial and scien-
tific temperature measurements. The most
common types are pure platinum (Pt) 400
formed into wire or evaporated in a thin /
film on a substrate. They rely on the funda- 350 /"
mental temperature-dependent resistance 300 -
properties of this noble metal. They are / -
very stable and useful at temperatures S 250 /
ranging from cryogenic to over 800°C. A ] e
wide range of physical configurations, § 200 // =
resistance ranges and accuracies is avail- - 100 Q at 0°C / Curvature due to
able.! The commonly used notation “Pt100” g 150 - T zi(r::l)irrl\::::fer
indicates a 100-Q resistance at 0°C. The 100 Y
relationship between the RTD’s resistance
and temperature is described by the 50
Callendar-Van Dusen equation,

Rrmp = Roll + AT + BT2 + C(T - 100) T3], 0

) -100 0 100 200 300 400 500 600 700 800

whose values are defined as follows: Temperature (°C)

Ry is a 100-Q resistance at 0°C (Pt100)

A =3.9083 x 103

B=-5.775 x 10-7

C=0forT>0°C, or C =-4.23225 x 10-12 for T < 0°C. When the RTD is excited with a current source, the

The resistance of a Pt100 RTD increases with tempera- resulting RTD voltage is directly proportional to the resist-
ture at approximately 0.39%/°C. While they are far more ance, yielding the same nonlinearity. If, however, the excita-
linear than thermocouples, RTDs have a significant tion current is gradually increased as the RTD temperature

second-order nonlinearity of approximately

0.38% per 100°C measurement range (see

Figure 1). This nonlinearity is often corrected
digitally, but there are many applications for

purely analog processing and linearization of i i i

the RTD. RTD voltage is
This article explains an analog technique for | gradually boosted -

linearization of the RTD. The same technique is :;tc};tlaqgﬁa:d:?ent

also used with bridge sensors such as pressure

and load cells. The principles can be applied to T Xy D) )/ =

other ratiometric devices with primarily second- out J/

order nonlinearity; i.e., any sensor or system 7'

with an output that is proportional to an excita- \

tion voltage or current. RTD resistance
The exaggerated graph in Figure 2 shows that —= - with second-order

RTD Voltage
b
|
o

- . nonlinearity
Fhe temperature coefficient dec.reases with (exaggerated)
increasing temperature, producing an upward
bow in the middle. Above 0°C, standardized data
for the Pt100 has a purely second-order or para-
bolic function. Assuming calibration at two end-
RTD Temperature

point temperatures, this produces an error that
is greatest at the midpoint temperature.
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is increased, the nonlinearity can be greatly
reduced. Figure 2 shows an increasing
excitation current derived from the output
of the amplified RTD voltage. This current
is, in effect, a controlled amount of positive
feedback. It yields an interesting “chicken-
or-egg” dichotomy: The RTD voltage at the
input of the amplifier is linearized when the
output of the amplifier is linearized—and
vice versa. The correct amount of positive
feedback results in both.

When positive feedback is optimized, a
much smaller s-shaped error remains with
nearly equal negative and positive values,
reaching maximums at % and % full scale
(see Figure 3). This primarily third-order
nonlinearity does not come from the RTD
but is an artifact of the linearization tech-
nique. Its magnitude depends on the tem-
perature range chosen for linearization.
Figure 3 shows the initial nonlinearity error
for a —100°C to +800°C temperature
range—a 900°C span. The 3.7% RTD non-
linearity at midscale is reduced to approxi-
mately +0.11%, a 33:1 improvement. The
improvement is even greater for narrow
temperature ranges, approaching 150:1 for
a 200°C range.

The use of positive feedback might raise
the concern of possible circuit instability.
The magnitude of this feedback is small
enough, however, to have negligible effect
on the stability of commonly used circuits.

Figure 4 shows a practical implementation
of an RTD. R1 provides the primary excita-
tion current from Vypp, a stable voltage
reference. R5 provides the temperature-
varying component of excitation current
from the output of Al. R2, R3, and R4 set
the required amplifier gain and offset to
produce the desired output-voltage range.
The Texas Instruments (TI) OPA188*
shown in this example is a new low-noise,
chopper-stabilized operational amplifier

that contributes negligible error to the circuit. Its very low
and stable offset voltage makes it a possible upgrade to

TT's OPA277 precision industrial amplifier.

The resistor values to achieve best correction can be
calculated with iterative techniques. Many designers might
optimize this type of circuit by using creative calculations
or approximations. A closed-form solution is possible by

Texas Instruments Incorporated

Figure 3. Percentage of RTD error versus temperature

4.0
35 // x \\
3.0 / Nonlinearity of RTD \
for 900°C span \
2.5 ‘ | \
S 20 Corrected output with
5 nonlinearity peaks
E 1.5 at s and % scale
1.0 Zero error at
/ / midscale and \ \
0.5 / endpoints \
0.0 v ¢
-0.5
-100 0 100 200 300 400 500 600 700 800
Temperature (°C)

Figure 4. Typical RTD configuration with error compensation

R3
60.44 kQ
A1
—~_OPA188 v
ouT

0°C to ——®——©° 0Vat0°C
200°C + 5V at 200°C

Pt100 S

100 Q R5

R4 106.18 kQ
1kQ

solving the nodal equation that relates the RTD voltage,
RTD resistance, Viar R1, RS, and Vo

tions, please refer to the dual version, OPA2188, at www.ti.com/product/!

(OPA2188]

High-Performance Analog Products

Rprp +R5 Repmp +R1
Vit = VReR X R SR VOUTXR SRT
KD~ 4RI “RID 2 4 RS
www.ti.com/aa} 402011  Analog Applications Journal


http://www.ti.com/aaj
http://www.ti.com/product/OPA2188
http://www.ti.com/product/OPA2188

Texas Instruments Incorporated

Three conditions must be met to achieve
zero error at the calibration endpoint tem-
peratures and the midpoint temperature.
Three separate variations of the preceding
equation are written to describe the three
zero-error conditions and are solved simul-
taneously for the only unknown variable,
R5. The resistance of the RTD at the mid-
point temperature is not halfway between
the endpoint resistances. This midpoint
condition holds the key to the solution for
best linearity correction.

The math yields three results for R5; only
one is a positive resistance. The expression
for R5 is very long and impractical to pre-
sent here. To download an Excel® work-

Open to view the WinZip® directory online
(or click Save to download the WinZip file
for offline use). Then open the file RTD_
Linearization_v7.xls to view the calculation
worksheet. This closed-form solution is
intellectually satisfying and avoids possible
problems with convergence, but the results
are no better than those produced with
iterative calculations. Practical implemen-
tations often require trimming of resistors

General Interest

Figure 5. Correlation of excitation current to RTD error

16

14 /

12 //
)

< 10 Required change in
e excitation current /
3 \ /
o
) &,/
o 6 /
P Uncorrected
4 L~ RTD error
//

0 100 200 300 400 500 600 700 800
Temperature Measurement Span (°C)

Figure 6. Amplifier with three-wire RTD connection

for calibration because accurate, non- REF ——
standard values are often required. SPICE 5V I
simulation can help determine actual =
performance with the nearest standard Al
values. The WinZip file download listed W y
above also includes two RTD simulation oG to G o0V atoeC
examples in TINA-TI™ SPICE files. One file 200°C ;e/ REF 5V at 200°C
implements an RTD linearization circuit
based on an operational amplifier, and the 1"(;;22 "
other file is based on an instrumentation R5
amplifier. Please see Reference 2 for more / /" 106.18 kQ
information on an RTD simulator for SPICE. V "\ -
Figure 5 shows that uncorrected non- . S
linearity of the RTD increases as the cali- ff,‘,‘:,”,‘,',;‘:f_',f,fé‘: 3;:§ates Res'Stan?e creates
ge common-mode voltage
brated temperature range is increased,
reaching approximately 2% for a 500°C span.
The variation in the RTD’s excitation current
to compensate for this nonlinearity is approx-
imately four times the nonlinearity. Thus, for a 500°C Figure 6). In the three-wire connection, two connections
measurement span, the excitation current increases by are used on the ground side of the RTD. Equal currents
approximately 8% from low-scale temperature to full scale. flowing in equal line resistances create a common-mode
Low-resistance connections to the RTD are crucial in input voltage that is rejected by the instrumentation
maintaining accuracy with this circuit. For this reason, amplifier. Current flowing in the ground-wire connection
high-resistance RTDs such as Pt1000 or Pt5000 may be also creates a common-mode voltage. Note that the cur-
most practical. With a four-wire (or Kelvin) connection to rents in signal connections are not precisely equal. They
the RTD and an additional operational amplifier, errors differ due to the varying linearity correction current from
induced by wire resistance can be eliminated. R5. Nevertheless, this configuration removes most of the
An integrated instrumentation amplifier with a three-wire error that is due to line resistance.

RTD connection can provide an alternative solution (see
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Table 1. Partial listing of Tl's integrated circuits for RTDs and bridge sensors

PRODUCT SENSOR TYPE EXCITATION OUTPUT FEATURES

XTR105 RTD Dual 1-mA current 4to20 mA Resistor-programmed range and linearization

XTR106 Pressure bridge Voltage 4t020 mA Corrects positive or negative second-order nonlinearity
XTR108 RTD Dual programmable current |4 to 20 mA or voltage | Programmable excitation current and linearization
XTR112 High-impedance RTD | Dual 100-pA current 4to20 mA Excitation for Pt1000 RTD

XTR114 High-impedance RTD | Dual 250-pA current 4t0 20 mA Excitation for Pt5000 RTD

PGA309 Pressure bridge Programmable voltage Voltage Digitally controlled analog-signal path with linearization
Other sensor types References

Bridge sensors such as strain gauges and load cells fre-
quently require linearization with similar techniques.
Voltage excitation is generally used for these applications,
but the concept is the same. Excitation voltage is varied
with amplifier output voltage. These sensors can have a
downward bowing nonlinearity requiring that the excita-
tion voltage decrease as pressure increases. Furthermore,
nonlinearity may vary significantly from unit to unit, so
individual calibration may be required.

Integrated solutions

TT uses variable excitation for linearization in several inte-
grated circuits intended for RTDs and bridge sensors (see
Table 1). Some circuits are designed specifically for
remote sensors with two-wire, 4- to 20-mA current-loop
output. XTR106 and PGA309 provide voltage excitation,
which is preferred for many strain-gauge bridge-sensor
applications. Though designed for specific sensor types,
these devices have been successfully adapted to a variety
of sensor applications, with and without variable excitation
for linearization.

High-Performance Analog Products

Www.ti.com/aa

1. Resistance thermometer. Wikipedia [Online]. Available:

2. Thomas Kuehl. (_2_06’_7, May 28). Developing a precise
Pt100 RTD simulator for SPICE. EN-Genius Network:
analogZONE: acquisitionZ ONE [Online]. Available:

3. Bruce C. Trump. (1994, March 3). Pressure gauge
responds linearly to altitude. EDN [Online]. Available:

http://www.edn.com/archives/1994/030394/05di5.htm

Related Web sites

www.ti.com/product/partnumbe

Support files with Excel spreadsheet and TINA-TI™
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