TPA3221 Evaluation Module This user's guide describes the characteristics, operation, and use of the TPA3221 evaluation module. A complete printed-circuit board (PCB) description, schematic diagram, and bill of materials are also included. ## Contents | 1 | Quick Start (BTL MODE) | | |----|--|----| | | 1.1 Required Hardware | | | | 1.2 Connections and Board Configuration (BTL MODE) | | | | 1.3 Power-Up | | | 2 | Setup By Mode | | | | 2.1 BTL MODE (Stereo - 2 Speaker Outputs) | | | • | 2.2 PBTL MODE (Mono – 1 Speaker Output) | | | 3 | Hardware Configuration (OTM, OLIB and FAULT) | | | | Indicator Overview (OTW_CLIP and FAULT) | | | | PWM Frequency Adjust | | | | 3.4 Output Mode Selection | | | | 3.5 Audio Front End | | | | 3.6 EVM Power Tree | | | | 3.7 LC Response and Overview | | | | 3.8 Reset Circuit and POR | | | | 3.9 Analog-Input-Board Connector (J28) | 14 | | 4 | EVM Design Documents | 16 | | | 4.1 TPA3221 Board Layouts | | | | 4.2 TPA3221 Board Layouts | | | | 4.3 TPA3221 EVM Schematics | | | | 4.4 TPA3221EVM Bill of Materials | 21 | | | List of Figures | | | 4 | - | , | | 1 | Output Configuration BTL | | | 2 | EVM Board (Top Side) | | | 3 | EVM Board (Bottom Side) | | | 4 | Output Configuration PBTL - 4 Inductors | | | 5 | EVM Board With Connectors and Jumpers | | | 6 | Filter Frequency Response | | | 7 | RESET Circuit | 13 | | 8 | AIB EVM Connector | 14 | | 9 | TPA3221 EVM Top Composite Assembly | 16 | | 10 | TPA3221 EVM Bottom Composite Assembly | 16 | | 11 | TPA3221 EVM Board Dimensions | 17 | | 12 | TPA3221 EVM Schematic 1 | 18 | | 13 | TPA3221 EVM Schematic 2 | 19 | | 14 | TPA3221 EVM Schematic 3 | | | | | | | | List of Tables | | | 1 | Jumper and Switch Configurations (BTL Mode) | 5 | | 2 | Jumper and Switch Configurations (PBTL Mode) | 8 | | 3 | Fault and Clip Overtemperature Status | ç | | 4 | Frequency Adjust Master Mode Selection (J16) | | | 5 | HEAD and AD Mode Selection | | | 6 | Output Mode and Modulation Mode Selection | | | 7 | Power Supply Summary | | | 8 | AIB Connector (J28) Pinout | | | | | | | 9 | AIB Power Rail Specifications | | | 10 | TPA3221EVM Bill of Materials | 21 | ## **Trademarks** All trademarks are the property of their respective owners. ## 1 Quick Start (BTL MODE) The following section describes the necessary hardware, connections, configuration, and steps to quick start the EVM into BTL mode with stereo audio playing out of two speakers. Figure 1 illustrates the BTL mode output configuration. Figure 1. Output Configuration BTL # 1.1 Required Hardware The following hardware is required for this EVM: - TPA3221EVM - Power supply 5-14 A, 12-30 VDC - Two 2–8 Ω speaker or resistor loads (ensure speaker/load is appropriately sized for required wattage output) - Four speaker, banana cables - Four XLR or two RCA input cables - · Analog output audio source Quick Start (BTL MODE) www.ti.com # 1.2 Connections and Board Configuration (BTL MODE) Figure 2 shows the EVM board. Figure 2. EVM Board (Top Side) Figure 3. EVM Board (Bottom Side) Use the following steps when connecting and configuring the board for BTL MODE: - 1. Ensure the power supply is OFF. Connect the power supply positive terminal to J1 PVDD (red) and negative terminal to J1 GND (black). - 2. Connect the left channel speaker, power resistor load (3–8 Ω) to the TPA3221EVM positive output terminal (J9 OUT1+ (red)) and other side of the speaker, power resistor to the TPA3221EVM negative output terminal (J9 OUT1- (black)). - 3. Connect the right channel speaker, power resistor load (3–8 Ω) to the TPA3221EVM positive output terminal (J2 OUT2+ (red)) and other side of the speaker, power resistor to the TPA3221EVM negative output terminal (J2 OUT2– (black)). www.ti.com Quick Start (BTL MODE) 4. Check to make sure that the power supply is connected to J1 only and speakers are connected to J9 or J2 only, as their colors are the same. - 5. Input Configuration: - A. **Differential Inputs:** connect one differential XLR audio input to each DIFF IN1 (J14) and DIFF IN2 (J15). Install jumpers J10, J11, J20, and J21 to position 1:2 which is labeled as **RCA** or **XLR**. Jumpers J4 and J12 must be uninstalled for DIFF input. - B. **Single-Ended Inputs:** connect one single-ended RCA audio input to IN1P (J3) and IN2P (J18). Install jumpers J10, J11, J20, and J21 to position 1:2 which is labeled as **RCA** or **XLR**. Jumpers J4 and J12 must be installed for SE input. - C. **Audio Interface Board Input:** Install jumpers J10, J11, J20, and J21 to position 2:3 which is labeled as **AIB**. Jumpers J4 and J12 must be installed for SE input from the AIB or uninstalled for DIFF input from the AIB. - 6. Ensure that RESET S1 and MUTE S2 are in the lower positions of RESET and MUTE, respectively. - Check Table 1 for all jumper and switch configurations **Component Description** Configuration for BTL Component Gain/SLV Select MSTR-18dB J23 J24 N/A IN J4, J12 Input DIFF/SE Select OUT = DIFF IN, IN = DIFF IN Position 1:2 for XLR/RCA, Position 2:3 J10, J11, J20, J21 AIB Input Select for AIB HEAD/AD Mode Select J6 IN J7, J8 PBTL/BTL Select OUT J22 VDD SEL Position 2:3 (GVDD) J25 5V-PU SEL OUT S1 **RESET Control** RESET **MUTE Control** S2 MUTE OUT J13 Auto Retry J29 **PVDD-IN** IN J26 12V-IN IN J5 5V-IN IN J27 3.3V-IN IN J19 5V-PU EN OUT J17 OSC Output No Connection J16 Master/Slave Select Position 3:4 MASTER MODE Table 1. Jumper and Switch Configurations (BTL Mode) ## 1.3 Power-Up Ensure that required connections and configurations have been checked. The TPA3221EVM board can now be powered on. - 1. Enable the power supply at 12 V to 30 V and ensure that LED D5 illuminates. LEDs D2 and D4 should not be illuminated. - 2. Bring the EVM out of RESET state by switching RESET (S1) to NORMAL. You should see the FAULT LED (D4) blink once guickly, then remain unilluminated. - 3. Bring the EVM out of MUTE state by switching MUTE (S2) to NORMAL. - 4. Note that the EVM does not have volume control, configure your analog input for a reasonable audio level before beginning audio playback. - 5. Enable audio input playback and the EVM should begin driving audio out of the left and right speakers. If resistor loads are used for testing instead of speakers, they will now be energized. Setup By Mode www.ti.com ## 2 Setup By Mode The following sections describe the setup and configuration for each output mode. The TPA3221DDV EVM allows for two output modes: Stereo BTL and Mono PBTL. ## 2.1 BTL MODE (Stereo - 2 Speaker Outputs) This mode is the same as described in Quick Start (BTL MODE). ## 2.2 PBTL MODE (Mono – 1 Speaker Output) This mode provides one speaker output that is more powerful than each BTL output and is useful when mono audio is to be played or when more power is needed. Figure 4 illustrates the PBTL mode output configuration with 4 inductors. Figure 4. Output Configuration PBTL - 4 Inductors www.ti.com Setup By Mode ## 2.2.1 Connections and Board Configuration Figure 5 illustrates the connectors and jumpers on the EVM. Figure 5. EVM Board With Connectors and Jumpers Use the following steps when connecting and configuring the board: - 1. Ensure the power supply is OFF. Connect power supply positive terminal to J1 PVDD (red) and negative terminal to J1 GND (black). - Connect one speaker, power resistor load (2–8 Ω) to TPA3221EVM positive output terminal (J9 OUT1+ (red)) and other side of speaker, power resistor to TPA3221EVM negative output terminal (J9 OUT1– (black)). - 3. Use a short banana cable to connect J2 OUT2+ to J9 OUT1+ and a second banana short banana cable to connect J2 OUT2- to J9 OUT1-. This forms the parallel connection of both OUTx+ to the one side of the speaker and parallel connection of both OUTx- to the other side of the speaker. - 4. Check to make sure that the power supply is connected to J1 only and the speaker is connected to J9 or J2 only, as their colors are the same. - 5. Input Configuration: - 1. **Differential Inputs:** connect one differential XLR audio input to DIFF IN1 (J14). Install jumpers J10, J11, J20, and J21 to position 1:2 which is labeled as **RCA** or **XLR**. Jumpers J4 and J12 must be uninstalled for DIFF input. - 2. **Single-Ended Inputs:** connect one single-ended RCA audio input to IN1P (J3). Install jumpers J10, J11, J20, and J21 to position 1:2 which is labeled as **RCA** or **XLR**. Jumpers J4 and J12 must be installed for SE input. - 3. **Audio Interface Board Input:** Install jumpers J10, J11, J20, and J21 to position 2:3 which is labeled as **AIB**. Jumpers J4 and J12 must be installed for SE input from the AIB or uninstalled for DIFF input from the AIB. - 6. Ensure that RESET S1 and MUTE S2 are in the lower positions of RESET and MUTE, respectively. Setup By Mode www.ti.com 7. Check Table 2 for all jumper and switch configurations necessary. Table 2. Jumper and Switch Configurations (PBTL Mode) | Component | Component Description | Configuration for PBTL | | |--------------------|-----------------------|--|--| | J23 | Gain/SLV Select | MSTR-18dB | | | J24 | N/A | IN | | | J4, J12 | Input DIFF/SE Select | OUT = DIFF IN, IN = DIFF IN | | | J10, J11, J20, J21 | AIB Input Select | Position 1:2 for XLR/RCA, Position 2:3 for AIB | | | J6 | HEAD/AD Mode Select | IN | | | J7, J8 | PBTL/BTL Select | IN | | | J22 | VDD SEL | Position 2:3 (GVDD) | | | J25 | 5V-PU SEL | OUT | | | S1 | RESET Control | RESET | | | S2 | MUTE Control | MUTE | | | J13 | Auto Retry | OUT | | | J29 | PVDD-IN | IN | | | J26 | 12V-IN | IN | | | J5 | 5V-IN | IN | | | J27 | 3.3V-IN | IN | | | J19 | 5V-PU EN | OUT | | | J17 | OSC Output | No Connection | | | J16 | Master, Slave Select | Position 3:4 MASTER MODE | | ### 2.2.2 Power-Up Ensure that required connections and configurations have been checked. The TPA3221EVM board can now be powered on. - 1. Enable the power supply at 12 V to 30 V and ensure that
LED D5 illuminates. LEDs D2 and D4 should not be illuminated. - 2. Bring the EVM out of RESET state by switching RESET (S1) to NORMAL. You should see the FAULT LED (D4) blink once quickly, then remain unilluminated. - 3. Bring the EVM out of MUTE state by switching MUTE (S2) to NORMAL. - 4. Note that the EVM does not have volume control, configure your analog input for a reasonable audio level before beginning audio playback. - 5. Enable audio input playback and the EVM should begin driving audio out of the left and right speakers. If resistor loads are used for testing instead of speakers, they will now be energized. ## 3 Hardware Configuration ## 3.1 Indicator Overview (OTW_CLIP and FAULT) The TPA3221EVM is equipped with LED indicators that illuminate when the FAULT or OTW_CLIP pin goes low. See Table 3 and the TPA3221 data sheet (SLASEE9) for more details. **Table 3. Fault and Clip Overtemperature Status** | FAULT
LED Status | OTW_CLIP
LED Status | Description | |---------------------|------------------------|---| | ON | ON | Overtemperature (OTE) or overload (OLP) or undervoltage (UVP). Junction temperature higher than 125°C (OTE warning) | | ON | OFF | Overload (OLP) or undervoltage (UVP). Junction temperature lower than 125°C | | OFF | ON | Junction temperature higher than 125°C (OTE warning) | | OFF | OFF | Junction temperature lower than 125°C and no OLP or UVP faults (normal operation) | ## 3.2 PWM Frequency Adjust The TPA3221EVM allows for three oscillator frequency options by external configuration of the FREQ_ADJ pin. The frequency adjust can be used to reduce interference problems while using a radio receiver tuned within the AM band. These values should be chosen such that the nominal and the lower value switching frequencies together results in the fewest cases of interference throughout the AM band. The oscillator frequency can be selected by the value of the FREQ_ADJ resistor connected to GND in master mode according to Table 4. Table 4. Frequency Adjust Master Mode Selection (J16) | FREQ_ADJ (J16) Mode | Resistor Selected to GND or Pullup | PWM Frequency | |---------------------|------------------------------------|---------------| | Master MODE | 49.9 kΩ | 600 kHz | | Master MODE AM1 | 30 kΩ | 533 kHz | | Master MODE AM2 | 10 kΩ | 480 kHz | | Slave MODE | Pullup to 5 V | N/A | Selecting *Slave Mode* configures the OSC_I/O pins as inputs to be slaved from an external differential clock. In a master or slave system, interchannel delay is automatically set up between the switching phases of the audio channels, which can be illustrated by no idle channels switching at the same time. This will not influence the audio output, but only the switch timing to minimize noise coupling between audio channels through the power supply. This will optimize audio performance and result in better operating conditions for the power supply. The inter-channel delay will be set up for a slave device depending on the polarity of the OSC_I/O connection such that slave mode 1 is selected by connecting the OSC_I/O of the master device with the OSC_I/O of the slave device with the same polarity (+ to + and - to -), while slave mode 2 is selected by connecting the OSC_I/Os with the inverse polarity (+ to - and - to +). Hardware Configuration www.ti.com ## 3.3 Modulation Modes (AD Mode and HEAD Mode) The TPA3221EVM supports both AD modulation as well as HEAD modulation. In AD mode, each of the two half-bridge outputs are continuously switching. AD mode is the default mode for the TPA3221EVM. The EVM also supports HEAD mode modulation. HEAD mode also switches both half bridge outputs but also optimizes the switching for lower power loss at idle as well as increased EMI performance at cost of some performance. The device accomplishes this by reducing its duty cycle at idle and while playing small signals. At higher output levels HEAD mode will also reduce the switching on one of the half bridges. The modulation mode can be controlled through jumper J6 on the EVM as follows: Table 5. HEAD and AD Mode Selection | J6 Jumper State | Modulation Mode | |-----------------|-----------------| | IN | AD Mode | | OUT | HEAD Mode | More information on the differences between HEAD mode and AD mode as well as performance data is found in the TPA3221 data sheet (SLASEE9). ## 3.4 Output Mode Selection The TPA3221 does not use discrete mode pins and therefore relies solely on the states of the IN2_M and IN2_P pins. Connecting the IN2_M and IN2_P pins to regular high output impedance audio outputs by removing J7 and J8 puts the TPA3221 into BTL mode (2 x stereo outputs). Tying the IN2_M and IN2_P pins to GND by installing J7 and J8 puts the TPA3221 into PBTL mode (1 x mono output). This is summarized in Table 6: **Table 6. Output Mode and Modulation Mode Selection** | | umpers
nd J8 | Input Mode | Output
Configuration | Description | | |-------------|-----------------|-------------|-------------------------|---|--| | IN2_M IN2_P | | | Comiguration | | | | OUT | OUT | | 2 × BTL | Stereo BTL output configuration | | | IN | IN | 1N / 2N + 1 | 1 x PBTL | Mono paralleled BTL configuration. Connect OUT1+ to OUT2+ and OUT1- to OUT2 | | ### 3.5 Audio Front End The TPA3221EVM includes options for single-ended or differential input signals. A configurable front end is built into the TPA3221 so that both single-ended and differential inputs can achieve the full scale output of the TPA3221 device without need for external front end op-amp. Note that when EVM RCA or XLR connectors are used, jumpers J11, J10, J21, and J20 must be installed in position 1:2 named XLR or RCA. - Single-ended input can be provided through RCA to inputs J3 and J18. Uninstall jumpers J4 and J12 using SE input so that the TPA3221 front-end will be configured for SE input. - Differential input can be provided through XLR to inputs J14 and J15. Install jumpers J4 and J12 when using DIFF input so that the TPA3221 front-end will be configured for DIFF input. Input can also be provided through an audio plug-in board on J28. For this input type, change jumpers J11, J10, J21, and J20 to position 2:3 named **AIB**. See the EVM schematic section (Section 4.3) for complete details. ### 3.6 EVM Power Tree The TPA3221EVM includes a few options for power configuration so that various input types can be evaluated. ## 3.6.1 TPA3221 Supplies The TPA3221 device has a few power supplies which each have their own voltage range and rules. Details for each supply are as shown: - **PVDD** This is the main device supply which accepts from 7 V to 30 V. Power output of the device is derived solely from PVDD and therefore it is important to configure this supply according to the chosen output configuration and load. Complete details are included in the TPA3221 datasheet (link). - VDD This supply is used for the non-PVDD power of the device for blocks such as the front-end and control circuitry. The TPA3221 internal 5-V LDO is also powered by this pin. VDD can be powered by 5 V directly if using the TPA3221 with the internal regulator OFF. In this case, tie the GVDD and AVDD pins directly to VDD using J22 position 2:3. When the internal regulator is used, VDD must be between 7 V and PVDD through J22 position 1:2 or providing an external voltage to V-EXT. GVDD and AVDD are only 5-V tolerant so J22 cannot be in position 2:3. The 5 V TP or 5 V through J24 must be used to power GVDD and AVDD separate from VDD in this case. - GVDD and AVDD These pins are used for the gate drive and analog supply of the device. These pins accept only 5 V. When the internal regulator is used, these pins are fed internal to the device, no external connection is necessary. When the internal regulator is OFF, these pins need 5 V through the TP or 5 V through J24 as previously mentioned. | PV | 'DD (V) | VDD (V) | AVDD and GVDD | Internal Regulator
Status | Note | |-----|---------|-------------|----------------------|------------------------------|--------------------------| | 7.0 | to 30.0 | 5.0 | Externally Provided | OFF | Most Efficient | | 7.0 | to 30.0 | 7.0 to PVDD | No Connection to VDD | ON | 5 V internally generated | | | Х | 5.0 to 7.0 | - | - | Not allowed (do not use) | **Table 7. Power Supply Summary** ### 3.6.2 TPA3221EVM Power Options All options in this section assume the TPA3221 internal 5-V regulator is OFF and that 5 V is provided externally to VDD, AVDD, and GVDD. J22 must be in position 2:3 to connect VDD to the AVDD and GVDD nodes. The major input configurations are listed in the following sections by the supplies available. ## 3.6.2.1 PVDD Only (12 V to 30 V) This power mode is the default setup when the board is tested and shipped. The user can connect any valid supply voltage to J1 and the onboard LDOs will generate the required non-PVDD voltages. PVDD itself always connects directly to the TPA3221 PVDD pins. Setup for this mode is the same as described in *Quick Start (BTL MODE)*. ## 3.6.2.2 PVDD (12 V to 30 V) and One Non-5-V Supply This power mode is useful for certain applications where a system has one higher voltage used for PVDD and a second lower voltage that may be used for device pullups and other supplies (VDD, GVDD, and AVDD). The PVDD voltage can still be connected to J1 but jumpers J29 and J24 as well as resistor R37 must be removed. The non-5-V supply should be connected to jumper V-EXT (7 V to 30 V only) and J25 in position 2:3 to select V-EXT as the input for U5. Install J19 to enable U5. Install R16 to connect 5VPU-VR to 5V-PU and J22 in position 2:3 to connect 5V-PU to VDD. Hardware Configuration www.ti.com ## 3.6.2.3 PVDD (12 V to 30 V) and 5-V Supply This power mode is most useful for systems in which a 5-V supply is already available due to additional circuitry like an MCU or wireless
module. On the EVM, this is also the preferred way to measure efficiency of the TPA3221 device. The PVDD voltage can still be connected to J1 but jumpers J29 and J24 must be removed. The 5-V supply should be connected to TP33 (5V-PU) or TP34 (5V-EXT). If R3 is installed, these nodes will be connected and at the same voltage. The same 5-V input will be used for the TPA3221 supplies (AVDD, VDD, and GVDD), the EVM reset control (U7), all TPA3221 device pullups (Reset, HEAD, FREQ_ADJ, Fault, OTW_CLIP), and status LEDs D4 and D2. The two 5-V supplies can be isolated by removing R3. Once R3 is removed, 5 V can be fed to only the TPA3221 supplies through TP34 (5V-EXT) and all other 5 V needs can be powered through TP33 (5V-PU). Either approach can be used to measure efficiency, but the most accurate numbers will be with the two 5-V supplies separated so the TPA3221 supply voltage is isolated and measured independently of board LEDs, reset control, and so forth. ## 3.7 LC Response and Overview Included near the output of the TPA3221 device are four output LC filters. These output filters filter the PWM output leaving only the audio content at high power which is fed to the speakers. The board uses a Sagami 10-µH inductor and 1-µF film capacitor to form this LC filter. Using the equations listed in *LC Filter Design* (SLAA701), the filter low pass cut-off is as follows: $$F_{\text{cut-off}} = \frac{1}{2\pi\sqrt{L \times C}} = \frac{1}{2\pi\sqrt{10\,\mu\text{H} \times 1\,\mu\text{F}}} = 50.3 \text{ kHz}$$ (1) The frequency response of the filter per output load is illustrated in Figure 6. Figure 6. Filter Frequency Response Figure 6 is taken directly from the *LC Filter Calculator* tool available on TI.com (SLAC729). The tool is configured for BTL common mode with values of 10 μ H and 1 μ F for the filter. This tool is also helpful when designing a different board featuring one of TI's class-D amplifiers. The Sagami inductor used (7G14J-100M-R) has a saturation current of 18 A. This was selected for the EVM since the TPA3221 supports a maximum short-circuit output current of 10 A. The inductance versus current curve for a selected inductor is very important. It is essential for the inductor to maintain at least 5 µH of inductance at the maximum short-circuit current of the power amplifier. The Sagami inductance versus current curve is available in the 7G14J-100M-R data sheet on the Sagami web site. Although not required, shielded inductors are used on the EVM as they reduce EMI. ## 3.8 Reset Circuit and POR The TPA3221EVM includes RESET supervision so that the TPA3221 device will remain in reset until all power rails are up and stable. The RESET supervisor also ensures that the device will be put into reset if one of the power rails experiences a brown out. This circuit combined with the RESET switch (S1) help ensure that the TPA3221 can be placed in reset easily, as needed, or automatically if there is a power supply issue. Figure 7 illustrates the circuit. Figure 7. RESET Circuit Hardware Configuration www.ti.com ## 3.9 Analog-Input-Board Connector (J28) The Analog-Input-Board (AIB) connector allows for cross compatibility with several Analog Plug-in Modules (APMs) offered by TI. This generic connector provides access to common board connections such as analog input, analog output, Fault and overtemperature warning (OTW) error reporting, common board voltages (12 V, 3.3 V, and so forth), and EVM reset. These plug-in modules allow for an application-specific front end to be plugged into the TPA3221EVM with ease. Examples of plug-in modules include front ends for guitar amplifier, karaoke, wireless sub-woofer, and front-end audio crossover. Copyright © 2017, Texas Instruments Incorporated Figure 8. AIB EVM Connector As Figure 8 shows, the AIB connector includes the following pins, associated specifications are listed in Table 9. | Pin
| Function | Description | Audio EVM
Input/Output | |----------|--------------|--|---------------------------| | 1 | Amp Out A | Speaker-level output from audio Class-D EVM (SE or one side of BTL) | 0 | | 2 | Amp Out B | Speaker-level output from audio Class-D EVM (SE or one side of BTL) | 0 | | 3 | PVDD | PVDD voltage supply from audio Class-D EVM (variable voltage depending on Class-D EVM use) | 0 | | 4 | GND | Ground reference between audio plug-in module and audio class-D EVM | - | | 5 | NC | - | - | | 6 | NC | - | - | | 7 | 3.3 V | 3.3-V supply from EVM; used for powering Audio Plug-in Module | 0 | | 8 | 3.3 V | 3.3-V supply from EVM; used for powering Audio Plug-in Module | 0 | | 9 | 12 V | 12-V supply from EVM; used for powering Audio Plug-in Module | 0 | | 10 | EN and RESET | Assert enable and reset control for audio class-D EVM (active low) | I | | 11 | Analog IN_A | Analog audio input A (analog in EVM) , Master I2S Bus (digital in EVM) | I | | 12 | NC | - | - | | 13 | Analog IN_B | Analog audio input B (analog in EVM) , Bit Clock I2S Bus (digital in EVM) | I | | 14 | CLIP_OTW | Clipping detection, overtemperature warning, or both from audio class-D EVM (active low) | 0 | | 15 | Analog IN_C | Analog audio input C (analog in EVM) , Frame Clock I2S Bus (digital in EVM) | I | | 16 | FAULT | Fault detection from audio Class-D EVM (Active Low) | 0 | | 17 | Analog IN_D | Analog audio Input D (analog in EVM) , Data In I2S Bus (digital in EVM) | I | | 18 | NC | - | - | | 19 | NC | - | - | | 20 | NC | - | - | | 21 | GND | Ground reference between audio plug-in module and audio class-D EVM | - | | 22 | GND | Ground reference between audio plug-in module and audio class-D EVM | - | | 23 | NC | - | - | | 24 | NC | - | - | | | | | 1 | Table 8. AIB Connector (J28) Pinout NC NC 25 26 # Table 8. AIB Connector (J28) Pinout (continued) | Pin
| Function | Description | Audio EVM
Input/Output | |----------|-----------|---|---------------------------| | 27 | Amp Out C | Speaker-level output from audio class-D EVM (SE or one side of BTL) | 0 | | 28 | Amp Out D | Speaker-level output from audio class-D EVM (SE or one side of BTL) | 0 | # **Table 9. AIB Power Rail Specifications** | EVM Power Rails | Always Available | Voltage Range | Max Current | Source | |-----------------|------------------|---------------|-------------|-----------------| | PVDD | Yes | 15–80 V | 500 mA | External Source | | 12 V | Yes | 12 V | 500 mA | LDO | | 3.3 V | Yes | 3.3 V | 100 mA | LDO | EVM Design Documents www.ti.com ## 4 EVM Design Documents This section contains the EVM board layouts, schematics, and bill of materials (BOM). # 4.1 TPA3221 Board Layouts Figure 9 and Figure 10 illustrate the EVM board layouts. Figure 9. TPA3221 EVM Top Composite Assembly Figure 10. TPA3221 EVM Bottom Composite Assembly # 4.2 TPA3221 Board Layouts Figure 11 shows the EVM board dimensions. Figure 11. TPA3221 EVM Board Dimensions EVM Design Documents www.ti.com ## 4.3 TPA3221 EVM Schematics Figure 12 through Figure 14 illustrate the TPA3221 EVM schematics. Figure 12. TPA3221 EVM Schematic 1 EVM Design Documents www.ti.com Figure 13. TPA3221 EVM Schematic 2 EVM Design Documents www.ti.com Figure 14. TPA3221 EVM Schematic 3 EVM Design Documents www.ti.com ## TPA3221EVM Bill of Materials Table 10 lists the TPA3221 EVM BOM. # Table 10. TPA3221EVM Bill of Materials(1) | Designator | QTY | Value | Description | Package Reference | Part Number | Manufacturer | |--|-----|---------|---|--|---------------------|--------------------------------| | !PCB1 | 1 | | Printed Circuit Board | | AMPS005 | Any | | C1 | 1 | 0.047uF | CAP, CERM, 0.047 μF, 25 V, +/- 10%, X7R, 0402 | 0402 | GRM155R71E473KA88D | Murata | | C2 | 1 | 0.1uF | CAP, CERM, 0.1 μF, 100 V, +/- 10%, X7R, 0603 | 0603 | GRM188R72A104KA35J | Murata | | C3, C32, C33, C34, C42, C47, C48 | 7 | 1uF | CAP, CERM, 1 µF, 100 V, +/- 10%, X7R, 1206 | 1206 | GRM31CR72A105KA01L | Murata | | C4, C14, C15 | 3 | 2.2uF | CAP, CERM, 2.2 μF, 100 V, +/- 10%, X7R, 1210 | 1210 | C1210C225K1RACTU | Kemet | | C5 | 1 | 47uF | CAP, AL, 47 µF, 16 V, +/- 20%, 0.36 ohm, SMD | SMT Radial D | EEE-FK1C470P | Panasonic | | C6 | 1 | 4.7uF | CAP, CERM, 4.7 μF, 25 V, +/- 10%, X7R, 1206 | 1206 | GRM31CR71E475KA88L | Murata | | C7 | 1 | 5600pF | CAP, CERM, 5600 pF, 50 V, +/- 10%, X7R, 0603 | 0603 | GRM188R71H562KA01D | Murata | | C8 | 1 | 0.47uF | CAP, CERM, 0.47 μF, 25 V, +/- 10%, X7R, 0603 | 0603 | GRM188R71E474KA12D | Murata | | C9, C13, C18, C22, C67 | 5 | 0.1uF | CAP, CERM, 0.1 μF, 50 V, +/- 10%, X7R, 0603 | 0603 | C0603C104K5RACTU | Kemet | | C10, C49 | 2 | 100uF | CAP, AL, 100 μF, 6.3 V, +/- 20%, 0.7 ohm, SMD | SMT Radial C | EEE-FK0J101UR | Panasonic | | C11 | 1 | 0.01uF | CAP, CERM, 0.01 μF, 100 V, +/- 10%, X7R, 0603 | 0603 | 06031C103KAT2A | AVX | | C12 | 1 | 4700pF | CAP, CERM, 4700 pF, 50 V, +/- 10%, X7R, 0603 | 0603 | C0603X472K5RACTU | Kemet | | C16, C27, C29, C52, C54 | 5 | 0.033uF | CAP, CERM, 0.033 μF, 25 V, +/- 10%, X7R, 0603 | 0603 | GRM188R71E333KA01D | Murata | | C17, C28, C41, C55, C63, C66 | 6 | 1uF | CAP, CERM, 1 µF, 16 V, +/- 10%, X7R, 0603 | 0603 | GRM188R71C105KA12D | Murata | | C19, C30, C58, C64 | 4 | 100pF | CAP, CERM, 100 pF, 50 V, +/- 5%, C0G/NP0, 0603 | 0603 | GRM1885C1H101JA01D | Murata | | C21, C57 | 2 | 1000pF | CAP, CERM, 1000 pF, 500 V, +/- 10%, X7R, 1206_190 | 1206_190 | C1206C102KCRACTU | Kemet | | C24, C35, C43, C59 | 4 | 1uF | CAP, Film, 1 μF, 250 V, +/- 5%, TH | 18x9.5x17.5mm | PHE426HB7100JR06 | Kemet | | C31, C46 | 2 | 1000uF | CAP, AL, 1000 μ F, 50 V, +/- 20%, 0.034 ohm, AEC-Q200 Grade 2, TH | D16xL25 | EEU-FC1H102 | Panasonic | | C38, C40 | 2 | 10uF | CAP, AL, 10 μF, 16 V, +/- 20%, 1.35 ohm, SMD | SMT Radial B | EEE-FK1C100R | Panasonic
| | C39 | 1 | 47uF | CAP, AL, 47 µF, 63 V, +/- 20%, 0.65 ohm, SMD | SMT Radial F | EEE-FK1J470P | Panasonic | | D1 | 1 | 100V | Diode, Schottky, 100 V, 1 A, SMA | SMA | B1100-13-F | Diodes Inc. | | D2 | 1 | Orange | LED, Orange, SMD | LED_0805 | LTST-C170KFKT | Lite-On | | D3 | 1 | 100V | Diode, Schottky, 100 V, 3 A, SMA | SMA | SK310A-TP | Micro Commercial
Components | | D4 | 1 | Red | LED, Red, SMD | Red 0805 LED | LTST-C170KRKT | Lite-On | | D5 | 1 | Green | LED, Green, SMD | LED_0805 | LTST-C171GKT | Lite-On | | H1 | 1 | | HEATSINK TI TAS5612 AND TAS5614 | HEATSINK TI TAS5612
AND TAS5614 | ATS-TI1OP-563-C1-R0 | Advanced Thermal Solutions | | H2, H3, H4, H5, H6, H12, H13 | 7 | | MACHINE SCREW PAN PHILLIPS M3 5mm | Screw M3 Phillips head | MPMS 003 0005 PH | B&F Fastener Supply | | H7, H8, H9, H10, H11 | 5 | | Standoff, Hex,25mm Length, M3, Aluminum | Standoff M3 | 24438 | Keystone | | J1, J2, J9 | 3 | | Dual Binding Posts with Base, 2x1, TH | Dual Binding Posts with
Base, 2x1, TH | 6883 | Pomona Electronics | | J3 | 1 | | RCA Jack, Vertical, Red, TH | RCA JACK, RED | RCJ-022 | CUI Inc. | | J4, J5, J6, J7, J8, J12, J13, J19, J24, J26, J27, J29, J30 | 13 | | Header, 100mil, 2x1, Gold, TH | Sullins 100mil, 1x2, 230 mil above insulator | PBC02SAAN | Sullins Connector Solutions | | J10, J11, J20, J21, J22, J25 | 6 | | Header, 100mil, 3x1, Gold, TH | PBC03SAAN | PBC03SAAN | Sullins Connector Solutions | ⁽¹⁾ Unless otherwise noted in the alternate part number or alternate manufacturer columns, all parts may be substituted with equivalents. EVM Design Documents www.ti.com # Table 10. TPA3221EVM Bill of Materials⁽¹⁾ (continued) | Designator | QTY | Value | Description | Package Reference | Part Number | Manufacturer | |-----------------------------|-----|-------|--|--|------------------|-----------------------------| | J14, J15 | 2 | | Receptacle, 160mil, 3 Position, R/A, TH | Receptacle, 160mil, 3
Position, R/A, TH | PQG3FRA112 | Switchcraft | | J16 | 1 | | Header, 100mil, 4x2, Tin, TH | Header, 4x2, 100mil, Tin | PEC04DAAN | Sullins Connector Solutions | | J17 | 1 | | Header (friction lock), 100mil, 4x1, Gold, TH | Header 4x1 keyed | 0022112042 | Molex | | J18 | 1 | | RCA Jack, Vertical, White, TH | RCA JACK, WHITE | RCJ-023 | CUI Inc. | | J23 | 1 | | Header, 100mil, 8x2, Gold, TH | PBC08DAAN | PBC08DAAN | Sullins Connector Solutions | | J28 | 1 | | Receptacle, 100mil, 14x2, Gold, TH | 14x2 Receptacle | SSW-114-01-G-D | Samtec | | L1 | 1 | 100uH | Inductor, Shielded Drum Core, Ferrite, 100 µH, 1.5 A, 0.165 ohm, SMD | SMD | 7447714101 | Wurth Elektronik | | L2, L3, L4, L5 | 4 | 10uH | Inductor, 10 µH, 4.6 A, 0.0234 ohm, TH | 14x9.6mm | 7G14J-100M-R | Sagami Elec Co Ltd | | L6 | 1 | 10uH | Inductor, Wirewound, 10 µH, 0.08 A, 0.36 ohm, SMD | 0603 | GLFR1608T100M-LR | TDK | | Q1, Q2 | 2 | 60V | MOSFET, N-CH, 60 V, 0.17 A, SOT-23 | SOT-23 | 2N7002-7-F | Diodes Inc. | | R1, R24, R28 | 3 | 47k | RES, 47 k, 5%, 0.1 W, 0603 | 0603 | RC0603JR-0747KL | Yageo America | | R2 | 1 | 182k | RES, 182 k, 1%, 0.125 W, 0805 | 0805 | ERJ-6ENF1823V | Panasonic | | R3, R30, R37 | 3 | 0 | RES, 0, 5%, 0.1 W, 0603 | 0603 | CRCW06030000Z0EA | Vishay-Dale | | R4, R12, R44, R46 | 4 | 0 | RES, 0, 5%, 0.125 W, 0805 | 0805 | ERJ-6GEY0R00V | Panasonic | | R5, R10, R19, R23, R33, R35 | 6 | 100 | RES, 100, 1%, 0.1 W, 0603 | 0603 | CRCW0603100RFKEA | Vishay-Dale | | R6, R42, R61, R76, R77 | 5 | 100k | RES, 100 k, 1%, 0.1 W, 0603 | 0603 | CRCW0603100KFKEA | Vishay-Dale | | R9, R25, R43, R45, R48, R70 | 6 | 100k | RES, 100 k, 1%, 0.063 W, 0402 | 0402 | CRCW0402100KFKED | Vishay-Dale | | R15 | 1 | 49.9k | RES, 49.9 k, 1%, 0.1 W, 0603 | 0603 | RC0603FR-0749K9L | Yageo America | | R17 | 1 | 30.0k | RES, 30.0 k, 1%, 0.1 W, 0603 | 0603 | RC0603FR-0730KL | Yageo America | | R20 | 1 | 10.0k | RES, 10.0 k, 1%, 0.1 W, 0402 | 0402 | ERJ-2RKF1002X | Panasonic | | R21, R74 | 2 | 51.0k | RES, 51.0 k, 1%, 0.1 W, 0603 | 0603 | RC0603FR-0751KL | Yageo America | | R26 | 1 | 4.02k | RES, 4.02 k, 1%, 0.1 W, 0603 | 0603 | CRCW06034K02FKEA | Vishay-Dale | | R27, R72 | 2 | 47.0k | RES, 47.0 k, 1%, 0.1 W, 0603 | 0603 | RC0603FR-0747KL | Yageo America | | R29, R31, R32, R38 | 4 | 1.00k | RES, 1.00 k, 1%, 0.1 W, 0603 | 0603 | CRCW06031K00FKEA | Vishay-Dale | | R34, R71 | 2 | 39.0k | RES, 39.0 k, 1%, 0.1 W, 0603 | 0603 | RC0603FR-0739KL | Yageo America | | R36 | 1 | 16.0k | RES, 16.0 k, 1%, 0.1 W, 0603 | 0603 | RC0603FR-0716KL | Yageo America | | R39 | 1 | 4.99k | RES, 4.99 k, 1%, 0.063 W, 0402 | 0402 | CRCW04024K99FKED | Vishay-Dale | | R40 | 1 | 1.00k | RES, 1.00 k, 1%, 0.063 W, 0402 | 0402 | CRCW04021K00FKED | Vishay-Dale | | R41 | 1 | 5.60k | RES, 5.60 k, 1%, 0.1 W, 0603 | 0603 | RC0603FR-075K6L | Yageo America | | R52, R59, R60, R62 | 4 | 0 | RES, 0, 5%, 0.25 W, 1206 | 1206 | CRCW12060000Z0EA | Vishay-Dale | | R57 | 1 | 1.00k | RES, 1.00 k, 1%, 0.1 W, 0402 | 0402 | ERJ-2RKF1001X | Panasonic | | R58 | 1 | 499 | RES, 499, 1%, 0.063 W, 0402 | 0402 | CRCW0402499RFKED | Vishay-Dale | | R68 | 1 | 10.0k | RES, 10.0 k, 1%, 0.1 W, 0603 | 0603 | CRCW060310K0FKEA | Vishay-Dale | | R69 | 1 | 20.0k | RES, 20.0 k, 1%, 0.1 W, 0603 | 0603 | CRCW060320K0FKEA | Vishay-Dale | | R73, R78 | 2 | 75.0k | RES, 75.0 k, 1%, 0.1 W, 0603 | 0603 | RC0603FR-0775KL | Yageo America | | R75 | 1 | 3.3 | RES, 3.3, 5%, 0.1 W, 0603 | 0603 | CRCW06033R30JNEA | Vishay-Dale | | S1, S2 | 2 | | Switch, SPDT, On-On, 2 Pos, TH | Switch, 7x4.5mm | 200USP1T1A1M2RE | E-Switch | EVM Design Documents www.ti.com # Table 10. TPA3221EVM Bill of Materials⁽¹⁾ (continued) | Designator | QTY | Value | Description | Package Reference | Part Number | Manufacturer | |--|-----|--------|---|-----------------------------|--------------------|-------------------| | SH1, SH2, SH3, SH4, SH5, SH6, SH7,
SH8, SH9, SH10, SH11, SH12, SH13,
SH14, SH15, SH16, SH17, SH18, SH19,
SH20 | 20 | 1x2 | Shunt, 100mil, Gold plated, Black | Shunt | 969102-0000-DA | ЗМ | | TP1, TP13, TP14, TP17, TP29, TP30, TP31, TP35 | 8 | | Test Point, Compact, Grey, TH | TestPoint, Grey, 220mil, TH | 5123 | Keystone | | TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10, TP11, TP12, TP18, TP25, TP27, TP28, TP36 | 16 | | Test Point, Multipurpose, Grey, TH | Grey Multipurpose Testpoint | 5128 | Keystone | | TP32 | 1 | | Test Point, Compact, Red, TH | Red Compact Testpoint | 5005 | Keystone | | TP33, TP34 | 2 | | Test Point, Multipurpose, Red, TH | Red Multipurpose Testpoint | 5010 | Keystone | | U1 | 1 | | High Voltage 1A Step Down Switching Regulator, 10-pin LLP, Pb-Free | SDC10A | LM5010ASD/NOPB | Texas Instruments | | U2 | 1 | | 1A Low Dropout Regulator, 4-pin SOT-223, Pb-Free | MP04A | LM2940IMP-12/NOPB | Texas Instruments | | U3 | 1 | | LDO with 4.7 to 15 V Input and 3.3 V Output, -40 to 125 degC, 8-Pin SON (DRJ), Green (RoHS & no Sb/Br) | DRJ0008A | TLV1117-33IDRJR | Texas Instruments | | U4 | 1 | | 100-W Stereo, 200-W Mono HD-Audio, Analog-Input, Class-D Amplifier, DDV0044D (TSSOP-44) | DDV0044D | TPA3221DDVR | Texas Instruments | | U5 | 1 | | 150-mA, 30-V, Ultra-Low IQ, Wide Input Low-Dropout Regulator with Reverse Current Protection, DRV0006A (WSON-6) | DRV0006A | TPS70950DRVR | Texas Instruments | | U6 | 1 | | LDO with 6.4 to 15 V Input and 5 V Output, 0 to 125 degC, 8-
Pin SON (DRJ), Green (RoHS & no Sb/Br) | DRJ0008A | TLV1117-50CDRJR | Texas Instruments | | U7 | 1 | | ULTRA-SMALL SUPPLY VOLTAGE SUPERVISORS, DCK0005A | DCK0005A | TPS3802K33DCKR | Texas Instruments | | C20, C23, C62, C65 | 0 | 22pF | CAP, CERM, 22 pF, 50 V, +/- 5%, C0G/NP0, 0603 | 0603 | GRM1885C1H220JA01D | Murata | | C25, C36, C44, C60 | 0 | 1000pF | CAP, CERM, 1000 pF, 100 V, +/- 5%, C0G/NP0, 1206 | 1206 | 12061A102JAT2A | AVX | | C26, C37, C45, C61 | 0 | 220pF | CAP, CERM, 220 pF, 50 V,+/- 5%, C0G/NP0, 0603 | 0603 | GRM1885C1H221JA01D | Murata | | C50, C51, C53, C56 | 0 | 1uF | CAP, CERM, 1 µF, 50 V, +/- 10%, X7R, 1206 | 1206 | GRM31MR71H105KA88L | Murata | | FID1, FID2, FID3, FID4, FID5, FID6 | 0 | | Fiducial mark. There is nothing to buy or mount. | N/A | N/A | N/A | | R7, R8 | 0 | 4.99k | RES, 4.99 k, 1%, 0.125 W, 0805 | 0805 | CRCW08054K99FKEA | Vishay-Dale | | R11, R14, R18, R22 | 0 | 2.00k | RES, 2.00 k, 1%, 0.1 W, 0603 | 0603 | CRCW06032K00FKEA | Vishay-Dale | | R13 | 0 | 1.00k | RES, 1.00 k, 1%, 0.125 W, 0805 | 0805 | CRCW08051K00FKEA | Vishay-Dale | | R16, R63, R64, R65, R66 | 0 | 0 | RES, 0, 5%, 0.1 W, 0603 | 0603 | CRCW06030000Z0EA | Vishay-Dale | | R47, R49, R50, R51 | 0 | 18.0k | RES, 18.0 k, 1%, 0.1 W, 0603 | 0603 | RC0603FR-0718KL | Yageo America | | R53, R54, R55, R56 | 0 | 3.30 | RES, 3.30, 1%, 0.25 W, 1206 | 1206 | ERJ-8RQF3R3V | Panasonic | | R67 | 0 | 0 | RES, 0, 5%, 0.125 W, 0805 | 0805 | ERJ-6GEY0R00V | Panasonic | Revision History www.ti.com # **Revision History** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | Changes from A Revision (October 2017) to B Revision | | | | | |--|--|--|---|--| | • | Device status has changed from ADVANCE INFORMATION to production data. | | • | | #### STANDARD TERMS FOR EVALUATION MODULES - 1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms. - 1.1 EVMs are intended solely for product or software
developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system. - 2 Limited Warranty and Related Remedies/Disclaimers: - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement. - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after the defect has been detected. - 2.3 Tl's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. Tl's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by Tl and that are determined by Tl not to conform to such warranty. If Tl elects to repair or replace such EVM, Tl shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period. - 3 Regulatory Notices: - 3.1 United States - 3.1.1 Notice applicable to EVMs not FCC-Approved: **FCC NOTICE:** This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter. 3.1.2 For EVMs annotated as FCC - FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant: ### **CAUTION** This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. ### FCC Interference Statement for Class A EVM devices NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. #### FCC Interference Statement for Class B EVM devices NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: - Reorient or relocate the receiving antenna. - Increase the separation between the equipment and receiver. - · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. - Consult the dealer or an experienced radio/TV technician for help. #### 3.2 Canada 3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247 ### **Concerning EVMs Including Radio Transmitters:** This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. ### Concernant les EVMs avec appareils radio: Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. ### **Concerning EVMs Including Detachable Antennas:** Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. ## Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur ### 3.3 Japan - 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。 http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page - 3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan. If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User): - 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan, - 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or - 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User
gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan. 【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けていないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。 - 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。 - 2. 実験局の免許を取得後ご使用いただく。 - 3. 技術基準適合証明を取得後ご使用いただく。 - なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル ンスツルメンツ株式会社 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page #### 3.4 European Union 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive): This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures. - 4 EVM Use Restrictions and Warnings: - 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS. - 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages. - 4.3 Safety-Related Warnings and Restrictions: - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm. - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees. - 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements. - 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free. #### 6. Disclaimers: - 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS. - 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED. - 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED. - 8. Limitations on Damages and Liability: - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED. - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, , EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT. - 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs. - 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated ### IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES Texas Instruments Incorporated ("TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI
providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-compliance with the terms and provisions of this Notice. This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm). Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated