TPA6166A2 Multimedia Headset Interface This user's guide describes the characteristics, operation, and use of the TPA6166A2EVM evaluation module (EVM). This document includes schematic diagrams, a printed circuit board (PCB) layout, and a bill of materials. ### Contents | 1 | Introduction | 2 | |---------|--|----| | 2 | Description | 2 | | 3 | Applications | 2 | | 4 | Features | 2 | | 5 | Electrical Performance Specification | 2 | | 6 | Schematic | 3 | | 7 | Operation | | | | 7.1 Summary of Operation Instructions | | | | 7.2 Install and Run the Graphical User Interface | | | | 7.3 EVM Connections and Power Up | | | | 7.4 Input and Output Connections | | | | 7.5 Plug In a Supported Accessory | | | • | 7.6 PurePath Console GUI Evaluation | | | 8 | Device Evaluation Options. | | | ^ | 8.1 Current Measurement Connections | | | 9
10 | EVM Assembly Drawings and PCB Layout | | | 10 | Related Documentation from Texas Instruments | | | 11 | Related Documentation from Texas instruments | 14 | | | List of Figures | | | 1 | TPA6166A2EVM Schematic | 3 | | 2 | TPA6166A2EVM Schematic | 4 | | 3 | PurePath Console | 5 | | 4 | Established I ² C Connection (Shown with Green Indicator Light) | 6 | | 5 | TPA6166A2 Panel Details | 8 | | 6 | TPA6166A2EVM Silk Screen Top Layer | | | 7 | TPA6166A2EVM X-Ray Silk Screen Layer | | | 8 | TPA6166A2EVM Top Copper | | | 9 | TPA6166A2EVM Copper Layer 2 | | | 10 | TPA6166A2EVM Copper Layer 3 | | | _ | | | | 11 | TPA6166A2EVM Bottom Copper | 11 | | | List of Tables | | | 1 | Supply Specifications | 2 | | 2 | TPA6166A2 Jumper Settings | | | 3 | TPA6166A2F\/M List of Materials | | DirectPath, PurePath are trademarks of Texas Instruments. Microsoft, Windows are registered trademarks of Microsoft Corporation. Introduction www.ti.com ## 1 Introduction The TPA6166A2 evaluation module (TPA6166A2EVM) is a complete multimedia headset interface with headphone amplifier, and microphone pre-amp and bias, as well as advanced headset detection circuitry. All components and the evaluation module are Pb-free. ## 2 Description The TPA6166A2EVM consists of a TPA6166A2 device and all necessary components to evaluate it. The EVM connects to a PC through a USB interface. It is controlled by easy-to-use, intuitive, graphical user interface (GUI)-based software. ## 3 Applications This EVM is used in the following applications: - · Smart phones and wireless handsets - Portable tablets ### 4 Features The following features are available through this EVM: - Ultra low power, high performance DirectPath™ Class-G headphone amplifier - Fully differential Mic pre-amp with variable gain - Choice of two Mic Bias voltages: 2 V and 2.6 V - Advanced accessory insertion, removal, and type detection ## 5 Electrical Performance Specification Table 1 lists the required power supply specifications. **Table 1. Supply Specifications** | Supply voltage range, VDD | 1.7 V – 1.9 V | |-----------------------------------|---------------| | Microphone Supply voltage, MICVDD | 2.4 V – 3.6 V | www.ti.com Schematic ## 6 Schematic Figure 1 and Figure 2 illustrate the EVM schematics. Figure 1. TPA6166A2EVM Schematic Schematic www.ti.com Figure 2. TPA6166A2EVM Schematic www.ti.com Operation ## 7 Operation This section describes how to operate the TPA6166A2EVM. ## 7.1 Summary of Operation Instructions Follow the procedures below to quickly set up the TPA6166A2EVM and begin evaluation (upon connecting to the USB): - 1. Install the GUI. Use a PC running Microsoft® Windows® XP or higher. See Section 7.2 for details. - Connect the EVM to the PC and power up the EVM. Use a micro-USB cable. See Section 7.3 for details. - 3. Run the GUI. - 4. Connect inputs and outputs. See Section 7.4 for details. - 5. Plug in a supported accessory. See Section 7.5 for details. - 6. Use the GUI to control the evaluation. See Section 7.6 for details. ## 7.2 Install and Run the Graphical User Interface Download the PurePath[™] Console from <u>www.ti.com</u>. Once the PurePath Console is installed, select the TPA6166A2 plugin to start the GUI. The front panel of the GUI looks like Figure 3. Refer to Section 7.6 for a detailed description of the GUI. Connect the EVM before running the GUI. Figure 3. PurePath Console Operation www.ti.com ## 7.3 EVM Connections and Power Up The EVM is configured to power up from the USB by default. If the EVM is not in this mode, ensure that jumpers are inserted between the middle pin and the *USB* pin of the following jumpers: JP2, JP3 and JP4. Then, using a micro-USB cable, connect the EVM to a PC running Windows XP or higher. The EVM powers itself from the USB (5.0 V) and generates 3.0-V and 1.8-V supplies for the TPA6166A2 using on-board voltage regulators as well as a 3.3 V for the TAS1020B chip which is used to convert USB to I²C and vice versa. Alternatively, to power the TPA6166A2 using external power supplies, use the jumper settings in Table 2. It is not possible to power the TAS1020B chip from an external 3.3-V supply. | Table 2. TPA6166A2 Jumper Settir | ngs | |----------------------------------|-----| |----------------------------------|-----| | Jumper | Connect Middle Pin To | Function | |--------|-----------------------|--------------------------------------------------------------------| | JP4 | 5.0-V pin of jumper | Use external 5.0-V supply instead of USB power | | JP2 | 3.0-V pin of jumper | Use external 3.0-V supply instead of 3.0 V from on-board regulator | | JP3 | 1.8-V pin of jumper | Use external 1.8-V supply instead of 1.8 V from on-board regulator | Once the USB cable is connected to the PC, the I²C status indicator in the bottom half of the GUI should turn green as shown in Figure 4. Figure 4. Established I²C Connection (Shown with Green Indicator Light) www.ti.com Operation ## 7.4 Input and Output Connections ## 7.4.1 Headphone Input For headphone amplifier evaluation, connect the left and right signal sources to HPINL (black) and HPINR (red) RCA input connectors on the EVM. ### 7.4.2 Microphone Output For microphone pre-amp and mic-bias evaluation, connect the microphone output available on the MICOUT (black) RCA connector to the measurement equipment or external amplifier system. ### 7.4.3 I²C Connection By default, pins SDA and SCL of the TPA6166A2 are driven by the on-board TAS1020B which is controlled by the GUI running on the PC through the USB. If the EVM is not in this default mode, insert jumpers between the middle-pin and *USB* pin of the following jumpers: SDA, SCL. To use an external I²C master instead of the on-board TAS1020B, remove the jumpers between the middle-pin and *USB* pin of jumpers SDA and SCL and connect the external I²C signals between the middle-pin and GND of jumpers SDA and SCL. Ensure that SDA and SCL are not swapped. Ensure that the I²C master does not have pull up resistors or that the I²C master's pull-up resistors pull up SDA and SCL to 1.8 V. Voltages greater than 1.8 V may cause device damage. ### 7.4.4 IRQ Connection By default, the \overline{IRQ} pin of the TPA6166A2 is connected to the on-board TAS1020B which is controlled by the GUI running on the PC through the USB. If the EVM is not in this default mode, insert a jumper between the middle-pin and the *USB* pin of the IRQ jumper. To stop the \overline{IRQ} signal from going to the on-board TAS1020B and to process it using an external device, remove the jumper between the middle-pin and the USB pin of jumper IRQ, and connect the middle-pin and GND of jumper IRQ to the external device. Ensure that \overline{IRQ} does not have pull-up resistors or that the I²C master's pull-up resistors pull up \overline{IRQ} to 1.8 V. Voltages greater than 1.8 V may cause device damage. ## 7.5 Plug In a Supported Accessory Connect a supported accessory to the 3.5-mm jack J1. For a list of supported accessories, refer to the TPA6166A2 data sheet (SLAS997) under *Accessory detection*. As soon as the accessory is inserted, the GUI should indicate the type of accessory inserted. ### 7.6 PurePath Console GUI Evaluation Use the PurePath Console GUI to control the device during evaluation. This section gives a short description of the main features of the GUI. The GUI window consists of the following tabs: EVM, Block Diagram, TPA6166A2, Direct I2C Read/Write, Registers, and Scripting. Figure 5. TPA6166A2 Panel Details ## 8 Device Evaluation Options ### 8.1 Current Measurement Connections One or both of the jumpers JP2 and JP3 can be removed and current meters can be installed to measure TPA6166A2 current consumption ## 9 EVM Assembly Drawings and PCB Layout Figure 6 through Figure 11 illustrate the TPA6166A2EVM assembly drawings and PCB layout. Figure 6. TPA6166A2EVM Silk Screen Top Layer Figure 7. TPA6166A2EVM X-Ray Silk Screen Layer Figure 8. TPA6166A2EVM Top Copper Figure 9. TPA6166A2EVM Copper Layer 2 Figure 10. TPA6166A2EVM Copper Layer 3 Figure 11. TPA6166A2EVM Bottom Copper List of Materials www.ti.com ## 10 List of Materials Table 3 lists the BOM for the TPA6166A2EVM. ## Table 3. TPA6166A2EVM List of Materials | Item | MFG Part Number | MFG | Qty | Ref Designators | Description | |------|--------------------|-----------------------|-----|----------------------------------------------------------------------|--------------------------------------------------------------| | 1 | TPA6166A2YFF | TEXAS INSTRUMENTS | 1 | U1 | 3.5mm JACK DETECT AND HEADSET INTERFACE IC WCSP25-YFF ROHS | | 2 | PCA9306DCTR | TEXAS INSTRUMENTS | 1 | U2 | DUAL BIDIR I2C BUS AND SMBUS VOLT LEVEL TRANS SSOP8-DCT ROHS | | 3 | SN74AVC1T45DBVR | TEXAS INSTRUMENTS | 1 | U3 | 1BIT DUAL SUPPLY XCVR W/CONFIG VOLTAGE SOT23-DBV6 ROHS | | 4 | 24LC64-I/SN | MICROCHIP | 1 | U4 | 64K I2C SERIAL EEPROM SOP8-D ROHS | | 5 | TAS1020BPFB | TEXAS INSTRUMENTS | 1 | U5 | USB STREAMING CONTROLLER TQFP48-PFB ROHS | | 6 | TPS73630MDBVREP | TEXAS INSTRUMENTS | 1 | VR1 | VOLT REG 3.0V 400MA LDO CAP FREE NMOS SOT23-DBV5 ROHS | | 7 | TPS73618MDBVREP | TEXAS INSTRUMENTS | 1 | VR2 | VOLT REG 1.8V 400MA LDO CAP FREE NMOS SOT23-DBV5 ROHS | | 8 | TPS73633MDBVREP | TEXAS INSTRUMENTS | 1 | VR3 | VOLT REG 3.3V 400MA LDO CAP FREE NMOS SOT23-DBV5 ROHS | | 9 | MMBT2222A-7-F | DIODES INC. | 1 | Q1 | TRANSISTOR NPN GENERAL PURPOSE 40V 1A SOT23 DBV3 ROHS | | 10 | FQ1045A-6.000 | FOX | 1 | Y1 | CRYSTAL SMT 6.0MHz 30ppm FQ1045A ROHS | | 11 | 0603YD474KAT2A | AVX | 2 | C1, C2 | CAP SMD0603 CERM 0.47UFD 16V 10% X5R ROHS | | 12 | GRM188R71H472KA01D | MURATA | 1 | СЗ | CAP SMD0603 CERM 4700PFD 50V 10% X7R ROHS | | 13 | GRM0335C1H100JA01D | MURATA | 0 | C4, C10, C11, C20, C21, C22, C23, C24 | CAP SMD0201 CERM 10pF 50V NPO 5% ROHS | | 14 | C1005X5R1A225K | TDK CORP | 1 | C5 | CAP SMD0402 CERM 2.2UFD 10V 10% X5R ROHS | | 15 | C1005X5R1A105K | TDK CORP | 4 | C6, C7, C8, C9 | CAP SMD0402 CERM 1.0UFD 10V 10% X5R ROHS | | 16 | GRM1555C1H330JA01D | MURATA | 8 | C12, C13, C14, C15, C16, C17, C18, C19 | CAP SMD0402 CERM 33PFD 5% 50V COG ROHS | | 17 | LMK107BJ106MALTD | TAIYO YUDEN | 3 | C25, C30, C34 | CAP SMD0603 CERM 10.0UFD 10V 20% X5R ROHS | | 18 | GRM188R71C104KA01D | MURATA | 14 | C26, C31, C35, C38, C41, C42, C43, C44, C49, C50, C51, C52, C53, C54 | CAP SMD0603 CERM 0.1UFD 16V 10% X7R ROHS | | 19 | AVE106M16A12T-F | CORNELL DUBILIER | 3 | C27, C32, C36 | CAP ALUM-ELECT SMD-AVE TYPE A 10UFD 16V 20% ROHS | | 20 | TMK107BJ105KA-T | TAIYO YUDEN | 3 | C28, C33, C37 | CAP SMD0603 CERM 1.0UFD 25V 10% X5R ROHS | | 21 | GRM188R60J106ME47D | MURATA | 1 | C29 | CAP SMD0603 CERM 10UFD 6.3V 20% X5R ROHS | | 22 | GRM1885C1H470JA01D | MURATA | 2 | C39, C40 | CAP SMD0603 CERM 47PFD 50V 5% COG ROHS | | 23 | C1608C0G1H180J | TDK CORP. | 2 | C45, C46 | CAP SMD0603 CERM 18PFD 50V 5% COG ROHS | | 24 | GRM1885C1H101JA01D | MURATA | 1 | C47 | CAP SMD0603 CERM 100PFD 50V 5% COG ROHS | | 25 | C1608C0G1H102J | TDK CORP. | 1 | C48 | CAP SMD0603 CERM 1000PFD 50V 5% COG ROHS | | 26 | ERJ-2GEJ102X | PANASONIC | 2 | R1, R2 | RESISTOR SMD0402 1.0K OHMS 5% THICK FILM 1/16W ROHS | | 27 | CRCW04022K70JNED | VISHAY | 2 | R3, R4 | RESISTOR SMD0402 2.7K OHMS 5% THICK FILM 1/16W ROHS | | 28 | ERJ-2GEJ104 | PANASONIC | 1 | R5 | RESISTOR SMD0402 THICK FILM 100K OHMS 1/16W 5% ROHS | | 29 | RMCF0402ZT0R00 | STACKPOLE ELECTRONICS | 3 | R6, R8, R10 | ZERO OHM JUMPER SMT 0402 0 OHM 1/16W,5% ROHS | | 30 | ERJ-3GEY0R00V | PANASONIC | 1 | R7 | RESISTOR SMD0603 0.0 OHM 5% THICK FILM 1/10W ROHS | | 31 | RMCF0402ZT0R00 | STACKPOLE ELECTRONICS | 0 | R9 | ZERO OHM JUMPER SMT 0402 0 OHM 1/16W,5% ROHS | | 32 | ERJ-3GEYJ153V | PANASONIC | 1 | R11 | RESISTOR SMD0603 15K OHM 5% THICK FILM 1/10W ROHS | | 33 | ERJ-3EKF1501V | PANASONIC | 1 | R12 | RESISTOR SMD0603 1.50K OHM 1% THICK FILM 1/10W ROHS | | 34 | CRCW060327R4FKEA | VISHAY | 2 | R13, R14 | RESISTOR SMD0603 27.4 OHM 1/10W 1% ROHS | | 35 | ERJ-3EKF4991V | PANASONIC | 3 | R15, R20, R21 | RESISTOR SMD0603 4.99K OHM 1% THICK FILM 1/10W ROHS | | 36 | RMCF0603JT100K | STACKPOLE ELECTRONICS | 1 | R16 | RESISTOR SMD0603 100K OHMS 5% 1/10W ROHS | List of Materials www.ti.com ## Table 3. TPA6166A2EVM List of Materials (continued) | Item | MFG Part Number | MFG | Qty | Ref Designators | Description | | |------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------|-----------------------------------------------------|--| | 37 | ERJ-3GEYJ331V | PANASONIC | 2 | R17, R18 | RESISTOR SMD0603 330 OHMS 5% 1/10W ROHS | | | 38 | ERJ-3EKF2203V | PANASONIC | 1 | R19 | RESISTOR SMD0603 220K 1% THICK FILM 1/10W ROHS | | | 39 | ERJ-3EKF3091V | PANASONIC | 1 | R22 | RESISTOR SMD0603 3.09K OHM 1% THICK FILM 1/10W ROHS | | | 40 | RMCF0603FT2K00 | STACKPOLE ELECTRONICS | 1 | R23 | RESISTOR SMD0603 2.00K OHMS 1% 1/10W ROHS | | | 41 | MPZ1005S121C | TDK | 4 | FB1, FB2, FB3, FB4 | FERRITE BEAD, 120 Ohms 1.2A 100MHz SM0402 ROHS | | | 42 | MPZ2012S601A | TDK | 2 | FB5, FB6 | FERRITE BEAD SMD0805 600 Ohms 2A ROHS | | | 43 | SJ-43515TS-SMT | CUI STACK | 1 | J1 | JACK AUDIO-STEREO MINI(3.5MM 3-COND SMT-RA ROHS | | | 44 | PBC02SAAN | SULLINS | 3 | JP1, JP5, JP6 | HEADER THRU MALE 2 PIN 100LS 120 TAIL GOLD ROHS | | | 45 | PBC03SAAN | SULLINS | 6 | IRQ, JP2, JP3, JP4, SCL, SDA | HEADER THRU MALE 3 PIN 100LS 120 TAIL GOLD ROHS | | | 46 | PBC01SAAN | SULLINS | 5 | TIP, RING1, RING2, SLEEVE, JACK-SENSE | HEADER THRU MALE 1 PIN GOLD ROHS | | | 47 | PJRAN1X1U01X | SWITCHCRAFT | 2 | HPINL, MICOUT | JACK, RCA 3-PIN PCB-RA BLACK ROHS | | | 48 | PJRAN1X1U03X | SWITCHCRAFT | 1 | HPINR | JACK, RCA 3-PIN PCB-RA RED ROHS | | | 49 | ZX62WD1-B-5PC | HIROSE | 1 | USB | JACK USB FEMALE TYPEB MICRO SMT-RA 5PIN ROHS | | | 50 | 5001 | KEYSTONE ELECTRONICS | 3 | GNDx3 | PC TESTPOINT, BLACK, ROHS | | | 51 | TL1015AF160QG | E-SWITCH | 1 | S1 | SWITCH, MOM, 160G SMT 4X3MM ROHS | | | 52 | 3760-2 | POMONA | 3 | 1.8V, 3.0V, 5.0V | BINDING POST, RED 60V/15A TIN ROHS | | | 53 | 3760-0 | POMONA | 1 | GND | BINDING POST, BLACK 60V/15A TIN ROHS | | | 54 | 24434 | KEYSTONE ELECTRONICS | 4 | STANDOFFS | Standoff, Hex, 12mm, M3, Aluminum | | | 56 | MPMS 003 0005 PH | BUILDING FASTENER | 4 | STANDOFF SCREWS | MACHINE SCREW PAN PHILLIPS M3 | | | 57 | 969102-0000-DA | 3M | 6 | IRQ, JP2, JP3, JP4, SCL, SDA | SHUNT BLACK AU FLASH 0.100LS OPEN TOP ROHS | | | | | TOTAL | 125 | | | | | | Special Notes to this Bill of Materials | | | | | | | | SN1 | These assemblies are ESD sensitive, observe ESD precautions. These assemblies must be clean and free from flux and all contaminants. Use of no-clean flux is not acceptable. | | | | | | | SN2 | | | | | | | | SN3 | These assemblies must comply with workmanship standards IPC-A-610 Class 2. | | | | | | | SN4 | Ref designators marked with an asterisk ('**') cannot be substituted. All other components can be substituted with equivalent MFG's components. | | | | | ## 11 Related Documentation from Texas Instruments Refer to the following related documentation for more information about the TPA6166A2: TPA6166A2 data sheet, SLAS997. # ADDITIONAL TERMS AND CONDITIONS, WARNINGS, RESTRICTIONS, AND DISCLAIMERS FOR EVALUATION MODULES Texas Instruments Incorporated (TI) markets, sells, and loans all evaluation boards, kits, and/or modules (EVMs) pursuant to, and user expressly acknowledges, represents, and agrees, and takes sole responsibility and risk with respect to, the following: - 1. User agrees and acknowledges that EVMs are intended to be handled and used for feasibility evaluation only in laboratory and/or development environments. Notwithstanding the foregoing, in certain instances, TI makes certain EVMs available to users that do not handle and use EVMs solely for feasibility evaluation only in laboratory and/or development environments, but may use EVMs in a hobbyist environment. All EVMs made available to hobbyist users are FCC certified, as applicable. Hobbyist users acknowledge, agree, and shall comply with all applicable terms, conditions, warnings, and restrictions in this document and are subject to the disclaimer and indemnity provisions included in this document. - Unless otherwise indicated, EVMs are not finished products and not intended for consumer use. EVMs are intended solely for use by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. - 3. User agrees that EVMs shall not be used as, or incorporated into, all or any part of a finished product. - 4. User agrees and acknowledges that certain EVMs may not be designed or manufactured by TI. - 5. User must read the user's guide and all other documentation accompanying EVMs, including without limitation any warning or restriction notices, prior to handling and/or using EVMs. Such notices contain important safety information related to, for example, temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI. - 6. User assumes all responsibility, obligation, and any corresponding liability for proper and safe handling and use of EVMs. - 7. Should any EVM not meet the specifications indicated in the user's guide or other documentation accompanying such EVM, the EVM may be returned to TI within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY TI TO USER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. TI SHALL NOT BE LIABLE TO USER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RELATED TO THE HANDLING OR USE OF ANY EVM. - 8. No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which EVMs might be or are used. TI currently deals with a variety of customers, and therefore TI's arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services with respect to the handling or use of EVMs. - 9. User assumes sole responsibility to determine whether EVMs may be subject to any applicable federal, state, or local laws and regulatory requirements (including but not limited to U.S. Food and Drug Administration regulations, if applicable) related to its handling and use of EVMs and, if applicable, compliance in all respects with such laws and regulations. - 10. User has sole responsibility to ensure the safety of any activities to be conducted by it and its employees, affiliates, contractors or designees, with respect to handling and using EVMs. Further, user is responsible to ensure that any interfaces (electronic and/or mechanical) between EVMs and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. - 11. User shall employ reasonable safeguards to ensure that user's use of EVMs will not result in any property damage, injury or death, even if EVMs should fail to perform as described or expected. - 12. User shall be solely responsible for proper disposal and recycling of EVMs consistent with all applicable federal, state, and local requirements. Certain Instructions. User shall operate EVMs within TI's recommended specifications and environmental considerations per the user's guide, accompanying documentation, and any other applicable requirements. Exceeding the specified ratings (including but not limited to input and output voltage, current, power, and environmental ranges) for EVMs may cause property damage, personal injury or death. If there are questions concerning these ratings, user should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the applicable EVM user's guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using EVMs' schematics located in the applicable EVM user's guide. When placing measurement probes near EVMs during normal operation, please be aware that EVMs may become very warm. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use EVMs. Agreement to Defend, Indemnify and Hold Harmless. User agrees to defend, indemnify, and hold TI, its directors, officers, employees, agents, representatives, affiliates, licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of, or in connection with, any handling and/or use of EVMs. User's indemnity shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if EVMs fail to perform as described or expected. Safety-Critical or Life-Critical Applications. If user intends to use EVMs in evaluations of safety critical applications (such as life support), and a failure of a TI product considered for purchase by user for use in user's product would reasonably be expected to cause severe personal injury or death such as devices which are classified as FDA Class III or similar classification, then user must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement. ### RADIO FREQUENCY REGULATORY COMPLIANCE INFORMATION FOR EVALUATION MODULES Texas Instruments Incorporated (TI) evaluation boards, kits, and/or modules (EVMs) and/or accompanying hardware that is marketed, sold, or loaned to users may or may not be subject to radio frequency regulations in specific countries. ### General Statement for EVMs Not Including a Radio For EVMs not including a radio and not subject to the U.S. Federal Communications Commission (FCC) or Industry Canada (IC) regulations, TI intends EVMs to be used only for engineering development, demonstration, or evaluation purposes. EVMs are not finished products typically fit for general consumer use. EVMs may nonetheless generate, use, or radiate radio frequency energy, but have not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or the ICES-003 rules. Operation of such EVMs may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. ### General Statement for EVMs including a radio User Power/Frequency Use Obligations: For EVMs including a radio, the radio included in such EVMs is intended for development and/or professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability in such EVMs and their development application(s) must comply with local laws governing radio spectrum allocation and power limits for such EVMs. It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by TI unless user has obtained appropriate experimental and/or development licenses from local regulatory authorities, which is the sole responsibility of the user, including its acceptable authorization. ### **U.S. Federal Communications Commission Compliance** ### For EVMs Annotated as FCC - FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant #### Caution This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications could void the user's authority to operate the equipment. ### FCC Interference Statement for Class A EVM devices This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at its own expense. ### FCC Interference Statement for Class B EVM devices This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: - · Reorient or relocate the receiving antenna. - · Increase the separation between the equipment and receiver. - Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. - Consult the dealer or an experienced radio/TV technician for help. ### Industry Canada Compliance (English) ### For EVMs Annotated as IC - INDUSTRY CANADA Compliant: This Class A or B digital apparatus complies with Canadian ICES-003. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. ## **Concerning EVMs Including Radio Transmitters** This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. ### **Concerning EVMs Including Detachable Antennas** Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. ### Canada Industry Canada Compliance (French) Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l'autorité de l'utilisateur pour actionner l'équipement. ### Concernant les EVMs avec appareils radio Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. ### Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated ### Important Notice for Users of EVMs Considered "Radio Frequency Products" in Japan EVMs entering Japan are NOT certified by TI as conforming to Technical Regulations of Radio Law of Japan. If user uses EVMs in Japan, user is required by Radio Law of Japan to follow the instructions below with respect to EVMs: - Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan. - 2. Use EVMs only after user obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or - 3. Use of EVMs only after user obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless user gives the same notice above to the transferee. Please note that if user does not follow the instructions above, user will be subject to penalties of Radio Law of Japan. ### http://www.tij.co.jp 【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 本開発キットは技術基準適合証明を受けておりません。 本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 - 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。 - 2. 実験局の免許を取得後ご使用いただく。 - 3. 技術基準適合証明を取得後ご使用いただく。。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・インスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル http://www.tij.co.jp Texas Instruments Japan Limited (address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan ### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom Amplifiers amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u> RFID <u>www.ti-rfid.com</u> OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com/omap Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>