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ABSTRACT
This application report introduces the concept of electromagnetic interference rejection ratio (EMIRR IN+)
as a measure of the immunity of an operational amplifier to responding to electromagnetic interference
(EMI). Texas Instruments has developed the ability to accurately measure and quantify the immunity of an
operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. Definitions,
equations, and example calculations of EMIRR IN+ are provided, as well as a discussion of how to
measure EMIRR IN+ using OPA333 and OPA333-Q1 as an example. EMI coupling and RF circuit
concepts are also reviewed for the reader’s benefit. This report shows the reader how to apply the EMIRR
IN+ parameter when EMI is a concern in a given circuit design. The EMIRR IN+ parameter is now being
tested for all new and many existing operational amplifiers available from Texas Instruments.
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1 Introduction
Electromagnetic interference (EMI) is becoming a greater concern for both system designers and
application engineers as more electronic applications move to wireless communication platforms. Today's
applications are using denser component spacing, placing mixed-signal analog and digital devices even
closer together. EMI can have detrimental effects in these systems. Fortunately, the issue of EMI is
receiving more attention and being addressed, resulting in circuit design techniques and semiconductor
products that offer increased EMI immunity.

EMI susceptibility and immunity tests have been in place for many years. These tests are intended to help
determine if a product will show robust EMI performance once in production. In many cases, these tests
are often required to ensure that the products meet certain compliance specifications and regulatory
requirements before shipment to customers and original equipment manufacturers. This testing can prove
to be time-consuming and costly; therefore, it is desirable to achieve high initial pass rates. Often, EMI
testing must be performed at an accredited laboratory that has the proper equipment, and multiple visits
are typically required to resolve compliance failures. Consequently, board and system-level designers
should be concerned with EMI at the beginning of the design process. Development and production of
devices that deliver excellent EMI performance, complemented with designs that apply good layout and
shielding techniques, result in excellent EMI immunity.

The EMI immunity of operational amplifiers (op amps) is very important because op amps are found in a
tremendous range of circuits where they are used to amplify and condition signals. Texas Instruments has
begun to address this issue by designing op amps and other linear devices with input EMI filters to
increase EMI immunity. The initial effectiveness of these EMI filters has been qualitatively observed when
compared to parts without the EMI filter. Texas Instruments now has the ability to accurately measure and
specify a quantitative op amp metric for EMI immunity, known as the EMI rejection ratio. The EMIRR
metric allows op amps to be directly compared in terms of EMI immunity. Equipped with this information,
designers can now select the best performing devices for EMI-sensitive applications. This approach offers
board and system-level designers a significant advantage and helps avoid the costly expenses of
additional design cycles.

1.1 How EMI Enters Systems and Devices
EMI can enter a system (or device) through either conduction or radiation, or both. Radiated EMI is not
discussed in detail here, because all interfering EMI signals are eventually converted to conducted EMI.
Radiated EMI is most often conducted by printed circuit board (PCB) traces or wires that lead to active
devices such as op amps. The physical length of these traces and wires can make them effective
antennas at microwave and radio frequencies (RF). Additionally, EMI-sensitive devices may be placed
within a shielded container that highly attenuates such radiated signals. In these cases, the wires and
connections in and out of the container form the only conduction path for the EMI signals into the devices.

Conducted EMI, on the other hand, can originate from several sources (see Ref. 1). In addition to radiated
EMI signals, conducted EMI may enter a system through the power mains or may be generated by the
system itself. Switching power supplies, for example, can be a source of EMI.
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Return currents from one circuit to ground can couple into another circuit if both circuits share a common
impedance to ground (also known as ground bounce), as illustrated in Figure 1.

Figure 1. Common Impedance to Ground

EMI can also be generated inside a system by fast-changing data and clock signals that capacitively or
inductively couple to a neighboring circuit. Fast voltage transients in circuits similar to that shown in
Figure 2 can cause displacement currents in nearby capacitively-coupled circuits. Fast current transients
can also inductively couple elsewhere in the circuit, and induce voltages across conductors that form
current loops as modeled in Figure 3. EMI threats can come from both external and internal sources in a
system; therefore, decoupling and filtering are employed at all interfaces to the outside world and often
directly at the sensitive devices.

Figure 2. Capacitive Current Coupling

Figure 3. Inductive Voltage Coupling
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1.2 How EMI Affects Op Amps
The most common op amp response to EMI is a shift in the dc offset voltage that appears at the op amp
output. Conversion of a high-frequency EMI signal to dc is the result of the nonlinear behavior of the
internal diodes formed by silicon p-n junctions inside the device. This behavior is referred to as
rectification because an ac signal is converted to dc. The small RF signal rectification generates a small
dc voltage in the op amp circuitry. When this rectification occurs in the op amp signal path, the effect is
amplified and may appear as a dc offset at the op amp output. Figure 4 shows an oscilloscope screenshot
of an op amp output shift that occurs as an RF signal is applied to the op amp input. This effect is
undesirable because it adds to the offset error; therefore, EMIRR is a useful metric to describe how
effectively an op amp rejects rectifying EMI.

Figure 4. Oscilloscope Image of Op Amp Output and Input
(Gain = 100, GBW = 18 MHz, RF Input = 300-MHz CW)

2 Defining EMIRR IN+
EMI rejection ratio, or EMIRR, is a metric that is used to specify the EMI immunity of an op amp.
Measurement of EMIRR can be performed in several ways, and thus a distinction between EMIRR IN+
and EMIRR will be made here. EMIRR can be measured by injecting an RF signal into any op amp pin;
the resulting dc offset shift [ΔVOS(dc)] is observed, as shown in Figure 5(a). However, when the
noninverting input is selected as the dedicated measurement pin for the injected RF signal, the
specification is referred to as EMIRR IN+. This configuration is illustrated in Figure 5(b).

Figure 5. EMIRR and EMIRR IN+ Measurement Comparison
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The op amp input pins exhibit the least EMI rejection compared to the power supply, output, or any other
op amp pin. The inputs are the most sensitive to EMI because changes in dc bias voltage or current in the
input circuitry are amplified. Both inputs exhibit nearly equal susceptibility because they are balanced and
have symmetrical layouts. Other op amp terminals yield very low gain to the output, and changes on these
pins do not disturb the op amp output voltage significantly. Therefore, EMIRR IN+ describes the minimum
ability of the device to reject rectifying EMI signals. Another benefit to measuring the dc offset at the op
amp output in the noninverting configuration is that doing so allows the offset to be referred back to the
input and thus be equated to a change in the input offset voltage. This technique is useful for measuring
op amps in various gain configurations, and is also more representative of real-world applications.
Additionally, it will be shown that this configuration is the most practical for measuring op amp EMI
immunity.

2.1 Calculating EMIRR IN+
EMIRR IN+ is measured in decibels (dB), similar to power-supply rejection ratio (PSRR) and common-
mode rejection ratio (CMRR) parameters. EMIRR IN+ is a logarithmic ratio where higher decibel values
correspond to better rejection and higher immunity. EMIRR IN+ is calculated by Equation 1.

(1)

VRF_PEAK is the peak amplitude of the applied RF voltage. ∆VOS is the dc voltage offset shift that takes place
in response to the applied RF. ∆VOS is the input referred change in offset voltage. The second logarithmic
term in the equation references the EMIRR IN+ to an input signal of 100 mVP. The quadratic relationship
between VRF_PEAK and ∆VOS requires a point of reference, making the EMIRR IN+ different from a typical
linear decibel ratio. This quadratic relationship is more apparent when Equation 1 is solved for ∆VOS, as
shown in Equation 2. Doubling VRF_PEAK quadruples ∆VOS.

(2)
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The following example shows how to calculate and apply EMIRR IN+.

Example 1. EMIRR IN+ Calculation

Consider an RF signal of 100 mVP at 900 MHz that is coupled into an input terminal of an op amp by way of
conduction. At 900 MHz, the op amp EMIRR IN+ performance is 60 dB. Applying Equation 2, substituting 60
dB for the EMIRR IN+ and 100 mVP for VRF_PEAK yields Equation 3. The resulting dc input-referred voltage shift
is 100 μV.

(3)

If the op amp is configured as a unity-gain buffer, then the output voltage shift will also be 100 μV.

For comparison, consider a second op amp with an EMIRR IN+ of 20 dB at 900 MHz, in a noninverting gain
configuration with a gain of 100. Applying Equation 2 again, the input-referred voltage shift is 10 mV, as shown
in Equation 4.

(4)

The resulting output voltage shift of 1 V is calculated as shown in Equation 5. The output shift is 1 V because
the input-referred offset shift is multiplied by the amplifier gain.

(5)

It is difficult to predict the exact level of RF signal that enters the op amp input. The RF signal amplitude of
100 mVP used in this example is a large signal level to illustrate a worst-case estimate of offset shift as a
result of EMI. This illustration shows that an op amp with low EMIRR IN+ configured with a large gain is
very susceptible to EMI-induced errors. RF energy with comparable levels may be encountered in cell
phones, GPS devices, or other wireless applications that operate within industrial, scientific, and medical
(ISM) frequency bands.

NOTE: The actual voltage offset observed at the op amp output may not always appear to follow the
simple gain relationship of AV = 1 + RF/RI. This difference is a result of the complex ac
impedance of the feedback and ac leakage paths that vary with frequency. The resulting dc
rectified signal may therefore vary over frequency and produce an apparent change in the
amplifier gain.

3 Measuring Op Amp Input and Output Voltages
Characterization of the EMIRR IN+ for an op amp requires the application of an RF signal to the op amp
input while measuring the resulting dc offset voltage at the output. Applying known RF voltages to the op
amp input proves to be non-trivial. In this section, the challenges of configuring and measuring the EMIRR
IN+ of an op amp are discussed.

3.1 Op Amp Biasing
Op amp inputs are biased with a dc common-mode voltage halfway between the positive and negative
supply rails for the EMIRR IN+ test configuration. This technique is the standard biasing condition for most
specifications where the op amp behaves linearly. The RF input signal is superimposed on the common-
mode voltage and is applied to the op amp input. The RF and dc signals each need separate supplies;
these supplies must be isolated to prevent interference and protect the device from overvoltage
conditions.
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Isolation of the RF and dc signals is accomplished by the use of a bias tee. A bias tee can be modeled as
a large capacitor and inductor, as shown in Figure 6. The three terminal bias tee has two inputs for RF
and dc signals and one output for the superimposed RF and dc signal. The signals sources pass through
the inputs to the output with minimal loss.

Figure 6. Bias Tee Circuit Model

3.2 RF Considerations
Basic ac circuit theory equations that many engineers are familiar with have limitations. These equations
work well when concerned with relatively low signal frequencies. (Here, the discussion of low frequencies
presumes that the wavelength of the signal in question is much larger than the physical dimensions of the
circuit that is being analyzed). Long wavelengths, which correspond to low frequencies, undergo little
phase change over short lengths. The voltages and currents of a long wavelength are uniform across
short conductors in the circuit. This characteristic allows circuit behavior to be modeled as lumped
elements connected with wires of zero impedance (or perfect conductors), such that voltages and currents
are uniform along these conductors.

The lumped circuit model becomes less accurate as the frequency increases. A distributed circuit model
must then be adopted to accurately describe the circuit behavior. At high signal frequencies, circuit
dimensions become an important parameter relative to the frequency. As voltage and current waves travel
along a conductor, phase changes become significant. These phase changes produce voltage and current
maximas and minimas along the length of the conductor. Long conductors no longer behave as perfect
conductors but as distributed impedances along the length of the circuit. The circuit can be modeled as
distributed elements, or as a transmission line with ever-changing voltage and current levels along the
conductor. These models are illustrated in Figure 7.

Figure 7. Lumped Circuit Model vs. Distributed Circuit Model
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Another challenge when working with RF systems is impedance mismatch. Signals on a transmission line
travel as voltage and current waves and are able to reflect at interfaces. Interfaces that occur where there
is a change in impedance (from one transmission line to another or from a transmission line to a load) will
cause wave reflections that are proportional to the degree of mismatch. This concept is illustrated in
Figure 8 (for more information, see Ref. 2).

Figure 8. Impedance Mismatches Cause Voltage and Current Reflections

Wave reflections change the magnitude of the voltage and current waves along the transmission line and
may make it difficult to know the exact signal level at any point along the transmission line.

3.3 Applying the RF Input Signal
Measuring the EMIRR IN+ of an op amp requires that we know the RF voltage amplitude seen at the op
amp input. A high-frequency signal generator can be used to generate and control the amplitude and
frequency of the RF signal. However, the op amp input voltage amplitude will be different from the initial
RF voltage amplitude that is created by the signal generator because of impedance mismatches. The RF
signal must travel from the signal generator along a cable to a bias tee, through a PCB connector, and
along a PCB trace to the op amp input. The input signal will inevitably experience multiple impedance
mismatches and reflections along this path. An illustration of the RF signal path and the transmission line
model is shown in Figure 9.

Figure 9. RF Input Signal Path for Measuring EMIRR IN+

Every interface between cables, connectors, and traces may potentially present an impedance mismatch
and voltage reflections. Many of these voltage reflections can be avoided or minimized by carefully
designing the path up to the op amp to match the system impedance of 50 Ω, set by the signal generator
output impedance. Nevertheless, the op amp input impedance will not be matched to the system
impedance. At low frequencies, a 50-Ω termination resistor in parallel with the very high op amp input
impedance can be used to reduce this impedance mismatch. However, at higher frequencies, parasitic
reactances cause the impedance of the termination resistor and the op amp input impedance to change,
and an impedance mismatch with unknown properties is presented. Achieving a consistent impedance of
50 Ω across a wide range of frequencies becomes a very difficult task.
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One approach to resolving this problem of knowing the RF voltage amplitude applied to the op amp input
is to allow for a single voltage reflection. In this approach, the op amp input impedance is allowed to be
mismatched from the system, but the amplitude of the resulting voltage reflection must be known at all test
frequencies such that the RF input voltage amplitude to the op amp can be calculated. If the voltage
reflection at the op amp input is the only voltage reflection in the system, then a network analyzer can be
used to directly measure the voltage reflection associated with this impedance mismatch.

NOTE: If other impedance mismatches exist in the input path to the op amp they will be
compounded with the op amp impedance mismatch and change the voltage reflection
measured by the network analyzer. Allowing for more than one large impedance mismatch
adds uncertainty to the reflection measurement. A few small mismatches in the system can
be tolerated because they can be calibrated out of the system using the network analyzer.
This calibration procedure is called de-embedding the device under test from the test fixture.

The RF signal injection and voltage reflection measurement both occur at the noninverting input of the op
amp. The noninverting input is preferred because an RF signal can directly connect to the noninverting
input via a transmission line or waveguide. Although the inverting input could also be used, it appears as a
more complex RF environment. The feedback network connects to the inverting input. This connection
introduces added RF paths, increases signal coupling, and causes additional reflections.

The following example demonstrates how to calculate the voltage at the op amp input when a signal
generator drives the op amp via a 50-Ω transmission line.

Example 2. Voltage Calculation

A 1-GHz sine wave with a power level of 1 mW (0 dBm) is applied to the input of a given transmission line.
The voltage reflection (|S11|) at the transmission line or op amp interface is measured with a network analyzer
to be –0.63 dB at 1 GHz. The voltage that the signal generator applies to the transmission line is shown in
Equation 6.

(6)

The root-mean square (RMS) value is converted to a peak value by Equation 7.

(7)

This applied voltage is not the same as the incident level at the op amp input. To calculate the incident, or
actual, voltage seen at the op amp input, we must add the applied voltage to the reflected voltage using
Equation 8.

(8)

NOTE: A large voltage reflection (|S11|) that has a level of nearly 0 dB causes the actual voltage at
the op amp input to nearly double; however, this value is reasonable. Consider what
happens when a 50-Ω signal generator is connected to a high-impedance oscilloscope input.
The signal viewed on the oscilloscope shows voltage amplitude doubling from the expected
generated signal. If the oscilloscope input impedance is set to match the output impedance
of the signal generator (50 Ω), then the expected voltage amplitude is measured by the
oscilloscope. This effect occurs because the voltage divider created by the signal generator
and oscilloscope connection is expected to halve the voltage produced by the signal
generator. The same effect of voltage wave doubling is observed when a transmission line is
terminated with an open or high-impedance load. The incident voltage wave that travels
down the transmission line expects to see a matched load; when a mismatch occurs, a
corresponding voltage reflection occurs to satisfy Ohm's Law.
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3.4 Measuring the Output Offset Voltage
The op amp dc output offset voltage that results from RF signal rectification is a straightforward
measurement with a high-resolution multimeter. A low-pass filter (LPF) is connected between the op amp
output and the multimeter to prevent any residual RF from disrupting the multimeter operation. The op
amp rectifies and attenuates most of the RF signal, but RF signals may continue to be present at the op
amp output because RF can couple through the op amp or through a feedback network.

A voltage will be present at the op amp output that is related to the inherent input offset voltage. This
offset is not related to the offset created by applying an RF signal and should not be included when
calculating the EMIRR IN+. To remove this offset from the multimeter measurement, two different
measurements are taken. First, the dc output offset of the op amp is sampled multiple times with the RF
source of the signal generator turned off. Next, the RF source is turned on and the output offset of the op
amp is sampled again. The averages of these two sampling periods are subtracted, and the difference is
the amount of output offset produced by dc rectification of the RF signal. This procedure is repeated for all
RF frequencies for which the EMIRR IN+ of the op amp is characterized.

3.5 Complete EMIRR IN+ Test Configuration
Figure 10 shows the overall circuit configuration for testing the EMIRR IN+, after voltage reflections have
been determined. The RF source is connected to the op amp noninverting input terminal via a
transmission line. Here, the op amp is configured as a unity-gain buffer (G = +1V/V). The op amp output is
connected to an LPF and a digital multimeter (DMM). The calculated RF input voltage and the measured
dc offset voltage provide the necessary values to calculate the EMIRR IN+ given in Equation 1.

Figure 10. EMIRR IN+ Test Circuit Configuration
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4 EMIRR IN+ of the OPA333 and OPA333-Q1
The OPA333 and OPA333-Q1 family of devices is a CMOS, micropower, zero-drift, rail-to-rail input/output,
precision operational amplifier with 350-kHz GBW. The OPA333 and OPA333-Q1 incorporate internal EMI
filtering to achieve very robust EMI immunity. The EMIRR IN+ performance of the OPA333 and OPA333-
Q1 was measured using the test configuration described in this application report. Figure 11 shows the
EMIRR IN+ of the OPA333 and OPA333-Q1 measured from 10 MHz up to 6 GHz.

Figure 11. OPA333 and OPA333-Q1 EMIRR IN+ Performance

The OPA333 and OPA333-Q1 have shown the highest EMIRR IN+ in the 250-MHz to 6-GHz range than
any other tested op amp measured to date, with better than 100 dB over this entire range. This frequency
range is of key concern for many wireless applications. Table 1 lists some common wireless applications
and the respective associated frequencies. Knowledge of op amp EMIRR IN+ performance at critical
application frequencies allows selection of the best devices for high-performance analog applications.

Table 1. OPA333 and OPA333-Q1 EMIRR IN+ for Common Wireless Frequencies of Interest

Frequency Application/Allocation EMIRR IN+
400 MHz Mobile radio, mobile satellite/space operation, weather, radar, UHF 112.5 dB
900 MHz GSM, radio com/nav/GPS (to 1.6 GHz), ISM, aeronautical mobile, UHF 120.9 dB
1.8 GHz GSM, mobile personal com broadband, satellite, IEEE L-Band 114.5 dB

802.11b/g/n, Bluetooth®, mobile personal com, ISM, amateur radio/satellite,2.4 GHz 115.0 dBS-band
3.6 GHz Radiolocation, aero com/nav, satellite, mobile, S-band 145.7 dB

802.11a/n, aero com/nav, mobile coms, space/satellite operation, IEEE C-5 GHz 113.2 dBband

5 Summary
In EMI-sensitive applications it is important to begin circuit designs with components that deliver high EMI
immunity. The EMI immunity of operational amplifiers is characterized using the EMIRR IN+ specification
parameter. Texas Instruments now measures EMIRR IN+ for its new high-precision op amps to provide
valuable information to customers concerned about EMI. This report discusses how these measurements
are characterized and performed.
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