
 Application Report
 SLUA665 – November 2012

1

Going to Production With the bq34z1xx
Doug Williams BMS – Multi-Cell Solutions

ABSTRACT

This application report presents a strategy for high speed, economical, calibration and production
programming of the bq34z1xx fuel gauge family. Sample code and flowchart examples are provided,
along with instructions for preparing an optimized golden image (.DFI or .ROM) data flash file. This file is
programmed into all bq34z1xx devices at the pack maker production line.

Contents
Introduction ... 2

Pre-Production Preparation ... 3
PRODUCTION STEP 1: Write the Data Flash Image to Each Device .. 7
PRODUCTION STEP 2: Calibrate the Voltage ... 10
PRODUCTION STEP 3: Update any Individual Flash Locations, such as Serial Number, Lot Code,

and Date. ... 11
PRODUTION STEPS 1, 2, and 3 - Using the bq Multi Station Tester. ... 12

Appendix A. – Converting to HDQ Communication ... 13

Figures
Figure 1. Pre-production tasks to create the Golden Image File. .. 4
Figure 2. DFI Export Sample Code ... 5
Figure 3. DataFlash Reader Utility (ROM Imager) for “bq Multi Station Tester” produces .ROM

file 6
Figure 4. Write_DFI_to_Flash Sample Code .. 7
Figure 5. Initial Setup screen for “bq Multi Station Tester” discovers installed EV2300 USB

adapters. ... 8
Figure 6. The “bq Multi Station Tester” can be used to calibrate voltage, write a serial

number/Lot Code/Mfr Date, and program the golden image .ROM file. 9
Figure 7. Method to read the I2C Voltage from the gauge .. 10
Figure 8. Method to Write a Unique Serial Number ... 12

SLUA665

2 Going to Production With the bq34z1xx

Introduction

The bq34z1xx fuel gauge family is built with new technology and a new architecture for both data flash access
and calibration. With this new architecture, unit production cost and capital equipment investment can be
minimized, as it is no longer necessary to perform a learning cycle on each pack. A single golden image file can
be used to program each bq34z1xx in production. Also, the calibration method is quick and simple because most
of the calibration routines can be based on average values.

The methods in this document are presented as VB6 (Visual Basic 6) functions. These functions were copied
directly from working code. In order to read from and write to the data flash, they use four types of I2C read and
write functions. These can be duplicated in any software environment that has I2C Bus communication
capabilities.

1. WriteI2CByte() has three arguments – the Command Address, Byte Data, and Device Address.

2. WriteI2CInteger() has three arguments – the Command Address, Integer Data, and Device Address.
Internally, this function separates the integer into two bytes for transmission by the I2C 1-byte write
protocol.

3. WriteI2CByteArray() has four arguments – the Command Address, Byte Array to Write, Length of Byte

Array, and Device Address. Internally, this function separates the byte array into separate bytes for
transmission by the I2C 1-byte write protocol.

4. ReadI2CByteArray() has four arguments– the Command Address, Returned Byte Array, Length of Byte
Array, and Device Address. It is internally implemented with the I2C Incremental read protocol.

Error handling is not implemented in this sample code, because requirements are unique and varied. Also,
constants are hard-coded into the functions to improve clarity rather than documenting them in code elsewhere
as would normally be good coding practice.

A good strategy for bq34z1xx production is an eight-step process flow:

Step 1. Write the data flash image to each device.

Step 2. Calibrate the voltage (optional for <= 5V applications).

Step 3. Update any individual flash locations, such as serial number, lot code, and date.

Step 4. Perform any desired board level tests and convert to HDQ communication if required.

Step 5. Connect the cells.

Step 6. Perform any desired pack level tests.

Step 7. Send 0x0021 to Manufacturer Access 0x00 command, to enable Impedance Track, Lifetime, and
Permanent Fail functions.

Step 8. Send 0x0020 to Seal the pack.
In this document, pre-production, and the first three production steps are examined in detail. The method for
converting to HDQ is described in Appendix A.

 SLUA665

 Going to Production With the bq34z1xx 3

Pre-Production Preparation

To configure the bq34z1xx for a given application, the data flash set of constants must be programmed
depending on the cell type, application, system, and charger. The application report entitled “Configuring the
bq34z100 Data Flash” presents a detailed description of all the data flash constants that the user can modify.
Similar application reports are available for other members of the bq34z1xx family. All bq34z1xx ICs for an
application will contain the same data flash, except for pack specific parameters such as serial number,
manufacture date, voltage calibration, and others as required by the producer.

The “golden image file” is a binary file containing the data flash image from an optimized and validated
fuel gauge containing average current and temperature calibration values obtained from at least 20
sample units.
It is a binary file with either a .DFI or an .ROM file extension. The .DFI is programmed into the gauge using I2C™
communication with the bq34z1xx using a programming platform developed by the customer. The .ROM is similar
to the .DFI, but contains a special header identifying the device, and is programmed using I2C™ communication
with the TI “bq Multi Station Tester” mass production program. Creating the .DFI or .ROM can be summarized
with the process depicted in Figure 1. Sample code (using VB6) for creating the .DFI file is presented in Figure 2.

If it is desired to use the “bq Multi Station Tester” program, a .ROM file may be easily created with the .ROM
DataFlash Reader utility as shown in Figure 3.

SLUA665

4 Going to Production With the bq34z1xx

Calibrate 20 sample boards for
current and temperature.

Determine average values for
CC Gain, CC Delta, CC Offset,
Board Offset, and Temp Offset

(Int or Ext).

Optimize one working sample
board for Qmax and Ra table.

See “Preparing Optimized
Default Flash Constants for

bq34z1xx”

Determine whether to use TI bq
Multi Station Tester or proprietary
programming/calibration station.

Write the average calibration
values to the optimized
working sample board.

bq Multi
Station
Tester

Configure data flash for
desired application. For

example, see “Configuring the
bq34z100 Data Flash”

Proprietary
System

Use bqTester ROM Imager utility to
export the data flash image in the
optimized board to a .ROM file.

Export the data flash image in the
optimized board to a .DFI file, based
on sample code in this application

report.

Figure 1. Pre-production tasks to create the Golden Image File.

 SLUA665

 Going to Production With the bq34z1xx 5

Function Save_DFI_to_File(sFilename As String) As Long

 Dim iNumberOfRows As Integer
 Dim iBaseAddr As Integer
 Dim iAddrMS As Integer
 Dim iAddrLS As Integer
 Dim lError As Long
 Dim yRowData(&H20) As Byte
 Dim yDataFlashImage(&H400) As Byte
 Dim iRow As Integer
 Dim iIndex As Integer
 Dim iFileNumber As Integer

 '// FOR CLARITY, WITHOUT USING CONSTANTS. 32 Rows
 iNumberOfRows = &H20
 iBaseAddr = &H4000

 '// PUT DEVICE INTO ROM MODE
 lError = WriteI2CInteger(0, &HFFFF, &HAA)
 lError = WriteI2CInteger(0, &HFFFF, &HAA)
 DoDelay 0.5 ‘// Wait 0.5 seconds
 lError = WriteI2CInteger(0, &HF00, &HAA)
 DoDelay 0.1 ‘// Wait 0.1 seconds

 '// READ THE DATA FLASH, ROW BY ROW
 '//Note that ROM mode uses I2C address 0x16 instead of 0xAA
 For iRow = 0 To iNumberOfRows - 1

 '// INITIATE PEEK-BYTES COMMAND
 lError = WriteI2CByte(&H0, &H7, &H16)

 '// SET ROW ADDRESS.
 iAddrLS = (iBaseAddr + (iRow * &H20)) Mod &H100
 iAddrMS = (iBaseAddr + (iRow * &H20)) \ &H100
 lError = WriteI2CByte(&H1, iAddrLS, &H16) '//Low address byte
 lError = WriteI2CByte(&H2, iAddrMS, &H16) '//High address byte

 '// SET NUMBER OF BYTES TO READ
 lError = WriteI2CByte(&H4, &H20, &H16) '//High address byte

 '// WRITE CHECKSUM
 lError = WriteI2CByte(&H64, (&H7 + &H20 + iAddrLS + iAddrMS) Mod &H100, &H16) '//lsb of checksum
 lError = WriteI2CByte(&H65, (&H7 + &H20 + iAddrLS + iAddrMS) \ 256, &H16) '//msb of checksum

 '// READ THE ROW.
 lError = ReadI2CByteArray(&H5, yRowData, &H20, &H16)

 '//ADD ROW INTO BIG ARRAY
 For iIndex = 0 To &H20 - 1
 yDataFlashImage((iRow * &H20) + iIndex) = yRowData(iIndex)
 Next iIndex

 DoDelay 0.1
 Next iRow
 End With

 '// WRITE DATA FLASH IMAGE TO FILE
 ChDir App.Path
 iFileNumber = FreeFile
 Open sFilename For Binary Access Write As #iFileNumber
 Put #iFileNumber, , yDataFlashImage
 Close #iFileNumber
 ChDir App.Path

 '// EXECUTE GAS GAUGE PROGRAM
 lError = WriteI2CByte(0, &HF, &H16)
 lError = WriteI2CByte(&H64, &HF, &H16)
 lError = WriteI2CByte(&H65, 0, &H16)

 '// RETURN OK
 Save_DFI_to_File = 0
 End Function

Figure 2. DFI Export Sample Code

SLUA665

6 Going to Production With the bq34z1xx

Figure 3. DataFlash Reader Utility (ROM Imager) for “bq Multi Station Tester” produces .ROM file

 SLUA665

 Going to Production With the bq34z1xx 7

PRODUCTION STEP 1: Write the Data Flash Image to Each Device
Pack PCB designers must ensure that the I2C lines of bq34z1xx are accessible at time of writing DFI in
production.
If a proprietary system is used for writing the image, a routine based on the code in Figure 4 should be used.

'// PUT DEVICE INTO ROM MODE
 lError = WriteI2CInteger(0, &HFFFF, &HAA)
 lError = WriteI2CInteger(0, &HFFFF, &HAA)
 DoDelay 0.2 ‘// Wait 0.2 seconds
 lError = WriteI2CInteger(0, &HF00, &HAA)
 DoDelay 0.2 ‘// Wait 0.2 seconds

 '//Note that ROM mode uses I2C address 0x16 instead of 0xAA

 '// MASS ERASE DATA FLASH
 lError = WriteI2CByte(&H0, &HC, &H16)
 lError = WriteI2CByte(&H4, &H83, &H16)
 lError = WriteI2CByte(&H5, &HDE, &H16)
 iChecksum = (&HC + &H83 + &HDE) Mod &H10000
 lError = WriteI2CByte(&H64, iChecksum Mod &H100, &H16)
 lError = WriteI2CByte(&H65, iChecksum \ 256, &H16)
 DoDelay 0.5 ‘// Wait 0.5 seconds

 '// WRITE EACH ROW
 For iRow = 0 To iNumberOfRows - 1
 lError = WriteI2CByte(&H0, &HA, &H16) '//program row command

 '// WRITE TARGET ROW TO THE ROW LOW REGISTER
 lError = WriteI2CByte(&H1, iRow, &H16)
 iChecksum = (&HA + iRow) Mod &H10000

 '// COPY DATA FROM THE FULL ARRAY TO THE ROW ARRAY
 For iIndex = 0 To 31
 yRowData(iIndex) = yDataFlashImage((iRow * 32) + iIndex)
 iChecksum = (iChecksum + yRowData(iIndex)) Mod &H10000
 Next iIndex

 '// WRITE THE ROW DAYA REGISTERS
 lError = WriteI2CByteArray(&H4, yRowData, 32, &H16)

 '// WRITE THE ROW
 lError = WriteI2CByte(&H64, iChecksum Mod &H100, &H16)
 lError = WriteI2CByte(&H65, iChecksum \ 256, &H16)
 DoEvents '//allow Windows to catch up
 DoDelay 0.2 ‘// Wait 0.2 seconds
 Next iRow
 End With

 '// EXECUTE GAS GAUGE PROGRAM
 lError = WriteI2CByte(0, &HF, &H16)
 lError = WriteI2CByte(&H64, &HF, &H16)
 lError = WriteI2CByte(&H65, 0, &H16)

 '// RETURN OK OR ERROR
 Write_DFI_to_Flash = 0

End Function

Figure 4. Write_DFI_to_Flash Sample Code

SLUA665

8 Going to Production With the bq34z1xx

Alternately, the Texas Instruments “bq Multi Station Tester” program may be used for writing the image as well as
performing voltage calibration quickly and inexpensively. With more complex fuel gauge types, this program is
used in conjunction with a hardware platform available from TI, which performs current, temperature, and voltage
calibration. In the case of bq34z1xx, the circuit board is not actually necessary or relevant, but could be
purchased and used as-is or modified for custom voltage stacks.

Figure 5. Initial Setup screen for “bq Multi Station Tester” discovers installed EV2300 USB
adapters.

 SLUA665

 Going to Production With the bq34z1xx 9

Figure 6. The “bq Multi Station Tester” can be used to calibrate voltage, write a serial number/Lot
Code/Mfr Date, and program the golden image .ROM file.

SLUA665

10 Going to Production With the bq34z1xx

PRODUCTION STEP 2: Calibrate the Voltage

While it is recommended that current and temperature calibration factors be derived from an average of 20
production units, the same is not true for voltage calibration. However, in applications where the peak battery
voltage does not exceed 5V, the internal TI factory-calibrated divider network may be used to avoid an
external divider and calibration altogether. See the device datasheet for additional details.

Voltage calibration, using the “bq Multi Station Tester” program or proprietary system is based on modifying
the Voltage Divider data flash constant to achieve best possible accuracy. The formula for calibration is as
follows:

New Voltage Divider = Voltage Divider * Known Applied Voltage / I2C Reported Voltage

The Known Applied Voltage, as measured by an agency-traceable DMM, is typed into one of the
configurations screens on the “bq Multi Station Tester” program. The meter used for establishing this value
should be accurate to less than one millivolt.

To write the new Voltage Divider value, use the same technique as demonstrated in Figure 8 for writing the
serial number. The only difference is the subclass and offset as found in the device data sheet. To read the
I2C Reported Voltage, use the technique demonstrated in Figure 7.

Function Read_Voltage(iVoltage As Integer) As Long

 Dim lError As Long
 Dim yData(2) As Byte

 '// READ TWO BYTES FROM COMMANDS 0x08 AND 0x09
 lError = ReadI2CByteArray(&H8, yData, 2, &HAA)

 '// LSB IS IN THE FIRST BYTE, MSB IN THE SECOND
 iVoltage = 256 * yData(1) + yData(0)

 '// RETURN OK OR ERROR CODE
 Read_Voltage = lError
End Function

Figure 7. Method to read the I2C Voltage from the gauge

 SLUA665

 Going to Production With the bq34z1xx 11

PRODUCTION STEP 3: Update any Individual Flash Locations, such as Serial Number,
Lot Code, and Date.

Other than the Voltage Divider value, there will usually be some data that is unique to each battery pack, or group
of packs such as serial number, date of manufacture, etc. This data can be written using the technique below in
Figure 8.

Function UpdateSerialNumber(iSerialNum As Integer) As Long

 Dim lError As Long
 Dim iSubClass As Integer
 Dim iTransferCode As Integer
 Dim yRowData(32) As Byte
 Dim iChecksum As Integer
 Dim iTmp As Integer
 Dim i As Integer

 iSubClass = 48 '// subclass for configuration data
 iTransferCode = 0

 '//ENABLE FLASH TRANSFER
 lError = WriteI2CByte(&H61, iTransferCode, &HAA)

 '//SPECIFY SUBCLASS
 lError = WriteI2CByte(&H3E, iSubClass, &HAA)

 '// ENABLE GENERAL PURPOSE BLOCK
 lError = WriteI2CByte(&H3F, iTransferCode, &HAA)

 '//READ 32 BYTE BLOCK
 lError = ReadI2CByteArray(&H40, yRowData, 32, &HAA)

 '// REPLACE SERIAL NUMBER RAM. ROW OFFSETS ARE FOUND IN THE DATASHEET
 yRowData(15) = (iSerialNum \ 256) '//MSByte
 yRowData(16) = iSerialNum - (yRowData(0) * 256) '//LSByte

 '//CALCULATE THE CHECKSUM BYTE AND INVERT IT
 For i = 0 To 31
 iChecksum = iChecksum + yRowData(i)
 Next i

 iTmp = iChecksum \ 256 '//Integer divide
 iChecksum = iChecksum - (iTmp * 256)
 iChecksum = 255 - iChecksum

 '// MOVE THE SERIAL NUMBER INTO THE FUEL GAUGE BUFFER
 lError = WriteI2CByte(&H40 + 15, CInt(yRowData(15)), &HAA)
 lError = WriteI2CByte(&H40 + 16, CInt(yRowData(16)), &HAA)

 '// TRANSFER TO FLASH USING THE CHECKSUM
 lError = WriteI2CByte(&H60, iChecksum, &HAA)

 DoDelay 0.2 '// Wait 0.2 seconds

End Function

SLUA665

12 Going to Production With the bq34z1xx

Figure 8. Method to Write a Unique Serial Number

PRODUTION STEPS 1, 2, and 3 - Using the bq Multi Station Tester.

The “bq Multi Station Tester” program is available as a free download and may be convenient for users without
the time or resources to develop a proprietary programming and calibration station. The program can handle from
one to twelve stations.

 SLUA665

 Going to Production With the bq34z1xx 13

Appendix A. – Converting to HDQ Communication

If manufacturers develop proprietary tools to program the DFI and need to set the device to HDQ mode,
the following steps are required.

After writing the DFI but before sending the commands to exit ROM mode, send the following commands:
(a) I2C Command 0x00: Data Byte 0x16
(b) I2C Command 0x04: Data Byte 0x05
(c) I2C Command 0x64: Data Byte 0x1B
(d) I2C Command 0x65: Data Byte 0x00

Finish the programming process by exiting ROM mode and sending the following commands:

(a) I2C Command 0x00: Data Byte 0x0F
(b) I2C Command 0x64: Data Byte 0x0F
(c) I2C Command 0x65: Data Byte 0x00

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

