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1 Introduction
This document describes the direct down-conversion (zero-IF) architecture in a wireless receiver system,
and the I/Q correction algorithm implemented in a Field Programmable Gate Array (FPGA) of the
TSW6011 evaluation module (TSW6011EVM). The benefits of the direct down-conversion and high/low
intermediate frequency (IF) architecture system designs are addressed, along with the benefits of I/Q
correction processing in a direct down-conversion receiver system. Finally, error vector magnitude (EVM)
results are presented as a result of I/Q correction processing in order to compensate for the degradation
of signal quality from a direct down-conversion receiver system. Figure 1 shows the block diagram of the
TSW6011 Evaluation Module.

Components of the TSW6011EVM
• Altera Cyclone III – FPGA implemented with I/Q Correction and other required algorithms
• TRF371125 – I/Q demodulator up to 4 GHz with on-chip programmable low-pass filter (LPF)
• ADS5282 – octal-channel analog-to-digital converters (ADCs) with maximum 65 Msps of sampling

speed
• CDCE62005 – 5 to 10 output clock generators with jitter cleaner
• DAC5672 – 14-bit dual digital-to-analog converter (DAC)

Figure 1. Block Diagram of the TSW6011 Evaluation Module

2 Direct Down-Conversion System with I/Q Correction SLWU085–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLWU085


www.ti.com Design Summary

2 Design Summary
The I/Q imbalance of phase and amplitude causes image interference. This effect severely impacts the
overall signal quality such as signal-to-noise ratio (SNR), error vector magnitude (EVM), and sensitivity,
while demodulating the complex signal. These impacts are a concern for direct down-conversion
architecture designs, although direct down-conversion architecture (zero-IF) provides many other benefits
when compared to alternate digital-IF architecture. With the aid of I/Q correction, direct down-conversion is
achieved in the receiver system while reducing the complexity, current consumption, and overall size of a
receiver system.

Figure 2 and Figure 3, respectively, show –35.66 dB of EVM without I/Q correction processing. The I/Q
correction block in the TSW6011 improves the EVM to –51.4 dB.

Figure 2. EVM Without LPF (Before I/Q Correction) Figure 3. EVM Without LPF (After I/Q Correction)

Figure 4 illustrates the I/Q imbalance of phase, gain, and offset with and without I/Q correction processing.
The RF input signal is temporarily shifted by 4 MHz at the radio-frequency (RF) input. Hence, the
composite signal bandwidth is 13 MHz for I/Q correction processing. The blue trace represents the pre-I/Q
correction, and the yellow trace represents the post-I/Q processing. The adjacent-channel-leakage ratio
(ACLR) shows –64.9 dBc after I/Q correction processing.

Figure 4. Reference Test Result Using WCDMA Test Signal
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3 Theory of Operation
In the analog domain of a direct down-conversion system, a demodulated complex signal inherently
includes amplitude-phase imbalance between In-phase (I) and Quadrature-phase (Q) signal paths. This
imbalance exists because these signals are not perfectly matched to each other. The I/Q amplitude and
phase imbalance produces a sideband image that severely degrades the EVM of the received signal. In
wireless receiver architecture, the degradation of received signal quality worsens sensitivity, and possibly
causes the system to become out of specification in terms of system operation requirements. The
sensitivity of the received signal must be held as high as possible in any wireless system.

The blind estimation algorithm for frequency-independent I/Q imbalance uses the properness (see the
following note) of second-order statistics of a complex signal. The I/Q correction algorithm in the
TSW6011EVM is based on the second-order statistics of the received signal, which means that complex
signals are mutually independent and uncorrelated with each other. As long as a signal is proper (also
referred to as circular, see the following note), the average energy of I and Q are equal.

NOTE: A proper signal is always circular, but a circular signal can be improper.

As I/Q imbalance in a direct down-conversion system makes the received complex signal improper and
noncircular, the I/Q correction algorithm applies a blind-estimation method to correct this imbalance by
using the concept of orthogonality (that is, properness or circularity). This blind-adaptive Digital Signal
Processing (DSP) algorithm is implemented with a single-tap equalizer for the wideband input signals in a
FPGA onboard the TSW6011EVM.

TSW6011 shows a significant performance improvement from direct down-conversion architecture in a
typical wireless-receiver system as well as the benefit of I/Q correction algorithm that corrects both I/Q
phase and amplitude imbalance through the use of blind algorithm implemented in FPGA. After I/Q
correction processing, the degraded EVM of the received signal is restored to the respective original
levels.

3.1 General Overview of Receiver Architecture in WiMAX Transceiver System

3.1.1 Heterodyne Receiver Architecture
In wireless receiver systems, heterodyne architecture implies high/low-IF or digital IF architecture. A direct
down-conversion receiver down-converts the received RF signal directly into a complex baseband signal.
On the other hand, a heterodyne receiver requires the IF stage to down-convert the RF to IF before
demodulating the received analog signal to complex baseband signal (see the following note).

NOTE: A real system is always referred as heterodyne but complex system can be either
heterodyne or homodyne.

One of most widely-used heterodyne receivers is digital-IF architecture; Figure 1 shows an example of this
design. A time-division duplexing (TDD)-based digital-quadrature-demodulation architecture is equal to the
value shown in Equation 1.

(3 × Fs / 4) MHz of IF

where
• Fs is a sampling frequency for ADC (1)

The received RF signal feeds into the duplexer through an antenna and then is processed by a low-noise
amplifier (LNA) to boost the received input signal. After appropriate wideband filtering for RF band
selection, a mixer down-converts the RF signal to IF. Examples of some specified bands are 2300 to 2400
MHz, 3300 to 3400 MHz, or 1785 to 1805 MHz in uplink. In the IF stage, the IF channel filter (usually low-
pass filter or band-pass filter) removes the sideband image and local oscillator (LO) leakage.
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In heterodyne receiver architecture, the sideband image caused by I/Q phase and amplitude mismatch is
located at twice the IF distance from the carrier, and therefore the quality of the desired signal is not
affected by I/Q imbalance. But the sideband image should be eliminated by appropriate filtering (such as
low pass filter or band pass filter) or suppressed enough to maintain the optimum receiver performance.
For a discussion of the system requirements for sideband rejection of transmission for optimal digital pre-
distortion performance, see the Texas Instruments application report, Sideband Rejection and FB Isolation
Impacts on DPD Performance (SLWA063). Because every ADC input-frequency component outside the
Nyquist bandwidth always folds back into the first Nyquist zone, these components should be filtered or
suppressed to obtain the robust receiver performance.

Figure 5. Block Diagram of Heterodyne Receiver Architecture

Chose Equation 1 and as a result, a complex demodulation process is simplified greatly with a digital
coarse mixer (see in Figure 5). During the demodulation process, the desired signal located at –Fs / 4 is
shifted by +Fs / 4 and passes through a LPF to eliminate the replicated spectra caused by the sampling
process. The Nyquist bandwidth in a real-heterodyne receiver system is only half the bandwidth compared
to that of complex zero-IF architecture; therefore, twice the sampling frequency for ADC is required to
obtain the same Nyquist bandwidth as a direct down-conversion system.

3.1.2 Homodyne Receiver System
Homodyne, zero-IF, and direct-conversion are the same basic topology — LO frequency is equal to the
input-carrier frequency in these types of receivers. A direct down-conversion receiver has many benefits
compared to Heterodyne architecture, such as hardware simplicity, reduced cost, a smaller transceiver
size, and lower-power consumption. Figure 6 shows the basic design of homodyne receiver architecture.
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Figure 6. Block Diagram of Homodyne Receiver Architecture

Direct down-conversion architecture does not include IF stages between RF and baseband stages. The
RF input signal is received and then directly demodulated into the baseband. This approach clearly
implies that the RF input frequency and the LO frequency are the same. Because the sideband image
caused by I/Q phase and amplitude mismatch is located at the baseband and overlapped with the desired
carrier signal, EVM results are significantly degraded when the receiver system does not have appropriate
adaptive digital-signal processing to correct the sideband-image component.

Without I/Q correction processing, the heterodyne receiver is seen as the most reliable architecture
because of the superior selectivity and sensitivity over direct down-conversion architecture, despite the
complex system design and increased costs of this receiver. For this reason, heterodyne receiver
architecture has been adapted to the wireless receiver system for many years, although this architecture
is complex, expensive, and requires more current consumption.

In the same manner as the homodyne receiver, the direct down-conversion receiver converts received RF
signal directly to baseband analog signal without the need of an IF stage as shown in Figure 2. The down-
converted baseband-analog signal is then filtered by LPF to eliminate unwanted signal (such as blockers)
and then digitized to complex digital signal by dual-ADC. Any I/Q imbalance is corrected by an adaptive
DSP algorithm (blind algorithm) in the baseband to restore the received signal quality.

There are additional benefits of direct down-conversion architecture, including the reduced cost of the
transceiver system and a simpler design of analog front-end block which avoids any unnecessary IF
filtering. Because the Nyquist bandwidth of a complex I/Q signal is twice that of real signal, an additional
benefit is that system designers are able to use complex architecture requiring only half of the ADC
sampling clock compared to real architecture. This concept is very important in a digital pre-distortion
(DPD) system as increased requests of wider signal bandwidth grows. Assume a composite signal
bandwidth of 40 MHz, the DPD processing rate on transmission and feedback path are theoretically 200
MHz for each path considering up to fifth-order nonlinearity correction of the power amplifier (PA). For
complex processing on the feedback path, ADC on feedback requires 400 MHz of sampling clock in a real
heterodyne system, while direct down-conversion system requires only 200 MHz for ADC clock frequency
(see note below).

NOTE: Direct down-conversion (Homodyne) system is always referred to as complex architecture.

The negative side-effects should also be considered. These side-effects include the possibility of a
mirrored image and DC offset within an inband-carrier signal. The sideband image is generated by phase
and amplitude mismatch between the I and Q channels. The impact on the signal quality is severe, and
therefore should be corrected to obtain optimum receiver performance. I/Q correction processing
completely eliminates these negative impacts.
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3.1.3 Functional Description of FPGA in TSW6011
The FPGA performs baseband signal processing such as digital power measurement, I/Q correction,
digital gain control, x2 interpolation, DC offset compensation, and quadrature mixing. To convert the data
format from serial to 12-bits of parallel data in FPGA, 12-bits of ADS5282 serial output with 61.44 MHz of
sampled data rate is delivered to Serial-to-Deserial (SERDES) interface. For the I/Q correction processing,
12-bits of input bits are simply extended to 16-bits of the 2-complement format, and then delivered to I/Q
correction module in FPGA. Figure 7 shows the FPGA block diagram.

After I/Q correction processing, the gain of I and Q signals can increase up to 18 dB based on a 0.5-dB
step size. Because the ADS5282 has a 12-bit resolution and the DAC5672 has a 14-bit resolution, a gain
compensation of 11.5 dB is recommended for the TSW6011EVM. Therefore, the 11.5-dB gain
compensation is required for optimum performance including 0.5 dB of headroom.

NOTE: 1 bit represents 6 dB of gain.

The improved signal dynamic range produces an improved signal quality at the baseband for
characteristics such as bit error rate (BER), SNR, and EVM. Interpolation by a factor of 2, DC-offset
compensation, and quadrature-mixing blocks are followed by digital gain-control processing to the DAC
interface.

Figure 7. Block Diagram of FPGA in TSW6011

3.1.3.1 Power Measurement Block
The power measurement block calculates the digital power of the incoming signal to FPGA based on a
61.44-MHz clock cycle. Power values of each I and Q are accumulated four times for each 8.5 ms {= 219

(524,288 samples) × 16.276 ns (61.44 MHz)} with different time intervals starting at t0, t1, t2, and t3
respectively, and averaged to 32-bits of bit width. Therefore, the power-averaged value is updated every
34 ms (= 8.5 ms × 4) in FPGA. Figure 8 shows a block diagram of the power measurement block of
FPGA.
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Figure 8. Block Diagram of Power Measurement in FPGA

The calculated power-averaged value is primarily used to find the optimum step size of I/Q correction
processing. Depending on the input power level to FPGA, the optimum step size is automatically applied
to the I/Q correction block. Without this automatic gear-shifting feature, the adaptive I/Q-correction
performance is not very stable because the incoming receiver- (RX) signal power is not constant from
mobile station.

3.1.3.2 I/Q Correction Block
In practice, the quadrature signals in the analog demodulator do not have exactly the same amplitudes or
an exact phase difference of 90 degrees between I and Q paths. These characteristics are called
amplitude-phase imbalance, and cause crosstalk between I and Q channels. Note that the asymmetry
between analog filters in the I and Q rails after the demodulator also contributes to the imbalance. For
narrow band-input signals, the amplitude-phase imbalance is considered as frequency independent. For
wide band inputs, the amplitude/phase imbalance exhibits frequency-dependent behavior, which may be a
result of both analog filter and demodulator. The I/Q correction block in TSW6011 is based on a
frequency-independent algorithm that adapts blindly with the received signal. Figure 9 shows a block
diagram of I/Q correction in FPGA.

8 Direct Down-Conversion System with I/Q Correction SLWU085–July 2013
Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLWU085


 

Signal Offset
Compensation

Offset Computation

Accumulation

IQ Imbalance
Error Computation

Complex Coefficient
Update

Complex Multiplication

0

1

Input Signal
Power Calculation

Automatic Adaptive Step Size

0 1

Default Coefficient

Continuous/Bypass Mode Selection

IQ
 C

orrection/B
ypass M

ode S
election

www.ti.com Theory of Operation

Figure 9. Block Diagram of I/Q Correction in FPGA

Three operating modes are supported in TSW6011EVM:
• Bypass
• Fixed
• Continuous

In bypass mode, the received input signal is multiplexed directly into the input stage of the digital gain
control block in the FPGA. In fixed mode, the adaptation algorithm is turned off and the signal is multiplied
by the externally-programmed fixed coefficients. This architecture means that the I/Q correction block
does not behave adaptively with regards to external environment variables, such as temperature or input
power variation. In continuous mode, the adaption loop continuously iterates; four coefficients for complex
multiplication are updated at every iteration. The default operating mode is continuous in TSW6011EVM.
To show the automatic-adaptive step-size capability of the blind algorithm implemented in the FPGA,
apply the fixed and bypass modes.

The blind estimation algorithm for frequency-independent I/Q imbalance uses the properness of second-
order statistics of a complex signal. The I/Q correction algorithm in TSW6011 is based on this second-
order statistics of the received signal, which means complex signals are mutually independent and
uncorrelated with each other. As long as a signal is proper (see note in Section 3), the average energy of I
and Q are equal.

As I/Q imbalance in a direct down-conversion system forces the received complex signal to be non-proper
and non-circular, I/Q correction algorithm chooses the blind estimation method to correct I/Q imbalance
using this concept of orthogonality (properness or circularity). This blind-adaptive digital-signal-processing
algorithm is implemented with a single-tap equalizer for the wideband input signals in the FPGA of the
TSW6011EVM.

The analog filter inherently includes frequency-dependent I/Q imbalance in a wideband transceiver
system. In practice, frequency response from the analog domain, including filter stages, results in
frequency-dependent I/Q imbalance.
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The blind algorithm based on adaptive single-tap of equalizer in TSW6011 compensates for the I/Q
imbalance of received-wideband RF-input signal without the need of a training signal. The analog filter
stage has phase/amplitude responses over different frequencies, and these responses contribute to the
certain amount of recursiveness in a system. A recursive system means that the output of filter depends
on previous values of the output as well as on the current input value. If enough taps exist, the
performance of equalizer processing is more robust and stable in the recursive system. Depending on the
linearity of the analog filter, even a small number of taps is enough to equalize the I/Q imbalance of the
received wideband signal.

Another aspect of I/Q correction performance is the damping ratio of filter specification. Peaking of the
amplitude at the edge of filter bandwidth depends on the damping ratio of LPF. And therefore the received
signal is impacted less from the filter nonlinearity as the bandwidth of the filter becomes larger than the
desired signal bandwidth.

From this point of view, the blocker location in the TSW6011EVM impacts equalizer performance, referring
to I/Q correction processing. When the blocker has some frequency offset from the desired signal, the
bandwidth of baseband LPF in TRF3711 (I/Q demodulator) is wider than that of the desired signal,
implying the received signal stays in a linear zone of filter without severe distortion.

The bandwidth of a LPF in TRF3711 selection and impact on I/Q correction performance is dependent on
the blocker location on a wireless receiver system. If the blocker is located at the edge of desired carrier,
the bandwidth of a LPF is the same as the carrier bandwidth. This location is the worst case of I/Q
correction performance with a single-tap equalizer. The performance of the I/Q correction processing
improves as the blocker moves away from the edge of the desired carrier. A signal-tap equalizer achieves
good-enough performance depending on blocker location. For example, bypassing the LPF perfectly
restores EVM to –51.40 dB as shown in Figure 3, which is approximately –52.67 dB of the original
baseband signal as shown in Figure 14 (see the following note).

NOTE: The phase noise of the RF mixer stage in Agilent Signal Generator, E4438C, degrades the
error vector magnitude (EVM) of the original baseband signal to –52.67 dB as shown in
Figure 14.

3.1.3.3 DC Offset Compensation
DC offset is generally caused by LO feedthrough. The feedthrough is typically caused by a hardware
issue, a voltage drift of ADC (depending on any temperature variation in the transceiver system), or an
I/Q-offset mismatch between the I and Q signals. DC offset is corrected by block-data DC removal, which
computes the average bias of the accumulated input signal and subtracts the averaged value from each
original input signal. If the received signal has any bias, the bias is reflected to the DC offset, and the
properness of the signal is lost. Therefore, DC offset should be compensated before the I/Q imbalance
estimation occurs.

DC offset values from each of the I and Q channels are calculated at 122.88 MHz of clock cycle and
applied to the input signal at every 1.067 ms (that is: 217 [131,072 samples] × 8.138 ns [122.88 MHz]).
This calculation shows a robust iteration time over the slow temperature drift in the system.

DC offset accumulator, offsetacc, is given by Equation 2.

(2)

The update is given by Equation 3
Δoffset = 2–shift × offsetacc (3)

The offset estimator updated is expressed in Equation 4.
offset9n+1) = offset(n) + Δoffset (4)

The scalar, as shown in Equation 5, implements averaging plus adaptation step size.

(5)
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The offset compensator operates as shown in Equation 6.
y(i) = x(i) – offset(n) (6)

Figure 10. Block Diagram of Offset Compensation in FPGA

3.1.3.4 Digital Gain Block
The gain block implemented in the FPGA is controlled by 0.5-dB step and the range is –3 dB to 18 dB.
The block has 43-step of look-up table (LUT) for gain control, and is selected from the Graphical User
Interface (GUI) software. Considering the interface with data converters, the bit-width of input from
ADS5282 is 12-bits, and is 14-bits for DAC5672. Therefore, there is a 2-bit headroom to the DAC
interface, and a shortage of 12 dB with regard to the maximum dynamic range. A lower dynamic range
causes SNR and EVM to degrade. In evaluating the I/Q-correction block in the TSW6011EVM, 11.5 dB
works as a compensating gain of dynamic range given 0.5 dB of back-off from the incoming signal.

After correcting I/Q mismatch, the digital gain is applied to the received signal for optimum dynamic range
of the complex baseband signal. If the digital gain is not applied to the received signal, it degrades the
performance of EVM (Error Vector Magnitude) because the received signal still has 2-bit of headroom,
causing a lower dynamic range of received signal. Figure 11 illustrates the digital-gain control block of the
FPGA.

Figure 11. Block Diagram of Digital Gain Control in FPGA

3.1.3.5 2x Interpolation
After I/Q imbalance is corrected with a processing rate of 61.44 Msps, each of the I and Q data are
interpolated to 122.88 MHz by a factor of 2 and sent to the DAC interface to measure the signal quality.

3.1.3.6 DQM Mixer
After interpolating the I/Q signal, the signal is then up-converted to 30.72 MHz for the easy measurement
by the spectrum analyzer. If the signal is not up-converted, the demodulated signal is located at 0 Hz,
making measurement difficult.
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4 Component Selection
The TSW6011EVM is a single RX-channel board that demonstrates both the performance of a TRF3711
device and the I/Q correction algorithm implemented in the onboard the FPGA. TSW6011EVM contains a
TRF371125 wide-bandwidth, integrated, direct down-conversion demodulator, an ADS5282 octal-ADC for
data conversion, a FPGA for adaptive-digital signal processing for I/Q correction, a CDCE62005 clock
generator and jitter cleaner to generate the system clocks, and a DAC5672 DAC for ease of performance
measurement by a spectrum analyzer.

The TSW6011EVM provides options to send an RF input signal directly to the onboard TRF371125, or
through one or two low-noise amplifiers by moving two resistors. Additionally, there is an option to drive
two of the ADCs from an external source. This source is either a single-ended (default configuration,
through a transformer) or a differential signal. For example, the CMOS output of TRF3711EVM interfaces
with the CMOS input of TSW6011 in the chamber for the temperature testing of TRF371125. Bypassing
the onboard oscillator with an external source is also an option.

4.1 TRF3711
The TRF3711 includes programmable baseband filters, adjustable DC-offset correction, and buffer
amplifiers to directly drive ADCs. The device is suited for operation with WCDMA, WiMAX, and LTE
modulation, as well as with other high-bandwidth signal-modulation schemes. The on-chip programmable-
gain amplifiers allow adjustment of the output signal level without the need for external variable-gain
(attenuator) devices. The TRF3711 integrates programmable-baseband low-pass filters that attenuate
nearby interference, eliminating the need for an external baseband filter. The filter of th TRF3711 is an
eighth-order Butterworth with 0.7 at approximately 15-MHz (8-bit resolution) programmable bandwidth
which covers 1.4 MHz to 30 MHz of complex signal BW.

The features of the TRF371125 inclue:
• Frequency range up to 4 GHz
• Integrated baseband-programmable-gain amplifier
• On-chip programmable-baseband filter
• High out-of-band IP3: 24 dBm at 2400 MHz
• High out-of-band IP2: 60 dBm at 2400 MHz
• Single supply: 4.5- to 5.5-V operation
• Silicon Germanium technology

4.2 ADS5282
The ADS528x is a family of high-performance, low-power, octal-channel ADCs. The ADS528x is available
in either a 9 mm × 9 mm QFN-package or an HTQFP-80 package, with serialized low-voltage differential-
signaling (LVDS) outputs and a wide variety of programmable features. The ADS528x is highly
customizable for a diversity of applications and offers an unprecedented level of system integration.

The features of the ADS5282 include:
• 12-bit resolution with 65-Msps sampling speed
• Low power dissipation: 48 mW per channel at 30 Msps, 55 mW per channel at 40 Msps, 64 mW per

channel at 50 Msps, 77 mW per channel at 65 Msps
• 70 dBFS of SFDR at 10 MHz of IF
• Analog input full-scale range: 2-Vpp
• Low-Frequency noise-suppression mode
• 6-dB overload recovery in one clock
• 3.3 V of analog supply and 1.8 V of digital supply
• Programmable digital gain: –3 to 18 dB
• Serialized LVDS Double Data Rate (DDR) output

This device is applicable for medical imaging, wireless base-station infrastructure, and test and
measurement instrumentation.
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4.3 CDCE62005
The CDCE62005 has five to ten output-clock generators with jitter cleaner and integrated dual VCOs. The
features of this device include:
• Frequency synthesizer with PLL and VCO, and a partially-integrated loop filter.
• Fully configurable outputs including frequency, output format, and output skew
• Integrated EEPROM determines device configuration at power-up
• Universal output blocks support up to 5-differential, 10-single-ended, or combinations of differential or

single-ended.
• 0.35 ps of RMS (10 KHz to 20 MHz) output jitter performance
• Low output phase noise: –130 dBc/Hz at 1-MHz offset, Fc = 491.52 MHz

Applications of this device include data-converter and data-aggregation clocking, wireless infrastructure,
switches and routers, medical electronics, military, aerospace, clock generation, and jitter cleaning.

5 Test Procedures and Equipment Setup

5.1 Test Signal Specifications and Direct Measurement of Error Vector Magnitude
The EVM of a given test signal, excluding degradation, from the hardware setup is important to
understand. Figure 12 shows the direct measurement from the E4438C to the MXA signal analyzer. The
WiMAX test signal is downloaded onto E4438C with a scaling factor of 70% before starting the
measurement. With this test, identify approximately how much the evaluation module (including the
onboard VCXO for ADC and DAC) contributes to the EVM degradation

Figure 12. Setup for Direct Measurement of EVM

Figure 13 shows the time domain analysis of the WiMAX test signal. The start of every frame is a
preamble, followed by the frame control header (FCH) burst. The preamble is used for synchronization,
contains BPSK-modulated carriers, and is one OFDMA-symbol long. The preamble is power-boosted to a
level that is a few decibels higher than the level of the subsequent data busts. According to the
IEEE802.16e standard, preamble subcarriers can be boosted by maximum 9 dB, but only every third
subcarrier is generally used. The mean power of the preamble is 9 dB – 4.77 dB = 4.23 dB above the
mean power of the data signal. Considering the existence of pilot tones in data burst, the boosting factor
of the preamble is approximately 4 dB above the data burst, but the peak-to-average ratio (PAR) is
relatively smaller than that of data burst. IEEE802.16m specifies the magnitude boosting levels of
preamble for different Fast Fourier Transform (FFT) sizes and number of antennas.
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Figure 13. Time Domain Analysis of WiMAX Signal

Direct measurement produces –52.67 dB (or 0.23%) of baseband EVM, as shown in Figure 14. This result
includes the degradation of EVM from the phase noise of the LO for up-conversion in the E4438C and for
down-conversion of the demodulation function in the MXA signal analyzer.

Figure 14. EVM of WiMAX Signal from Direct Measurement

5.2 Equipment Setup
The test environment, illustrated in Figure 15, is configured according to these parameters:
• Test signal: 11.2 Msps with 64 QAM of WiMAX TDD 1-carrier 10-MHz BW
• Architecture: Direct Down-Conversion
• External LO (HP 8673H): 2500 MHz and 0 dBm
• Measuring Equipment: MXA N9020A
• Target board: TSW6011

For EVM measurements, the signal is down-converted to the baseband (zero-IF) using the TRF3711 and
the TSW6011. The system uses digital logic to up-convert the baseband signal back to IF (30.72 MHz) for
ease of measurement
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Figure 15. Block Diagram of Test Setup for TSW6011

Figure 16 describes how to setup the temperature chamber test, if necessary. The baseband-differential I
and Q signals out of the TRF3711EVM are fed into differential I and Q ports on the TSW6011, and then
sent to the ADS5282 for ADC process. From theTRF3711EVM, the bandwidth of the baseband low-pass
filter is adjusted to eliminate the blocker on the receiver path.
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Figure 16. Block Diagram of Temperature Test Setup for TRF3711 and TSW6011
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6 Verified Performance

6.1 EVM Improvement Bypassing the TRF3711 LPF
Figure 17 shows –35.66 dB of EVM with bypassing LPF before the I/Q correction processing. The I/Q
correction block in the TSW6011 improves the EVM to –51.4 dB as shown in Figure 18.

Figure 17. EVM Without LPF (Before I/Q Correction) Figure 18. EVM Without LPF (After I/Q Correction)

6.2 EVM Improvement Using Various Blocker Locations Along With Appropriate LPF BW
Figure 19 illustrates the RF input signal and the adjacent blocker to the TSW6011EVM.

Figure 19. RF Input Signal With Adjacent Blocker (10-MHz Offset)

Figure 20 and Figure 21, respectively, show –35.24 dB of EVM with 10 MHz of LPF BW. The I/Q
correction block in TSW6011 improves EVM to –47.49 dB.
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Figure 20. EVM With 10 MHz LPF BW (Before I/Q Figure 21. EVM With 10 MHz LPF BW (After I/Q
Correction) Correction)

Figure 22 illustrates the RF input and blocker signal with 13 MHz of offset between the center-to-center to
the input stage of TSW6011

Figure 22. RF Input Signal With Blocker at 13-MHz Frequency Offset

Figure 23 and Figure 24, respectively, show –35.47 dB of EVM with 16 MHz of LPF BW. The I/Q
correction block in the TSW6011 improves EVM to –48.06 dB.

Figure 23. EVM With 16 MHz of LPF BW (Before I/Q Figure 24. EVM With 16 MHz of LPF BW (After I/Q
Correction) Correction)
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Figure 25 illustrates the RF input and blocker signal with 15 MHz of offset between the center-to-center to
the input stage of TSW6011.

Figure 25. RF Input Signal With Blocker at 15-MHz Frequency Offset

Figure 26 and Figure 27, respectively, show –35.93 dB of EVM with 20 MHz of LPF BW. The I/Q
correction block in the TSW6011 improves EVM to –49.51 dB.

Figure 26. EVM With 20MHz of LPF BW (Before I/Q Figure 27. EVM With 20 MHz of LPF BW (After I/Q
Correction) Correction)

Figure 28 illustrates the RF input and blocker signal with 20 MHz of offset between the center-to-center to
the input stage of TSW6011.

Figure 28. RF Input Signal With Blocker at 20-MHz Frequency Offset
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Figure 29 and Figure 30, respectively, show –35.99 dB of EVM with 20 MHz of LPF BW. The I/Q
correction block in TSW6011 improves EVM to –50.23 dB.

Figure 29. EVM With 30 MHz of LPF BW (Before I/Q Figure 30. EVM With 30 MHz of LPF BW (After I/Q
Correction) Correction)

7 Summary
Table 1 shows the EVM performance with different low-pass filter bandwidth over a different blocker
location in TSW6011EVM. The nonlinearity of the TRF3711 low-pass filter affects the performance of I/Q
correction. The worst-case scenario for the receiver operation shows –47.49 dB of EVM using a WiMAX
TDD test signal after I/Q correction, improving by 12.25 dB.

12.25 to 15.74 dB of the EVM improved by I/Q correction, based on the low-pass filter bandwidth of
TRF3711. Approximately 3.5 dB of EVM is degraded by 10 MHz of low-pass filter bandwidth compared to
using the bypass mode of the TRF3711 low-pass filter. The low-pass filter bandwidth of TRF3711 is
scalable up to 30 MHz and greatly depends on the blocker location. As the distance between blocker
locations and the edge of the carrier increases, the low-pass filter bandwidth also increases improving the
corresponding performance of I/Q correction processing, as shown in Table 1.

The measured results shown in Table 1 are the same as the temperature-chamber test shown in
Figure 14 over different temperatures at –45°C, +45°C, and +85°C.

Table 1. Measured EVM Versus Various LPF BW of TRF3711
Measured EVMLPF BW from Achieved Improvement in EVMTRF3711 Before I/Q Correction After I/Q Correction

10 MHz –35.24 dB –47.49 dB 12.25 dB
16 MHz –35.47 dB –48.06 dB 12.59 dB
20 MHz –35.93 dB –49.51 dB 13.58 dB
30 MHz –35.99 dB –50.23 dB 14.24 dB
Bypass –35.66 dB –51.40 dB 15.74 dB
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