
1SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

User's Guide
SLAU746A–October 2017–Revised November 2017

MSP432E4 SimpleLink™ Microcontrollers Bootloader
(BSL)

Contents
1 Introduction ... 2

1.1 Source Code Overview .. 2
2 Start-up Code .. 4
3 Serial Update ... 6

3.1 BSL Hardware Setup Overview... 6
3.2 Packet Handling... 7
3.3 Transport Layer ... 7
3.4 Serial Commands... 8
3.5 Serial Command Responses .. 11
3.6 Serial Bootloader Protocol Sequence .. 12

4 Ethernet Update .. 16
5 CAN Update... 16

5.1 CAN Bus Clocking .. 16
5.2 CAN Commands .. 17

6 USB Device (DFU) Update.. 18
6.1 USB Device Firmware Upgrade Overview ... 18
6.2 USB Download Commands .. 21

7 Customization... 25
8 Configuration.. 26
9 Source Details .. 37

9.1 Autobaud Functions... 37
9.2 CAN Functions... 38
9.3 Decryption Functions ... 39
9.4 Ethernet Functions .. 39
9.5 File System Functions .. 39
9.6 I2C Functions... 40
9.7 Main Functions .. 41
9.8 Packet Handling Functions... 41
9.9 SSI Functions .. 43
9.10 UART Functions ... 44
9.11 Update Check Functions ... 45
9.12 USB Device Functions.. 45

10 References .. 50

Trademarks
SimpleLink is a trademark of Texas Instruments.
Arm, Cortex are registered trademarks of Arm Limited.
All other trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Introduction www.ti.com

2 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

1 Introduction
The bootloader is a small piece of code that can be programmed at the beginning of flash to act as an
application loader as well as an update mechanism for applications running on a SimpleLink™ MSP432E4
Arm® Cortex®-M4-based microcontroller. The bootloader can be built to use the UART, SSI, I2C, CAN,
Ethernet, or USB ports to update the code on the microcontroller. The bootloader is customizable through
source code modifications, or simply deciding at compile time which routines to include. Because full
source code is provided, the bootloader can be completely customized.

NOTE: For UART, I2C, and SSI the ROM bootloader is fixed for UART0, I2C0, and SSI0. If the
application uses any other instance of the peripheral, then it must be loaded into the flash by
an emulator.

When using the ROM bootloader the following pins are preconfigured by the ROM bootloader for the
UART0, I2C0, and SSI0 peripherals (see Table 1).

Table 1. ROM Bootloader Default Pin Configuration

Pin Name Peripheral Peripheral Function
PA0 UART0 UART receive pin for the target device
PA1 UART0 UART transmit pin for the target device
PB2 I2C0 I2C serial clock pin. An external pull up is required.
PB3 I2C0 I2C serial data pin. An external pull up is required
PA2 SSI0 SSI slave clock input pin
PA3 SSI0 SSI slave chip select input pin
PA4 SSI0 SSI slave data input pin connected to master output
PA5 SSI0 SSI slave data output pin connected to master input

Three update protocols are used. On UART, SSI, I2C, and CAN, a custom protocol is used to
communicate with the download utility to transfer the firmware image and program it into flash. When
using Ethernet or USB DFU, however, different protocols are employed. On Ethernet, the standard
bootstrap protocol (BOOTP) is used and, for USB DFU, updates are performed through the standard
Device Firmware Upgrade (DFU) class.

1.1 Source Code Overview
The following is an overview of the organization of the source code provided with the bootloader.

bl_autobaud.c
The code for performing the auto-baud operation on the UART port. This is separate from the remainder
of the UART code so that the linker can remove it when it is not used.

bl_can.c
The functions for performing a firmware update through the CAN port.

bl_can.h
Definitions used by the CAN update routine.

bl_check.c
The code to check if a firmware update is required, or if a firmware update is being requested by the user.

bl_check.h
Prototypes for the update check code.

bl_commands.h
The list of commands and return messages supported by the bootloader.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Introduction

3SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

bl_config.c
A dummy source file used to translate the bl_config.h C header file into a header file that can be included
in assembly code. This is needed for the Keil tool chain since it is not able to pass assembly source code
through the C preprocessor.

bl_config.h.tmpl
A template for the bootloader configuration file. This contains all of the possible configuration values.

bl_decrypt.c
The code to perform an in-place decryption of the downloaded firmware image. No decryption is actually
performed in this file; this is simply a stub that can be expanded to perform the require decryption.

bl_decrypt.h
Prototypes for the in-place decryption routines.

bl_enet.c
The functions for performing a firmware update through the Ethernet port.

bl_fs.c
The functions to provide simple FAT file system support.

bl_fs.h
Prototypes for the file system functions.

bl_i2c.c
The functions for transferring data through the I2C port.

bl_i2c.h
Prototypes for the I2C transfer functions.

bl_link.ld
The linker script used when the gcc compiler is being used to build the bootloader.

bl_link.sct
The linker script used when the rvmdk compiler is being used to build the bootloader.

bl_link.xcl
The linker script used when the ewarm compiler is being used to build the bootloader.

bl_link_ccs.cmd
The linker script used when the ccs compiler is being used to build the bootloader.

bl_main.c
The main control loop of the bootloader.

bl_packet.c
The functions for handling the packet processing of commands and responses.

bl_packet.h
Prototypes for the packet handling functions.

bl_ssi.c
The functions for transferring data through the SSI port.

bl_ssi.h
Prototypes for the SSI transfer functions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Start-up Code www.ti.com

4 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

bl_startup_ccs.s
The start-up code used when the ccs compiler is being used to build the bootloader.

bl_startup_ewarm.S
The start-up code used when the ewarm compiler is being used to build the bootloader.

bl_startup_gcc.S
The start-up code used when the gcc compiler is being used to build the bootloader.

bl_startup_rvmdk.S
The start-up code used when the rvmdk compiler is being used to build the bootloader.

bl_uart.c
The functions for transferring data through the UART port.

bl_uart.h
Prototypes for the UART transfer functions.

bl_usb.c
Main functions implementing the USB DFU protocol bootloader.

bl_usbfuncs.c
A cut-down version of the USB library containing support for enumeration and the endpoint 0 transactions
required to implement the USB DFU device.

bl_usbfuncs.h
Prototypes for the functions provided in bl_usbfuncs.c.

usbdfu.h
Type definitions, labels related to the USB Device Firmware Upgrade class bootloader.

2 Start-up Code
The start-up code contains the minimal set of code required to configure a vector table, initialize memory,
copy the bootloader from flash to SRAM, and execute from SRAM. Because some tool chain-specific
constructs are used to indicate where the code, data, and bss segments reside in memory, each
supported tool chain has its own separate file that implements the start-up code. The start-up code is
contained in the following files:

bl_startup_ewarm.S (IAR Embedded Workbench)
bl_startup_gcc.S (GNU GCC)
bl_startup_rvmdk.S (Keil RV-MDK)
bl_startup_ccs.s (Texas Instruments Code Composer Studio)

Accompanying the start-up code for each tool chain are linker scripts that are used to place the vector
table, code segment, data segment initializers, and data segments in the appropriate locations in memory.
The scripts are located in the following files:

bl_link.lds (GNU GCC)
bl_link.sct (Keil RV-MDK)
bl_link.xcl (IAR Embedded Workbench)
bl_link_ccs.cmd (TI Code Composer Studio)

The bootloader’s code and its corresponding linker script use a memory layout that exists entirely in
SRAM. This means that the load address of the code and read-only data are not the same as the
execution address. This memory map allows the bootloader to update itself since it is actually running
from SRAM only. The first part of SRAM is used as the copy space for the bootloader while the rest is
reserved for stack and read/write data for the bootloader. After the bootloader calls the application, all
SRAM becomes usable by the application.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Start-up Code

5SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

The vector table of the Cortex-M4 microprocessor contains four required entries: the initial stack pointer,
the reset handler address, the NMI handler address, and the hard fault handler address. Upon reset, the
processor loads the initial stack pointer and then starts executing the reset handler. The initial stack
pointer is required since an NMI or hard fault can occur at any time; the stack is required to take those
interrupts since the processor automatically pushes eight items onto the stack.

The Vectors array contains the bootloader’s vector table which varies in size based on the addition of the
auto-baud feature or USB DFU support. These options requires additional interrupt handlers expand the
vector table to populate the relevant entries. Since the bootloader executes from SRAM and not from
flash, tool chain-specific constructs are used to provide a hint to the linker that this array is located at
0x2000.0000.

The IntDefaultHandler function contains the default fault handler. This is a simple infinite loop, effectively
halting the application if any unexpected fault occurs. The application state is, therefore, preserved for
examination by a debugger. If desired, a customized bootloader can provide its own handlers by adding
the appropriate handlers to the Vectors array.

After a reset, the start-up code copies the bootloader from flash to SRAM, branches to the copy of the
bootloader in SRAM, and checks to see if an application update should be performed by calling
CheckForceUpdate(). If an update is not required, the application is called. Otherwise the functions that
are called are based on the mode of operation for the bootloader. For UART, SSI, and I2C, the
microcontroller is initialized by calling ConfigureDevice() and then the boot load calls the serial control loop
Updater() . For Ethernet, the microcontroller is initialized by calling ConfigureEnet() and then the
bootloader calls the Ethernet control loop UpdateBOOTP(). For CAN, the microcontroller is initialized by
calling ConfigureCAN() and then the bootloader calls the CAN control loop UpdaterCAN(). For USB, the
microcontroller is initialized by calling ConfigureUSB() after which the function UpdaterUSB() configures
the USB interface for device mode.

The check for an application update (in CheckForceUpdate()) consists of checking the beginning of the
application area and optionally checking the state of a GPIO pin. The application is assumed to be valid if
the first location is a valid stack pointer (that is, it resides in SRAM, and has a value of 0x2xxx.xxxx), and
the second location is a valid reset handler address (that is, it resides in flash, and has a value of
0x000x.xxxx, where the value is odd). If either of these tests fail, then the application is assumed to be
invalid and an update is forced. The GPIO pin check can be enabled with ENABLE_UPDATE_CHECK in
the bl_config.h header file, in which case an update can be forced by changing the state of a GPIO pin
(for example, with a push button). If the application is valid and the GPIO pin is not requesting an update,
the application is called. Otherwise, an update is started by entering the main loop of the bootloader.

Additionally, the application can call the bootloader in order to perform an application-directed update. In
this case, the bootloader assumes that the application has already configured the peripheral that it will use
for the update. This allows the bootloader to use the peripheral as is to perform the update. The
bootloader also assumes that the interrupt to the core has been left enabled as well, which means that
that application should not call IntMasterDisable() before calling the bootloader. After the application calls
the bootloader, the bootloader copies itself to SRAM, branches to the SRAM copy of the bootloader, and
starts the update by calling Updater() (for UART, SSI, and I2C), UpdateBOOTP() (for Ethernet),
AppUpdaterCAN() (for CAN) or AppUpdaterUSB() (for USB). The SVCall entry of the vector table contains
the location of the application-directed update entry point.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

BSL Rocket
Target Device
(MSP432E4xx)

PC Host

Ethernet Switch

USB UART

I2C

SSI

EthernetEthernet

USB

Serial Update www.ti.com

6 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

3 Serial Update
When performing an update through a serial port (UART, SSI, or I2C), ConfigureDevice() is used to
configure the selected serial port, making it ready to be used to update the firmware. Then, Updater() sits
in an endless loop accepting commands and updating the firmware when requested. All transmissions
from this main routine use the packet handler functions (SendPacket(), ReceivePacket(), AckPacket(), and
NakPacket()). After the update is complete, the bootloader can be reset by issuing a reset command to
the bootloader.

When a request to update the application comes through and FLASH_CODE_PROTECTION is defined,
the bootloader first erases the entire application area before accepting the binary for the new application.
This prevents a partial erase of flash from exposing any of the code before the new binary is downloaded
to the microcontroller. The bootloader itself is left in place so that it does not boot a partially erased
program. After all of the application flash area has been successfully erased, the bootloader proceeds with
the download of the new binary. When FLASH_CODE_PROTECTION is not defined, the bootloader only
erases enough space to fit the new application that is being downloaded.

In the event that the bootloader itself needs to be updated, the bootloader must replace itself in flash. An
update of the bootloader is recognized by performing a download to address 0x0000.0000. The bootloader
operates differently based on the setting of FLASH_CODE_PROTECTION. When
FLASH_CODE_PROTECTION is defined and the download address indicates an bootloader update, the
bootloader protects any application code already on the microcontroller by erasing the entire application
area before erasing and replacing itself. If the process is interrupted at any point, either the old bootloader
remains present in the flash and does not boot the partial application or the application code will have
already been erased. When FLASH_CODE_PROTECTION is not defined, the bootloader only erases
enough space to fit its own code and leaves the application intact.

3.1 BSL Hardware Setup Overview
Figure 1 is referenced to illustrate the serial bootloader setup. The BSL scripter tool is used on the PC
host to perform the update of the application firmware image on the target device. The BSL Rocket tool
serves as an interface tool between the PC and the target device to update the application firmware using
UART, I2C, and SSI interfaces.

To perform a USB update, a USB cable must be connected between the PC and the target device.

To perform an update over Ethernet, a generic 10/100 Mbps switch is required. The PC and the board
with the target device are connected to the switch which in turn may be connected to the LAN network.

NOTE: The BSL Rocket tool is required only when using UART, I2C, and SSI as the interface for
performing application firmware update. It is not required when using either USB or Ethernet
for performing application firmware update.

Figure 1. Generic System Setup

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A
https://www.olimex.com/Products/MSP430/BSL/MSP430-BSL/

www.ti.com Serial Update

7SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

3.2 Packet Handling
The bootloader uses well-defined packets to ensure reliable communications with the update program.
The packets are always acknowledged or not acknowledged by the communicating devices. The packets
use the same format for receiving and sending packets. This includes the method used to acknowledge
successful or unsuccessful reception of a packet. While the actual signaling on the serial ports is different,
the packet format remains independent of the method of transporting the data.

The bootloader uses the SendPacket() function to send a packet of data to another device. This function
encapsulates all of the steps necessary to send a valid packet to another device including waiting for the
acknowledge or not-acknowledge from the other device. The following steps must be performed to
successfully send a packet:
1. Send out the size of the packet that will be sent to the device. The size is always the size of the

data + 2.
2. Send out the checksum of the data buffer to help ensure proper transmission of the command. The

checksum algorithm is implemented in the CheckSum() function provided and is simply a sum of the
data bytes.

3. Send out the actual data bytes.
4. Wait for a single byte acknowledgment from the device that it either properly received the data or that it

detected an error in the transmission.

Received packets use the same format as sent packets. The bootloader uses the ReceivePacket()
function in order to receive or wait for a packet from another device. This function does not take care of
acknowledging or not-acknowledging the packet to the other device. This allows the contents of the packet
to be checked before sending back a response. The following steps must be performed to successfully
receive a packet:
1. Wait for nonzero data to be returned from the device. This is important as the device may send zero

bytes between a sent and received data packet. The first nonzero byte received will be the size of the
packet that is being received.

2. Read the next byte which will be the checksum for the packet.
3. Read the data bytes from the device. There will be (packet size – 2 bytes) of data sent during the data

phase. For example, if the packet size was 3, then there is only 1 byte of data to be received.
4. Calculate the checksum of the data bytes and ensure if it matches the checksum received in the

packet.
5. Send an acknowledge or not-acknowledge to the device to indicate the successful or unsuccessful

reception of the packet.

The steps necessary to acknowledge reception of a packet are implemented in the AckPacket() function.
Acknowledge bytes are sent out whenever a packet is successfully received and verified by the
bootloader.

A not-acknowledge byte is sent out whenever a sent packet is detected to have an error, usually as a
result of a checksum error or just malformed data in the packet. This allows the sender to re-transmit the
previous packet.

3.3 Transport Layer
The bootloader supports updating through the I2C, SSI, and UART ports which are available on
MSP432E4 microcontrollers. The SSI port has the advantage of supporting higher and more flexible data
rates but it also requires more connections to the microcontroller. The UART has the disadvantage of
having slightly lower and possibly less flexible rates. However, the UART requires fewer pins and can be
easily implemented with any standard UART connection. The I2C interface also provides a standard
interface, only uses two wires, and can operate at comparable speeds to the UART and SSI interfaces.

3.3.1 I2C Transport
The I2C handling functions are I2CSend(), I2CReceive(), and I2CFlush() functions. The connections
required to use the I2C port are the following pins: I2CSCL and I2CSDA. The device communicating with
the bootloader must operate as the I2C master and provide the I2CSCL signal. The I2CSDA pin is open
drain and can be driven by either the master or the slave I2C device.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Size of Packet

Checksum of Packet

Command

Argument Byte 0

Argument Byte

First Field

Second Field

Third Field.
.
.

Byte 0

Byte 1

Byte 2

Byte 3

.

.

.

Byte n

n

i 2
Checksum = 0xFF and Byte

 ¦

Serial Update www.ti.com

8 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

3.3.2 SSI Transport
The SSI handling functions are SSISend(), SSIReceive(), and SSIFlush(). The connections required to use
the SSI port are the following four pins: SSITx, SSIRx, SSIClk, and SSIFss. The device communicating
with the bootloader is responsible for driving the SSIRx, SSIClk, and SSIFss pins, while the MSP432E4
microcontroller drives the SSITx pin. The format used for SSI communications is the Motorola format with
SPH set to 1 and SPO set to 1 (see the device-specific data sheet for more information on this format).
The SSI interface has a hardware requirement that limits the maximum rate of the SSI clock to be at most
1/12 the frequency of the microcontroller running the bootloader.

3.3.3 UART Transport
The UART handling functions are UARTSend(), UARTReceive(), and UARTFlush(). The connections
required to use the UART port are the following two pins: U0Tx and U0Rx. The device communicating with
the bootloader is responsible for driving the U0Rx pin on the MSP432E4 microcontroller, while the
MSP432E4 microcontroller drives the U0Tx pin.

While the baud rate is flexible, the UART serial format is fixed at 8 data bits, no parity, and one stop bit.
The baud rate used for communication can either be auto-detected by the bootloader, if the auto-baud
feature is enabled, or it can be fixed at a baud rate supported by the device communicating with the
bootloader. The only requirement on baud rate is that the baud rate should be no more than 1/32 the
frequency of the microcontroller that is running the bootloader. This is the hardware requirement for the
maximum baud rate for a UART on any MSP432E4 microcontroller.

When using a fixed baud rate, the frequency of the crystal connected to the microcontroller must be
specified. Otherwise, the bootloader cannot configure the UART to operate at the requested baud rate.

The bootloader provides a method to automatically detect the baud rate being used to communicate with
it. This automatic baud rate detection is implemented in the UARTAutoBaud() function. The auto-baud
function attempts to synchronize with the updater application and indicates if it is successful in detecting
the baud rate or if it failed to properly detect the baud rate. The bootloader can make multiple calls to
UARTAutoBaud() to attempt to retry the synchronization if the first call fails. In the example bootloader
provided, when the auto-baud feature is enabled, the bootloader will wait forever for a valid
synchronization pattern from the host.

3.4 Serial Commands
The serial bootloader uses a well defined packet structure for commands and responses to establish
communication between the programmer and the target device. The size and response for each of the
commands is fixed, so that the programmer and target can perform the most efficient communication.

Each command packet is made up of three fields (see Figure 2).

Figure 2. Generic Command Packet Structure

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Size = 0x0B

Checksum = 0xXX

Command = 0x21

Byte 0

Byte 1

Byte 2

Program Address [31:24]Byte 3

Program Address [23:16]Byte 4

Program Address [15:8]Byte 5

Program Address [7:0]Byte 6

Program Size [31:24]Byte 7

Program Size [23:16]Byte 8

Program Size [15:8]Byte 9

Program Size [7:0]Byte 10

Size = 0x03

Checksum = 0x20

Command = 0x20

Byte 0

Byte 1

Byte 2

www.ti.com Serial Update

9SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

The first field of the packet is 1 byte that contains the size of the packet including the first field. The
second field of the packet is also 1 byte and contains the checksum formed over the rest of the packet.
The third field is the command followed by its arguments. This field can have a variable size based on the
command and the arguments applicable to the specific command. The descriptions of the commands that
are used by the custom protocol on the UART, SSI, and I2C ports follow.

COMMAND_PING
This command is used to receive an acknowledge from the bootloader indicating that communication has
been established. Figure 3 shows the command format, and it has a single byte in the third field.

Figure 3. Ping Command

COMMAND_DOWNLOAD
This command is sent to the bootloader to indicate where to store data and how many bytes will be sent
by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit values that
are both transferred MSB first. The first 32-bit value is the address to start programming data into, while
the second is the 32-bit size of the data that will be sent. This command also triggers an erase of the full
application area in the flash or possibly the entire flash depending on the address used. This causes the
command to take longer to send the ACK or NAK in response to the command. This command should be
followed by a COMMAND_GET_STATUS to ensure that the program address and program size were
valid for the microcontroller running the bootloader.

Figure 4 shows the command format.

Figure 4. Download Command

COMMAND_RUN
This command is sent to the bootloader to transfer execution control to the specified address. The
command is followed by a 32-bit value, transferred MSB first, that is the address to which execution
control is transferred.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Size = 0x03

Checksum = 0x23

Command = 0x23

Byte 0

Byte 1

Byte 2

Size = 0x07

Checksum = 0xXX

Command = 0x22

Byte 0

Byte 1

Byte 2

Run Address [31:24]Byte 3

Run Address [23:16]Byte 4

Run Address [15:8]Byte 5

Run Address [7:0]Byte 6

Serial Update www.ti.com

10 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

Figure 5 shows the command format.

Figure 5. Run Command

COMMAND_GET_STATUS
This command returns the status of the last command that was issued. Typically, this command should be
received after every command is sent to ensure that the previous command was successful or, if
unsuccessful, to properly respond to a failure. The command requires one byte in the data of the packet
and the bootloader should respond by sending a packet with one byte of data that contains the current
status code.

Figure 6 shows the command format.

Figure 6. Get Status Command

COMMAND_SEND_DATA
This command should only follow a COMMAND_DOWNLOAD command or another
COMMAND_SEND_DATA command, if more data is needed. Consecutive send data commands
automatically increment the address and continue programming from the previous location. The transfer
size is limited by the size of the receive buffer in the bootloader (as configured by the BUFFER_SIZE
parameter). The command terminates programming when the number of bytes indicated by the
COMMAND_DOWNLOAD command has been received. Each time this function is called, it should be
followed by a COMMAND_GET_STATUS command to ensure that the data was successfully programmed
into the flash. If the bootloader sends a NAK to this command, the bootloader does not increment the
current address which allows for retransmission of the previous data.

Figure 7 shows the command format.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Size = 0x03

Checksum = 0x25

Command = 0x25

Byte 0

Byte 1

Byte 2

Size = 0xYY

Checksum = 0xXX

Command = 0x24

Byte 0

Byte 1

Byte 2

Data0 [7:0]Byte 3

Data0 [15:8]Byte 4

Data0 [23:16]Byte 5

Data0 [31:24]Byte 6

.

.

.

.

.

.

DataN [7:0]Byte 4N+3

DataN [15:8]Byte 4N+4

DataN [23:16]Byte 4N+5

DataN [31:24]Byte 4N+6

www.ti.com Serial Update

11SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

Figure 7. Send Data Command

COMMAND_RESET
This command is used to tell the bootloader to reset. This is used after downloading a new image to the
microcontroller to cause the new application or the new bootloader to start from a reset. The normal boot
sequence occurs and the image runs as if from a hardware reset. It can also be used to reset the
bootloader if a critical error occurs and the host device wants to restart communication with the
bootloader.

The bootloader responds with an ACK signal to the host device before actually executing the software
reset on the microcontroller running the bootloader. This informs the updater application that the command
was received successfully and the part will be reset.

Figure 8 shows the format of the command.

Figure 8. COMMAND_RESET packet structure on the bus

unsigned char ucCommand[1];
ucCommand[0] = COMMAND_RESET;

3.5 Serial Command Responses
There are two types of response packets generated. The first type of response packet (Type-1) is an ACK
or NAK response, which is generated as a single byte packet when a command packet is sent. The
second type of response packet (Type-2) is specific to the GET_STATUS command packet and has the
same structure as that of a command packet.

• ACK Response packet: The ACK response packet is sent by either the target device in response to a

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Size = 0x03

Checksum = 0xXX

Response = 0xXX

Byte 0

Byte 1

Byte 2

NAK = 0x33

ACK = 0xCC

Byte 0

Byte 0

Serial Update www.ti.com

12 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

command packet or by the programmer in response to the Type-2 response packet. It is generated
when the command packet or a Type-2 packet has no checksum error and the parameters are defined
correctly.

• NAK Response packet: The NAK response packet is sent by either the target device in response to a
command packet or by the programmer in response to the Type-2 response packet. It is generated
when the command packet or a Type-2 packet has either a checksum error or the parameters are not
defined correctly.

The structure of the ACK and NAK response packet is shown in Figure 9.

Figure 9. ACK and NAK Response

The Type-2 response packet is sent by the target device to the programmer in response to the
GET_STATUS command packet and its structure is shown in Figure 10. The valid values for the Type-2
response packet are defined in Table 2.

NOTE: The checksum value is not specified as this should be computed per the equation in Figure 2
on Byte-2 and placed in Byte-1 location

Figure 10. Type-2 Response

Table 2. Response Value Description

Response Packet Value Comments
COMMAND_RET_SUCCESS 0x40 If the previous command was defined and format was correct
COMMAND_RET_UNKNOWN_CMD 0x41 If the previous command was an unknown command
COMMAND_RET_INVALID_CMD 0x42 If the previous command had a format error
COMMAND_RET_INVALID_ADR 0x43 If the previous download address was an invalid address
COMMAND_RET_FLASH_FAIL 0x44 If the attempt to program or erase the flash failed
COMMAND_RET_CRC_FAIL 0x45 If the CRC check of the image failed, if CRC check has been enabled

3.6 Serial Bootloader Protocol Sequence
Having described the command and response packet types and structures, this section elaborates on the
serial bootloader protocol sequence that is used between the programmer and the target device to
download and execute an application image. While the steps are identical for all three serial interfaces of
UART, I2C and SSI, there is one additional step that is handled in UART called Auto-Baud. This step is
done so that the programmer and target device can synchronize on the baud rate to be used.

Figure 11 through Figure 14 shows how the BSL Rocket communicates with the target device to download
the application image along with required error handling.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Is
Interface
UART?

Send 0x55 Twice

Yes

Transmit PING Command

Type-1
Response
Received?

Is Timeout
Counter = 0?

Is
Response

ACK?

Yes

No

No

Reset State

No

Yes

No

Yes

Transmit DOWNLOAD Command

Idle State

In
fo

rm
 U

se
r

www.ti.com Serial Update

13SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

Figure 11. Serial Protocol Sequence-1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Transmit DOWNLOAD Command

Type-1
Packet

Received?

Is Timeout
Counter = 0?

Is
Response

ACK?

Yes No

Reset State

No

Yes

No

Yes

Transmit GET_STATUS Command

Type-2
Response
Received?

Is Timeout
Counter = 0?

Is
Response

SUCCESS?

Yes No

No

No

Yes
Transmit SEND_DATA Command

Send ACK Response Packet

Yes

Serial Update www.ti.com

14 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

Figure 12. Serial Protocol Sequence-2

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Transmit RESET Command

Type-1
Packet

Received?

Is Timeout
Counter = 0?

Is
Response

ACK?

Yes No

Reset State

No

Yes
No

Idle State
Inform User

Yes

Is Binary
Download
Complete?

No

Yes

Transmit SEND_DATA Command

Type-1
Packet

Received?

Is Timeout
Counter = 0?

Is
Response

ACK?

Yes No

Reset State

No

Yes

No

Yes

Transmit GET_STATUS Command

Type-2
Response
Received?

Is Timeout
Counter = 0?

Is
Response

SUCCESS?

Yes No

No

No

Yes

Transmit RESET Command

Send ACK Response Packet

Yes

www.ti.com Serial Update

15SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

Figure 13. Serial Protocol Sequence-3

Figure 14. Serial Protocol Sequence-4

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Ethernet Update www.ti.com

16 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

4 Ethernet Update
When performing an Ethernet update, ConfigureEnet() is used to configure the Ethernet controller, making
it ready to be used to update the firmware. Then, UpdateBOOTP() begins the process of the firmware
update.

The bootstrap protocol (BOOTP) is a predecessor to the DHCP protocol and is used to discover the IP
address of the client, the IP address of the server, and the name of the firmware image to use. BOOTP
uses UDP/IP packets to communicate between the client and the server; the bootloader acts as the client.
First, it will send a BOOTP request using a broadcast message. When the server receives the request, it
will reply, thereby informing the client of its IP address, the IP address of the server, and the name of the
firmware image. When this reply is received, the BOOTP protocol has completed.

Then, the trivial file transfer protocol (TFTP) is used to transfer the firmware image from the server to the
client. TFTP also uses UDP/IP packets to communicate between the client and the server, and the
bootloader also acts as the client in this protocol. As each data block is received, it is programmed into
flash. When all data blocks are received and programmed, the device is reset, causing it to start running
the new firmware image.

The uIP stack is used to implement the UDP/IP connections. The TCP support is not needed and is
therefore disabled, greatly reducing the size of the stack.

The Ethernet controller will be configured to use the MAC address stored in the USER0/UART1 data
registers or the MAC address that is provided in the bootloader configuration file (bl_config.h). When using
the MAC address from USER0/USER1, it will be interpreted as a MAC address of
U0B0:U0B1:U0B2:U1B0:U1B1:U1B2 (where U0B0 is USER0 bits 7-0, or byte 0, U0B1 is USER0 bits 15-
8, or byte 1, and so on).

NOTE: When using the Ethernet update, the bootloader can not update itself since there is no
mechanism in BOOTP to distinguish between a firmware image and a bootloader image.
Therefore, the bootloader does not know if a given image is a new bootloader or a new
firmware image. It assumes that all images provided are firmware images.

The following IETF specifications define the protocols used by the Ethernet update mechanism:

RFC951 (http://tools.ietf.org/html/rfc951.html) defines the bootstrap protocol.

RFC1350 (http://tools.ietf.org/html/rfc1350.html) defines the trivial file transfer protocol.

5 CAN Update
When performing a CAN update the bootloader calls ConfigureCAN() to configure the CAN controller and
prepare the bootloader to update the firmware. The CAN update mechanism allows the bootloader to be
entered from a functioning CAN application as well from startup when no application has been
downloaded to the microcontroller. The bootloader provides the main routine for performing the CAN
update in the UpdaterCAN() function which is used in both cases.

When the device enters the bootloader from a running CAN network, the bootloader does not reconfigure
the CAN clocks or bit timing and will assume that they have been configured as expected by the firmware
update device. The bootloader assumes that the application has taken the device off of the CAN network
by putting it in "Init mode" but left the CAN bit timings untouched. When the bootloader is run without an
application, it is necessary to configure the CAN bit rate using the default CAN clocking which uses the
#define values CAN_BIT_RATE and CRYSTAL_FREQ. These settings must be identical to the CAN bit
rate settings used by the application. When the last data is received, the CAN update application must
issue an explicit LM_API_UPD_RESET command to restart the device.

5.1 CAN Bus Clocking
There are two global definitions that are required to configure the CAN bootloader to meet the
application’s timing requirements. They are both used to determine how the CAN bit rate is configured
based on the clock provided to the CAN controller as well as the desired bit rate. The CAN_BIT_RATE
value sets the transfer rate for data on the CAN bus in bits per second. The other value,
CRYSTAL_FREQ, is used to set the input frequency to the CAN controller.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A
http://tools.ietf.org/html/rfc951.html
http://tools.ietf.org/html/rfc1350.html

www.ti.com CAN Update

17SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

5.2 CAN Commands
The CAN firmware update provides a short list of commands that are used during the firmware update
operation. The definitions for these commands are provided in the file bl_can.h. The description of each of
these commands is covered in the rest of this section.

LM_API_UPD_PING
This command is used to receive an acknowledge command from the bootloader indicating that
communication has been established. This command has no data. If the device is present it will respond
with a LM_API_UPD_PING back to the CAN update application.

LM_API_UPD_DOWNLOAD
This command sets the base address for the download as well as the size of the data to write to the
device. This command should be followed by a series of LM_API_UPD_SEND_DATA that send the actual
image to be programmed to the device. The command consists of two 32-bit values that are transferred
LSB first. The first 32-bit value is the address to start programming data into, while the second is the 32-bit
size of the data that will be sent. This command also triggers an erasure of the full application area in the
flash. This flash erase operation causes the command to take longer to send the LM_API_UPD_ACK in
response to the command which should be taken into account by the CAN update application.

The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = Download Address [7:0];
ucData[1] = Download Address [15:8];
ucData[2] = Download Address [23:16];
ucData[3] = Download Address [31:24];
ucData[4] = Download Size [7:0];
ucData[5] = Download Size [15:8];
ucData[6] = Download Size [23:16];
ucData[7] = Download Size [31:24];

LM_API_UPD_SEND_DATA
This command should only follow a LM_API_UPD_DOWNLOAD command or another
LM_API_UPD_SEND_DATA command when more data is needed. Consecutive send data commands
automatically increment the address and continue programming from the previous location. The transfer
size is limited to 8 bytes at a time based on the maximum size of an individual CAN transmission. The
command terminates programming when the number of bytes indicated by the
LM_API_UPD_DOWNLOAD command have been received. The CAN bootloader will send a
LM_API_UPD_ACK in response to each send data command to allow the CAN update application to
throttle the data going to the device and not overrun the bootloader with data.

The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = Data[0];
ucData[1] = Data[1];
ucData[2] = Data[2];
ucData[3] = Data[3];
ucData[4] = Data[4];
ucData[5] = Data[5];
ucData[6] = Data[6];
ucData[8] = Data[7];

LM_API_UPD_RESET
This command is used to tell the CAN bootloader to reset the microcontroller. This is used after
downloading a new image to the microcontroller to cause the new application or the new bootloader to
start from a reset. The normal boot sequence occurs and the image runs as if from a hardware reset. It
can also be used to reset the bootloader if a critical error occurs and the CAN update application needs to
restart communication with the bootloader.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

USB Device (DFU) Update www.ti.com

18 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

6 USB Device (DFU) Update
When performing a USB update, the bootloader calls ConfigureUSB() to configure the USB controller and
prepare the bootloader to update the firmware. The USB update mechanism allows the bootloader to be
entered from a functioning application as well as from startup when no application has been downloaded
to the microcontroller. The bootloader provides the main routine for performing the USB update in the
UpdaterUSB() function which is used in both cases.

When the USB bootloader is invoked from a running application, the bootloader will reconfigure the USB
controller to publish the required descriptor set for a Device Firmware Upgrade (DFU) class device. If the
main application had previously been offering any USB device class, it must remove the device from the
bus by calling USBDevDisconnect() prior to entering the bootloader.

The USB bootloader also assumes that the main application is using the PLL as the source of the system
clock.

The USB bootloader allows a USB host to upgrade the firmware on a USB device. To make use of it,
therefore, the board running the bootloader must be capable of acting as a USB device. Firmware
upgrade of boards which operate solely as USB hosts is not supported by the USB DFU class or the USB
bootloader.

6.1 USB Device Firmware Upgrade Overview
The USB bootloader enumerates as a Device Firmware Upgrade (DFU) class device. This standard
device class specifies a set of class-specific requests and a state machine that can be used to download
and flash firmware images to a device and, optionally, upload the existing firmware image to the USB
host. The full specification for the device class can be downloaded from the USB Implementer’s Forum
website at http://www.usb.org/developers/docs/devclass_docs/DFU_1.1.pdf.

All communication with the DFU device takes place using the USB control endpoint, endpoint 0. The
device publishes a standard device descriptor with vendor, product and device revisions as specified in
the bl_config.h header file used to build the bootloader binary. It also publishes a single configuration
descriptor and a single interface descriptor where the interface class of 0xFE indicates an application-
specific class and the subclass of 0x01 indicates "Device Firmware Upgrade". Attached to the interface
descriptor is a DFU Functional Descriptor which provides information to the host on DFU-specific device
capabilities such as whether the device can perform upload operations and what the maximum transfer
size for upload and download operations is.

DFU functions are initiated by means of a set of class-specific requests. Each request, which follows the
standard USB request format, performs some operation and moves the DFU device between a series of
well-defined states. Additional requests allow the host to query the current state of the device to determine
whether, for example, it is ready to receive the next block of download data.

A DFU device may operation in one of two modes: “Run Time” mode or “DFU” mode. In “Run Time”
mode, the device publishes the DFU interface and functional descriptors alongside any other descriptors
that the device requires for normal operation. It does not, however, need to respond to any DFU class-
specific requests other than DFU_DETACH which indicates that it should switch to “DFU” mode.

In “DFU” mode, the device supports all DFU functionality and can perform upload and download
operations as specified in its DFU functional descriptor.

The USB bootloader supports only “DFU” mode operation. If an main application wishes to publish DFU
descriptors and respond to the DFU_DETACH request, it can cause a switch to “DFU” mode on receiving
a DFU_DETACH request by removing itself from the USB bus using a call to USBDevDisconnect() before
transferring control to the USB bootloader by making a call through the SVC vector in the usual manner.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A
http://www.usb.org/developers/docs/devclass_docs/DFU_1.1.pdf

www.ti.com USB Device (DFU) Update

19SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

6.1.1 DFU Requests
Requests supported by the USB bootloader are:

DFU_DNLOAD
This OUT request is used to send a block of binary data to the device. The DFU class specification does
not define the content and format of the binary data but typically this is either binary data to be written to
some position in the device’s flash memory or a device-specific command. The request payload size is
constrained by the maximum packet size specified in the DFU functional descriptor. In this
implementation, that maximum is set to 1024 bytes.

After sending a DFU_DNLOAD request, the host must poll the device status and wait until the state
reverts to DNLOAD_IDLE before sending another request. If the host wishes to indicate that it has finished
sending download data, it sends a DFU_DNLOAD request with a payload length of 0.

DFU_UPLOAD
This IN request is used to request a block of binary data from the device. The data returned is device-
specific but will typically be the contents of a region of the device’s flash memory or a device-specific
response to a command previously sent through a DFU_DNLOAD request. As with DFU_DNLOAD, the
maximum amount of data that can be requested is governed by the maximum packet size specified in the
DFU functional descriptor, here 1024 bytes.

DFU_GETSTATUS
This IN request allows the host to query the current status of the DFU device. It is typically used during
download operations to determine when it is safe to send the next block of data. Depending upon the
state of the DFU device, this request may also trigger a state change. During download, for example, the
device enters DNLOAD_SYNC state after receiving a block of data and remains there until the data has
been processed and a DFU_GETSTATUS request is received at which point the state changes to
DNLOAD_IDLE.

DFU_CLRSTATUS
This request is used to reset any error condition reported by the DFU device. If an error is reported
through the response to a DFU_GETSTATUS request, that error condition is cleared when this request is
received and the device returns to IDLE state.

DFU_GETSTATE
This IN request is used to query the current state of the device without triggering any state change. The
single byte of data returned indicates the current state of the DFU device.

DFU_ABORT
This request is used cancel any partially complete upload or download operation and return the device to
IDLE state in preparation for some other request.

6.1.2 DFU States
During operation, the DFU device transitions between a set of class-defined states. The host must query
the current state to determine when a new operation can be performed or to determine the cause of any
errors reported. These states are:

IDLE
The IDLE state indicates to the host that the DFU device is ready to start an upload or download
operation.

DNLOAD_SYNC
After each DFU_DNLOAD request is received, DNLOAD_SYNC state is entered. This state remains in
effect until the host issues a DFU_GETSTATUS request at which point the state will change to
DNLOAD_IDLE if the last download operation has completed or DNBUSY otherwise.

DNLOAD_IDLE

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

USB Device (DFU) Update www.ti.com

20 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

This state indicates that a download operation is in progress and that the device is ready to receive
another DFU_DNLOAD request with the next block of data.

DNBUSY
This state is reported if a DFU_GETSTATUS request is received while a block of downloaded data is still
being processed. The host must refrain from issuing another DFU_GETSTATUS request for a time
specified in the structure returned following the request. After this time, the device state reverts to
DNLOAD_SYNC.

To reduce the USB bootloader image size, this state is not supported. Instead of reporting DNBUSY, the
USB bootloader remains in state DNLOAD_SYNC until the previous data has been processed then
transitions to DNLOAD_IDLE on receipt of the first DFU_GETSTATUS request following completion of
block programming.

MANIFEST_SYNC
The end of a download operation is signaled by the host sending a DFU_DNLOAD request with a 0 length
payload. When this request is received, the DFU device transitions from state DNLOAD_IDLE to
MANIFEST_SYNC. This state indicates that the complete firmware image has been received and the
device is waiting for a DFU_GETSTATUS request before finalizing programming of the image.

The USB bootloader programs downloaded blocks as they are received so does not need to perform any
additional processing after all blocks have been received. It also reports that it is “manifest tolerant”,
indicating to the host that it will still respond to requests after a download has completed. As a result, the
device will transition from this state to IDLE when the DFU_GETSTATUS request is received.

MANIFEST
This state indicates to the host that the device is programming a previously received firmware image and
is entered on receipt of a DFU_GETSTATUS request while a device that is not manifest tolerant is in
MANIFEST_SYNC state.

This state is not used by the USB bootloader since it is manifest tolerant and reverts to IDLE state after
completion of a download.

MANIFEST_WAIT_RESET
This state indicates that a device which is not manifest tolerant has finished writing a downloaded image
and is waiting for a USB reset to signal it to boot the new firmware.

This state is not used by the USB bootloader since it is manifest tolerant and reverts to IDLE state after
completion of a download.

UPLOAD_IDLE
Following receipt of a DFU_UPLOAD request, the device remains in this state until it receives another
DFU_UPLOAD request asking for less than the maximum transfer size of data. This indicates that the
upload is complete and the device will transition back to IDLE state.

ERROR
The ERROR state is entered when some error occurs.

The device remains in this state until the host sends a DFU_CLRSTATUS request at which point the state
reverts to IDLE and that error code, which is reported in the data returned in response to
DFU_GETSTATUS, is cleared.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

DFU Device Enumerated

Exit

Send DFU_GETSTATUS

No

Send DFU_DNLOAD with
a block of firmware

image data.

State is
ERROR?

Yes

State is
DNLOAD_SYNC

or DNBUSY?

State is
DNLOAD_IDLE?

More data
to send?

No

No

YesYes

Send DFU_DNLOAD with
a zero-length payload.

Report the error condition

Send DFU_GETSTATUS

Yes

No

State is
ERROR?

Yes

No

www.ti.com USB Device (DFU) Update

21SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

6.1.3 Typical Firmware Download Sequence
Figure 15 shows a typical firmware image download sequence from the perspective of the host
application.

Figure 15. Firmware Download Sequence

6.2 USB Download Commands
The DFU class specification provides the framework necessary to download and upload firmware files to
the USB device but does not specify the actual format of the binary data that is transferred. As a result,
different device implementations have used different methods to perform operations which are not defined
in the standard such as:
• Setting the address that a downloaded binary should be flashed to.
• Setting the address and size of the area of flash whose contents are to be uploaded.
• Erasing sections of the flash.
• Querying the size of flash and writeable area addresses.

The USB bootloader implementation employs a small set of commands which can be sent to the DFU
device through a DFU_DNLOAD request when the device is in IDLE state. Each command takes the form
of an 8 byte structure which defines the operation to carry out and provides any required additional
parameters.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

USB Device (DFU) Update www.ti.com

22 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

To ensure that a host application which does not have explicit support for device-specific commands can
still be used to download binary firmware images to the device, the protocol is defined such that only a
single 8 byte header structure need be placed at the start of the binary image being downloaded. This
header and the DFU-defined suffix structure can both be added using the supplied “dfuwrap” command-
line application, hence providing a single binary that can be sent to a device running the MSP432E4 USB
bootloader using a standard sequence of DFU_DNLOAD requests with no other embedded commands or
device-specific operations required. An application which does understand the MSP432E4-specific
commands may make use of them to offer additional functionality that would not otherwise be available.

6.2.1 Querying Command Support
Since the device-specific commands defined here are sent to the DFU device in DFU_DNLOAD requests,
the possibility exists that sending them to a device which does not understand the protocol could result in
corruption of that device’s firmware. To guard against this possibility, the MSP432E4 USB bootloader
supports an additional USB request which is used to query the device capabilities and allow a host to
determine whether or not the device supports the MSP432E4 commands. A device which does not
support the commands will either stall the request or return unexpected data.

To determine whether a target DFU device supports the device-specific DFU commands, send the
following IN request to the DFU interface:

Table 3. Request to Determine Device-Specific Commands

bmRequest-Type bRequest wValue wIndex wLength Data
10100001b 0x42 0x23 Interface 4 Protocol Info

Where the protocol information returned is a 4 byte structure, the first 2 bytes of which are 0x4D and
0x4C, and where the second group of 2 bytes indicates the protocol version supported, currently 0x01 and
0x00 respectively.

6.2.2 Download Command Definitions
The following commands may be sent to the USB bootloader as the first 8 bytes of the payload to a
DFU_DNLOAD request. The bootloader will expect any DFU_DNLOAD request received while

in IDLE state to contain a command header but does not look for command unless the state is IDLE. This
allows an application which is unaware of the command header to download a DFU-wrapped binary image
using a standard sequence of multiple DFU_DNLOAD and DFU_GETSTATUS requests without the need
to insert additional command headers during the download.

The commands defined here and their parameter block structures can be found in header file usbdfu.h. In
all cases where multi-byte numbers are specified, the numbers are stored in little-endian format with the
least significant byte in the lowest addressed location. The following definitions specify the command byte
ordering unambiguously but care must be taken to ensure correct byte swapping if using the command
structure types defined in usbdfu.h on big-endian systems.

DFU_CMD_PROG
This command is used to provide the USB bootloader with the address at which the next download should
be written and the total length of the firmware image which is to follow. This structure forms the header
that is written to the DFU-wrapped file generated by the dfuwrap tool.

The start address is provided in terms of 1024 byte flash blocks. To convert a byte address to a block
address, merely divide by 1024. The start address must always be on a 1024 byte boundary.

This command may be followed by up to 1016 bytes of firmware image data, this number being the
maximum transfer size minus the 8 bytes of the command structure.

The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = DFU_CMD_PROG (0x01)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com USB Device (DFU) Update

23SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

ucData[3] = Start Block Number [15:8];
ucData[4] = Image Size [7:0];
ucData[5] = Image Size [15:8];
ucData[6] = Image Size [23:16];
ucData[7] = Image Size [31:24];

DFU_CMD_READ
This command is used to set the address range whose content will be returned on subsequent
DFU_UPLOAD requests from the host.

The start address is provided in terms of 1024 byte flash blocks. To convert a byte address to a block
address, merely divide by 1024. The start address must always be on a 1024 byte boundary.

To read back a the contents of a region of flash, the host should send a DFU_DNLOAD request with
command DFU_CMD_READ, start address set to the 1KB block start address and length set to the
number of bytes to read. The host should then send one or more DFU_UPLOAD requests to receive the
current flash contents from the configured addresses. Data returned will include an 8-byte
DFU_CMD_PROG prefix structure unless the prefix has been disabled by sending a DFU_CMD_BIN
command with the bBinary parameter set to 1. The host should, therefore, be prepared to read 8 bytes
more than the length specified in the READ command if the prefix is enabled.

By default, the 8-byte prefix is enabled for all upload operations. This is required by the DFU class
specification which states that uploaded images must be formatted to allow them to be directly
downloaded back to the device at a later time.

The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = DFU_CMD_READ (0x02)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Image Size [7:0];
ucData[5] = Image Size [15:8];
ucData[6] = Image Size [23:16];
ucData[7] = Image Size [31:24];

DFU_CMD_CHECK
This command is used to check a region of flash to ensure that it is completely erased.

The start address is provided in terms of 1024 byte flash blocks. To convert a byte address to a block
address, merely divide by 1024. The start address must always be on a 1024 byte boundary. The length
must also be a multiple of 4.

To check that a region of flash is erased, the DFU_CMD_CHECK command should be sent with the
required start address and region length set then the host should issue a DFU_GETSTATUS request. If
the erase check was successful, the returned bStatus value will be OK (0x00), otherwise it will be
errCheckErased (0x05).

The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = DFU_CMD_CHECK (0x03)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Region Size [7:0];
ucData[5] = Region Size [15:8];
ucData[6] = Region Size [23:16];
ucData[7] = Region Size [31:24];

DFU_CMD_ERASE
This command is used to erase a region of flash.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

USB Device (DFU) Update www.ti.com

24 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

The start address is provided in terms of 1024 byte flash blocks. To convert a byte address to a block
address, merely divide by 1024. The start address must always be on a 1024 byte boundary. The length
must also be a multiple of 4. The size of the region to erase is expressed in terms of flash blocks. The
block size can be determined using the DFU_CMD_INFO command.

The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = DFU_CMD_ERASE (0x04)
ucData[1] = Reserved - set to 0x00
ucData[2] = Start Block Number [7:0];
ucData[3] = Start Block Number [15:8];
ucData[4] = Number of Blocks [7:0];
ucData[5] = Number of Blocks [15:8];
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

DFU_CMD_INFO
This command is used to query information relating to the target device and programmable region of flash.
The device information structure, tDFUDeviceInfo, is returned on the next DFU_UPLOAD request
following this command.

The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = DFU_CMD_INFO (0x05)
ucData[1] = Reserved - set to 0x00
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00
//***
//
// Payload returned in response to the DFU_CMD_INFO command.
//
// This is structure is returned in response to the first DFU_UPLOAD
// request following a DFU_CMD_INFO command. Note that byte ordering
// of multi-byte fields is little-endian.
//
//***
typedef struct
{
//
// The size of a flash block in bytes.
//
unsigned short usFlashBlockSize;
//
// The number of blocks of flash in the device. Total
// flash size is usNumFlashBlocks * usFlashBlockSize.
//
unsigned short usNumFlashBlocks;
//
// Information on the part number, family, version and
// package as read from SYSCTL register DID1.
//
unsigned long ulPartInfo;
//
// Information on the part class and revision as read
// from SYSCTL DID0.
//

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Customization

25SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

unsigned long ulClassInfo;
//
// Address 1 byte above the highest location the boot
// loader can access.
//
unsigned long ulFlashTop;
//
// Lowest address the boot loader can write or erase.
//
unsigned long ulAppStartAddr;
}
PACKED tDFUDeviceInfo;

DFU_CMD_BIN
By default, data returned in response to a DFU_UPLOAD request includes an 8 byte DFU_CMD_PROG
prefix structure. This ensures that an uploaded image can be directly downloaded again without the need
to further wrap it but, in cases where pure binary data is required, can be awkward. The DFU_CMD_BIN
command allows the upload prefix to be disabled or enabled under host control.

The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = DFU_CMD_BIN (0x06)
ucData[1] = 0x01 to disable upload prefix, 0x00 to enable
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

DFU_CMD_RESET
This command may be sent to the USB bootloader to cause it to perform a soft reset of the board. This
will reboot the system and, assuming that the main application image is present, run the main application.
A reboot will also take place if a firmware download operation completes and the host issues a USB reset
to the DFU device.

The format of the command is as follows:
unsigned char ucData[8];
ucData[0] = DFU_CMD_RESET (0x07)
ucData[1] = Reserved - set to 0x00
ucData[2] = Reserved - set to 0x00
ucData[3] = Reserved - set to 0x00
ucData[4] = Reserved - set to 0x00
ucData[5] = Reserved - set to 0x00
ucData[6] = Reserved - set to 0x00
ucData[7] = Reserved - set to 0x00

7 Customization
The bootloader allows for customization of its features as well as the interfaces used to update the
microcontroller. This allows the bootloader to include only the features that are needed by the application.
There are two types of features that can be customized. The first type are the features that are
conditionally included or excluded at compile time. The second type of customizations are more involved
and include customizing the actual code that is used by the bootloader.

The bootloader can be modified to have any functionality. As an example, the main loop can be
completely replaced to use a different set of commands and still use the packet and transport functions
from the bootloader. The method of detecting a forced update can be modified to suit the needs of the
application when toggling a GPIO to detect an update request may not be the best solution. If the
bootloader’s packet format does not meet the needs of the application, it can be completely replaced by
replacing ReceivePacket(), SendPacket(), AckPacket(), and NakPacket().

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Configuration www.ti.com

26 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

The bootloader also provides a method to add a new serial transmission interface beyond the UART, SSI,
and I2C that are provided by the bootloader. For the packet functions to use the new transport functions,
the SendData(), ReceiveData(), and FlushData() defines need to be modified to use the new functions.
For example:
#ifdef FOO_ENABLE_UPDATE
#define SendData FooSend
#define FlushData FooFlush
#define ReceiveData FooReceive
#endif

would use the functions for the hypothetical Foo peripheral.

The combination of these customizable features provides a framework that allows the bootloader to define
whatever protocol it needs, or use any port that it needs to perform updates of the microcontroller.

8 Configuration
The following defines are used to configure the operation of the bootloader. These defines are located in
the bl_config.h header file, for which there is a template (bl_config.h.tmpl) provided with the bootloader.

CRYSTAL_FREQ
This defines the crystal frequency used by the microcontroller running the bootloader. If this is unknown at
the time of production, then use the UART_AUTOBAUD feature to properly configure the UART.

This value must be defined if using the UART for the update and not using the auto-baud feature, and
when using CAN, USB, or Ethernet for the update.

If using CAN, only a 1 MHz, 2 MHz, 4 MHz, 5 MHz, 6 MHz, 8 MHz, 10 MHz, 12 MHz, or 16 MHz crystal
can be used.

APP_START_ADDRESS
The starting address of the application. This must be a multiple of page boundary. A vector table is
expected at this location, and the perceived validity of the vector table (stack located in SRAM, reset
vector located in flash) is used as an indication of the validity of the application image.

This value must be defined.

The flash image of the bootloader must not be larger than this value.

VTABLE_START_ADDRESS
The address at which the application locates its exception vector table. This must be a multiple of page
boundary. Typically, an application will start with its vector table and this value should be set to
APP_START_ADDRESS. This option is provided to cater for applications which run from external memory
which may not be accessible by the NVIC (the vector table offset register is only 30 bits long).

This value must be defined.

FLASH_PAGE_SIZE
The size of a single, erasable page in the flash. This must be a power of 2. The default value is set to
16384 for MSP432E4 MCUs, and this value should be overridden only if configuring a bootloader to
access external flash devices with a page size different from this.

This value must be defined.

FLASH_RSVD_SPACE
The amount of space at the end of flash to reserve. This must be a multiple of page boundary. This
reserved space is not erased when the application is updated, providing nonvolatile storage that can be
used for parameters.

STACK_SIZE
The number of words of stack space to reserve for the bootloader.

This value must be defined.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Configuration

27SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

BUFFER_SIZE
The number of words in the data buffer used for receiving packets. This value must be at least 3. If using
auto-baud on the UART, this must be at least 20. The maximum usable value is 65 (larger values will
result in unused space in the buffer).

This value must be defined if updating through UART, SSI, or I2C .

ENABLE_BL_UPDATE
Enables updates to the bootloader. Updating the bootloader is an unsafe operation since it is not fully fault
tolerant (losing power to the device partway through could result in the bootloader no longer being present
in flash). The bootloader can not be updated through the Ethernet port.

CHECK_CRC
Enables runtime CRC checking in the bootloader. If this label is not defined, the bootloader will transfer
control to a main application image if the initial stack pointer and reset vector of the image appear to be
valid in flash. No additional checking is performed. When this label is defined, however, the firmware
image’s CRC32 value is checked against a value stored in a header at the top of the image’s vector table
and the firmware is only booted if the calculated CRC matches the value in the header. If the header is
absent or the calculated CRC does not match the expected value, the bootloader retains control and waits
for a new firmware image to be downloaded. As a special case to aid debugging, the image will be booted
if the header is found and the length field is set to 0xFFFFFFFF, regardless of the value of the CRC32
field. This debug behavior can be disabled by also defining ENFORCE_CRC.

To use the CHECK_CRC option, firmware images must be built with an 8 word header appended at the
top of the interrupt vector table. This header must have the first 4 words populated as follow:
• Word 0: 0xFF01FF02
• Word 1: 0xFF02FF03
• Word 2: Length of the firmware binary image in bytes.
• Word 3: CRC32 calculated over entire image except for the 4 bytes occupied by this word. The CRC

calculation includes the header marker words and the length word.

The remaining 4 words in the header are reserved for future extensions and should be set to 0xFFFFFFF.

This header should be added by reserving 8 additional words above all the required entries in the project’s
vector table (typically in the startup C or assembler file depending upon the toolchain in use) and
initializing the first two to be the required marker words and the remainder to value 0xFFFFFFFF. The
length and CRC32 value can be inserted by passing the firmware binary as the input to the binpack.exe
tool found in the tools directory of your SimpleLink MSP432E SDK release.

ENFORCE_CRC
This definition may be used in conjunction with CHECK_CRC and will remove the debug behaviour
described above. When both CHECK_CRC and ENFORCE_CRC are defined, the bootloader will only
boot a main firmware image if it contains a valid image information header at the top of the vector table
and if the CRC32 calculated for the image matches the CRC32 in the image information header.

FLASH_CODE_PROTECTION
This definition will cause the the bootloader to erase the entire flash on updates to the bootloader or to
erase the entire application area when the application is updated. This erases any unused sections in the
flash before the firmware is updated.

ENABLE_DECRYPTION
Enables the call to decrypt the downloaded data before writing it into flash. The decryption routine is
empty in the reference bootloader source, which simply provides a placeholder for adding an actual
decryption algorithm. Although this option is retained for backwards compatibility, it is recommended that a
decryption function be specified using the newer hook function mechanism and BL_DECRYPT_FN_HOOK
instead.

ENABLE_MOSCFAIL_HANDLER
Enables support for the MOSCFAIL handler in the NMI interrupt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Configuration www.ti.com

28 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

FLASH_PATCH_COMPATIBLE
Enables support for the code to cooperate with the flash patch that is preloaded into the flash of certain
MSP432E4 devices. This support should only be enabled for devices that require it.

Enabling this feature causes the bootloader to be loaded at 0x1000, despite the fact that debuggers
attempt to load it from 0x0. Therefore, LM Flash Programmer must be used to program the bootloader into
flash when using this feature.

ENABLE_UPDATE_CHECK
Enables the pin-based forced update check. When enabled, the bootloader will go into update mode
instead of calling the application if a pin is read at a particular polarity, forcing an update operation. In
either case, the application is still able to return control to the bootloader in order to start an update. For
applications which need to perform more complex checking than is possible using a single GPIO, a hook
function may be provided using BL_CHECK_UPDATE_FN_HOOK instead.

FORCED_UPDATE_PERIPH
The GPIO module to enable in order to check for a forced update. This will be one of the
SYSCTL_RCGC2_GPIOx values, where x is replaced with the port name (such as B). The value of x
should match the value of x for FORCED_UPDATE_PORT.

This value must be defined if ENABLE_UPDATE_CHECK is defined.

FORCED_UPDATE_PORT
The GPIO port to check for a forced update. This will be one of the GPIO_PORTx_BASE values, where x
is replaced with the port name (such as B). The value of x should match the value of x for
FORCED_UPDATE_PERIPH.

This value must be defined if ENABLE_UPDATE_CHECK is defined.

FORCED_UPDATE_PIN
The pin to check for a forced update. This is a value between 0 and 7.

This value must be defined if ENABLE_UPDATE_CHECK is defined.

FORCED_UPDATE_POLARITY
The polarity of the GPIO pin that results in a forced update. This value should be 0 if the pin should be low
and 1 if the pin should be high.

This value must be defined if ENABLE_UPDATE_CHECK is defined.

FORCED_UPDATE_WPU FORCED_UPDATE_WPD
This enables a weak pullup or pulldown for the GPIO pin used in a forced update. Only one of
FORCED_UPDATE_WPU or FORCED_UPDATE_WPD should be defined, or neither if a weak pullup or
pulldown is not required.

FORCED_UPDATE_KEY
This enables the use of the GPIO_LOCK mechanism for configuration of protected GPIO pins (for
example JTAG pins). If this value is not defined, the locking mechanism is not be used. The only legal
values for this feature are GPIO_LOCK_KEY for Fury devices and GPIO_LOCK_KEY_DD for all other
devices except Sandstorm devices, which do not support this feature.

UART_ENABLE_UPDATE
Selects the UART as the port for communicating with the bootloader.

UART_AUTOBAUD
Enables automatic baud rate detection. This can be used if the crystal frequency is unknown, or if
operation at different baud rates is desired.

This value or UART_FIXED_BAUDRATE must be defined if UART_ENABLE_UPDATE is defined.

UART_FIXED_BAUDRATE
Selects the baud rate to be used for the UART.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Configuration

29SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

This value or UART_AUTOBAUD must be defined if UART_ENABLE_UPDATE is defined.

UART_CLOCK_ENABLE
Selects the clock enable for the UART peripheral module for the bootloader.

This value must be defined as SYSCTL_RCGCUART_Rx, where x is replaced with the module instance
number (such as 0).

UARTx_BASE
Selects the base address of the UART peripheral module for the bootloader.

This value must be defined as UARTx_BASE, where x is replaced with the module instance number (such
as 0).

UART_RXPIN_CLOCK_ENABLE
Selects the clock enable for the GPIO corresponding to UART RX pin.

This value must be defined as SYSCTL_RCGCGPIO_Rx, where x is replaced with the GPIO module
instance number (such as 0 for GPIO Port A).

UART_RXPIN_BASE
Selects the base address for the GPIO corresponding to UART RX pin.

This value must be defined as GPIO_PORTx_BASE, where x is replaced with the GPIO module port
name (such as A for GPIO Port A).

UART_RXPIN_PCTL
Selects the port control value for the GPIO corresponding to UART RX pin.

This value must be defined as per the pin mux value given in the signal description table for the RX pin of
the UART module.

UART_RXPIN_POS
Selects the pin number for the GPIO corresponding to UART RX pin.

This value must be between 0 and 7 as per the pin assignment value given in the signal description table
for the RX pin of the UART module.

UART_TXPIN_CLOCK_ENABLE
Selects the clock enable for the GPIO corresponding to the UART TX pin.

This value must be defined as SYSCTL_RCGCGPIO_Rx, where x is replaced with the GPIO module
instance number (such as 0 for GPIO Port A).

UART_TXPIN_BASE
Selects the base address for the GPIO corresponding to the UART TX pin.

This value must be defined as GPIO_PORTx_BASE, where x is replaced with the GPIO module port
name (such as A for GPIO Port A).

UART_TXPIN_PCTL
Selects the port control value for the GPIO corresponding to UART TX pin.

This value must be defined as per the pin mux value given in the signal description table for the UART
module’s TX pin.

UART_TXPIN_POS
Selects the pin number for the GPIO corresponding to UART TX pin.

This value must be between 0 and 7 as per the pin assignment value given in the signal description table
for the TX pin of the UART module.

SSI_ENABLE_UPDATE
Selects the SSI port as the port for communicating with the bootloader.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Configuration www.ti.com

30 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

SSI_CLOCK_ENABLE
Selects the clock enable for the SSI peripheral module for the bootloader.

This value must be defined as SYSCTL_RCGCSSI_Rx, where xis replaced with the module instance
number (such as 0).

SSIx_BASE
Selects the base address of the SSI peripheral module for the bootloader.

This value must be defined as SSIx_BASE, where x is replaced with the module instance number (such
as 0).

SSI_CLKPIN_CLOCK_ENABLE
Selects the clock enable for the GPIO corresponding to SSI CLK pin.

This value must be defined as SYSCTL_RCGCGPIO_Rx, where x is replaced with the GPIO module
instance number (such as 0 for GPIO Port A).

SSI_CLKPIN_BASE
Selects the base address for the GPIO corresponding to SSI CLK pin.

This value must be defined as GPIO_PORTx_BASE, where x is replaced with the GPIO module port
name (such as A for GPIO Port B).

SSI_CLKPIN_PCTL
Selects the port control value for the GPIO corresponding to the SSI CLK pin.

This value must be defined as per the pin mux value given in the signal description table for the SSI
module’s CLK pin.

SSI_CLKPIN_POS
Selects the pin number for the GPIO corresponding to SSI CLK pin.

This value must be between 0 and 7 as per the pin assignment value given in the signal description table
for the SSI module’s CLK pin.

SSI_FSSPIN_CLOCK_ENABLE
Selects the clock enable for the GPIO corresponding to SSI FSS pin.

This value must be defined as SYSCTL_RCGCGPIO_Rx, where x is replaced with the GPIO module
instance number (such as 0 for GPIO Port A).

SSI_FSSPIN_BASE
Selects the base address for the GPIO corresponding to SSI FSS pin.

This value must be defined as GPIO_PORTx_BASE, where x is replaced with the GPIO module port
name (such as A for GPIO Port A).

SSI_FSSPIN_PCTL
Selects the port control value for the GPIO corresponding to the SSI FSS pin.

This value must be defined as per the pin mux value given in the signal description table for the SSI FSS
pin.

SSI_FSSPIN_POS
Selects the pin number for the GPIO corresponding to SSI FSS pin.

This value must be between 0 and 7 as per the pin assignment value given in the signal description table
for the SSI FSS pin.

SSI_MISOPIN_CLOCK_ENABLE
Selects the clock enable for the GPIO corresponding to SSI MISO pin.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Configuration

31SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

This value must be defined as SYSCTL_RCGCGPIO_Rx, where x is replaced with the GPIO module
instance number (such as 0 for GPIO Port A).

SSI_MISOPIN_BASE
Selects the base address for the GPIO corresponding to SSI MISO pin.

This value must be defined as GPIO_PORTx_BASE, where x is replaced with the GPIO module port
name (such as A for GPIO Port A).

SSI_MISOPIN_PCTL
Selects the port control value for the GPIO corresponding to the SSI MISO pin.

This value must be defined as per the pin mux value given in the signal description table for the SSI MISO
pin.

SSI_MISOPIN_POS
Selects the pin number for the GPIO corresponding to SSI MISO pin.

This value must be between 0 and 7 as per the pin assignment value given in the signal description table
for the SSI module’s MISO pin.

SSI_MOSIPIN_CLOCK_ENABLE
Selects the clock enable for the GPIO corresponding to the SSI MOSI pin.

This value must be defined as SYSCTL_RCGCGPIO_Rx, where x is replaced with the GPIO module
instance number (such as 0 for GPIO Port A).

SSI_MOSIPIN_BASE
Selects the base address for the GPIO corresponding to SSI MOSI pin.

This value must be defined as GPIO_PORTx_BASE, where x is replaced with the GPIO module port
name (such as A for GPIO Port A).

SSI_MOSIPIN_PCTL
Selects the port control value for the GPIO corresponding to the SSI MOSI pin.

This value must be defined as per the pin mux value given in the signal description table for the SSI MOSI
pin.

SSI_MOSIPIN_POS
Selects the pin number for the GPIO corresponding to SSI MOSI pin.

This value must be between 0 and 7 as per the pin assignment value given in the signal description table
for the SSI MOSI pin.

I2C_ENABLE_UPDATE
Selects the I2C port as the port for communicating with the bootloader.

I2C_SLAVE_ADDR
Specifies the I2C address of the bootloader.

This value must be defined if I2C_ENABLE_UPDATE is defined.

I2C_CLOCK_ENABLE
Selects the clock enable for the I2C peripheral module for the bootloader.

This value must be defined as SYSCTL_RCGCI2C_Rx, where x is replaced with the module instance
number (such as 0).

I2Cx_BASE
Selects the base address of the I2C peripheral module for the bootloader.

This value must be defined as I2Cx_BASE, where x is replaced with the module instance number (such as
0).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Configuration www.ti.com

32 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

I2C_SCLPIN_CLOCK_ENABLE
Selects the clock enable for the GPIO corresponding to I2C SCL pin.

This value must be defined as SYSCTL_RCGCGPIO_Rx, where x is replaced with the GPIO module
instance number (such as 1 for GPIO Port B).

I2C_SCLPIN_BASE
Selects the base address for the GPIO corresponding to I2C SCL pin.

This value must be defined as GPIO_PORTx_BASE, where x is replaced with the GPIO module port
name (such as B for GPIO Port B).

I2C_SCLPIN_PCTL
Selects the port control value for the GPIO corresponding to the I2C SCL pin.

This value must be defined as per the pin mux value given in the signal description table for the I2C SCL
pin.

I2C_SCLPIN_POS
Selects the pin number for the GPIO corresponding to I2C SCL pin.

This value must be between 0 and 7 as per the pin assignment value given in the signal description table
for the I2C SCL pin.

I2C_SDAPIN_CLOCK_ENABLE
Selects the clock enable for the GPIO corresponding to the I2C SDA pin.

This value must be defined as SYSCTL_RCGCGPIO_Rx, where x is replaced with the GPIO module
instance number (such as 1 for GPIO Port B).

I2C_SDAPIN_BASE
Selects the base address for the GPIO corresponding to I2C SDA pin.

This value must be defined as GPIO_PORTx_BASE, where x is replaced with the GPIO module port
name (such as B for GPIO Port B).

I2C_SDAPIN_PCTL
Selects the port control value for the GPIO corresponding to the I2C SDA pin.

This value must be defined as per the pin mux value given in the signal description table for the I2C
module’s SDA pin.

I2C_SDAPIN_POS
Selects the pin number for the GPIO corresponding to I2C SDA pin.

This value must be between 0 and 7 as per the pin assignment value given in the signal description table
for the I2C SDA pin.

ENET_ENABLE_UPDATE
Selects Ethernet update through the BOOTP/TFTP protocol.

ENET_ENABLE_LEDS
Enables the use of the Ethernet status LED outputs to indicate traffic and connection status.

ENET_MAC_ADDRx (x = 0 to 5)
Specifies the hard coded MAC address for the Ethernet interface. There are six individual values
(ENET_MAC_ADDR0 to ENET_MAC_ADDR5) that provide the six bytes of the MAC address, where
ENET_MAC_ADDR0 to ENET_MAC_ADDR2 provide the organizationally unique identifier (OUI) and
ENET_MAC_ADDR3 to ENET_MAC_ADDR5 provide the extension identifier. If these values are not
provided, the MAC address is extracted from the user registers.

ENET_BOOTP_SERVER

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Configuration

33SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

Specifies the name of the BOOTP server from which to request information. The use of this specifier
allows a board-specific BOOTP server to co-exist on a network with the DHCP server that may be part of
the network infrastructure. The BOOTP server provided by Texas Instruments requires that this be set to
“msp432e4”.

USB_ENABLE_UPDATE
Selects USB update through Device Firmware Update class.

USB_VENDOR_ID
The USB vendor ID published by the DFU device. This value is the TI MSP432E4 vendor ID. Change this
to the vendor ID you have been assigned by the USB-IF.

This value must be defined if USB_ENABLE_UPDATE is defined.

USB_PRODUCT_ID
The USB device ID published by the DFU device. If you are using your own vendor ID, chose a device ID
that is different from the ID you use in nonupdate operation. If you have sublicensed TI’s vendor ID, you
must use an assigned product ID here.

This value must be defined if USB_ENABLE_UPDATE is defined.

USB_DEVICE_ID
Selects the BCD USB device release number published in the device descriptor.

This value must be defined if USB_ENABLE_UPDATE is defined.

USB_MAX_POWER
Sets the maximum power consumption that the DFU device will report to the USB host in the configuration
descriptor. Units are milliamps.

This value must be defined if USB_ENABLE_UPDATE is defined.

USB_BUS_POWERED
Specifies whether the DFU device reports to the host that it is self-powered (defined as 0) or bus-powered
(defined as 1).

USB_HAS_MUX
Specifies whether the target board uses a multiplexer to select between USB host and device modes.

USB_MUX_PERIPH
Specifies the GPIO peripheral containing the pin which is used to select between USB host and device
modes. The value is of the form SYSCTL_RCGC2_GPIOx, where GPIOx represents the required GPIO
port.

This value must be defined if USB_HAS_MUX is defined.

USB_MUX_PORT
Specifies the GPIO port containing the pin which is used to select between USB host and device modes.
The value is of the form GPIO_PORTx_BASE, where PORTx represents the required GPIO port.

This value must be defined if USB_HAS_MUX is defined.

USB_MUX_PIN
Specifies the GPIO pin number used to select between USB host and device modes. Valid values are 0 to
7.

This value must be defined if USB_HAS_MUX is defined.

USB_MUX_DEVICE
Specifies the state of the GPIO pin required to select USB device-mode operation. Valid values are 0 (low)
or 1 (high).

This value must be defined if USB_HAS_MUX is defined.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Configuration www.ti.com

34 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

USB_VBUS_CONFIG
Specifies whether the target board requires configuration of the pin used for VBUS.

USB_VBUS_PERIPH
Specifies the GPIO peripheral containing the pin which is used for VBUS. The value is of the form
SYSCTL_RCGCGPIO_Rx, where the Rx represends the required GPIO port.

This value must be defined if USB_VBUS_CONFIG is defined.

USB_VBUS_PORT
Specifies the GPIO port containing the pin which is used for VBUS. The value is of the form
GPIO_PORTx_BASE, where PORTx represents the required GPIO port.

This value must be defined if USB_VBUS_CONFIG is defined.

USB_VBUS_PIN
Specifies the GPIO pin number used for VBUS. Valid values are 0 to 7.

This value must be defined if USB_VBUS_CONFIG is defined.

USB_ID_CONFIG
Specifies whether the target board requires configuration of the pin used for ID.

USB_ID_PERIPH
Specifies the GPIO peripheral containing the pin which is used for ID. The value is of the form
SYSCTL_RCGCGPIO_Rx, where the Rx represends the required GPIO port.

This value must be defined if USB_ID_CONFIG is defined.

USB_ID_PORT
Specifies the GPIO port containing the pin which is used for ID. The value is of the form
GPIO_PORTx_BASE, where PORTx represents the required GPIO port.

This value must be defined if USB_ID_CONFIG is defined.

USB_ID_PIN
Specifies the GPIO pin number used for ID. Valid values are 0 to 7.

This value must be defined if USB_ID_CONFIG is defined.

USB_DP_CONFIG
Specifies whether the target board requires configuration of the pin used for DP.

USB_DP_PERIPH
Specifies the GPIO peripheral containing the pin which is used for DP. The value is of the form
SYSCTL_RCGCGPIO_Rx, where the Rx represends the required GPIO port. This value must be defined if
USB_DP_CONFIG is defined.

USB_DP_PORT
Specifies the GPIO port containing the pin which is used for DP. The value is of the form
GPIO_PORTx_BASE, where PORTx represents the required GPIO port.

This value must be defined if USB_DP_CONFIG is defined.

USB_DP_PIN
Specifies the GPIO pin number used for DP. Valid values are 0 to 7. This value must be defined if
USB_DP_CONFIG is defined.

USB_DM_CONFIG
Specifies whether the target board requires configuration of the pin used for DM.

USB_DM_PERIPH

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Configuration

35SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

Specifies the GPIO peripheral containing the pin which is used for DM. The value is of the form
SYSCTL_RCGCGPIO_Rx, where the Rx represends the required GPIO port.

This value must be defined if USB_DM_CONFIG is defined.

USB_DM_PORT
Specifies the GPIO port containing the pin which is used for DM. The value is of the form
GPIO_PORTx_BASE, where PORTx represents the required GPIO port.

This value must be defined if USB_DM_CONFIG is defined.

USB_DM_PIN
Specifies the GPIO pin number used for DM. Valid values are 0 to 7.

This value must be defined if USB_DM_CONFIG is defined.

CAN_ENABLE_UPDATE
Selects an update through the CAN port.

CAN_REQUIRES_PLL
Indicates that the CAN peripheral operates from a fixed divide of the PLL output, meaning that the PLL
must be enabled. This is required by some older devices, but must not be used on newer devices. Consult
the device data sheet to determine if the CAN peripheral operates from a fixed 8-MHz clock derived from
the PLL (meaning this option must be used) or if it operates from the system clock (meaning this option
must not be used).

CAN_UART_BRIDGE
Enables the UART to CAN bridging for use when the CAN port is selected for communicating with the
bootloader.

CAN_RX_PERIPH
The GPIO module to enable in order to configure the CAN0 Rx pin. This will be one of the
SYSCTL_RCGC2_GPIOx values, where x is replaced with the port name (such as B). The value of x
should match the value of x for CAN_RX_PORT. This value must be defined if CAN_ENABLE_UPDATE
is defined.

CAN_RX_PORT
The GPIO port used to configure the CAN0 Rx pin. This will be one of the GPIO_PORTx_BASE values,
where x is replaced with the port name (such as B). The value of x should match the value of x for
CAN_RX_PERIPH.

This value must be defined if CAN_ENABLE_UPDATE is defined.

CAN_RX_PIN
The GPIO pin that is shared with the CAN0 Rx pin. This is a value between 0 and 7.

This value must be defined if CAN_ENABLE_UPDATE is defined.

CAN_TX_PERIPH
The GPIO module to enable in order to configure the CAN0

Tx pin. This will be one of the SYSCTL_RCGC2_GPIOx values, where x is replaced with the port name
(such as B). The value of x should match the value of x for CAN_TX_PORT.

This value must be defined if CAN_ENABLE_UPDATE is defined.

CAN_TX_PORT
The GPIO port used to configure the CAN0 Tx pin. This will be one of the GPIO_PORTx_BASE values,
where x is replaced with the port name (such as B). The value of x should match the value of x for
CAN_TX_PERIPH.

This value must be defined if CAN_ENABLE_UPDATE is defined.

CAN_TX_PIN

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Configuration www.ti.com

36 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

The GPIO pin that is shared with the CAN0 Tx pin. This is a value of 0 to 7.

This value must be defined if CAN_ENABLE_UPDATE is defined.

CAN_BIT_RATE
The bit rate used on the CAN bus. This must be one of 20000, 50000, 125000, 250000, 500000, or
1000000. The CAN bit rate must be less than or equal to the crystal frequency divided by 8
(CRYSTAL_FREQ / 8).

This value must be defined if CAN_ENABLE_UPDATE is defined.

BL_HW_INIT_FN_HOOK
Performs application-specific low-level hardware initialization on system reset. If hooked, this function is
called immediately after the bootloader code relocation completes. An application may perform any
required low-level hardware initialization during this function. The system clock has not been set when this
function is called. Initialization that assumes the system clock is set may be performed in the
BL_INIT_FN_HOOK function instead.

BL_INIT_FN_HOOK
Performs application-specific initialization on system reset.

If hooked, this function will be called during bootloader initialization to perform any board- or application-
specific initialization which is required. The function is called following a reset immediately after the
selected bootloader peripheral has been configured and the system clock has been set.

BL_REINIT_FN_HOOK
Performs application-specific reinitialization on bootloader entry through SVC. If hooked, this function will
be called during bootloader reinitialization to perform any board- or application-specific initialization which
is required. The function is called following bootloader entry from an application, after any system clock
rate adjustments have been made.

BL_START_FN_HOOK
Informs an application that a download is starting. If hooked, this function will be called when a firmware
download is about to begin. The function is called after the first data packet of the download is received
but before it has been written to flash.

BL_PROGRESS_FN_HOOK
Informs an application of download progress. If hooked, this function will be called periodically during a
firmware download to provide progress information. The function is called after each data packet is
received from the host. Parameters provide the number of bytes of data received and, in cases other than
Ethernet update, the expected total number of bytes in the download (the TFTP protocol used by the
Ethernet bootloader does not send the final image size before the download starts so in this case the
ulTotal parameter is set to 0 to indicate that the size is unknown).

BL_END_FN_HOOK
Informs an application that a download has completed. If hooked, this function will be called when a
firmware download has just completed. The function is called after the final data packet of the download
has been written to flash.

BL_DECRYPT_FN_HOOK
Allows an application to perform in-place data decryption during download. If hooked, this function will be
called to perform in-place decryption of each data packet received during a firmware download.

This value takes precedence over ENABLE_DECRYPTION. If both are defined, the hook function defined
using BL_DECRYPT_FN_HOOK is called rather than the previously-defined DecryptData() stub function.

BL_CHECK_UPDATE_FN_HOOK

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Source Details

37SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

Allows an application to force a new firmware download. If hooked, this function will be called during
bootloader initialization to determine whether a firmware update should be performed regardless of
whether a valid main code image is already present. If the function returns 0, the existing main code
image is booted (if present), otherwise the bootloader will wait for a new firmware image to be
downloaded.

This value takes precedence over ENABLE_UPDATE_CHECK if both are defined. If you wish to perform
a GPIO check in addition to any other update check processing required, the GPIO code must be included
within the hook function itself.

BL_FLASH_ERASE_FN_HOOK
Allows an application to replace the flash block erase function. If hooked, this function will be called
whenever a block of flash is to be erased. The function must erase the block and wait until the operation
has completed. The size of the block which will be erased is defined by FLASH_BLOCK_SIZE.

BL_FLASH_PROGRAM_FN_HOOK
Allows an application to replace the flash programming function. If hooked, this function will be called to
program the flash with firmware image data received during download operations. The function must
program the supplied data and wait until the operation has completed.

BL_FLASH_CL_ERR_FN_HOOK
Allows an application to replace the flash error clear function.

If hooked, this function must clear any flash error indicators and prepare to detect access violations that
may occur in a future erase or program operations.

BL_FLASH_ERROR_FN_HOOK
Reports whether or not a flash access violation error has occurred. If hooked, this function will be called
after flash erase or program operations. The return code indicates whether or not an access violation error
occurred since the last call to the function defined by BL_FLASH_CL_ERR_FN_HOOK, with 0 indicating
no errors and nonzero indicating an error.

BL_FLASH_SIZE_FN_HOOK
Reports the total size of the device flash. If hooked, this function will be called to determine the size of the
supported flash device. The return code is the number of bytes of flash in the device. This does not take
into account any reserved space defined through the FLASH_RSVD_SPACE value.

BL_FLASH_END_FN_HOOK
Reports the address of the first byte after the end of the device flash. If hooked, this function will be called
to determine the address of the end of valid flash. This does not take into account any reserved space
defined through the FLASH_RSVD_SPACE value.

BL_FLASH_AD_CHECK_FN_HOOK
Checks whether the start address and size of an image are valid. If hooked, this function will be called
when a new firmware download is about to start. Parameters provided are the requested start address for
the new download and, when using protocols which transmit the image length in advance, the size of the
image that is to be downloaded. The return code will be nonzero to indicate that the start address is valid
and the image will fit in the available space, or 0 if either the address is invalid or the image is too large for
the device.

9 Source Details

9.1 Autobaud Functions
The following functions are provided in bl_autobaud.c and are used to perform autobauding on the UART
interface.

void GPIOIntHandler (void)

int UARTAutoBaud (uint32_t ∗pui32Ratio)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Source Details www.ti.com

38 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

9.1.1 GPIOIntHandler
Handles the UART Rx GPIO interrupt.

Prototype
void GPIOIntHandler(void)

Description
When an edge is detected on the UART Rx pin, this function is called to save the time of the edge. These
times are later used to determine the ratio of the UART baud rate to the processor clock rate.

Returns
None

9.1.2 UARTAutoBaud
Performs auto-baud on the UART port.

Prototype
int UARTAutoBaud(uint32_t *pui32Ratio)

Parameters
pui32Ratio is the ratio of the processor’s crystal frequency to the baud rate being used by the UART port
for communications.

Description
This function attempts to synchronize to the updater program that is trying to communicate with the
bootloader. The UART port is monitored for edges using interrupts. When enough edges are detected, the
bootloader determines the ratio of baud rate and crystal frequency needed to program the UART.

Returns
Returns a value of 0 to indicate that this call successfully synchronized with the other device
communicating over the UART, and a negative value to indicate that this function did not successfully
synchronize with the other UART device.

9.2 CAN Functions
The following functions are provided in bl_can.c and are used to perform an update over the CAN
interface.

void AppUpdaterCAN (void) void ConfigureCAN (void) void UpdaterCAN (void)

9.2.1 AppUpdaterCAN
This is the application entry point to the CAN updater.

Prototype
void AppUpdaterCAN(void)

Description
This function should only be entered from a running application and not when running the bootloader with
no application present.

Returns
None

9.2.2 ConfigureCAN
Generic configuration is handled in this function.

Prototype

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Source Details

39SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

void ConfigureCAN(void)

Description
This function is called by the start up code to perform any configuration necessary before calling the
update routine.

Returns
None

9.2.3 UpdaterCAN
This is the main routine for handling updating over CAN.

Prototype
void UpdaterCAN(void)

Description
This function accepts bootloader commands over CAN to perform a firmware update over the CAN bus.
This function assumes that the CAN bus timing and message objects have been configured elsewhere.

Returns
None

9.3 Decryption Functions
The following functions are provided in bl_decrypt.c and are used to optionally decrypt the firmware data
as it is received.

void DecryptData (uint8_t ∗pui8Buffer, uint32_t ui32Size)

9.3.1 DecryptData
Performs an in-place decryption of downloaded data.

Prototype
void DecryptData(uint8_t *pui8Buffer, uint32_t ui32Size)

Parameters
pui8Buffer is the buffer that holds the data to decrypt.

ui32Size is the size, in bytes, of the buffer that was passed in through thepui8Buf fer parameter.

Description
This function is a stub that could provide in-place decryption of the data that is being downloaded to the
device.

Returns
None

9.4 Ethernet Functions
The following functions are provided in bl_enet.c and are used to perform an update over the Ethernet
interface.

9.5 File System Functions
The following functions are provided in bl_fs.c and are used to provide very basic support for reading from
a FAT file system.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Source Details www.ti.com

40 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

9.6 I2C Functions
The following functions are provided in bl_i2c.c and are used to communicate over the I2C interface.

void I2CFlush (void)

void I2CReceive (uint8_t ∗pui8Data, uint32_t ui32Size)

void I2CSend (const uint8_t ∗pui8Data, uint32_t ui32Size)

9.6.1 I2CFlush
Waits until all data has been transmitted by the I2C port.

Prototype void I2CFlush(void)

Description
This function waits until all data written to the I2C port has been read by the master.

Returns
None

9.6.2 I2CReceive
Receives data over the I2C port.

Prototype
void I2CReceive(uint8_t *pui8Data, uint32_t ui32Size)

Parameters
pui8Data is the buffer to read data into from the I2C port.

ui32Size is the number of bytes provided in the pui8Data buffer that should be written with data from the
I2C port.

Description
This function reads back ui32Size bytes of data from the I2C port, into the buffer that is pointed to
bypui8Data. This function does not return until ui32Size number of bytes have been received. This
function waits until the I2C slave port has been properly addressed by the I2C master before reading the
first byte of data from the I2C port.

Returns
None

9.6.3 I2CSend
Sends data over the I2C port.

Prototype
void I2CSend(const uint8_t *pui8Data, uint32_t ui32Size)

Parameters
pui8Data is the buffer containing the data to write out to the I2C port.

ui32Size is the number of bytes provided in pui8Data buffer that will be written out to the I2C port.

Description
This function sends ui32Size bytes of data from the buffer pointed to by pui8Data through the I2C port.
The function waits until the I2C slave port has been properly addressed by the I2C master device before
sending the first byte.

Returns
None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Source Details

41SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

9.7 Main Functions
The following functions are provided in bl_main.c and comprise the main bootloader application.

void ConfigureDevice (void)

void Updater (void)

9.7.1 ConfigureDevice
Configures the microcontroller.

Prototype
void ConfigureDevice(void)

Description
This function configures the peripherals and GPIOs of the microcontroller, preparing it for use by the
bootloader. The interface that has been selected as the update port is configured, and auto-baud is
performed if required.

Returns
None

9.7.2 Updater
This function performs the update on the selected port.

Prototype void Updater(void)

Description
This function is called directly by the bootloader or it is called as a result of an update request from the
application.

Returns
Never returns.

9.8 Packet Handling Functions
The following functions are provided in bl_packet.c and are used to process the data packets in the
custom serial protocol.

void AckPacket (void)

uint32_t CheckSum (const uint8_t ∗pui8Data, uint32_t ui32Size)

void NakPacket (void)

int ReceivePacket (uint8_t ∗pui8Data, uint32_t∗pui32Size)

int SendPacket (uint8_t ∗pui8Data, uint32_t ui32Size)

9.8.1 AckPacket
Sends an Acknowledge packet.

Prototype
void AckPacket(void)

Description
This function is called to acknowledge that a packet has been received by the microcontroller.

Returns
None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Source Details www.ti.com

42 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

9.8.2 CheckSum
Calculates an 8-bit checksum

Prototype
uint32_t CheckSum(const uint8_t *pui8Data, uint32_t ui32Size)

Parameters
pui8Data is a pointer to an array of 8-bit data of size ui32Size.

ui32Size is the size of the array that will run through the checksum algorithm.

Description
This function simply calculates an 8-bit checksum on the data passed in.

Returns
Returns the calculated checksum.

9.8.3 NakPacket
Sends a no-acknowledge packet.

Prototype
void NakPacket(void)

Description
This function is called when an invalid packet has been received by the microcontroller, indicating that it
should be retransmitted.

Returns
None

9.8.4 ReceivePacket
Receives a data packet.

Prototype
int ReceivePacket(uint8_t *pui8Data, uint32_t *pui32Size)

Parameters
pui8Data is the location to store the data that is sent to the bootloader.

pui32Size is the number of bytes returned in the pui8Data buffer that was provided.

Description
This function receives a packet of data from specified transfer function.

Returns
Returns zero to indicate success while any nonzero value indicates a failure.

9.8.5 SendPacket
Sends a data packet.

Prototype
int

SendPacket(uint8_t *pui8Data, uint32_t ui32Size)

Parameters
pui8Data is the location of the data to be sent.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Source Details

43SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

ui32Size is the number of bytes to send.

Description
This function sends the data provided in the pui8Data parameter in the packet format used by the
bootloader. The caller only needs to specify the buffer with the data that needs to be transferred. This
function addresses all other packet formatting issues.

Returns
Returns zero to indicate success while any nonzero value indicates a failure.

9.9 SSI Functions
The following functions are provided in bl_ssi.c and are used to communicate over the SSI

interface.

void SSIFlush (void)

void SSIReceive (uint8_t ∗pui8Data, uint32_t ui32Size)

void SSISend (const uint8_t ∗pui8Data, uint32_t ui32Size)

9.9.1 SSIFlush
Waits until all data has been transmitted by the SSI port.

Prototype
void SSIFlush(void)

Description
This function waits until all data written to the SSI port has been read by the master.

Returns
None

9.9.2 SSIReceive
Receives data from the SSI port in slave mode.

Prototype
void SSIReceive(uint8_t *pui8Data, uint32_t ui32Size)

Parameters
pui8Data is the location to store the data received from the SSI port.

ui32Size is the number of bytes of data to receive.

Description
This function receives data from the SSI port in slave mode. The function does not return until ui32Size
number of bytes have been received.

Returns
None

9.9.3 SSISend
Sends data through the SSI port in slave mode.

Prototype
void SSISend(const uint8_t *pui8Data, uint32_t ui32Size)

Parameters

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Source Details www.ti.com

44 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

pui8Data is the location of the data to send through the SSI port.

ui32Size is the number of bytes of data to send.

Description
This function sends data through the SSI port in slave mode. This function does not return until all bytes
are sent.

Returns
None

9.10 UART Functions
The following functions are provided in bl_uart.c and are used to communicate over the UART

interface.

void UARTFlush (void)

void UARTReceive (uint8_t ∗pui8Data, uint32_t ui32Size)

void UARTSend (const uint8_t ∗pui8Data, uint32_t ui32Size)

9.10.1 UARTFlush
Waits until all data has been transmitted by the UART port.

Prototype
void UARTFlush(void)

Description
This function waits until all data written to the UART port has been transmitted.

Returns
None

9.10.2 UARTReceive
Receives data over the UART port.

Prototype
void

UARTReceive(uint8_t *pui8Data, uint32_t ui32Size)

Parameters
pui8Data is the buffer to read data into from the UART port.

ui32Size is the number of bytes provided in the pui8Data buffer that should be written with data from the
UART port.

Description
This function reads back ui32Si ze bytes of data from the UART port, into the buffer that is pointed to
bypui8Data. This function does not return until ui32Size number of bytes have been received.

Returns
None

9.10.3 UARTSend
Sends data over the UART port.

Prototype

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Source Details

45SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

void UARTSend(const uint8_t *pui8Data, uint32_t ui32Size)

Parameters
pui8Data is the buffer containing the data to write out to the UART port.

ui32Size is the number of bytes provided in pui8Data buffer that will be written out to the UART port.

Description
This function sends ui32Si ze bytes of data from the buffer pointed to by pui8Data through the UART port.

Returns
None

9.11 Update Check Functions
The following functions are provided in bl_check.c and are used to check if a firmware update is required.

uint32_t CheckForceUpdate (void)

9.11.1 CheckForceUpdate
Checks if an update is needed or is being requested.

Prototype
uint32_t CheckForceUpdate(void)

Description
This function detects if an update is being requested or if there is no valid code presently located on the
microcontroller. This is used to tell whether or not to enter update mode.

Returns
Returns a nonzero value if an update is needed or is being requested and zero otherwise.

9.12 USB Device Functions
The following data structures and functions are provided in bl_usb.c and bl_usbfuncs.c and are used to
communicate over the USB interface.

Data Structures
tConfigDescriptor

tString0Descriptor

tStringDescriptor

tUSBRequest

Functions
void AppUpdaterUSB (void)

void ConfigureUSB (void)

void ConfigureUSBInterface (void)

void HandleRequests (tUSBRequest ∗psUSBRequest)

bool ProcessDFUDnloadCommand (tDFUDownloadHeader ∗psCmd, uint32_t ui32Size)

void UpdaterUSB (void)

void USBBLInit (void)

void USBBLSendDataEP0 (uint8_t ∗pui8Data, uint32_t ui32Size)

void USBBLStallEP0 (void)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Source Details www.ti.com

46 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

void USBConfigurePins (void)

9.12.1 tConfigDescriptor
Definition
typedef struct
{

uint8_t bLength;
uint8_t bDescriptorType;
uint16_t wTotalLength;
uint8_t bNumInterfaces;
uint8_t bConfigurationValue;
uint8_t iConfiguration;
uint8_t bmAttributes;
uint8_t bMaxPower;

}
tConfigDescriptor

Members
bLength The length of this descriptor in bytes. All configuration descriptors are 9 bytes long.

bDescriptorType The type of the descriptor. For a configuration descriptor, this is
USB_DTYPE_CONFIGURATION (2).

wTotalLength The total length of data returned for this configuration. This includes the combined length of
all descriptors (configuration, interface, endpoint and class- or vendor- specific) returned for this
configuration.

bNumInterfaces The number of interface supported by this configuration.

bConfigurationValue The value used as an argument to the SetConfiguration standard request to select
this configuration.

iConfiguration The index of a string descriptor describing this configuration.

bmAttributes Attributes of this configuration.

bMaxPower The maximum power consumption of the USB device from the bus in this configuration when
the device is fully operational. This is expressed in units of 2 mA so, for example, 100 represents 200 mA.

Description
This structure describes the USB configuration descriptor as defined in USB 2.0 specification Section
9.6.3. This structure also applies to the USB other speed configuration descriptor defined in Section 9.6.4.

9.12.2 tString0Descriptor
Definition
typedef struct
{

uint8_t bLength;
uint8_t bDescriptorType;
uint16_t wLANGID[1];

}
tString0Descriptor

Members
bLength The length of this descriptor in bytes. This value will vary depending upon the number of
language codes provided in the descriptor.

bDescriptorType The type of the descriptor. For a string descriptor, this is USB_DTYPE_STRING (3).

wLANGID The language code (LANGID) for the first supported language. This descriptor may support
multiple languages, in which case, the number of elements in the wLANGID array increases, and bLength
is updated accordingly.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Source Details

47SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

Description
This structure describes the USB string descriptor for index 0 as defined in USB 2.0 specification section
9.6.7. The number of language IDs is variable and can be determined by examining bLength. The number
of language IDs present in the descriptor is given by ((bLength – 2) / 2).

9.12.3 tStringDescriptor
Definition
typedef struct
{

uint8_t bLength;
uint8_t bDescriptorType;
uint8_t bString;

}
tStringDescriptor

Members
bLength The length of this descriptor in bytes. This value is 2 greater than the number of bytes comprising
the UNICODE string that the descriptor contains.

bDescriptorType The type of the descriptor. For a string descriptor, this is USB_DTYPE_STRING (3).

bString The first byte of the UNICODE string. This string is not NULL terminated. Its length (in bytes) can
be computed by subtracting 2 from the value in the bLength field.

Description
This structure describes the USB string descriptor for all string indexes other than 0 as defined in USB 2.0
specification Section 9.6.7.

9.12.4 tUSBRequest
Definition
typedef struct
{

uint8_t bmRequestType;
uint8_t bRequest;
uint16_t wValue;
uint16_t wIndex;
uint16_t wLength;

}
tUSBRequest

Members
bmRequestType Determines the type and direction of the request.

bRequest Identifies the specific request being made.

wValue Word-sized field that varies according to the request.

wIndex Word-sized field that varies according to the request; typically used to pass an index or offset.

wLength The number of bytes to transfer if there is a data stage to the request.

Description
The standard USB request header as defined in section 9.3 of the USB 2.0 specification.

9.12.5 AppUpdaterUSB
This is the application entry point to the USB updater.

Prototype
void AppUpdaterUSB(void)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

Source Details www.ti.com

48 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

Description
This function should only be entered from a running application and not when running the bootloader with
no application present. If the calling application supports any USB device function, it must remove itself
from the USB bus prior to calling this function. This function assumes that the calling application has
already configured the system clock to run from the PLL.

Returns
None

9.12.6 ConfigureUSB
Generic configuration is handled in this function.

Prototype
void ConfigureUSB(void)

Description
This function is called by the start up code to perform any configuration necessary before calling the
update routine. It is responsible for setting the system clock to the expected rate and setting flash
programming parameters prior to calling ConfigureUSBInterface() to set up the USB hardware and place
the DFU device on the bus.

Returns
None

9.12.7 ConfigureUSBInterface
Configure the USB controller and place the DFU device on the bus.

Prototype
void ConfigureUSBInterface(void)

Description
This function configures the USB controller for DFU device operation, initializes the state machines
required to control the firmware update and places the device on the bus in preparation for requests from
the host. It is assumed that the main system clock has been configured at this point.

Returns
None

9.12.8 HandleRequests
Handle USB requests sent to the DFU device.

Prototype
void HandleRequests(tUSBRequest *psUSBRequest)

Parameters
psUSBRequest is a pointer to the USB request that the device has been sent.

Description
This function is called to handle all nonstandard requests received by the device. This will include all the
DFU endpoint 0 commands along with the MSP432E4-specific request we use to query whether the
device supports our flavor of the DFU binary format. Incoming DFU requests are processed by request
handlers specific to the particular state of the DFU connection. This state machine implementation is
chosen to keep the software as close as possible to the USB DFU class documentation.

Returns
None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

www.ti.com Source Details

49SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

9.12.9 ProcessDFUDnloadCommand
Process device-specific commands passed through DFU download requests.

Prototype
bool ProcessDFUDnloadCommand(tDFUDownloadHeader *psCmd, uint32_t ui32Size)

Parameters
psCmd is a pointer to the first byte of the DFU_DNLOAD payload that is expected to hold a command.

ui32Size is the number of bytes of data pointed to by psCmd. This function is called when a DFU
download command is received while in STATE_IDLE. New downloads are assumed to contain a prefix
structure containing one of several MSP432E4-specific commands and this function is responsible for
parsing the download data and processing whichever command is contained within it.

Returns
Returns true on success or false on failure.

9.12.10 UpdaterUSB
This is the main routine for handling updating over USB.

This function forms the main loop of the USB DFU updater. It polls for commands sent from the USB
request handlers and is responsible for erasing flash blocks, programming data into erased blocks and
resetting the device.

Prototype
void UpdaterUSB (void)

Returns
None

9.12.11 USBBLInit
Initialize the bootloader USB functions.

This function initializes the bootloader USB functions and places the DFU device onto the USB bus.

Prototype
void USBBLInit (void)

Returns
None

9.12.12 USBBLSendDataEP0
This function requests transfer of data to the host on endpoint zero.

Prototype
void USBBLSendDataEP0 (uint8_t∗ pui8Data, uint32_t ui32Size)

Parameters
pui8Data is a pointer to the buffer to send through endpoint zero.

ui32Size is the amount of data to send in bytes.

Description
This function handles sending data to the host when a custom command is issued or nonstandard
descriptor has been requested on endpoint zero.

Returns
None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

References www.ti.com

50 SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)

9.12.13 USBBLStallEP0
This function generates a stall condition on endpoint zero.

Prototype
void USBBLStallEP0(void)

Description
This function is typically called to signal an error condition to the host when an unsupported request is
received by the device. It should be called from within the callback itself (in interrupt context) and not
deferred until later since it affects the operation of the endpoint zero state machine.

Returns
None

9.12.14 USBConfigurePins
Initialize the pins used by USB functions.

Prototype void USBConfigurePins(void)

Description
This function configures the pins for USB functions depending on defines from the bl_config.h file.

Returns
None

10 References
The following related documents, software and tools are available for user reference
1. SimpleLink™ MSP432E4 Software Development Kit
2. MSP432 MCU BSL Scripter
3. BSL Rocket Programmer

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A
http://www.ti.com/tool/simplelink-msp432-sdk
http://www.ti.com/tool/mspbsl
https://www.olimex.com/Products/MSP430/BSL/MSP430-BSL/

www.ti.com Revision History

51SLAU746A–October 2017–Revised November 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from October 28, 2017 to November 16, 2017 ... Page

• Changed document title .. 2
• Corrected the link to the USB DFU specification in Section 6.1, USB Device Firmware Upgrade Overview 18

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAU746A

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	MSP432E4 SimpleLink™ Microcontrollers Bootloader (BSL)
	1 Introduction
	1.1 Source Code Overview

	2 Start-up Code
	3 Serial Update
	3.1 BSL Hardware Setup Overview
	3.2 Packet Handling
	3.3 Transport Layer
	3.3.1 I2C Transport
	3.3.2 SSI Transport
	3.3.3 UART Transport

	3.4 Serial Commands
	3.5 Serial Command Responses
	3.6 Serial Bootloader Protocol Sequence

	4 Ethernet Update
	5 CAN Update
	5.1 CAN Bus Clocking
	5.2 CAN Commands

	6 USB Device (DFU) Update
	6.1 USB Device Firmware Upgrade Overview
	6.1.1 DFU Requests
	6.1.2 DFU States
	6.1.3 Typical Firmware Download Sequence

	6.2 USB Download Commands
	6.2.1 Querying Command Support
	6.2.2 Download Command Definitions

	7 Customization
	8 Configuration
	9 Source Details
	9.1 Autobaud Functions
	9.1.1 GPIOIntHandler
	9.1.2 UARTAutoBaud

	9.2 CAN Functions
	9.2.1 AppUpdaterCAN
	9.2.2 ConfigureCAN
	9.2.3 UpdaterCAN

	9.3 Decryption Functions
	9.3.1 DecryptData

	9.4 Ethernet Functions
	9.5 File System Functions
	9.6 I2C Functions
	9.6.1 I2CFlush
	9.6.2 I2CReceive
	9.6.3 I2CSend

	9.7 Main Functions
	9.7.1 ConfigureDevice
	9.7.2 Updater

	9.8 Packet Handling Functions
	9.8.1 AckPacket
	9.8.2 CheckSum
	9.8.3 NakPacket
	9.8.4 ReceivePacket
	9.8.5 SendPacket

	9.9 SSI Functions
	9.9.1 SSIFlush
	9.9.2 SSIReceive
	9.9.3 SSISend

	9.10 UART Functions
	9.10.1 UARTFlush
	9.10.2 UARTReceive
	9.10.3 UARTSend

	9.11 Update Check Functions
	9.11.1 CheckForceUpdate

	9.12 USB Device Functions
	9.12.1 tConfigDescriptor
	9.12.2 tString0Descriptor
	9.12.3 tStringDescriptor
	9.12.4 tUSBRequest
	9.12.5 AppUpdaterUSB
	9.12.6 ConfigureUSB
	9.12.7 ConfigureUSBInterface
	9.12.8 HandleRequests
	9.12.9 ProcessDFUDnloadCommand
	9.12.10 UpdaterUSB
	9.12.11 USBBLInit
	9.12.12 USBBLSendDataEP0
	9.12.13 USBBLStallEP0
	9.12.14 USBConfigurePins

	10 References

	Revision History
	Important Notice

