
Application Report
SLLA154 – NOVEMBER 2003

1

VIDs, PIDs, and Firmware: Design Decisions when Using
TI USB Device Controllers

 Connectivity Solutions

ABSTRACT

There are certain design decisions that must be made by any system designer using TI’s
USB controller devices, involving the vendor ID (VID) and product ID (PID) of the USB
device and the location of firmware. If these are not configured properly, the device will
not be enumerated correctly by the USB host.

This document discusses how these are handled within a system using one of TI’s USB
device controllers. These controllers include TUSB2136, TUSB3210, TUSB3410,
TUSB5052, and TUSB6250. The document is intended as an overview of these subjects.
Upon reading it, the system designer should possess enough knowledge to make these
decisions and know where to obtain the information necessary to implement the chosen
scheme.

Contents
1 Introduction ..2
2 Firmware Location..2

2.1 Storage in an EEPROM ..3
2.2 Storage on the PC ..4

2.2.1 TUSB3410/5052 UART Driver...4
2.2.2 AppLoader Driver ..4
2.2.3 Custom Driver with “Integrated” AppLoader...5

3 VIDs/PIDs and Serial Numbers: How Windows Associates USB Devices with Drivers...........5
3.1 Where Are VIDs/PIDs stored?...6
3.2 What Happens When the Device is Inserted onto the Bus? ..6
3.3 EEPROM Serialization..7

4 USB Descriptors ...7
5 EEPROM Selection ...8

5.1 I2C EEPROM Types..8
5.2 Type II Device...9
5.3 Type III Device..9

6 Summary of Configuration Options ..10
6.1 Configuration Table...10
6.2 System Diagrams..15

7 TI Website ...17
References..17

SLLA154

2 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers

Figures
Figure 1. Writing Three Bytes of Data Starting at Address (i) .. 9
Figure 2. Reading Two Bytes of Data Starting at Address (i) ... 9
Figure 3. Writing Two Bytes of Data Starting at Address (i)... 10
Figure 4. Reading One Byte of Data at Address (i).. 10
Figure 5. Class Drivers, with Firmware Stored in EEPROM.. 15
Figure 6. Custom Driver without Firmware Downloaded.. 15
Figure 7. Custom Driver with Firmware Download Capability.. 16
Figure 8. Hub-Equipped Device (TUSB2136/TUSB5052) Used with Class Driver...................... 16
Figure 9. Hub-Equipped Device (TUSB2136/TUSB5052) Used with Custom Driver.................. 17

Tables
Table 1. Recommended Configurations... 12
Table 2. Recommended Configurations (continued)... 13
Table 3. Recommended Configurations (continued)... 14

1 Introduction
This document is intended to provide a top-level overview of the way in which TI’s USB
controller devices report themselves to the USB host and equip themselves with application
firmware. TI’s USB controller devices include TUSB3210, TUSB3410, TUSB2136, TUSB5052,
and TUSB6250. This group may also include any other devices under the TUSB3xxx and
TUSB6xxx nomenclatures.

By reading this document, the reader should possess enough knowledge to choose a
firmware/descriptor scheme and know where to obtain the information necessary to implement
that scheme.

Note that the term USB device is used throughout this document. This refers to the piece of USB
equipment being designed, which includes a TI USB controller as part of its design to handle the
USB connection. The term does not refer to the TUSBxxxx device, which is instead referred to
as the USB controller.

Also note that a differentiation is often made between production-ready systems, and
development of systems or evaluation of the USB controller. This is because USB devices being
produced for sale to multiple end users have certain requirements that may not apply to
applications contained within the engineer’s lab. One key requirement for production systems is
that they include an EEPROM device, the reasons for which will be made clear later in this
document.

2 Firmware Location
TI’s USB controllers, all of which integrate an 8051/8052 microcontroller and use on-board RAM
to store code during execution, provide a choice of where to store the microcontroller firmware
prior to loading to this RAM: in on-board EEPROM, or on the PC.

SLLA154

 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers 3

Note that no matter where the application firmware is stored, the controller always begins
running its ROM-based bootcode upon power-up. After performing some initialization tasks, it
looks for a valid header on the EEPROM device. The header refers to a properly-structured set
of descriptor blocks, as defined by each controller’s data sheet. Each descriptor block contains
information that defines the USB device. A descriptor block usually contains either USB
descriptor information or executable firmware.

If a valid header is found, it begins parsing and processing the descriptor blocks in the header. If
it finds that one of these blocks contains firmware, it loads that firmware and transfers execution
to it. (In some cases, the bootcode may handle enumeration by the host before loading the
firmware from the EEPROM.) If it does not find firmware in the header, the bootcode handles
enumeration by the host and then waits for application firmware to be downloaded from the PC.

Generally speaking, there are no strong advantages or disadvantages to placing the firmware in
EEPROM or on the PC. However, depending on the application, engineers may have a
preference, and for this reason both methods are provided.

2.1 Storage in an EEPROM

The firmware can be stored in an EEPROM located on the USB controller’s I2C port. As
described in the introduction to this section, this is the first place the bootcode checks when
looking for application firmware.

Each USB controller’s bootcode handles application firmware in the EEPROM somewhat
differently. Generally speaking, there are two methods. The first is to load the code immediately
after it is found and begin executing it, prior to enumeration by the USB host. In the second
method, the bootcode only sets a flag when application firmware is found, handles enumeration
directly, and then loads the firmware from the EEPROM.

TI provides a utility that generates a properly-formatted header file, called the Header Generator
utility. The Header Generator is available on the TI website and uses a simple scripting scheme
to instruct the utility in how to form the header.

For details of how a given USB controller handles firmware in the EEPROM, refer to the data
manual for that controller and the readme documentation included with the Header Generator
utility. The readme also helps explain the ways in which each controller’s bootcode differ.

Theoretically, code download is somewhat faster via the EEPROM. However, this is not
detectable by the end user.

When using TUSB3210, EEPROM storage is the only option. This is because a vendor ID (VID)
and product ID (PID) should exist somewhere in the EEPROM for any system in production (see
Section 3, VIDs/PIDS: How Windows Associates USB Devices with Drivers), and the only
method for this supported by TUSB3210’s bootcode is to do it programmatically in firmware.
This firmware must reside in the EEPROM.

SLLA154

4 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers

2.2 Storage on the PC

If stored on the PC, the firmware binary file is downloaded to the USB device after the
enumeration process. As described previously, the bootcode handles enumeration. If the host
driver’s INF file is configured properly, the host will associate this device with a driver. The driver
can then download the application firmware to the USB controller, to which execution is
subsequently transferred.

An advantage to storing firmware on the PC rather than in an EEPROM device is that the device
can be significantly smaller if it is only required to store a few USB descriptors. This can result in
cost savings. However, it should be noted that an EEPROM should be used in all production-
ready applications. This is because the manufacturer’s vendor ID and product ID must be
resident within the USB device hardware, so that it can report this information to the host at
enumeration. This must be stored in the EEPROM device (see Section 4, USB Descriptions, for
more information).

As discussed in Section 2.1, firmware for TUSB3210 must be stored in EEPROM for production-
ready USB devices.

If firmware is to be downloaded from the PC, it is necessary that the driver have this special
functionality. The following sections address the three driver situations that can be used for this
purpose.

2.2.1 TUSB3410/5052 UART Driver

TI provides a TUSB3410/5052 UART driver/firmware solution for USB/RS232 bridge
applications. This driver has the capability of downloading firmware to the USB device.

Note that when firmware is downloaded from the PC using the UART driver with the TUSB5052
device, the TUSB5052’s bootcode performs a disconnect/reconnect before transitioning
execution to the firmware. This results in the user receiving two audible/visual cues of driver load
under some OSs (including Windows XPTM), even though the device is being associated with
only one driver. This can be avoided by storing the firmware in EEPROM. The TUSB3410 does
not execute this disconnect/reconnect in the bootcode.

2.2.2 AppLoader Driver

TI’s AppLoader (formerly known as “Firmware Updater”) is a driver intended for evaluation and
development purposes (not for distribution with finished products). Its sole purpose is to
download firmware to the USB device. It is particularly useful for software development, since it
eliminates the need to use an EEPROM programmer every time firmware is changed.

Since it provides no additional functionality, it is necessary for the USB device to be re-
associated with a different driver after firmware is downloaded. To do this, the firmware performs
a disconnect/reconnect on the bus; upon reconnect, it can report a new vendor ID and product
ID (see Section 3, VIDs/PIDS: How Windows Associates USB Devices with Drivers), which
causes the host to associate the device with a different driver. (Please refer to the “readme”
document included with the AppLoader driver for instructions on using the driver.)

SLLA154

 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers 5

If the system designer wishes to store firmware on the PC, there are certain restrictions that
must be considered. First, TI does not recommend using the two-driver solution (AppLoader plus
a separate functional driver) for production applications. Issues have been known to arise
relating to standby/hibernation. When power is removed from the USB controller (i.e., if it is bus-
powered and the PC goes into hibernation), the controller will lose its application firmware. The
PC is not aware of this, and a conflict results the next time it tries to access the USB device.

Another disadvantage with the two-driver solution involves the audible and visual cues that
some OSs (i.e., Windows XP) provide to the end user when a connection occurs. Because a
disconnect/reconnect is performed, these cues occur twice.

The first problem can be solved by integrating AppLoader’s firmware-download capability into
the functional driver, similar to what TI’s UART driver does. An integrated driver can check to be
sure the USB device has application firmware following a suspend/resume event and download
it if necessary. See Section 2.2.3 for more information.

2.2.3 Custom Driver with “Integrated” AppLoader

The system designer can integrate firmware-download functionality into a custom driver. For this
purpose, TI makes the source code available for AppLoader. This provides a production-capable
means of storing the USB controller firmware on the PC. An example of an “integrated” driver is
TI’s UART driver for use with TUSB3410/TUSB5052.

The engineer should be aware that the end user may still receive two cues for USB device
connect. This is because the bootcode in TUSB2136, TUSB3210, and TUSB5052 perform a
disconnect before transferring execution to the application firmware (which must then
reconnect). The bootcode in TUSB3410 and TUSB6250 does not perform this
disconnect/reconnect and therefore will provide only the initial audible/visual cues to the end
user when the USB device is enumerated.

Note that this option can be implemented only with custom drivers. USB class drivers, being part
of the OS, cannot be altered.

3 VIDs/PIDs and Serial Numbers: How Windows Associates USB
Devices with Drivers
Every USB device has two codes that help distinguish it from other USB devices that a host may
encounter: the Vendor ID (VID) and Product ID (PID). A VID/PID unique to a particular USB
device must be contained within the device hardware to comply with the USB specification.

The VID and PID are each two bytes long. Every equipment vendor must petition the USB
Implementers Forum for a unique VID. The PID can be anything the vendor wishes, but it is a
good idea to make the PID unique to a particular design.

Furthermore, USB devices of a given VID/PID combination can be serialized. This allows the
operating system to track not only a particular model, but also a specific board of that model. If
it is important that configuration settings be associated with a particular board, it is strongly
recommended that the boards be serialized.

It is extremely helpful for the engineer to understand how the host and the USB device use
VIDs/PIDs as they interact with each other.

SLLA154

6 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers

3.1 Where Are VIDs/PIDs Stored?

In a system using a TI USB controller, there is usually more than one VID/PID pair to consider.

There is one VID/PID pair common to any such system: the defaults stored in the controller’s
bootcode. The default VID for any of these controllers is TI’s (0x0451). The default PID is usually
the last four digits of the controller’s device number; for example, 0x3410 for TUSB3410. (Check
individual datasheets for the specific values.)

Because the default VID in the bootcode is TI’s, any production USB device should include an
EEPROM to store a unique VID/PID. This is the second VID/PID present within most systems.
They can be stored within a device or hub descriptor specified in the EEPROM header, or they
may be set programmatically by firmware in the EEPROM. If stored in an EEPROM device or
hub descriptor, the bootcode immediately uses them to replace the controller’s defaults, and
they will be reported to the USB host during enumeration. If they are located in EEPROM-based
firmware, they won’t take effect until firmware executes.

A third VID/PID pair is possible if the AppLoader driver is used to download firmware to the USB
controller, rather than storing it in the EEPROM. In these cases, the firmware must re-write the
active values with new ones. This is because of the necessity of causing the host to re-associate
the device with a different driver. If the device reports the same VID/PID to the host after
disconnect/reconnect, the host will once again associate the device with the AppLoader.

If the firmware is downloaded from the PC using an “integrated” driver (a functional driver with
firmware-download capability included within), there is no need for the firmware to change (or
otherwise contain) the VID/PID. The device is already properly associated with its final driver.
This is true of TI’s UART firmware downloaded via the TUSB3410/5052 UART driver; it does not
modify the VID/PID. (However, it should be noted that older versions of the UART firmware
(written before 4/15/03) did overwrite the active VID/PID.)

This abundance of options creates room for confusion. See Section 6, Recommended
Configurations, for TI’s recommended configurations.

3.2 What Happens When the Device is Inserted onto the Bus?

As an overview, here are all VID/PID-related activities, in the order they occur after powerup:

1. The USB controller’s bootcode assigns the default VID/PID values as the active ones. If
no values are later used to overwrite these defaults, they are the ones that will be reported
to the USB host.

2. If a valid header is found in an EEPROM on the I2C bus, and if a device descriptor is
found, the VID/PID found in the descriptor will be used to overwrite the active values in the
controller.

3. Firmware has the ability to replace the active VID/PID values in the controller. If
“autoexec” firmware (firmware that runs prior to USB enumeration) is found in the
EEPROM on the I2C bus, it immediately loads and executes; and if it overwrites the active
VID/PID values, these are the ones that are reported to the USB host. If a VID/PID exists
both in a header-based device descriptor and in EEPROM firmware, the one in firmware
overwrites the one in the header.

SLLA154

 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers 7

4. The USB device is enumerated by the host, and the active VID/PID values are reported.
Using these values, the host associates this USB device with a driver.

5. If the driver associated with the USB device includes the ability to download firmware, it
will do this following enumeration. The USB controller then begins executing this code. If
the driver is the AppLoader, the firmware should overwrite the active PID and cause a
disconnect/reconnect in order to prompt the host to re-associate the device with a
different driver.

3.3 EEPROM Serialization

 If it is important that configuration settings on the host be associated with a specific board, and
not just a certain product model, TI highly recommends serializing the EEPROM device. For
example, when using TUSB3410 or TUSB5052 with the UART driver/firmware solution, the
designer may wish to ensure a particular device is always associated with the same virtual COM
port. If the user has two of these devices, and neither is serialized, the operating system will not
be able to dependably identify the boards. In Windows, a phenomenon called “COM port
hopping” may occur, in which a new virtual COM port is assigned every time the device is
attached.

The solution is to include a string descriptor in the EEPROM designated as the serial number.
The device descriptor must include a valid index to this descriptor, and the serial number string
descriptor in each EEPROM device should contain a unique value. Most EEPROM
programmers are able to assign incremental values to particular locations within their mask files,
and this mechanism can be used to serialize the EEPROMs.

If serialization is not used, the operating system recognizes this by the lack of a valid index to a
string descriptor within the device descriptor. At this point, it attempts its own method of
providing unique identification. Windows 9x operating systems assign unique values based on
its location within the USB tree, and therefore a board is subject to re-assignment anytime the
tree changes. Windows 2k/XP operating systems assign values based on incidental data, such
as the USB port into which the device is plugged. This means that a board moved from one port
to another port can be identified as a different device. Both methods provide some measure of
unique identification, but neither is correct on a consistent basis. The only way to consistently
provide unique identification is EEPROM serialization.

String descriptors can be implemented in the EEPROM header of TUSB3410 or TUSB6250, or
can be implemented programmatically in the firmware of the other devices. In the latter case,
this of course requires that firmware be kept in EEPROM. Example configuration files for
TUSB3410 are included with the Header Generator utility that demonstrate creating a serial
number string descriptor.

4 USB Descriptors
There are many USB descriptors that can be included in the EEPROM, as defined by the USB
specification, Sections 9.5 and 9.6. A few of them can be stored separately in the header,
depending on the USB controller being used; the rest can be handled programmatically in
firmware. (The Header Generator readme indicates which types are available for a given
controller device.) At a minimum, there are two descriptor types that should be included in the
EEPROM for any production USB device.

SLLA154

8 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers

The first is the device descriptor. This provides basic information about the USB device to the
host. Most importantly, it includes the VID and PID. This is essential because it differentiates the
device from any other USB device the host may encounter.

The second is the string descriptor. Strings encapsulated by the string descriptors are displayed
to the end user the first time the device is enumerated by Windows. Without these descriptors,
the default strings will be reported to the host when the device enumerates. As a result,
Windows presents the USB device to the end user as something TI-specific; for example, “TI
TUSB3410 Boot Device”. Unless this is deemed acceptable, it is necessary to include a unique
string descriptor in the EEPROM. (Note that after the first enumeration, Windows pulls the
display strings from the driver associated with this device.) A string descriptor is also used in
EEPROM serialization, as discussed in section 3.3.

For TUSB2136 and TUSB5052, there is a descriptor block type called HUB_INFO_BASIC. This
is not a USB descriptor per se, but rather consolidates pertinent information for several USB
descriptors, including VID and PID.

5 EEPROM Selection
There are certain restrictions to the types of EEPROM devices that can be used. I2C EEPROM
devices available on the market can be grouped by the way they are addressed on the I2C bus.
It is necessary to consider this when selecting a device for use with a TI USB controller, since
some types are not supported with some controllers, and in some cases the device address may
need to be configured differently depending on the type.

5.1 I2C EEPROM Types

I2C EEPROM devices can be divided into three categories, based on data memory size. Type I
devices have small memory, typically in the 16- to 128-byte range. Unlike Type II and Type III
devices, it does not have a device address. Therefore, only one master and one slave can be on
the bus. The USB controllers’ bootcode does not support this type of device.

A Type II device has a memory size equal or larger than that of a Type I device. This type of
device normally has three address pins. Therefore, up to 8 devices can be on the same I2C bus.
Some devices with larger memory size might only have one or two address pins. Therefore, the
rest of the address bits in the device address byte become part of the data address. Normally, a
Type II device has a one-byte data address in the protocol. There could be from 8 to 11
addressing bits, depending on the vendor’s implementation. Usually, a Type II device has no
more than 2K bytes of data memory.

A Type III device has a larger memory size. This type of device normally also has three address
pins. Therefore, up to 8 devices can be on the same I2C bus. Some devices with larger memory
sizes might only have one or two address pins. Therefore, the rest of the address bits in the
device address byte become part of the data address. Normally, a Type III device has a two-
byte data address in the protocol. There could be from 16 to 19 addressing bits, depend on
vendor’s implementation.

The USB controllers’ bootcode supports Type II and Type III devices.

SLLA154

 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers 9

5.2 Type II Device

Fig. 1 shows the SDA line during access of a Type II device. Three bytes of data are written to
addresses i, i+1, and i+2, respectively. P0, P1, and P2 represent device address pins A2, A1,
and A0 on the chip. A value of 1010b in the high nibble of the device address byte is used for
the memory device. This is defined in the I2C specification. One byte of data address, A7 to A0,
is transmitted before the data bytes.

Figure 2 shows an example of a sequential read.

DEVICE ADDRESS

SDA LINE

M

S

B

1 10 0
P

2

P

1

P

0

L

S

B

R

/

W

A

C

K

DATA ADDRESS (i)

M

S

B

L

S

B

A

7

A

6

A

5

A

4

A

3

A

2

A

1

A

0

DATA at ADDRESS (i)

A

C

K

M

S

B

L

S

B

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

0

DATA at ADDRESS (i+1)

M

S

B

L

S

B

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

0

DATA at ADDRESS (i+2)

M

S

B

L

S

B

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

0

A

C

K

A

C

K

A

C

K

S

T

A

R

T

S

T

O

P

Figure 1. Writing Three Bytes of Data Starting at Address (i)

DEVICE ADDRESS

SDA LINE 1 10 0
P

2

P

1

P

0

DATA ADDRESS (i)

A

7

A

6

A

5

A

4

A

3

A

2

A

1

A

0

DATA at ADDRESS (i)

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

0 N

O

DEVICE ADDRESS

1 10 0
P

2

P

1

P

0

DATA at ADDRESS (i+1)

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

0

S

T

O

P

S

T

A

R

T

M

S

B

L

S

B

R

/

W

A

C

K

M

S

B

L

S

B

A

C

K

M

S

B

L

S

B

A

C

K

M

S

B

L

S

B

M

S

B

L

S

B

A

C

K

A

C

K

S

T

A

R

T

R

E

A

D

Figure 2. Reading Two Bytes of Data Starting at Address (i)

5.3 Type III Device

Fig. 3 shows the SDA line during access of a Type III device. Two bytes of data are written to
addresses i and i+1. Two bytes of data address, A15 to A0, are sent out before the data bytes.

Figure 4 shows an example of a sequential read.

SLLA154

10 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers

DEVICE ADDRESS

SDA LINE

M

S

B

1 10 0
P

2

P

1

P

0

L

S

B

R

/

W

A

C

K

M

S

B

L

S

B

A
1
5

A
1
4

A
1
3

A
1
2

A
1
1

A
1
0

A

9

A

8

A

C

K

M

S

B

L

S

B

A

7

A

6

A

5

A

4

A

3

A

2

A

1

A

0

DATA at ADDRESS (i)

M

S

B

L

S

B

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

0

DATA at ADDRESS (i+1)

M

S

B

L

S

B

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

0

A

C

K

A

C

K

S

T

O

P

W

R

I

T

E

S

T

A

R

T

DATA ADDRESS

HIGH BYTE (i)

DATA ADDRESS

LOW BYTE (i)

Figure 3. Writing Two Bytes of Data Starting at Address (i)

DEVICE ADDRESS

SDA LINE 1 10 0
P

2

P

1

P

0

A
1
5

A
1
4

A
1
3

A
1
2

A
1
1

A
1
0

A

9

A

8

A

7

A

6

A

5

A

4

A

3

A

2

A

1

A

0

DATA at ADDRESS (i)

D

7

D

6

D

5

D

4

D

3

D

2

D

1

D

0 N

O

DEVICE ADDRESS

1 10 0
P

2

P

1

P

0

S

T

A

R

T

W

R

I

T

E

S

T

A

R

T

R

E

A

D

S

T

O

P

DATA ADDRESS

HIGH BYTE (i)

DATA ADDRESS

LOW BYTE (i)

A

C

K

M

S

B

L

S

B

R

/

W

A

C

K

M

S

B

L

S

B

A

C

K

M

S

B

L

S

B

M

S

B

L

S

B

A

C

K

M

S

B

L

S

B

R

/

W

A

C

K

A

C

K

Figure 4. Reading One Byte of Data at Address (i)

6 Summary of Configuration Options
Because there are numerous possible combinations of VID/PID locations, descriptors, and
firmware locations, TI recommends certain configurations. This section summarizes the
information given previously in this document.

6.1 Configuration Table

Table 1 matches TI’s available USB controllers with five different combinations of driver classes
and firmware storage options. “UART driver” refers to the TUSB3410/5052 UART driver for
USB/UART bridge applications. “Class driver” refers to any class driver type defined by the USB
specification and included with the OS. Note that the table addresses production-ready
implementations only, and therefore AppLoader is not listed as a potential driver configuration.

In each case, a system diagram is identified that reflects this configuration. These diagrams are
displayed in Section 6.2, System Diagrams.

SLLA154

 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers 11

Also in each case, a template configuration file for the Header Generator utility is recommended.
Template files for many types of configurations are provided with the utility. The readme file
included with the utility provides additional instruction in usage of these templates.

In all cases, ensure that the VID/PID in the driver’s INF match the active VID/PID transmitted
from the USB device. (Refer to Section 3, VIDs/PIDs: How Windows Associates USB Devices
with Drivers, to determine which is the active VID/PID for any particular configuration.) Also
ensure that, if firmware is downloaded from the PC, the binary file referenced in the INF is
probably located and named.

SLLA154

12 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers

Table 1. Recommended Configurations

UART Driver --

firm
ware in EEPROM

UART Driver --

firm
ware on PC

Class Driver --

firm
ware in EEPROM

Custom Driver --

firm
ware in EEPROM

Custom Driver --

firm
ware on PC

TUSB2136

Not applicable Not applicable Firmware Location:
EEPROM

EEPROM Descriptors: Set hub,
device, and string descriptors
programmatically in firmware

Device Desc. Contents: Unique
VID/PID; class info in
bDeviceClass, bDeviceSubclass,
bDeviceProtocol

Hub descriptor causes Windows to l

Firmware Location:
EEPROM

EEPROM Descriptors: Set
programmatically in firmware (hub,
device, string)

Device Desc. Contents: Unique
VID/PID

Hub descriptor causes Windows to
load hub class driver. VID/PID in
device descriptor causes Windows
to associa

Not recommended, because it isn't
possible to set string descriptors in
EEPROM header of TUSB2136.
Therefore, without setting string
descriptors programmatically in
firmware-based EEPROM,
Windows will report the device to
the use with a TI-specific strin

Diagram: Fig. 8
Header Gen: #1

Diagram: Fig. 9
Header Gen: #1

TUSB3210

Not applicable Not applicable Firmware Location:
EEPROM

EEPROM Descriptors: Set device
and string descriptors
programmatically in firmware

Device Desc. Contents: Unique
VID/PID; class info in
bDeviceClass, bDeviceSubclass,
bDeviceProtocol

Class info in device descriptor
causes W

Firmware Location:
EEPROM

EEPROM Descriptors: Set device
and string descriptors
programmatically in firmware (not
possible to store in header)

Device Desc. Contents:
Unique VID/PID

VID/PID in device descriptor causes
Windows to associate device wit

Not applicable

Diagram: Fig. 5
Header Gen: #2

Diagram: Fig. 6
Header Gen: #2

SLLA154

 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers 13

Table 2. Recommended Configurations (continued)

UART Driver --

firm
ware in EEPROM

UART Driver --

firm
ware on PC

Class Driver --

firm
ware in EEPROM

Custom Driv
er --

firm
ware in EEPROM

Custom Driv
er --

firm
ware on PC

TUSB3410

Firmware Location:
EEPROM

EEPROM Descriptors: Set device
and string descriptors in EEPROM
header

Device Desc. Contents: Unique
VID/PID

VID/PID in device descriptor causes
Windows to associate device with
UART driver

Firmware Location:
PC

EEPROM Descriptors: Set device
and string descriptors in EEPROM
header

Device Desc. Contents: Unique
VID/PID

VID/PID in device descriptor causes
Windows to associate device with
UART driver. Driver downloads
firmware to device

Firmware Location:
EEPROM

EEPROM Descriptors: Set device
and string descriptors in EEPROM
header

Device Desc. Contents: Unique
VID/PID; class info in
bDeviceClass, bDeviceSubclass,
bDeviceProtocol

Class info in device descriptor
causes Windows to as

Firmware Location:
EEPROM

EEPROM Descriptors: Set device
and string descriptors in EEPROM
header

Device Desc. Contents: Unique
VID/PID

VID/PID in device descriptor causes
Windows to associate device with
custom driver.

Firmware Location:
PC

EEPROM Descriptors: Set device
and string descriptors in EEPROM
header

Device Desc. Contents: Unique
VID/PID

Must add firmware-download
functionality to custom driver.
VID/PID in device descriptor causes
Windows to associate d

Diagram: Fig. 6
Header Gen: #3

Diagram: Fig. 7
Header Gen: #4

Diagram: Fig. 5
Header Gen: #3 or #5

Diagram: Fig. 6
Header Gen: #3 or #5

Diagram: Fig. 7
Header Gen: #4

TUSB5052

Firmware Location:
EEPROM

EEPROM Descriptors: Set device
and string descriptors in EEPROM
header

Device Desc. Contents: Unique
VID/PID

Hub descriptor causes Windows to
load hub class driver. VID/PID in
device descriptor causes Windows
to associate

Not recommended, because the
TUSB5052 bootcode always
performs a disconnect/reconnect
when handing control to application
firmware. This can cause double-
notification to the user.

Firmware Location:
EEPROM

EEPROM Descriptors: Set hub,
device, and string descriptors
programmatically in firmware

Device Desc. Contents: Unique
VID/PID; class info in
bDeviceClass, bDeviceSubclass,
bDeviceProtocol

Hub descriptor causes Windows to l

Firmware Location:
EEPROM

EEPROM Descriptors: Set hub,
device, and string descriptors
programmatically in firmware

Device Desc. Contents: Unique
VID/PID

Hub descriptor causes Windows to
load hub class driver. VID/PID in
device descriptor causes Win

Not recommended, because it isn't
possible to set string descriptors in
EEPROM header of TUSB5052.
Therefore, without setting string
descriptors programmatically in
firmware-based EEPROM,
Windows will report the device to
the use with a TI-specific strin

Diagram: Fig. 9
Header Gen: #6

Diagram: Fig. 8
Header Gen: #6

Diagram: Fig. 9
Header Gen: #6

SLLA154

14 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers

Table 3. Recommended Configurations (cont.)

UART Driver --

firm
ware in EEPROM

UART Driver --

firm
ware on PC

Class Driver --

firm
ware in EEPROM

Custom Driver --

firm
ware in EEPROM

Custom Driver --

firm
ware on PC

TUSB6250

Not applicable Not applicable Firmware Location:
EEPROM

EEPROM Descriptors: Set device
and string descriptors in EEPROM
header

Device Desc. Contents: Unique
VID/PID; class info in
bDeviceClass, bDeviceSubclass,
bDeviceProtocol

Class info in device descriptor
causes Windows to as

Not necessary Not necessary

Diagram: Fig. 5

SLLA154

 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers 15

6.2 System Diagrams

Figure 5. Class Drivers, with Firmware Stored in EEPROM

Figure 6. Custom Driver without Firmware Download

SLLA154

16 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers

Figure 7. Custom Driver with Firmware Download Capability

Figure 8. Hub-Equipped Device (TUSB2136/TUSB5052) Used with Class Driver

SLLA154

 VIDs, PIDs, and Firmware: Design Decisions when Using TI USB Device Controllers 17

Figure 9. Hub-Equipped Device (TUSB2136/TUSB5052) Used with Custom Driver

7 TI Website
For more information, please visit TI’s website for Connectivity Products at:

http://www.ti.com/connectivity

Here you will find information about TI’s USB controllers. For information about specific devices,
as well as access to application notes, EVMs, and software referenced in this document, use the
part number search feature to find the product page for the device in question.

References

1. Universal Serial Bus Specification, Rev. 2.0
2. TUSB2136 Data Manual (SLLS442)
3. TUSB3210 Data Manual (SLLS466)
4. TUSB3410 Data Manual (SLLS519)
5. TUSB5052 Data Manual (SLLS454)
6. TUSB6250 Data Manual (SLLS535)
7. Header Generator utility readme
8. TUSB2136/TUSB3210/TUSB5052/TUSB5152 USB Firmware Programming Flow 8052

Embedded (SLLU020)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2003, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

