
Application Report
SCAA106–October 2009

Troubleshooting I2C Bus Protocol
Mariajose Perez Ferrando ... ICP/CDC

ABSTRACT
When using the I2C™ bus protocol, the designer must ensure that the hardware complies with the I2C
standard. This application report describes the I2C protocol and provides guidelines on debugging a
missing acknowledgment, selecting the pullup resistors, or meeting the maximum capacitance load of an
I2C bus. A conflict occurs if devices sharing the I2C bus have the same slave address. This document
provides solutions to this conflict by using the devices' features or external components.

Contents
1 Introduction .. 2
2 I2C Communication ... 2

2.1 Protocol Description ... 2
2.2 I2C Protocol Screen Shots for CDC(L)949, CDC(L)937, CDC(L)925, CDC(L)913, and

CDCE906/907 .. 2
2.3 Troubleshooting I2C Communication. Reasons for Missing Acknowledgment 4

3 Solving Address Conflict When Sharing I2C Bus ... 5
4 Hardware ... 8

4.1 Pullup Resistor ... 8
4.2 Overcoming Maximum Capacitance Load .. 9

5 References ... 9

List of Figures

1 I2C Programming Sequence for the CDCE949 ... 2

2 First Eight Bits of the I2C Pattern: Slave Address and R/W .. 3

3 Second Set of 8 Bits of the I2C Pattern: Command Code ... 4

4 Third Set of 8 Bits of the I2C Pattern Contains Byte to Write/Read (A6xh).. 4

5 Slave Address Conflict Solved With I2C Multiplexor.. 8

6 Slave Address Conflict Solved With Bidirectional I2C Buffer .. 8

List of Tables

I2C is a trademark of Koninklijke Philips Electronics N.V.

1SCAA106–October 2009 Troubleshooting I2C Bus Protocol
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SCAA106

Introduction www.ti.com

1 Introduction

Inter-integrated circuit (I2C) (NPX) is a two-wired protocol that can operate at different speeds (standard
mode, fast mode, and high-speed mode). Although other protocols are simpler and do not have speed
limitation (such as SPI), the scalability offered by I2C™ made it attractive as an interface for some of TI's
CDC products.

I2C prevents data corruption by performing a wired-AND operation as the I2C interface has open-drain or
open-collector output. When the SDA line is low that translates in the I2C bus as being busy.

Also, this interface allows the master to check the bus status. By pulling the master SDA line high, it can
verify the status of the bus: busy if the line stays low (as some device is pulling the line low), or free if the
line is high.

2 I2C Communication

2.1 Protocol Description

The I2C protocol is generated by SDA (bidirectional line: receives I2C pattern and transmits
acknowledgment when communication was successful) and SCL (one-direction line).

As the I2C protocol allows multiple slave devices connected to a single I2C bus, each of them is identified
with a different address. To address the slave device, seven bits are used.

Transfers are initiated by a start condition (SDA falling edge while SCL is high), and transfers end when a
stop condition occurs (rising edge on SDA while SCL is high).

An instruction is sent through the SDA in blocks of one byte, where the first bit is the most-significant bit
(MSB). SDA bits must be stable while SCL is high, and they must change while the SCL line is low. If SDA
bits are not stable while SCL is high, it is understood as a stop or start condition, a typical cause for a
corrupted message or missing acknowledgment.

The number of bytes transmitted is unlimited; each byte must be followed by an acknowledgment bit form
the slave confirming the successful reception of the byte. In its absence, the level remains high during the
ninth SCL pulse.

Figure 1. I2C Programming Sequence for the CDCE949

2.2 I2C Protocol Screen Shots for CDC(L)949, CDC(L)937, CDC(L)925, CDC(L)913, and
CDCE906/907

The I2C pattern writes in the register’s address A1xh the data A6xh on the CDC(L)949 (slave) whose
address is '1101100'xb. Screen shots of the protocol can be found in Figure 2, Figure 3, and Figure 4.

2 SCAA106–October 2009Troubleshooting I2C Bus Protocol
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SCAA106

www.ti.com I2C Communication

The first byte of the I2C protocol contains the device’s slave address (1101100xb) and type of operation (0 = write).
C2 is SDA and C4 is SCL.
The CDCE949 (slave) gives back acknowledgment after the last bit was patterned; only after the SCL last falling
edge, the I2C bus is released to handle the next block of communication.

Figure 2. First Eight Bits of the I2C Pattern: Slave Address and R/W

The second byte of I2C protocol contains the type of write/read (byte write) and register’s address (1axh) where the
operation is performed. C2 is SDA and C4 is SCL.
The CDCE949 (slave) gives back acknowledgment after the last bit was patterned; only after the SCL last falling
edge, the I2C bus is released to handle the next block of communication.

Figure 3. Second Set of 8 Bits of the I2C Pattern: Command Code

3SCAA106–October 2009 Troubleshooting I2C Bus Protocol
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SCAA106

I2C Communication www.ti.com

Data byte contains byte to write/read (A6xh).
C2 is SDA and C4 is SCL.
The CDCE949 (slave) gives back acknowledgment after the last bit was patterned; only after the SCL last falling
edge, the I2C bus is released to handle the next block of communication.

Figure 4. Third Set of 8 Bits of the I2C Pattern Contains Byte to Write/Read (A6xh)

2.3 Troubleshooting I2C Communication. Reasons for Missing Acknowledgment

2.3.1 Timing

Even when using a processor that generates a two-wired interface sequence, timing still must be checked.
It is possible that the delay between SCL and SDA is not compliant or too marginal with the defined
timing. In those cases, unwanted START or STOP conditions can occur in the middle of the I2C pattern
sent, causing the slave to get a different message or resulting in a missing acknowledgment.

2.3.2 Missing/Unexpected SCL Pulses

An unsuccessful execution occurs when missing or unexpected SCL pulses are within the protocol. If
something unexpected happens, it is assured by design that a START condition discards the previous
incomplete or erroneous message, and the device is ready to receive the new message.

2.3.3 Incomplete 8-Bit Block

When less than eight bits are sent, the slave waits for the rest of the data. Unless the eighth bit is sent,
the slave does not generate an acknowledgment. A way to restart the transmission is starting the new
message with a start condition, to send the new I2C pattern.

2.3.4 Missing Bytes

When a block operation is performed, the amount of bytes to be sent or received may already be fixed in
another register. If the number of bytes sent or received is less that the number expected, the state
machine waits for the rest of the message. The start condition can be patterned in order to skip the waiting
state.

4 SCAA106–October 2009Troubleshooting I2C Bus Protocol
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SCAA106

www.ti.com Solving Address Conflict When Sharing I2C Bus

Caveats when "block read" is patterned on CDCE(L)949, CDCE(L)937, CDCE(L)925 and CDCE(L)913:

BCOUNT located in the register's address 08xh bits 7:1 sets the number of bytes that are read when
performing a block read. A missing acknowledgment or misunderstood message can occur while
performing a block read if the BCOUNT is set to a greater value than the bytes available from the offset
set on the command code.

2.3.5 False Slave Address

Each I2C slave device connected to the I2C bus has its own slave address and responds only to that
address when an I2C protocol is being patterned.

When the slave device identifies itself with the address being broadcasted in the I2C bus, it ties the SDA
signal to ground as can be seen in Figure 2. For that reason, SDA is bidirectional, so that it can handle the
acknowledgment received from the slave.

2.3.6 Missing Acknowledgment After Changing the Address

Caveats when programming via I2C the CDCE(L)949, CDCE(L)937, CDCE(L)925, and CDCE(L)913:

During a write instruction (block or byte), each byte change is effective when the last bit of the data byte is
patterned.

After changing bits 1:0 from register address 01xh, the slave address changes; therefore, the next I2C
message starts with the new slave address. Using the old slave address causes a missing
acknowledgment due to a false slave address received.

If during a block write the value of bits1:0 from register address 01xh change, this translates into a
different slave address, but this does not impact the communication as the slave address is only checked
in the first byte of the block write message.

Caveats when programming via I2C the CDCE906 and CDCE706:

The CDCE906 and CDCE706 slave address is 1101001. When a byte write is performed to set register’s
address 10xh last 4 bits to 1111, then A0 and A1 control pins overwrite the last two bits of the slave
address. When A0 and A1 pins are left floating the pulled up resistors set their value to 1. After that byte
write, the slave address is defined by 11010, A0 and A1. If the slave address in the next I2C message is
not the new one, then a missing acknowledgment occurs.

If the last two bits of the slave address are set by A0 and A1, and the A0 or A1 pins change, it does not
impact the communication as long as this change occurred after the first block of the I2C message (that
contains the slave address) was patterned.

If the slave address changes during a block write, the communication is still successful as the connection
with the device was already established during the first block of the I2C message.

3 Solving Address Conflict When Sharing I2C Bus

A conflict occurs when more than one device with the same slave address is connected to the same I2C
bus.

CDCE(L)949, CDCE(L)937, CDCE(L)925, and CDCE(L)913 belong to the same family of products with
the same performance but having different outputs. Their slave address has one part fixed/hardwired and
one part programmable. CDCE(L)949 and CDCE(L)937 share the same hardwired address. The same
situation applies to CDCE(L)925 and CDCE(L)913. For this reason, if the slave address programmable
part changes within each of the defined groups, it is possible to reprogram them to have the same slave
address. That is, CDCE(L)949 can be programmed to have the same address as that of the CDCE(L)937.
But in this situation, when connected to the same I2C bus, a conflict arises.

The CDCE(L)949, CDCE(L)937, CDCE(L)925, and CDCE(L)913 can re-program the last two bits of their
default slave address. Therefore, up to four devices of each can be plugged into the I2C bus.

Each of these devices default setups are set to have different slave address. Therefore, with the default
setup, one of each of them has to be able to share the same I2C bus with no conflict.

5SCAA106–October 2009 Troubleshooting I2C Bus Protocol
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SCAA106

Solving Address Conflict When Sharing I2C Bus www.ti.com

Some devices offer the possibility to fix the slave address with control signals. Thus, the same device can
overwrite its slave address with control pins, and it is unnecessary to preprogram the device.

The CDCE906 and CDCE706 offer the possibility to overwrite the last two bits of their slave address with
external control pins 1 and 2. As pins 1 (S0/A0/CLK_SEL) and 2 (S1/A1) are shared with other
functionalities, these pins act as A0 and A1 when setting the four lower bits of the internal register 10xh to
1111xb. When A1 and A0 are left floating, the effective slave address is 11, as each of them has internal
pullups of 150 kΩ.

A programming EVM board can be used in order to change the setup of all these devices:
http://focus.ti.com/docs/toolsw/folders/print/cdcel9xxprogevm.html

If the slave device has a fixed address or if the preceding options are not preferred, then an I2C
multiplexor or I2C buffers can be used.

I2C multiplexors split the I2C bus into several subbranches and allow the I2C master to select and address
one of multiple identical devices, thus resolving address conflict. The multiplexor connects the main I2C
bus to the selected slave device and removes electrically the nonselected devices. This device is
programmable via I2C protocol, therefore, no additional pins or control logic are required. TI’s PCA9544A
can multiplex up to four slave devices with the same slave address, as can be seen in Figure 5.

If an I2C buffer is chosen, then additional lines (and optional control logic) is needed to enable/disable the
I2C bus branch corresponding to the addressed/nonaddressed slave device. This solution (see Figure 6)
can be achieved by using TI’s PCA9515A I2C buffer or the PCA9517 I2C buffer; the latter one offers
additional voltage translation.

6 SCAA106–October 2009Troubleshooting I2C Bus Protocol
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://focus.ti.com/docs/toolsw/folders/print/cdcel9xxprogevm.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SCAA106

I
2
C

Bus Master

(FPGA, microcontroller)

SDA

SCL

PCA9544A

SDA0

SCL0

SDA1

SCL1

CDCE949

SDA

SCL

Vdd

Vdd

Rpu Rpu

Rpu Rpu

CDCE949

SDA

SCL

Vdd

Rpu

SDA1

SCL1

SDA1

SCL1

SDA1

SCL1

Rpu

CDCE949

SDA

SCL

Vdd

Rpu Rpu

CDCE949

SDA

SCL

RpuRpu

www.ti.com Solving Address Conflict When Sharing I2C Bus

Figure 5. Slave Address Conflict Solved With I2C Multiplexor

7SCAA106–October 2009 Troubleshooting I2C Bus Protocol
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SCAA106

I
2
C

Bus Master

(FPGA,

microcontroller)

SDA

SCL

PCA9515A

SDA0

SCL0

SDA1

SCL1

EN

PCA9515A

SDA0

SCL0

SDA1

SCL1

EN

C0

CDCE949

SDA

SCL

CDCE949

SDA

SCL

Vdd

Vdd

Vdd

Rpu Rpu

Rpu Rpu

Rpu Rpu

Control logic that enables

only one of the

PCA9515A. When the

PCA9515A is enabled, it

habilitates the I2C

communication with the

associated CDCE949

If the I2C master has enough

spare output pins no control

logic would be needed.

i.e. In this example if two

control lines were availabe, no

additional NOT gate would be

needed, as each of these

control lines can be connected

directly to each EN. The I2C

master must take care that only

one EN is high.

ddmax olmax(V V)
R =

0.003 A

-

t1

RC
dd dd

t2

RC
dd dd

V(t1) = 0.3 V = V 1 e

t1 = 0.3566749RC

V(t2) = 0.7 V = V 1 e

t2 = 1.2039729RC

t = t2 t1 = 0.8472979RC

-

-

æ ö
ç ÷´ ´ -
ç ÷
è ø

æ ö
ç ÷´ ´ -
ç ÷
è ø

-

Hardware www.ti.com

Figure 6. Slave Address Conflict Solved With Bidirectional I2C Buffer

4 Hardware

4.1 Pullup Resistor

The interval of the valid pullup resistors for SDA and SCL is down-limited by the static load specifications
and up-limited by the rising and falling edge specification.

The minimum resistor value is determined by the maximum current load the output transistor can handle.
The I2C specification limit of 3 mA (for standard and fast mode) or 20 mA (for fast mode plus).

when Vdd = 1.8 V and Volmax = 0.4 V Rmin = 466 Ω

The maximum value is calculated from the rise time specifications of the I2C bus:

8 SCAA106–October 2009Troubleshooting I2C Bus Protocol
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SCAA106

www.ti.com References

For standard-mode I2C-bus: t = rise time = 1000 ns (1 µs), so RC = 1180.2 ns

Example: at a maximum I2C bus load of 400 pF: Rmax = 2.95 kΩ. For fast-mode: I2C-bus rise time = 300 ns
at 400 pF: Rmax= 885 Ω

4.2 Overcoming Maximum Capacitance Load

Adding more I2C and SMBus devices on the bus may exceed the 400-pF limitation. I2C multiplexors, I2C
switches, and I2C buffers and repeaters can isolate slave devices that are not currently needed to reduce
the overall system loading, and then meet the maximum load capacitance specification.

The I2C multiplexor splits the I2C bus in I2C bus subbranches. I2C multiplexors allow the I2C master to
communicate with only one of the multiple devices connected. Although I2C multiplexors are used to solve
address conflicts, they can also be used to reduce the load capacitance. They isolate devices that are not
needed to reduce the overall system loading. When one of the connected devices is selected, the I2C
multiplexor acts as a wire. The cumulative capacitive loading of the main I2C bus and the other active I2C
subbranches must be considered; so, care must be taken that each branch does not exceed the 400 pF
specified (beyond this, the rising and falling times specifications would be violated).

I2C switches are like I2C multiplexors but more than one device can be selected simultaneously.

I2C buffers/repeaters provide capacitive isolation from the I2C bus, so they are used to go beyond the
maximum capacitive load allowed in the bus 400 pF (specified for standard and fast I2C mode)

5 References
1. Interface Guide (SSZT009)
2. AN10216_1, I2C Manual. Jean-Marc Irazabal, Steve Blozis. http://www.nxp.com
3. CDCE906, Programmable 3-PLL Clock Synthesizer/Multiplier/Divider data sheet (SCAS814)
4. CDCE949, CDCEL949, Programmable 4-PLL VCXO Clock Synthesizer With 1.8V, 2.5V and 3.3V

LVCMOS Outputs data sheet (SCAS844)
5. An Introduction to I2C and SPI Frederic Leens, IEEE Instrumentation and Measurements Magazine,

February 2009
6. A SystemC-AMS Model of an I2C Bus Controller, M. Alassir, J.Denoulet, O. Romain, and P. Garda
7. TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals (SPRU131)
8. TMS320c54x/LC54x/VC54x, Fixed-Point Digital Signal Processors data sheet (SPRS039)

9SCAA106–October 2009 Troubleshooting I2C Bus Protocol
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/SSZT009
http://www.nxp.com/acrobat_download/applicationnotes/AN10216_1.pdf
http://www.ti.com/lit/pdf/SCAS814
http://www.ti.com/lit/pdf/SCAS844
http://www.ti.com/lit/pdf/SPRU131
http://www.ti.com/lit/pdf/SPRS039
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SCAA106

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	Troubleshooting I2C Bus Protocol
	1 Introduction
	2 I2C Communication
	2.1 Protocol Description
	2.2 I2C Protocol Screen Shots for CDC(L)949, CDC(L)937, CDC(L)925, CDC(L)913, and CDCE906/907
	2.3 Troubleshooting I2C Communication. Reasons for Missing Acknowledgment
	2.3.1 Timing
	2.3.2 Missing/Unexpected SCL Pulses
	2.3.3 Incomplete 8-Bit Block
	2.3.4 Missing Bytes
	2.3.5 False Slave Address
	2.3.6 Missing Acknowledgment After Changing the Address

	3 Solving Address Conflict When Sharing I2C Bus
	4 Hardware
	4.1 Pullup Resistor
	4.2 Overcoming Maximum Capacitance Load

	5 References

