
Errata
MSP432E4 SimpleLink™ Microcontrollers

Table of Contents
1 MSP432E4 SimpleLink™ Microcontrollers...2

1.1 Introduction.. 2
1.2 Device Nomenclature...2
1.3 Device Markings...3
1.4 Errata Overview..4
1.5 Errata Descriptions...5
1.6 Appendix 1... 13
1.7 Appendix 2... 18

2 Trademarks..24
3 Revision History... 24

www.ti.com Table of Contents

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 1

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

1 MSP432E4 SimpleLink™ Microcontrollers
1.1 Introduction
This document describes known exceptions to the functional specifications for the SimpleLink™ MSP432E4
microcontrollers. Note that some features are not available on all devices in the series, so not all errata may
apply to your device. See your device-specific data sheet for more details.

For details on Arm® Cortex®-M4F CPU advisories, see the Arm® Cortex®-M4F Errata.

1.2 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
MSP432™ MCU devices and support tools. Each MSP432 MCU commercial family member has one of two
prefixes: MSP or XMS (for example, MSP432E411Y). Each support tools has one of two prefixes: MSP and
MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with
XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for both
devices and tools).

Device development evolutionary flow:

XMS – Experimental device that is not necessarily representative of the electrical specifications of the final
device

MSP – Fully qualified production device

Support tool development evolutionary flow:

MSPX – Development-support product that has not yet completed TI internal qualification testing.

MSP – Fully-qualified development-support product

XMS devices and MSPX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of
the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.
TI recommends that these devices not be used in any production system because their expected end-use failure
rate still is undefined. Only qualified production devices are to be used.

MSP432E4 SimpleLink™ Microcontrollers www.ti.com

2 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPMZ637
https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

1.3 Device Markings
The following are examples of the microcontroller package symbolization.

MSP432E411Y, 212-pin ZAD (NFBGA) package

+----------------+
| \TI/ | \TI/ = TI Logo
| MSP432(TM) | (TM) = Trademark Symbol
| E411YT | # = Die Revision
| xxxxxxxxxx | O = Pin 1
| O REV # |
+----------------+

MSP432E401Y, 128-pin PDT (TQFP) package

+----------------+
| \TI/ xxxxxxxxx | \TI/ = TI Logo
| MSP432 | # = Die Revision
| E401YT | O = Pin 1
| REV # |
| O |
+----------------+

www.ti.com MSP432E4 SimpleLink™ Microcontrollers

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 3

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

1.4 Errata Overview
Table 1-1 lists the device errata.

Table 1-1. Device Errata Table
Name Errata Title

ADC
ADC#13 A glitch can occur on pin PE3 when using any ADC analog input channel to sample

ADC#14 The first two ADC samples may be incorrect

EPI
EPI#01 Data reads can be corrupted when the code address space in the EPI module is used

GPIO
GPIO#09 In some cases, noise injected into GPIO pins PB0 and PB1 can cause high current draw

General-Purpose Timers
GPTM#09 General-purpose timers do not synchronize when configured for RTC mode

GPTM#15 Counter does not immediately clear to 0 when MATCH is reached in edge count up mode

Hibernation
HIB#10 If MEMCLR is set to a nonzero value, a tamper event may not clear all of the bits in the HIBDATA register

HIB#16 Application code may miss new tamper event during clear

HIB#18 Can get two matches per day in calendar mode

HIB#19 The first write to the HIBCTL register may not complete successfully after a Hibernation module reset

Memory
MEM#07 Soft resets should not be asserted during EEPROM operations

MEM#15 Specific flash locations in any sector do not get erased

MEM#16 JTAG unlock issue when BOOTCFG is committed with NW=0

PWM
PWM#04 PWM generator interrupts can only be cleared 1 PWM clock cycle after the interrupt occurs

PWM#05 Generator load with global sync may lead to erroneous pulse width

PWM#06 PWM output may generate a continuous high instead of a low or a continuous low instead of high

QEI

QEI#01 When using the index pulse to reset the counter, a specific initial condition in the QEI module causes the direction for the
first count to be misread

SSI
SSI#03 SSI1 can only be used in legacy mode

SSI#05 Bus contention in bi- and quad-mode of SSI

SSI#06 SSI receive FIFO time-out interrupt may assert sooner than expected in slave mode

SSI#07 SSI transmit interrupt status bit is not latched

SSI#08 SSI slave in bi and quad mode swaps XDAT0 and XDAT1

System Control
SYSCTL#03 The MOSC verification circuit does not detect a loss of clock after the clock has been successfully operating

SYSCTL#18 DIVSCLK outputs a different clock frequency than expected when DIV = 0x0

SYSCTL#24 Modules may not be ready for access if their power domains are first turned off and then on

USB
USB#04 Device sends SE0 in response to a USB bus reset

Watchdog Timers
WDT#08 Reading the WDTVALUE register may return incorrect values when using Watchdog Timer 1

MSP432E4 SimpleLink™ Microcontrollers www.ti.com

4 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

1.5 Errata Descriptions

ADC#13 A glitch can occur on pin PE3 when using any ADC analog input channel to sample

Description A glitch may occur on PE3 when using any ADC analog input channel (AINx) to sample.
This glitch can occur when PE3 is configured as an input channel and happens at the end
of the ADC conversion. These glitches do not affect analog measurements on PE3 when
configured as AIN0 as long as the specified source resistance is met.

Workaround A 1-kΩ external pullup or pulldown on PE3 helps to minimize the magnitude of the glitch
to 200 mV or less.

ADC#14 The First two ADC Samples may be Incorrect

Description The first two ADC samples taken after the ADC clock is enabled in the xCGCADC register
may be incorrect.

Workaround 1. Reset the ADC peripheral using the SRADC register after the ADC peripheral clock is
enabled and before initializing the ADC and enabling the sample sequencer.

2. If reconfiguration cannot be done by the application, then discard the first two samples
before processing the data.

EPI#01 Data reads can be corrupted when the code address space in the EPI module is
used

Description The external code address space at address 0x1000.0000 is specified for the EPI module
using the ECSZ and ECADR fields in the EPI Address Map (EPIADDRMAP). However,
data reads can be corrupted when using this address space.

Workaround Code cannot be executed from the 0x1000.0000 address space. The EPI address spaces
at 0x6000.0000 and 0x8000.0000 can be used instead.

In addition, when reading from EPI memory mapped to the code address space at
0x1000.0000, replace direct EPI memory reads through pointers with calls to the
EPIWorkaroundWordRead(), EPIWorkaroundHWordRead() or EPIWorkaroundByteRead()
functions depending on the data size for the read operation. Similarly, when
writing to the EPI code address space, replace direct writes with calls to the
EPIWorkaroundWordWrite(), EPIWorkaroundHWordWrite() or EPIWorkaroundByteWrite()
functions. These APIs are new and can be found in Section 1.7. For Keil, IAR, GCC, and
Code Bench, these functions are defined as inline functions in the epi.h file in the driverlib
folder. For CCS, which doesn’t support this structure, these should be added to a new
file placed in the \driverlib directory called epi_workaround_ccs.s, and this file should be
added to the project. Note that the new DriverLib APIs and the CCS file mentioned in
Section 1.7 are included in the SimpleLink MSP432 SDK.

www.ti.com MSP432E4 SimpleLink™ Microcontrollers

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 5

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

GPIO#09 In some cases, noise injected into GPIO pins PB0 and PB1 can cause high current
draw

Description A fast transition on either PB0 or PB1 can switch on a low resistance path between one or
both pins and ground potentially causing a high current draw.

This condition has been observed when the signal at the device pin has a rise time or fall
time (measured from 10% to 90% of VDD) that is faster than 2 ns. The condition is more
likely to occur at high temperatures or in noisy environments. It can occur when the pin is
in input or output mode or with any pin multiplexing options.

If the condition is induced while the pin is configured as an output GPIO, then changing
the pin state to low and then returning it to a high state at a lower temperature will resolve
the condition.

Workaround 1. Do not use PB0 and PB1. Connect both to GND through a 1-kΩ resistor and configure
them as GPIO inputs.

2. If PB0 and PB1 are used as USB0ID and USB0VBUS, see the USB section of
System Design Guidelines for MSP432E4 Microcontrollers and confirm all guidelines
contained in the document are followed.

GPTM#09 General-purpose timers do not synchronize when configured for RTC mode

Description When attempting to synchronize the General-Purpose Timers using the GPTM
Synchronize (GPTMSYNC) register, they do not synchronize if any of the timers are
configured for RTC mode.

Workaround None.

GPTM#15 Counter does not immediately reset to 0 when MATCH is reached in edge count up
mode

Description When configured for input edge count mode and count up mode, after counting to the
match value, the counter uses one additional edge to reset the timer to 0. As a result,
after the first match event, all subsequent match events occur after the programmed
number of edge events plus one.

Workaround In software, account for one additional edge in the programmed edge count after the first
match interrupt is received.

HIB#10 If MEMCLR is set to a nonzero value, a tamper event may not clear all of the bits in
the HIBDATA register

Description If the MEMCLR bit field in the HIB Tamper Control (HIBTPCTL) register is set to a
non-zero value, the Hibernation Data (HIBDATA) register may not clear the specified bits.
The MEMCLR bit field provides the option to clear all, the upper half, lower half, or none
of the Hibernate memory on a tamper event.

MSP432E4 SimpleLink™ Microcontrollers www.ti.com

6 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLAA770
https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

HIB#10 (continued) If MEMCLR is set to a nonzero value, a tamper event may not clear all of the bits in
the HIBDATA register

Workaround After clearing the tamper event by setting the TPCLR bit, the application should clear the
data in the Hibernate memory in the HIBDATA register (write either the upper half, the
lower half, or all of the bits to all zeros).

HIB#16 Application code may miss new tamper event during clear

Description During the clear of a tamper event, a new tamper event could be missed or the tamper log
could be corrupted. The clear of a tamper event starts with the Tamper Clear (TPCLR)
bit in the HIB Tamper Control register (HIBTPCTL) being written. The write takes 3 rising
edges of the 32.768-kHz clock to complete the clear.

Workaround To prevent missing a tamper event during these three Hibernate clock cycles and
restoring the tamper log to its reset state, workaround code must be implemented in the
NMI handler as shown in Section 1.6. The new DriverLib APIs mentioned in Section 1.6
are included in the SimpleLink MSP432E4 SDK.

HIB#18 Can get two matches per day in calendar mode

Description When the CAL24 bit in the Hibernation Calendar Control (HIBCALCTL) register is clear,
the RTC counts in 12 hour, AM/PM mode. The AM/PM bit in the Hibernation Calendar
Match 0 (HIBCALM0) specifies whether the match should occur in the AM or the PM.
However, this bit is ignored when determining if a match is occurring. As a result, an RTC
match could occur twice in one day.

Workaround Adjust the match time to 24 hour mode before configuring the HIBCALM0 register and
set the CAL24 bit. Alternatively, when the match occurs, check the AM/PM bit in the
Hibernation Calendar (HICAL0) register to determine if the match is correct.

HIB#19 The first write to the HIBCTL register may not complete successfully after a
Hibernation module reset

Description The initial write to the HIBCTL register may not occur if the Hibernation module is reset.
The WRC bit in the HIBCTL register may not be set.

Workaround After a Hibernation module reset, check to see if the WRC bit is set and perform the
following:
• If the WRC bit is not set within the maximum oscillator startup time, perform a software

reset of the Hibernation module and retry the HIBCTL write. The maximum oscillator
startup time is given by the Hibernation XOSC startup time parameter, TSTART, in
the Hibernation External Oscillator (XOSC) Input Characteristics table in the Electrical
Characteristics chapter of the data sheet.

• If the WRC bit is set but the HIBCTL write was not successful, retry the HIBCTL write.

www.ti.com MSP432E4 SimpleLink™ Microcontrollers

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 7

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

MEM#07 Soft resets should not be asserted during EEPROM operations

Description EEPROM data may be corrupted if any of the following soft resets are asserted during an
EEPROM program or erase operation:

• Software reset (SYSRESREQ)
• Software peripheral reset of the EEPROM module
• Watchdog reset (if configured as a system reset in the RESBEHAVCTL register)
• MOSC failure reset
• BOR reset (if configured as a system reset in the RESBEHAVCTL register)
• External reset (if configured as a system reset in the RESBEHAVCTL register)
• Writes to the HSSR register

Workaround Ensure that any of the above soft resets are not asserted during an EEPROM program
or erase operation. The WORKING bit of the EEDONE register can be checked before
the reset is asserted to see if an EEPROM program or erase operation is occurring. Soft
resets may occur when using a debugger and should be avoided during an EEPROM
operation. A reset such as the Watchdog reset can be mapped to an external reset using
a GPIO or Hibernate can be entered, if time is not a concern.

MEM#15 Specific flash locations in any sector do not get erased

Description If only one or both of the first two words of the last line of a sector in a bank are
programmed, an Erase of entire Sector, Mass Erase of device, or toggle mass erase does
not erase the flash back to all 1's. The diagram below shows the affected words in Sector
0 and Sector 31 of the lower 512KB of Flash.

Workaround Program any other word in the Sector-Bank to allow Sector Erase to work.

Note

Toggle Mass Erase or Mass Erase will still not work.

MEM#16 JTAG unlock issue when BOOTCFG is committed with NW=0

Description After configuring the BOOTCFG register with NW=0, DBG1=0 and DBG=1, the JTAG
Debugger access is locked and cannot be unlocked by one Unlock Sequence Run.

Workaround The Unlock Sequence has to be run twice for the device to be unlocked.

MSP432E4 SimpleLink™ Microcontrollers www.ti.com

8 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

PWM#04 PWM generator interrupts can only be cleared 1 PWM clock cycle after the interrupt
occurs

Description A write of 1 to the PWMxISC register is expected to clear the corresponding generator
interrupt status on the next system clock. However, the write will clear the generator
interrupt status on the next PWM clock. Any write to the PWMxISC to clear the interrupt
before the next PWM clock will be ignored and the interrupt will be re-asserted.

Workaround After the interrupt is asserted, the CPU must wait for one PWM clock cycle before writing
1 to the PWMxISC to clear the corresponding generator interrupt status. The larger the
PWM clock divider value, the longer the system delay to clear the interrupt.

PWM#05 Generator load with global sync may lead to erroneous pulse width

Description There is a condition where the generator timer may still count with the old value, but the
new comparator value gets loaded causing an erroneous high pulse width.

Workaround The application must use the interrupt status to write the value of the new load and
comparator values. When using the down count mode, clear the raw interrupt status bit for
the respective comparator down count match interrupt status bit, wait for it to be set again
and then update the new value for the load and comparator match.

PWM#06 PWM output may generate a continuous high instead of a low or a continuous low
instead of high

Description When using PWM in UP-DOWN count mode, the PWM generator may generate a
continuous High instead of Low or continuous Low instead of High under the following
condition:

• The PWM generator is used with action for comparator A or B UP and DOWN to
control the PWM cycle.

• The PWM comparator A or B is changed from a count of 2 or more to PWM Load
Count value.

• A continuous High is generated if the invert option is enabled.
• A continuous Low is generated if the invert option is disabled.

Workaround • Use DOWN count mode of PWM
• When changing from any value (other than 1) to the PWM load count value in the

Comparator Load Register, always go to value of 1 before going to the PWM load
count value.

QEI#01 When using the index pulse to reset the counter, a specific initial condition in the
QEI module causes the direction for the first count to be misread

Description When using the index pulse to reset the counter with the following configuration in the QEI
Control (QEICTL) register:
• SIGMODE is 0 indicating quadrature mode
• CAPMODE is 1 indicating both PhA and PhB edges are counted

and the following initial conditions:

www.ti.com MSP432E4 SimpleLink™ Microcontrollers

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 9

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

QEI#01 (continued) When using the index pulse to reset the counter, a specific initial condition in the
QEI module causes the direction for the first count to be misread

• Both PhA and PhB are 0
• The next quadrature state is in the counterclockwise direction

the QEI interprets the state change as an update in the clockwise direction, which results
in a position mismatch of 2.

Workaround None.

SSI#03 SSI1 can only be used in legacy mode

Description Bi-, quad-, and advance-modes of operation do not function correctly on the specified SSI
module(s). As a result, any affected module can only be used for legacy operation.

Workaround Use SSI0, SSI2, or SSI3 for bi-, quad-, and advance-mode operation. Use SSI1 for
legacy-mode operation.

SSI#05 Bus contention in bi- and quad-mode of SSI

Description When the SSI is configured in Bi- or Quad-mode, and a read from external memory is
performed after the SSI is configured for Receive Mode, bus contention can occur on the
SSI data pins on that first data read.

Workaround Perform a dummy read from memory before the first valid read operation after configuring
the SSI for Receive Mode (setting the DIR bit in the QSSI Control (SSICR1) register). For
example:

 SSIConfigSetExpClk(SSI0_BASE,SysCtlClockFreqSet (),
 SSI_FRF_MOTO_MODE_0, SSI_MODE_MASTER, 1000000, 8);
 SSIAdvModeSet(SSI0_BASE, SSI_ADV_BI_READ); //Receive Mode set
 SSIDataPut(SSI0_BASE, &pui32DataRx[ui32Index]); //intentional dummy write
 SSIDataGetNonBlocking(SSI-_BASE, ui32Dummy); //dummy read
 SSIDataPut(SSI0_BASE, &pui32DataRx[ui32Index]); //intentional dummy write
 SSIDataGetNonBlocking(SSI0_BASE, &pui32DataRx[0])); //first intentional
read
 SSIDataPut(SSI0_BASE, &pui32DataRx[ui32Index]); //intentional dummy write
 SSIDataGetNonBlocking(SSI0_BASE, &pui32DataRx[1])); //second intentional
read

If the transfer normally requires any dummy operations, such as the intentional dummy
writes shown above, the dummy read should occur before the normal dummy operations.

Note that if your application is sensitive to the SSIClk, the dummy read outputs a clock
cycle. Reconfigure the SSIClk pin to a GPIO input while performing the dummy read to
prevent this from affecting your clock-sensitive application.

SSI#06 SSI receive FIFO time-out interrupt may assert sooner than expected in slave mode

Description The SSI receive FIFO time-out interrupt may assert sooner than 32 system clock periods
in slave mode if the CPSDVSR field in the SSI Clock Prescale (SSICPSR) register is set
to a value greater than 0x2. Master mode is not affected by this behavior.

MSP432E4 SimpleLink™ Microcontrollers www.ti.com

10 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

SSI#06 (continued) SSI receive FIFO time-out interrupt may assert sooner than expected in slave mode

Workaround In some cases, software can use the SCR field in the SSI Control 0 (SSICR0) register in
combination with a CPSDVSR field value of 0x2 to attain the same SSI clock frequency.
For example, if the desired serial clock rate is SysClk/48, then CPSDVSR = 0x2 and SCR
= 0x17 can be used instead of CPSDVSR = 0x18 and SCR = 0x1 to achieve the same
clock rate, using the equation SSInCLK = SysClk / (CPSDVSR * (1 + SCR)). If there is not
a value of SCR that can be used with CPSDVSR = 0x2 to attain the required serial clock
rate, then the receive FIFO time-out feature cannot be used.

SSI#07 SSI transmit interrupt status bit is not latched

Description SSI Transmit Interrupt Status Bit does not work correctly.

• For Master Mode with interrupts when transmit FIFO is half full or less. SSIMIS will be
asserted every time the TXFIFO drops below half FIFO threshold causing the interrupt
to be asserted all the time even if SSIICR register is used to clear the Interrupt
condition

Workaround In the interrupt handler on completion of the transfer from the buffer to SSIDR clear the
SSIIM.TXIM to stop any further interrupts. When the next set of interrupts are required for
transmission then set the SSIIM.TXIM bit.

SSI#08 SSI slave in bi and quad mode swaps XDAT0 and XDAT1

Description The SSI Slave when in Bi or Quad Mode sends the data on XDAT0 to XDAT1 line and
XDAT1 to XDAT0 line.

Workaround When transmitting the data from SSI Slave in Bi and Quad Mode the CPU must swap the
bits when writing to the Data Register SSIDR for the correct bit to be transmitted. When
using uDMA CPU must write the swapped bits in the uDMA’s source buffer.

SYSCTL#03 The MOSC verification circuit does not detect a loss of clock after the clock has
been successfully operating

Description If the MOSC clock source has been powered up and operating correctly and is
subsequently removed or flatlines, the MOSC verification circuit does not indicate an error
condition.

Workaround Use Watchdog module 1, which runs off of PIOSC, to reset the system if the MOSC fails.

SYSCTL#18 DIVSCLK Outputs a Different Clock Frequency than Expected when DIV = 0x0

Description In the Divisor and Source Clock Configuration (DIVSCLK) register, if the DIV bit field is
0x0 (divided by 1), the clock output to the GPIO is not what is expected:
• If the DIV bit field has not yet been adjusted in code, the clock frequency will be the

clock source defined in the SRC bit field divided by 32. For example, if SRC = 0x1
(PIOSC) and DIV = 0x0, the clock output to the GPIO will have a frequency of 500
kHz, derived from the PIOSC.

www.ti.com MSP432E4 SimpleLink™ Microcontrollers

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 11

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

SYSCTL#18
(continued) DIVSCLK Outputs a Different Clock Frequency than Expected when DIV = 0x0

• If the DIV bit field has already been adjusted in code, the clock frequency will be the
clock source defined in the SRC bit field divided by the previous DIV bit field value. For
example, if SRC = 0x1 (PIOSC) and DIV was previously 0x1 (divided by 2) then written
to 0x0, the clock output to the GPIO will have a frequency of 8 MHz, derived from the
PIOSC.

Workaround If clock accuracy of the source is not a factor, certain frequencies can be achieved using
a non-zero DIV value and a different SRC value. For example, to achieve a 16 MHz clock,
instead of SRC = 0x1 (PIOSC) and DIV = 0x0, use SRC = 0x0 (System Clock) and the
respective DIV value (DIV = 0x4 (divided by 5) for a system clock of 80 MHz).

SYSCTL#24 Modules may not be ready for access if their power domains are first turned off and
then on

Description There are five modules (CAN, Ethernet MAC, Ethernet PHY, USB and CCM) on the
device that reside in a separate power domain. These modules can be turned off of their
power domains to save additional leakage currents. When the power domains are turned
off and later turned on, the modules can indicate not ready for access indefinitely when
polled on their respective Peripheral Ready Register such as PRUSB register.

Workaround None. Do not turn off power domains.

USB#04 Device sends SE0 in response to a USB bus reset

Description The USB Device sends an Single Ended Zero (SE0) bus state (USB0DP and USB0DM
driven low) in response to a USB bus reset from the Host. Per USB specification, the
Device should not drive these pins in the event of a USB bus reset. This does not affect
USB certification.

Workaround None.

WDT#08 Reading the WDTVALUE register may return incorrect values when using Watchdog
Timer 1

Description Incorrect values may be read from the Watchdog Value (WDTVALUE) register at the
Watchdog Timer 1 base address when using Watchdog Timer 1.

Workaround None.

MSP432E4 SimpleLink™ Microcontrollers www.ti.com

12 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

1.6 Appendix 1
To address the erratum HIB#16 Application code may miss new tamper event during clear , the
HibernateTamperEventsClear() API must be replaced with the following APIs:

HibernateTamperEventsClearNoLock();
HibernateTamperUnLock();
HibernateTamperLock();

The API definitions are as follows:

//***
//
//! Clears the tamper feature events without Unlock and Lock.
//!
//! This function is used to clear all tamper events without unlock/locking
//! the tamper control registers, so API HibernateTamperUnLock() should be
//! called before this function, and API HibernateTamperLock() should be
//! called after to ensure that tamper control registers are locked.
//!
//! This function doesn't block until the write is complete.
//! Therefore, care must be taken to ensure the next immediate write will
//! occure only after the write complete bit is set.
//!
//! This function is used to implement a software workaround in NMI interrupt
//! handler to fix an issue when a new tamper event could be missed during
//! the clear of current tamper event.
//!
//! \note The hibernate tamper feature is not available on all
//! devices. Please consult the data sheet for the device that you
//! are using to determine if this feature is available.
//!
//! \return None.
//
//***
void
HibernateTamperEventsClearNoLock(void)
{
 //
 // Wait for write completion.
 //
 _HibernateWriteComplete();
 //
 //
 // Set the tamper event clear bit.
 //
 HWREG(HIB_TPCTL) |= HIB_TPCTL_TPCLR;
}
//***
//
//! Unlock temper registers.
//!
//! This function is used to unlock the temper control registers. This
//! function should be only used before calling API
//! HibernateTamperEventsClearNoLock().
//!
//! \note The hibernate tamper feature is not available on all
//! devices. Please consult the data sheet for the device that you
//! are using to determine if this feature is available.
//!
//! \return None.
//
//***
void
HibernateTamperUnLock(void)
{
 //
 // Unlock the tamper registers.
 //
 HWREG(HIB_LOCK) = HIB_LOCK_HIBLOCK_KEY;
 _HibernateWriteComplete();
}
//***
//
//! Lock temper registers.
//!

www.ti.com MSP432E4 SimpleLink™ Microcontrollers

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 13

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

//! This function is used to lock the temper control registers. This
//! function should be used after calling API
//! HibernateTamperEventsClearNoLock().
//!
//! \note The hibernate tamper feature is not available on all
//! devices. Please consult the data sheet for the device that you
//! are using to determine if this feature is available.
//!
//! \return None.
//
//***
void
HibernateTamperLock(void)
{
 //
 // Wait for write completion.
 //
 _HibernateWriteComplete();
 //
 // Lock the tamper registers.
 //
 HWREG(HIB_LOCK) = 0;
 _HibernateWriteComplete();
}

The software workaround must be added in the NMI Handler. The code mainly polls the tamper log entries
during the tamper clear synchronization.

An example of an NMI handler with this workaround is shown below.

static uint32_t g_ui32RTCLog[4];
static uint32_t g_ui32EventLog[4];
//***
//
// Handles an NMI interrupt generated by a Tamper event.
//
//***
void
NMITamperEventHandler(void)
{
 uint32_t ui32NMIStatus, ui32TamperStatus;
 uint32_t pui32Buf[3];
 uint8_t ui8Idx, ui8StartIdx;
 bool bDetectedEventsDuringClear;
 //
 // Get the cause of the NMI event.
 //
 ui32NMIStatus = SysCtlNMIStatus();
 //
 // We should have got the cause of the NMI event from the above function.
 // But in Snowflake RA0 the NMIC register is not set correctly when an
 // event occurs. So as a work around check if the NMI event is caused by a
 // tamper event and append this to the return value from SysCtlNMIStatus().
 // This way only this section can be removed once the bug is fixed in next
 // silicon rev.
 //
 ui32TamperStatus = HibernateTamperStatusGet();
 if(ui32TamperStatus & (HIBERNATE_TAMPER_STATUS_EVENT |
 HIBERNATE_TAMPER_STATUS_EXT_OSC_FAILED))
 {
 ui32NMIStatus |= SYSCTL_NMI_TAMPER;
 }
 //
 // Check if SysCtlNMIStatus() returned a valid value.
 //
 if(ui32NMIStatus)
 {
 //
 // Check if the NMI Interrupt is due to a Tamper event.
 //
 if(ui32NMIStatus & SYSCTL_NMI_TAMPER)
 {
 //
 // If the previous NMI event has not been processed by main
 // thread, we need to OR the new event along with the old ones.
 //
 if(g_ui32NMIEvent == 0)

MSP432E4 SimpleLink™ Microcontrollers www.ti.com

14 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

 {
 //
 // Reset variables that used for tamper event.
 //
 g_ui32TamperEventFlag = 0;
 g_ui32TamperRTCLog = 0;
 //
 // Clean the log data for debugging purpose.
 //
 memset(g_ui32RTCLog, 0, (sizeof(g_ui32RTCLog))<<2);
 memset(g_ui32EventLog, 0, (sizeof(g_ui32EventLog))<<2);
 }
 //
 // Log the tamper event data before clearing tamper events.
 //
 for(ui8Idx = 0; ui8Idx< 4; ui8Idx++)
 {
 if(HibernateTamperEventsGet(ui8Idx,
 &g_ui32RTCLog[ui8Idx],
 &g_ui32EventLog[ui8Idx]))
 {
 //
 // Event in this log entry, store it.
 //
 g_ui32TamperEventFlag |= g_ui32EventLog[ui8Idx];
 g_ui32TamperRTCLog = g_ui32RTCLog[ui8Idx];
 }
 else
 {
 //
 // No event in this log entry. Done checking the logs.
 //
 break;
 }
 }
 //
 // Process external oscillator failed event.
 //
 if(ui32TamperStatus & HIBERNATE_TAMPER_STATUS_EXT_OSC_FAILED)
 {
 g_ui32TamperXOSCFailEvent++;
 g_ui32TamperEventFlag |= HIBERNATE_TAMPER_EVENT_EXT_OSC;
 g_ui32TamperRTCLog = HWREG(HIB_TPLOG0);
 }

Note

This is the beginning of the block of workaround code.

 // The following block of code is to workaround hardware defect
 // which results in missing new tamper events during tamper clear
 // synchronization.
 //
 // There is a window after the application code writes the tamper
 // clear where a new tamper event can be missed if the application
 // requires more than one tamper event pins detection.
 //
 // The tamper Clear is synchronized to the hibernate 32kHz clock
 // domain. The clear takes 3 rising edges of the 32KHz clock.
 // During this window, new tamper events could be missed.
 // A software workaround is to poll the tamper log during the
 // tamper event clear synchronization.
 //
 //
 // Clear the flag for the case there are events triggered
 // during clear execution.
 //
 bDetectedEventsDuringClear = false;
 //
 // Unlock the Tamper Control register. This is required before
 // calling HibernateTamperEventsClearNoLock().
 //
 HibernateTamperUnLock();
 do

www.ti.com MSP432E4 SimpleLink™ Microcontrollers

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 15

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

 {
 //
 // We will start to poll the log registers at index 1 for
 // any new events.
 //
 ui8StartIdx = 1;
 //
 // Clear the Tamper event.
 // Note this API doesn't wait for synchronization, which
 // allows us to check the tamper log during
 // synchronization.
 //
 HibernateTamperEventsClearNoLock();
 //
 // Check new tamper event during tamper event clear
 // synchronization.
 // This will take about 92us(three clock cycles) at most.
 //
 while(HibernateTamperStatusGet() & HIBERNATE_TAMPER_STATUS_EVENT)
 {
 //
 // Clear execution isn't done yet , poll for new events.
 // If there were any new event, it will be logged in log 1
 // registers and so on.
 //
 for(ui8Idx = ui8StartIdx; ui8Idx< 4; ui8Idx++)
 {
 if(HibernateTamperEventsGet(ui8Idx,
 &g_ui32RTCLog[ui8Idx],
 &g_ui32EventLog[ui8Idx]))
 {
 //
 // detected new event, store it.
 //
 g_ui32TamperEventFlag |= g_ui32EventLog[ui8Idx];
 //
 // check for more event.
 //
 continue;
 }
 else
 {
 //
 // no new event in this log, update the log index
 // to be checked next, and break out of loop.
 //
 ui8StartIdx = ui8Idx;
 break;
 }
 }
 //
 // all last three logs have info. Check if all 4 logs
 // have the same info. This is to detect the case that
 // events happen during clear execution.
 //
 if(ui8Idx == 4)
 {
 //
 // If events happens during clear
 // execution, all four log registers will be
 // logged with the same event, to detect this
 // condition, we will compare with all four log data.
 //
 if(HibernateTamperEventsGet(0, &g_ui32RTCLog[0], &g_ui32EventLog[0]))
 {
 if((g_ui32RTCLog[0] == g_ui32RTCLog[1]) &&
 (g_ui32EventLog[0] == g_ui32EventLog[1]) &&
 (g_ui32RTCLog[0] == g_ui32RTCLog[2]) &&
 (g_ui32EventLog[0] == g_ui32EventLog[2]) &&
 (g_ui32RTCLog[0] == g_ui32RTCLog[3]) &&
 (g_ui32EventLog[0] == g_ui32EventLog[3]))
 {
 //
 // Detected events during clear execution.
 // Event logging takes priority, the clear
 // will not be done in this case. We will need
 // to go back to the beginning of the loop and
 // clear the events.

MSP432E4 SimpleLink™ Microcontrollers www.ti.com

16 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

 //
 if(bDetectedEventsDuringClear)
 {
 //
 // This condition has already detected,
 // we have cleared the event,
 // clear the flag.
 //
 bDetectedEventsDuringClear = false;
 }
 else
 {
 // This is the first time it has been
 // detected, set the flag.
 //
 bDetectedEventsDuringClear = true;
 }
 //
 // Break out of while loop so that we can
 // clear the events, and start the
 // workaround all over again.
 //
 break;
 }
 }
 else
 {
 //
 // Log 0 didn't detect any events. So this is not
 // the case of missing events during clear
 // execution.
 // Update the log index at which we will poll next.
 // It should be the last log entry that OR all the
 // new events.
 //
 ui8StartIdx = 3;
 }
 }
 }
 }
 while(bDetectedEventsDuringClear);
 //
 // Lock the Tamper Control register.
 //
 HibernateTamperLock();

Note

This is the end of the block of workaround code.

 //
 // Save the tamper event and RTC log info in the Hibernate Memory
 //
 HibernateDataGet(pui32Buf, 3);
 pui32Buf[1] = g_ui32TamperEventFlag;
 pui32Buf[2] = g_ui32TamperRTCLog;
 HibernateDataSet(pui32Buf, 3);
 //
 // Signal the main loop that an NMI event occurred.
 //
 g_ui32NMIEvent++;
 }
 //
 // Clear NMI events
 //
 SysCtlNMIClear(ui32NMIStatus);
 }
}

www.ti.com MSP432E4 SimpleLink™ Microcontrollers

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 17

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

1.7 Appendix 2
To address the erratum EPI#01 Data reads can be corrupted when the code address space in the EPI module is
used , the following code should be added to the epi.h file.

#ifdef rvmdk
//***
//
// Keil case.
//
//***
inline void
EPIWorkaroundWordWrite(uint32_t *pui32Addr, uint32_t ui32Value)
{
 uint32_t ui32Scratch;
 __asm
 {
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 NOP
 //
 // Perform the write we're actually interested in.
 //
 STR ui32Value, [pui32Addr]
 //
 // Read from SRAM to ensure that we don't have an EPI write followed by
 // a flash read.
 //
 LDR ui32Scratch, [__current_sp()]
 }
}
inline uint32_t
EPIWorkaroundWordRead(uint32_t *pui32Addr)
{
 uint32_t ui32Value, ui32Scratch;
 __asm
 {
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 NOP
 //
 // Perform the read we're actually interested in.
 //
 LDR ui32Value, [pui32Addr]
 //
 // Read from SRAM to ensure that we don't have an EPI read followed by
 // a flash read.
 //
 LDR ui32Scratch, [__current_sp()]
 }
 return(ui32Value);
}
inline void
EPIWorkaroundHWordWrite(uint16_t *pui16Addr, uint16_t ui16Value)
{
 uint32_t ui32Scratch;
 __asm
 {
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 NOP
 //
 // Perform the write we're actually interested in.
 //
 STRH ui16Value, [pui16Addr]
 //
 // Read from SRAM to ensure that we don't have an EPI write followed by
 // a flash read.
 //
 LDR ui32Scratch, [__current_sp()]
 }

MSP432E4 SimpleLink™ Microcontrollers www.ti.com

18 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

}
inline uint16_t
EPIWorkaroundHWordRead(uint16_t *pui16Addr)
{
 uint32_t ui32Scratch;
 uint16_t ui16Value;
 __asm
 {
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 NOP
 //
 // Perform the read we're actually interested in.
 //
 LDRH ui16Value, [pui16Addr]
 //
 // Read from SRAM to ensure that we don't have an EPI read followed by
 // a flash read.
 //
 LDR ui32Scratch, [__current_sp()]
 }
 return(ui16Value);
}
inline void
EPIWorkaroundByteWrite(uint8_t *pui8Addr, uint8_t ui8Value)
{
 uint32_t ui32Scratch;
 __asm
 {
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 NOP
 //
 // Perform the write we're actually interested in.
 //
 STRB ui8Value, [pui8Addr]
 //
 // Read from SRAM to ensure that we don't have an EPI write followed by
 // a flash read.
 //
 LDR ui32Scratch, [__current_sp()]
 }
}
inline uint8_t
EPIWorkaroundByteRead(uint8_t *pui8Addr)
{
 uint32_t ui32Scratch;
 uint8_t ui8Value;
 __asm
 {
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 NOP
 //
 // Perform the read we're actually interested in.
 //
 LDRB ui8Value, [pui8Addr]
 //
 // Read from SRAM to ensure that we don't have an EPI read followed by
 // a flash read.
 //
 LDR ui32Scratch, [__current_sp()]
 }
 return(ui8Value);
}
#else
#ifdef ccs
//***
//
// Code Composer Studio versions of these functions can be found in separate
// source file epi_workaround_ccs.s.
//

www.ti.com MSP432E4 SimpleLink™ Microcontrollers

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 19

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

//***
extern void EPIWorkaroundWordWrite(uint32_t *pui32Addr, uint32_t ui32Value);
extern uint32_t EPIWorkaroundWordRead(uint32_t *pui32Addr);
extern void EPIWorkaroundHWordWrite(uint16_t *pui16Addr, uint16_t ui16Value);
extern uint16_t EPIWorkaroundHWordRead(uint16_t *pui16Addr);
extern void EPIWorkaroundByteWrite(uint8_t *pui8Addr, uint8_t ui8Value);
extern uint8_t EPIWorkaroundByteRead(uint8_t *pui8Addr);
#else
//***
//
// GCC and IAR case.
//
//***
inline void
EPIWorkaroundWordWrite(uint32_t *pui32Addr, uint32_t ui32Value)
{
 volatile register uint32_t ui32Scratch;
 __asm volatile (
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 " NOP\n"
 " STR %[value],[%[addr]]\n"
 " LDR %[scratch],[sp]\n"
 : [scratch] "=r" (ui32Scratch)
 : [addr] "r" (pui32Addr), [value] "r" (ui32Value)
);
 //
 // Keep the compiler from generating a warning.
 //
 ui32Scratch = ui32Scratch;
}
inline uint32_t
EPIWorkaroundWordRead(uint32_t *pui32Addr)
{
 volatile register uint32_t ui32Data, ui32Scratch;
 //
 // ui32Scratch is not used other than to add a padding read following the
 // "real" read.
 //
 __asm volatile(
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 " NOP\n"
 " LDR %[ret],[%[addr]]\n"
 " LDR %[scratch],[sp]\n"
 : [ret] "=r" (ui32Data),
 [scratch] "=r" (ui32Scratch)
 : [addr] "r" (pui32Addr)
);
 //
 // Keep the compiler from generating a warning.
 //
 ui32Scratch = ui32Scratch;
 return(ui32Data);
}
inline void
EPIWorkaroundHWordWrite(uint16_t *pui16Addr, uint16_t ui16Value)
{
 volatile register uint32_t ui32Scratch;
 __asm volatile (
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 " NOP\n"
 " STRH %[value],[%[addr]]\n"
 " LDR %[scratch],[sp]\n"
 : [scratch] "=r" (ui32Scratch)
 : [addr] "r" (pui16Addr), [value] "r" (ui16Value)
);
 //
 // Keep the compiler from generating a warning.
 //
 ui32Scratch = ui32Scratch;

MSP432E4 SimpleLink™ Microcontrollers www.ti.com

20 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

}
inline uint16_t
EPIWorkaroundHWordRead(uint16_t *pui16Addr)
{
 register uint16_t ui16Data;
 register uint32_t ui32Scratch;
 //
 // ui32Scratch is not used other than to add a padding read following the
 // "real" read.
 //
 __asm volatile(
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 " NOP\n"
 " LDRH %[ret],[%[addr]]\n"
 " LDR %[scratch],[sp]\n"
 : [ret] "=r" (ui16Data),
 [scratch] "=r" (ui32Scratch)
 : [addr] "r" (pui16Addr)
);
 //
 // Keep the compiler from generating a warning.
 //
 ui32Scratch = ui32Scratch;
 return(ui16Data);
}
inline void
EPIWorkaroundByteWrite(uint8_t *pui8Addr, uint8_t ui8Value)
{
 volatile register uint32_t ui32Scratch;
 __asm volatile (
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 " NOP\n"
 " STRB %[value],[%[addr]]\n"
 " LDR %[scratch],[sp]\n"
 : [scratch] "=r" (ui32Scratch)
 : [addr] "r" (pui8Addr), [value] "r" (ui8Value)
);
 //
 // Keep the compiler from generating a warning.
 //
 ui32Scratch = ui32Scratch;
}
inline uint8_t
EPIWorkaroundByteRead(uint8_t *pui8Addr)
{
 register uint8_t ui8Data;
 register uint32_t ui32Scratch;
 //
 // ui32Scratch is not used other than to add a padding read following the
 // "real" read.
 //
 __asm volatile(
 //
 // Add a NOP to ensure we don’t have a flash read immediately before
 // the EPI read.
 //
 " NOP\n"
 " LDRB %[ret],[%[addr]]\n"
 " LDR %[scratch],[sp]\n"
 : [ret] "=r" (ui8Data),
 [scratch] "=r" (ui32Scratch)
 : [addr] "r" (pui8Addr)
);
 //
 // Keep the compiler from generating a warning.
 //
 ui32Scratch = ui32Scratch;
 return(ui8Data);
}
#endif

www.ti.com MSP432E4 SimpleLink™ Microcontrollers

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 21

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

In addition, if using CCS, the following code should be saved as a file entitled epi_workaround_ccs.s driverlib
directory and included in the project:

;***
;
; epi_workaround_ccs.s - EPI memory access functions.
;
; Copyright (c) 2013 Texas Instruments Incorporated. All rights reserved.
; TI Information - Selective Disclosure
;
;***
;***
;
; void EPIWorkaroundWordWrite(uint32_t *pui32Addr, uint32_t ui32Value)
;
;***
 .sect ".text:EPIWorkaroundWordWrite"
 .global EPIWorkaroundWordWrite
EPIWorkaroundWordWrite:
 ;
 ; Include a no-op to ensure that we don't have a flash data access
 ; immediately before the EPI access.
 ;
 nop
 ;
 ; Store the word in EPI memory.
 ;
 str r1, [r0]
 ;
 ; Make a dummy read from the stack to ensure that we don't have a flash
 ; data access immediately after the EPI access.
 ;
 ldr r1, [sp]
 ;
 ; Return to the caller.
 ;
 bx lr
 .align 4
;***
;
; uint32_t EPIWorkaroundWordRead(uint32_t *pui32Addr)
;
;***
 .sect ".text:EPIWorkaroundWordRead"
 .global EPIWorkaroundWordRead
EPIWorkaroundWordRead:
 ;
 ; Include a no-op to ensure that we don't have a flash data access
 ; immediately before the EPI access.
 ;
 nop
 ;
 ; Read the word from EPI memory.
 ;
 ldr r0, [r0]
 ;
 ; Make a dummy read from the stack to ensure that we don't have a flash
 ; data access immediately after the EPI access.
 ;
 ldr r1, [r13]
 ;
 ; Return to the caller.
 ;
 bx lr
 .align 4
;***
;
; void EPIWorkaroundHWordWrite(uint16_t *pui16Addr, uint16_t ui16Value)
;
;***
 .sect ".text:EPIWorkaroundHWordWrite"
 .global EPIWorkaroundHWordWrite
EPIWorkaroundHWordWrite:
 ;
 ; Include a no-op to ensure that we don't have a flash data access
 ; immediately before the EPI access.
 ;

MSP432E4 SimpleLink™ Microcontrollers www.ti.com

22 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

 nop
 ;
 ; Store the word in EPI memory.
 ;
 strh r1, [r0]
 ;
 ; Make a dummy read from the stack to ensure that we don't have a flash
 ; data access immediately after the EPI access.
 ;
 ldr r1, [sp]
 ;
 ; Return to the caller.
 ;
 bx lr
 .align 4
;***
;
; uint16_t EPIWorkaroundHWordRead(uint16_t *pui16Addr)
;
;***
 .sect ".text:EPIWorkaroundHWordRead"
 .global EPIWorkaroundHWordRead
EPIWorkaroundHWordRead:
 ;
 ; Include a no-op to ensure that we don't have a flash data access
 ; immediately before the EPI access.
 ;
 nop
 ;
 ; Read the half word from EPI memory.
 ;
 ldrh r0, [r0]
 ;
 ; Make a dummy read from the stack to ensure that we don't have a flash
 ; data access immediately after the EPI access.
 ;
 ldr r1, [r13]
 ;
 ; Return to the caller.
 ;
 bx lr
 .align 4
;***
;
; void EPIWorkaroundByteWrite(uint8_t *pui8Addr, uint8_t ui8Value)
;
;***
 .sect ".text:EPIWorkaroundByteWrite"
 .global EPIWorkaroundByteWrite
EPIWorkaroundByteWrite:
 ;
 ; Include a no-op to ensure that we don't have a flash data access
 ; immediately before the EPI access.
 ;
 nop
 ;
 ; Store the byte in EPI memory.
 ;
 strb r1, [r0]
 ;
 ; Make a dummy read from the stack to ensure that we don't have a flash
 ; data access immediately after the EPI access.
 ;
 ldr r1, [sp]
 ;
 ; Return to the caller.
 ;
 bx lr
 .align 4
;***
;
; uint8_t EPIWorkaroundByteRead(uint8_t *pui8Addr)
;
;***
 .sect ".text:EPIWorkaroundByteRead"
 .global EPIWorkaroundByteRead
EPIWorkaroundByteRead:
 ;

www.ti.com MSP432E4 SimpleLink™ Microcontrollers

SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

MSP432E4 SimpleLink™ Microcontrollers 23

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

 ; Include a no-op to ensure that we don't have a flash data access
 ; immediately before the EPI access.
 ;
 nop
 ;
 ; Read the byte from EPI memory.
 ;
 ldrb r0, [r0]
 ;
 ; Make a dummy read from the stack to ensure that we don't have a flash
 ; data access immediately after the EPI access.
 ;
 ldr r1, [r13]
 ;
 ; Return to the caller.
 ;
 bx lr
 .align 4
.end

2 Trademarks
SimpleLink™ and MSP432™ are trademarks of Texas Instruments.
Arm® and Cortex® are registered trademarks of Arm Limited.
All trademarks are the property of their respective owners.

3 Revision History

Changes from October 1, 2017 to June 30, 2025 (from Revision * (October 2017) to Revision A
(June 2025)) Page
• Added SYSCTL#24 advisory..12

Trademarks www.ti.com

24 MSP432E4 SimpleLink™ Microcontrollers SLAZ709A – OCTOBER 2017 – REVISED JUNE 2025
Submit Document Feedback

Copyright © 2025 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SLAZ709
https://www.ti.com/feedbackform/techdocfeedback?litnum=SLAZ709A&partnum=MSP432E401Y

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

https://www.ti.com/legal/terms-conditions/terms-of-sale.html
https://www.ti.com

	Table of Contents
	1 MSP432E4 SimpleLink™ Microcontrollers
	1.1 Introduction
	1.2 Device Nomenclature
	1.3 Device Markings
	1.4 Errata Overview
	1.5 Errata Descriptions
	1.6 Appendix 1
	1.7 Appendix 2

	2 Trademarks
	3 Revision History

