
1SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

Application Report
SLUA763A–October 2015–Revised May 2020

Automatic Baud Rate Detection and Configuration in
UCD3138

Emily Hirsch... High-Performance Isolated Power

ABSTRACT
When there are major changes in temperature, the UCD3138 internal oscillator frequency can change.
See the data sheet for more specific information. There can be a need to implement an automatic baud
rate detection and configuration to improve serial communication between the primary and secondary
stages of a power supply. This application report discusses how to configure the UCD3138 to match its
baud rate to an incoming serial data stream.

Contents
1 Introduction ... 1
2 Hardware Configuration... 2
3 Timer Capture .. 3
4 UART .. 5
5 Baud Rate Matching Firmware... 6
6 Installing Code into Existing Program ... 11
7 References .. 16

List of Figures

1 UCD3138 Pin Configuration.. 2
2 Timer Capture on a Waveform... 3
3 UART Message Format... 6
4 Recieve Restart Timing ... 7
5 Flowchart of Baud Rate Configuration .. 8

List of Tables

1 Number of Bits Captured for Certain Messages... 4
2 One-Bit Pulse Bit Time and Baud Rate... 9
3 Two-Bit Pulse Bit Time and Baud Rate... 9
4 Three-Bit Pulse Bit Time and Baud Rate ... 10
5 Four-Bit Pulse Bit Time and Baud Rate ... 11

Trademarks
All trademarks are the property of their respective owners.

1 Introduction
When using UCD3138s for PFC and LLC applications with serial port communication between the two,
there can be a slight difference in the two oscillators due to temperature. To compensate for this variation
and prevent errors in primary to secondary UART communication, an automatic baud rate matching
solution can be implemented into either PFC or LLC. The PFC (primary side) and LLC (secondary side)
constantly transmit information to each other such as fault status, operational modes, voltages, and

http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

Hardware Configuration www.ti.com

2 SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

currents. The information used in this solution is transmitted through UART0 in the PFC and received
through UART0 in the LLC. The solution implements a Timer Capture task inside of the 10-kHz timer
interrupt to measure the receive baud rate because we can catch both edges of a 4800 single byte pulse.
The solution captures one-, two-, three-, or four-bit long pulses and configures the appropriate UART
registers in the LLC to match the baud rate of the PFC.

2 Hardware Configuration
There is only one necessary hardware change for this application. In the UCD3138 device, there is
currently no internal connection for Timer Capture from UART, it is required to externally connect the
receive pin, RX0 of UART0 to the TCAP pin in the LLC, as Figure 1 shows. The UCD3138064 device has
the ability to internally connect the UART receive pin to the Timer Capture pin.

Figure 1. UCD3138 Pin Configuration[1]

On the UCD3138 device, connect pin 13 (SCI_RX0) to pin 41 (TCAP) to capture bit times of received
communication.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

Falling edges:

- capture 24 bit counter value

-store in capture data register

-change to rising edge capture

pulse width = rising edge value ± falling edge value

Rising edges:

- capture 24 bit counter value

- store in capture data register

- change to falling edge capture

www.ti.com Timer Capture

3SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

3 Timer Capture

3.1 Overview
Timer Capture is implemented using a 24-bit free-running timer in the UCD3138. The 24-bit timer is
configured to capture edges on the UART receive pin. The measure_baud() function will monitor the
waveform. Whenever an edge is captured, the value of the 24-bit counter is captured and put into the
capture register, which is read on every edge of the waveform. On the first edge (falling edge) the
UCD3138 stores the value of the 24-bit counter and on the second edge (rising edge) it takes the value
from the 24-bit counter and subtracts the value found from the first edge to get the pulse width of the
signal. The negative pulse width is capture because the idle state of the UART is high, so a short time of
idle could seem like a pulse width and the wrong baud rate could be calculated. Figure 2 represents
capturing the positive and negative edges of a waveform.

Figure 2. Timer Capture on a Waveform

The clock input for the timer is not prescaled with this application and is solely the ICLK, running at about
15.6 MHz. This method uses polling inside of the interrupt service routine to capture edges, so every 10
kHz (the frequency of the 16-bit timer interrupt) the measure baud rate sequence is executed using timer
capture. This solution works for 4800 bps and below because the bit time is less than 5 kHz with the
interrupt at 10 KHz, so we can capture each edge with a different interrupt. Faster baud rates than 4800
would require a faster interrupt or the timer capture interrupt. Only the capture block, not the compare
block, for the 24-bit timer is used in this application to collect information about the pulse width of the
signal received on the LLC. For more information on Timer Capture see the Timer Module Overview
section of the UCD3138 Monitoring and Communications Programmer’s Manual.

3.2 Timer Capture Registers
A few registers for Timer Capture must be set for this application. The input signal for Timer Capture must
be set to the SCI_RX0 pin. to ensure that the negative pulse width is being calculated, the edge must
originally be set to capture on the falling edge of the input signal. This is changed later in the code so it
only captures the negative pulse width. The registers that must be set, along with the values they need to
be set to are shown in the following:
TimerRegs.T24CAPCTRL.bit.CAP_SEL = 1; //input signal comes from SCI_RX0 pin

TimerRegs.T24CAPCTRL.bit.EDGE = 2; //enable capture on falling edge

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A
http://www.ti.com/lit/pdf/SLUU996

Timer Capture www.ti.com

4 SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

3.3 Timer Capture Polling
The timer capture polling can be integrated into the standard interrupt in the LLC code. Every time the
timer interrupt is triggered, all global tasks are handled, and the measure baud function has been included
in the global tasks along with collecting ADC data, averaging ADC readings, receiving UART data, and
calling the pgood handler. The full code is shown in the Installing Code into Existing Program section.
Whenever the first falling edge has been captured, the capture interrupt flag is set and the value of the 24-
bit counter is stored into a data register for the capture module. to get the negative pulse length, the edge
must be switched to capture the rising edge. The two edges are captured and the value captured at the
falling edge must be subtracted from the value captured at the rising edge. The measure_baud() function
is included in the following:
void measure_baud(void)
{

T24SREG = TimerRegs.T24CAPCTRL.bit.CAP_INT_FLAG;
if((T24SREG == 1) && (edge == 0)) //first edge detected
{

result = TimerRegs.T24CAPDAT.bit.CAP_DAT; //read and clear
//enable capture on rising edge

TimerRegs.T24CAPCTRL.bit.EDGE = 1;
edge = 1; //capture second edge

}
else if((T24SREG == 1) && (edge == 1)) //second edge detected
{

//read and clear register value
result = TimerRegs.T24CAPDAT.bit.CAP_DAT – result;

//result contains pulse width
pulse_width = result; //store result in pulse_width

//enable capture on falling edge
TimerRegs.T24CAPCTRL.bit.EDGE = 2;
edge = 0; //reset edge to capture first edge again

}
else
{

//do nothing
}

}

By reading the CAP_INT_FLAG register into the variable “T24SREG,” the UCD3138 clears the interrupt
flag and stores the flag data into T24SREG. The variable “edge” determines which edge (first or second)
is being captured. “Result” stores the value captured and puts it into the data register. This result is then
stored into “pulse_width” and used in a different function afterwards to change the baud rate.

3.3.1 Number of Bits Captured
The timer capture interrupt will continually capture pulse widths for every bit sent, so it is important to
understand what bits of each byte could be captured and how long of a pulse the timer capture will
measure. The message sent is from LSB to MSB, which is explained further in the UART Byte Format
section, and the number of bits captured is important because the baud rate will only be calculated if one,
two, three, or four-bits are captured. Table 1 shows what one-, two-, three-, four-, and five-bit pulses looks
like from the UART or Timer Capture. As shown, a one-bit pulse width is captured whenever there is a
one, followed by one zero, then a one afterward. A two-bit pulse is the same except there are two zeroes,
a three-bit pulse has three zeroes, and a four-bit pulse has four zeroes.

Table 1. Number of Bits Captured for Certain Messages

Value Sent (as Seen
in Code)

Message Sent (as Seen by
UART)

Entire Message Sent With
Start and Stop Bits (as Seen

by UART)
Possible Number of Bits Captured

Hexadecimal:0x49
Binary:01001001

Hexadecimal: 0x92
Binary: 10010010 01001001011 1 or 2 match baud possible

Hexadecimal: 0xFD
Binary: 11111101

Hexadecimal: 0xBF
Binary: 10111111 01011111111 1 match baud possible

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

ICLK
register value 1

8 baud
 �

u

www.ti.com UART

5SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

Table 1. Number of Bits Captured for Certain Messages (continued)

Value Sent (as Seen
in Code)

Message Sent (as Seen by
UART)

Entire Message Sent With
Start and Stop Bits (as Seen

by UART)
Possible Number of Bits Captured

Hexadecimal: 0x35
Binary: 00110101

Hexadecimal: 0xAC
Binary: 10101100 01010110011 1 or 2 change baud possible

Hexadecimal: 0xC8
Binary: 11001000

Hexadecimal: 0x13
Binary: 00010011 00001001111 2 or 4 match baud possible

Hexadecimal: 0x1A
Binary: 00011010

Hexadecimal: 0x58
Binary: 01011000 00101100011 1, 2, or 3 match baud possible

Hexadecimal: 0xE1
Binary: 11100001

Hexadecimal: 0x87
Binary: 10000111 01000011111 1 or 4 match baud possible

Hexadecimal: 0x83
Binary: 10000011

Hexadecimal: 0xC1
Binary: 11000001 01100000111 1 or 5 match baud possible

Hexadecimal: 0xF0
Binary: 11110000

Hexadecimal: 0x0F
Binary: 00001111 00000111111 5 match baud impossible

If there are a variety of bytes being sent with at least a majority of them containing a one to four-bit pulse
inside, then there is a robust form of communication between the primary and secondary side. With this
solution, however, if it does not send any characters that will give a one to four-bit pulse in the byte, this
specific automatic baud change application will not work for it.

4 UART

4.1 Overview
There are two UARTs, or universal asynchronous receiver-transmitters, in UCD3138. These UARTs are
used to transmit information between the primary and secondary sides of the power supply. For this
solution, UART0 is used on both the primary and secondary sides to send and receive bytes, and the
bytes transmitted are used to capture pulse widths of the primary side. Baud rates are set using the baud
divide registers and on the secondary side, they are changed after initialization to match the baud rate of
the primary side. The received bytes come in to the data register in the UART receive buffer and can be
viewed on the UART0 receive pin of UCD3138. The transmitted bytes transmit from the UART transmit
buffer and can be viewed on the UART0 transmit pin of UCD3138. More information on UARTs in the
UCD3138 is found in the section of the UCD3138 Monitoring and Communications Programmer’s Manual.

4.2 UART0 Baud Divide Registers
The baud rate is adjusted using the baud divide registers. There are three divide registers for each UART,
a low divide, middle divide, and high divide[2].The overall register value is found using Equation 1, where
“register value” represents the overall value that will be split into low, middle, and high divide values;
“ICLK” represents the internal 15.625-MHz clock; “baud” represents the desired baud rate. After
determining the overall register value, the low divide value is found by converting the register value from
decimal to hexadecimal, then AND it with 0xFF. The middle divide value is found by shifting the
hexadecimal register value to the right 8 bits. The high divide value is always zero for this application.

(1)

For example, the divide values for a baud rate of 4800 bps are configured using either of these two sets of
statements:

Example 1:
//BAUD_RATE set to 4800 bps, BAUD_RATE_VALUE and divide values
//are calculated in code, rather than by hand

#define BAUD_RATE 4800
#define BAUD_RATE_VALUE (15625000/ (8* (BAUD_RATE + 1)))
#define BAUD_RATE_VALUE_M (BAUD_RATE_VALUE & 0xFF)
#define BAUD_RATE_VALUE_L (BAUD_RATE_VALUE >> 8)

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A
http://www.ti.com/lit/pdf/SLUU996

� �register value pulse 3 1 !! �

pulse
register value 1

8
 �

ICLK
register value 1

8 baud
 �

u

ICLK
pulse

baud

Start
0

(LSBit)
1 2 3 4 5 6

7

(MSBit)
Stop Stop

UART www.ti.com

6 SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

Uart0Regs.UARTHBAUD.bit.BAUD_DIV_H = 0; //always zero for our purposes
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = BAUD_RATE_VALUE_M;
Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = BAUD_RATE_VALUE_L;

Example 2:
//baud divide values calculated by hand and input directly into code

Uart0Regs.UARTHBAUD.bit.BAUD_DIV_H = 0; //always zero for our purposes
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = 1; //overall register value shifted right 8 bits
Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = 149; //overall register value AND 0xFF

NOTE: When calculated baud values by hand, as in Example 2 note to truncate the decimal.
Implementing the equation in code, as in Example 1, the equation will always round down.

4.3 UART Byte Format
For this application, when a message is sent through UART, it contains a start bit, 8 bits of data and two
stop bits, shown in Figure 3. The idle state is high, so the start bit is always low and the two stop bits are
always high, with the message in between. The message is sent from Least Significant Bit to Most
Significant Bit, so UART0 on the LLC receives the bits from LSB to MSB.

Figure 3. UART Message Format

5 Baud Rate Matching Firmware

5.1 Timer Value to Baud Rate Translation
After the timer capture interrupt has captured both edges of a pulse, it has a pulse width for an unknown
number of bits between one and nine bits. This bit time is then sent into a function to change the baud
rate for both of the UARTs in the LLC. In this function, even though it changes the baud rate, the baud
rate is never actually calculated in order to save time and memory. Instead, the formula for translating the
bit time to baud rate (Equation 3) and the baud rate to the overall baud value (Equation 4) is shortened to
an equation taking the bit time and finding the overall baud value (Section 5.3.2 or Equation 5) in the
UART0 register, shown in Equation 2 to Equation 5. After finding the register value from Equation 5, the
middle and low divide values are found using the method explained in the UART0 Baud Divide Registers
section.

(2)

(3)

(4)

(5)

This final equation (Equation 5) can only be used if one bit pulse was captured. If more than one bit pulse
was captured, there has to be a compensation to account for the multiple bits acquired.

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

RX Active

TX Active

Baud Adjust and

UART Reset

A B C

12 Bits

www.ti.com Baud Rate Matching Firmware

7SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

5.2 Need for UART Reset
Writing new lower values to the UART BAUD_DIV registers at a narrow time window close to the end of
the bit period can cause an 8-second lockup of the UART. To avoid this, resetting the UART right after
writing to the BAUD_DIV registers is recommended. This is done with these two lines of code:
Uart0Regs.UARTCTRL3.bit.SW_RESET = 0;

Uart0Regs.UARTCTRL3.bit.SW_RESET = 1;

These two lines of code are seen in the code examples in Section 5.3, Different Bit Pulse Widths.

Note that resetting the UART will probably cause any active incoming or outgoing bytes to be corrupted.
To avoid this, the match baud function must be called when no messages are active. Generally it is
always possible for the firmware to determine when there are outgoing messages, and avoid those. If it is
not possible to predict incoming messages, then sufficient error handling, handshaking, and redundancy
must be provided to deal with a corrupted incoming message. Especially in the noisy power supply
environment, corrupted messages should be protected against in any case.

For receive, there is an additional timing requirement as Figure 4 shows.

(1) Time A is the time at which all bytes on the receive message have been received by the UART and read by
the firmware. Also it means that all bytes have finished transmitting.

(2) Time B is the time where the Baud registers have been changed, and the UART reset bit has gone low and
then high. At time B, the firmware can write a new byte to the transmit register.

(3) Time C is the time where the receive logic on the UART will be ready to accept a new byte. To ensure that
the start bit really indicates the start of a new byte, the UART logic waits for at least 11 bit periods of an idle
state on the receive pin before it starts accepting data. The transmit can be started as soon as the reset bit is
turned back to a 1. If the RX line goes active during the wait, the bit counter is reset, and it waits for 11 bits
from that point. Twelve bits of delay are recommended to provide a bit of a guard band.

Figure 4. Recieve Restart Timing

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

Start the function

Pass in bit time

From interrupt

One bit

Pulse?

Two bit

Pulse?

Three bit

Pulse?

Use original

Equation

Reset UART

Divide original

Equation by 2

Reset UART

Divide original

Equation by 3

Reset UART

'RQ¶W�FDOFXODWH,

Divide values

no no no

yes yes yes

Baud Rate Matching Firmware www.ti.com

8 SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

5.3 Different Bit Pulse Widths
For this application, the baud rate is only changed if one-, two-, or three-bit pulses have been captured
and we assume the baud rate is from ±10% from 4800 bps. If the pulse length is longer than expected for
3 bits at the slowest baud rate or shorter than 1 bit at the fastest baud rate, the baud rate isn’t changed
and the information is treated as an error, or garbage. A block diagram of the changing baud function is
shown in Figure 5.

Figure 5. Flowchart of Baud Rate Configuration

5.3.1 One-Bit Pulse
As previously mentioned, if a one-bit pulse is captured, Equation 5 is the function used to calculate the
baud divide values from the bit time. Since a one-bit pulse is an exact interpretation of Equation 2 through
Equation 5, pulse-width times, called “bit_time” in the code, are calculated using Equation 2. The code
used to calculate the baud divide values when a one-bit pulse has been found is included in the following:

//calculated correct pulse width (+/- 10% from 4800 baud)
if ((bit_time >= 2950) && (bit_time <= 3260))
{

baud_div_value = (bit_time >> 3) - 1;
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart0Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart0Regs.UARTCTRL3.bit.SW_RESET = 1;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 1;

}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

� �� �register value pulse 4 & 0xffff 1 !! �

pulse
register value 1

16
 �

www.ti.com Baud Rate Matching Firmware

9SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

As shown in the code, the bit times for a one-bit pulse must be between 2950 and 3260 to calculate the
baud divide values. This was determined by taking a baud rate of 4800 bps and calculating what baud
rates would be ±10% from 4800 bps and converting that to the bit time. Table 2 shows the bit time, baud
rate, and percent difference from 4800 bps.

Table 2. One-Bit Pulse Bit Time and Baud Rate

Bit Time Corresponding Baud Baud With Adjustment ± From 4800
2950 5296 5296 +10.33%
3255 4800 4800 0.00%
3620 4316 4316 –10.08%

5.3.2 Two-Bit Pulse
If a two-bit pulse is captured, Equation 5 needs to be modified to account for the longer pulse width
captured. Since the time captured is twice the actual time for one bit, the equation must be divided by two.
The equation and code used to calculate the baud divide values when a two-bit pulse has been found are
included in the following:

Equation 4 modified:

(6)

Equation 5 modified:

(7)
//calculated 2 times pulse width (+/- 10% from 4800 baud)

if ((bit_time >= 5900) && (bit_time <= 7240))
{

baud_div_value = ((bit_time >> 4)&0xffff) – 1;
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart0Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart0Regs.UARTCTRL3.bit.SW_RESET = 1;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 1;

}

As shown in the code, the bit times for a two-bit pulse must be between 5900 and 7240 to calculate the
baud divide values. This was determined by taking a baud rate of 4800 bps and determining what baud
rates would be ±10% from 4800 bps. Those rates must then be divided by 2 to get the “baud rate” that
would be calculated for a two-bit pulse and converting that to the bit time. Table 3 shows the bit time,
calculated baud rate, baud rate adjusted to be centered around 4800, and percent difference from 4800
bps.

Table 3. Two-Bit Pulse Bit Time and Baud Rate

Bit Time Corresponding Baud Baud With Adjustment ± From 4800
5900 2648 5296 +10.33%
6510 2400 4800 0.00%
7240 2158 4316 –10.08%

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

� �register value pulse 5 1 !! �

pulse
register value 1

32
 �

� �� �register value pulse 2730 16 1 u !! �

pulse
register value 1

24
 �

Baud Rate Matching Firmware www.ti.com

10 SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

5.3.3 Three-Bit Pulse
If a three-bit pulse is captured, Equation D is divided by three to account for capturing three times the
pulse width centered at 4800 bps. The modified equation and code used to calculate the baud divide
values when a three-bit pulse has been found are included in this section:

Equation 4 modified:

(8)

Equation 5 modified:

(9)

Code:
//calculated 3 times pulse width (+/- 10% from 4800 baud)

if ((bit_time >= 8850) && (bit_time <= 10860))
{

baud_div_value = ((bit_time * 2730) >> 16) – 1;
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart0Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart0Regs.UARTCTRL3.bit.SW_RESET = 1;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 1;

}

As shown in the code, the bit times for a three-bit pulse must be between 8850 and 10860 to calculate the
baud divide values. This was determined by taking a baud rate of 4800 bps and calculating what baud
rates would be ±10% from 4800 bps. Those rates must then be divided by 3 to get the “baud rate” that
would be calculated for a three-bit pulse and converting that to the bit time. Table 4 shows the bit time,
calculated baud rate, baud rate adjusted to be centered around 4800, and percent difference from 4800
bps.

Table 4. Three-Bit Pulse Bit Time and Baud Rate

Bit Time Corresponding Baud Baud With Adjustment ± From 4800
8850 1765 5295 +10.31%
9765 1600 4800 0.00%

10860 1438 4314 –10.13%

5.3.4 Four-Bit Pulse
If a four-bit pulse is captured, Equation 5 is divided by four to account for capturing four times the pulse
width centered at 4800 bps. The modified equation and code used to calculate the baud divide values
when a four-bit pulse has been found are included in this section:

Equation 4 modified:

(10)

Equation 5 modified:

(11)

Code:
//calculated 4 times pulse width (+/- 10% from 4800 baud)

if ((bit_time >= 11801) && (bit_time <= 14481))
{

baud_div_value = (bit_time >> 5) - 1;
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

www.ti.com Installing Code into Existing Program

11SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart0Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart0Regs.UARTCTRL3.bit.SW_RESET = 1;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 1;

}

As shown in the code, the bit times for a four-bit pulse must be between 11801 and 14481 to calculate the
baud divide values. This was determined by taking a baud rate of 4800 bps and calculating what baud
rates would be ±10% from 4800 bps. Those rates must then be divided by 4 to get the “baud rate” that
would be calculated for a four-bit pulse and converting that to the bit time. Table 5 shows the bit time,
calculated baud rate, baud rate adjusted to be centered around 4800, and percent difference from 4800
bps.

Table 5. Four-Bit Pulse Bit Time and Baud Rate

Bit Time Corresponding Baud Baud With Adjustment ± From 4800
11801 1324 5296 +10.33%
13020 1200 4800 0.00%
14481 1079 4316 –10.08%

5.3.5 Five or More Bit Pulse
If a five-bit pulse or longer has been captured, the baud rate will not match to the PFC because going
higher than four bits creates an overlap in the bounds between –10% from 4800 with a 5-bit pulse and
+10% from 4800 with a 6-bit pulse so a five and six-bit pulse could be difficult to distinguish from each
other.

6 Installing Code into Existing Program

6.1 Overview
Integrating this code into an existing program is relatively simple. The only added code is initializing timer
capture, integrating timer capture and the measure_baud function into the standard interrupt service
routine, and creating the match_baud function as well as calling it from the main program.

6.2 Initialize Timer Capture
As mentioned in the Timer Capture Registers section, there are a few lines of code that must be
implemented to capture edges of the signal. The following code sample is the main LLC code with an
integrated initialization of the timer capture. Added code is in red and code already inside the LLC code is
in black.

void init_TCAP(void)

{

space TimerRegs.T24CAPCTRL.bit.CAP_SEL = 0; //input signal comes from TCAP pin

spaceTimerRegs.T24CAPCTRL.bit.EDGE = 2; //enable capture on falling edge

}
void main()
{
...

//Initialize global variables.
init_variables();
//Initialize GPIO pins and set initial states.
init_gpio();
//Initialize UARTs
init_uart0();

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

Installing Code into Existing Program www.ti.com

12 SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

init_uart1();
//Initialize TCAP
init_TCAP();

space//Initialize TCAP

spaceinit_TCAP();

//Initialize DPWMs
init_dpwms();

...
}

6.3 Timer Capture and Measure Baud Function
The timer capture inside of the measure baud function is implemented into the standard interrupt service
routine. The sample code in this section is the standard interrupt LLC code with an integrated measure
baud function into the existing code. Everything changed from the original is in red and the original code is
in black.

The measure baud function is a new function to integrate into existing code. It is further explained in the
Baud Rate Matching Firmware section but the entire function has been integrated into the
standard_interrupt.c file with the other functions used in the interrupt service routine.
/* standard_interrupt.c
* measure_baud is called inside of the handle_standard_interrupt_global_tasks functions
* it measures the pulse width of the incoming signal from the UART on the PFC
*/

void measure_baud(void)

{

spaceT24SREG = TimerRegs.T24CAPCTRL.bit.CAP_INT_FLAG;

spaceif ((T24SREG == 1) && (edge == 0)) //first edge detected

space{

spacespaceresult = TimerRegs.T24CAPDAT.bit.CAP_DAT; //read and clear

spacespaceedge = 1;

spacespacespace//increase edge to capture second edge

space}

spaceelse if ((T24SREG == 1) && (edge == 1)) //second edge detected

space{

spacespaceresult = TimerRegs.T24CAPDAT.bit.CAP_DAT - result;

spacespacespace//result now contains the difference between edges captured

spacespacepulse_width = result;

spacespacespace//store result into pulse_width - will be passed into match_baud();

spacespaceedge = 0;

spacespacespace//reset edge to detect first edge again

space}

spaceelse

space{

space}

}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

www.ti.com Installing Code into Existing Program

13SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

The measure baud function is called inside of the global tasks function inside of the standard interrupt.
/* standard_interrupt.c
* handle_standard_interrupt_global_tasks is called in the standard interrupt
* it handles tasks such as polling the ADC and collecting the data,
* receiving UART messages and using Timer Capture
*/
void handle_standard_interrupt_global_tasks(void)
{

//Collect ADC data
poll_adc();
//Average ADC readings;
average_adc_readings();
//Receive UART data
uart_receive_data();
//call pgood handler
handle_pgood();

space//measure baud rate with timer capture

spacemeasure_baud();
}

The global tasks function is called inside of the standard interrupt service routine. This is already
implemented; it is shown to further explain where everything has been called.
/*

* standard_interrupt.c
* includes measure baud timer capture interrupt function and uart receive interrupt function
* as well as standard interrupt
* the only function changed / used for this application is

handle_standard_interrupt_global_tasks();
* this function includes the timer capture interrupt and receive data interrupt

*/
#pragma INTERRUPT(standard_interrupt,IRQ)
void standard_interrupt(void)
{

//Set a GPIO to signify the beginning of the interrupt
// MiscAnalogRegs.GLBIOVAL.bit.DPWM2A_IO_VALUE = 1;

//Perform general tasks.
handle_standard_interrupt_global_tasks();

switch (supply_state)
{
case STATE_IDLE:

handle_idle_state();
break;

case STATE_RAMP_UP:
handle_ramp_up_state();
break;

case STATE_RAMP_DOWN:
handle_ramp_down_state();
break;

case STATE_REGULATED:
handle_regulation_state();
break;

case STATE_VOUT_TRANSITION:
handle_vout_transition_state();
break;

case STATE_LIGHT_LOAD:
handle_light_load_state();
break;

case STATE_CPCC:
handle_cpcc_state();
break;

case STATE_HICCUP:
handle_hiccup_state();
break;

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

Installing Code into Existing Program www.ti.com

14 SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

case STATE_FAULT:
handle_fault_state();
break;

}

//clear interrupt flag by a read/write to register.
TimerRegs.T16PWM2CMPCTRL.all = 3;
//Clear the GPIO to signify the end of the interrupt

// MiscAnalogRegs.GLBIOVAL.bit.DPWM2A_IO_VALUE = 0;
}

6.4 Match Baud Function
The match baud function must be implemented in the LLC code and called in the main function in order
for the baud matching to occur.
/*

* match_baud.c
*
* Equations used to find bit times:
* baud_rate = ICLK / bit_time
* baud_div_value = ICLK/(8*baud_rate) - 1
* baud_div_value = bit_time/8 - 1
* baud_div_value = (bit_time >> 3) - 1
*/

#include "system_defines.h"
#include "cyclone_device.h"
#include "pmbus_commands.h"
#include "pmbus.h"
#include "variables.h"
#include "function_definitions.h"
#include "software_interrupts.h"
#include "cyclone_defines.h"

#define ICLK (15625000)

void match_baud(Uint32 bit_time)
{

if ((bit_time >= 2950) && (bit_time <= 3620))
//calculated correct pulse width (+/- 10% from 4800 baud)

{
baud_div_value = (bit_time >> 3)-1;
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart0Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart0Regs.UARTCTRL3.bit.SW_RESET = 1;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 1;

}
else if ((bit_time >= 5900) && (bit_time <= 7240)) //calculated 2x pulse width
{

baud_div_value = ((bit_time >> 4) & 0xffff)-1;
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart0Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart0Regs.UARTCTRL3.bit.SW_RESET = 1;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 1;

}
else if ((bit_time >= 8850) && (bit_time <= 10860)) //calculated 3x pulse width
{

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

www.ti.com Installing Code into Existing Program

15SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Automatic Baud Rate Detection and Configuration in UCD3138

baud_div_value = (((bit_time >> 4) & 0xffff)*2/3)-1;
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart0Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart0Regs.UARTCTRL3.bit.SW_RESET = 1;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 1;

}
else if ((bit_time >= 11801)&&(bit_time <= 14481)) //calculated 4x pulse width
{

baud_div_value = ((bit_time >> 5) - 1);
Uart0Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart1Regs.UARTMBAUD.bit.BAUD_DIV_M = (baud_div_value >> 8);
Uart1Regs.UARTLBAUD.bit.BAUD_DIV_L = (baud_div_value & 0xff);
Uart0Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart0Regs.UARTCTRL3.bit.SW_RESET = 1;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 0;
Uart1Regs.UARTCTRL3.bit.SW_RESET = 1;

}
else
{

//don't calculate baud rate
}

}

The match baud function is called in the main function inside of the “forever” or “always” loop, so that it
continually matches the baud rate. Ideally it should only be called when UART messaging is temporarily
inactive as described in Section ???. This depends on the system, so there is a generic term in an if
statement to represent this.
void main()
{
for(;;)
{

if (erase_segment_counter > 0)
{

//Handle the DFlash segment erases
erase_task();

}
//Run the PMBus handler
pmbus_handler();
//Transmit data out the UART
uart_transmit_data();
//Process data received from the UART
uart_process_rx_data();

spacespacespace//Match baud

spacespacespaceIf(no_message_active)

spacespacespace{

spacespacespacespacematch_baud(pulse_width);

spacespacespace}
//output the baud rate from UART1 - used for debug purposes
char_out_1(Uart0Regs.UARTLBAUD.bit.BAUD_DIV_L);

}
}

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

References www.ti.com

16 SLUA763A–October 2015–Revised May 2020
Submit Documentation Feedback

Copyright © 2015–2020, Texas Instruments Incorporated

Revision History

7 References

1. B. McDonald, H. Huang. “UCD3138 64 Pin Open Loop Board”. Texas Instruments.
August 2012.

2. UCD3138 Monitoring and Communications Programmer’s Manual. (Literature Number: SLU996A) Link:
http://www.ti.com/lit/pdf/sluu996 3.

3. S. Rajagopalan. Example Code.

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (October 2015) to A Revision .. Page

• Revision A of this application report is changed to show the need for a UART reset after changing the baud rate. 7

http://www.ti.com
http://www.ti.com/feedbackform/techdocfeedback?litnum=SLUA763A

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2020, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Automatic Baud Rate Detection and Configuration in UCD3138
	1 Introduction
	2 Hardware Configuration
	3 Timer Capture
	3.1 Overview
	3.2 Timer Capture Registers
	3.3 Timer Capture Polling
	3.3.1 Number of Bits Captured

	4 UART
	4.1 Overview
	4.2 UART0 Baud Divide Registers
	4.3 UART Byte Format

	5 Baud Rate Matching Firmware
	5.1 Timer Value to Baud Rate Translation
	5.2 Need for UART Reset
	5.3 Different Bit Pulse Widths
	5.3.1 One-Bit Pulse
	5.3.2 Two-Bit Pulse
	5.3.3 Three-Bit Pulse
	5.3.4 Four-Bit Pulse
	5.3.5 Five or More Bit Pulse

	6 Installing Code into Existing Program
	6.1 Overview
	6.2 Initialize Timer Capture
	6.3 Timer Capture and Measure Baud Function
	6.4 Match Baud Function

	7 References

	Revision History
	Important Notice

