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Introduction

Time-of-flight techniques have been employed for more than a century for ranging purposes. However,
only in the recent past have the speed and size of electronics been able to build small and affordable ToF
cameras that provide a complete depth map of a scene. Such cameras enable a myriad of industrial and
consumer applications.

The primary purpose of this document is to demystify the ToF camera system design. This document
describes the detailed functionality of ToF systems, explains the trade-offs involved in a typical ToF
camera, and provides a step-by-step ToF camera design flow.

1.1 Intended Audience

This document is targeted to people who want to:

» Start a new ToF camera design,

* Incorporate a ToF system in their solution,

» Determine if the ToF technique is suitable for their application, and
e Learn about ToF systems in detail.

1.2 Preliminary Study
e Technical White Paper, Time-of-Flight Camera — An Introduction (SLOA190)
* Wikipedia

Al trademarks arc the :‘\rnlnnrh/ of thaoir rnclr'\nr\ri\/n Qunors
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Time-of-Flight Basics

The core of an optical time-of-flight system consists of a light transmitter and a receiver. The transmitter
sends out a modulated signal. The transmitted signal bounces off objects in the scene and part of the
reflected signal comes back to the receiver. The round-trip time from the transmitter to the receiver is an
indicator of the distance of the object that the signal bounced back from. If the signal is periodic, the phase
difference between the transmitted and received signal is an indicator of the round-trip time.

2.1 Single-Pixel ToF System

One of the simplest ToF systems is a single-pixel ToF system (also referred to as ranger in rest of this
document). Typically, these systems employ a modulated collimated laser as a transmitter and a single
photodiode as a receiver, as shown in Figure 2-1.

Target Transmitter

Z Modulation

Block
!

& Correlation ADC

Block + — Phase
. Processing
Receiver

Figure 2-1. Single-Pixel ToF

A ranger provides distance information of a single spot. For the ranger to be able to provide the depth
map of an entire scene, some form of scanning must be performed. Such systems are called scanning
ToF systems and a detailed explanation about scanning ToF systems is beyond the scope of this
document. A lens is strictly not necessary as long as the modulated illumination is focused only on the
region of interest because depth information of a single spot is measured in a ranger. Even if a lens is
used, the only purpose for the lens is to focus light on the receiver diode, rather than for image formation.
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2.2 ToF Camera

ToF Camera

A ToF camera obtains the depth map of an entire scene. The transmitter consists of an illumination block
that illuminates the region of interest with modulated light and the sensor consists of a pixel array that
collects light from the same region of interest, as shown in Figure 2-2. The Tl ToF sensors belong to a
class of ToF sensors that have in-pixel demodulation. That is, each pixel develops a charge that
represents the correlation between transmitted and received light. A lens is required for image formation

while maintaining a reasonable light collection area because individual pixels must collect light from
distinct parts of the scene.

Illumination
Optics

™ Transmitter

Modulation
Block

e Readout

+ADC
/ Receiver array

Lens  with in-pixel demodulation.

> Computation [ Phase

Figure 2-2. ToF Camera

A typical ToF camera sensor does not have a dedicated analog-to-digital converter (ADC) and processing
block for each pixel. The analog data in the pixel array must be readout and then processed. Therefore,
unlike the single-pixel ToF system, data acquisition the data processing occur at separate instances of

time. The duration of data acquisition is called integration time and the duration of data readout is called
readout time.
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All pixels in the sensor are controlled by a common demodulation input that comes from the modulation
block. The demodulation input to the pixels is synchronous with the illumination block modulation. In the
simplest form, each pixel can be approximated by the model shown in Figure 3-1.

7& Rst Rst —>r
Note that DMIX signals
_//1\ |_NODEA NODES | ‘k are active low throughout

Address
Decode
e

[ F‘(— .
To Analog l l To Analog

Readout Readout
Buffers Buffers

/T\ rest of the document.
Address
Decode

Figure 3-1. Simplest Pixel Form

Each measurement is split into four phases: reset, integration, readout, and dead time, as shown in
Figure 3-2.

Reset Integration Readout Dead time

Figure 3-2. Phases

During reset time, the pixel is reset with the Rst signal to a known voltage value (Vg). During integration
time, the photocurrent is directed towards Node-A or Node-B by driving the demodulation signals DMIXO0
and DMIX1 in the opposite phase. If DMIXO is active, Node-A discharges and conversely (if DMIX1 is
active), Node-B discharges. During readout time, demodulation is stopped and the address decode
signals are activated to readout the entire array in a programmed sequence.

3.1 Ideal Pixel: Scene With No Ambient Light

With the pixel structure previously discussed, if there are no mismatches between capacitances C, and Cg
and if the reset voltages of both capacitors are the same, a simple timing scheme as suggested Figure 3-3
can be used to measure the distance.

I
lllumination |e-|— ] | | |
T [

8Ly
Reflected light |

I I
T T
| /l—, Charge emoved from NDJE -A. I |
DMIX0 [ L |
Ter = Round trip time
Charge removed from Node-B. RT

| 7 here f | T lllumination pulse period

pmixt |

I | |
Figure 3-3. Simple Timing Scheme

If A and B are respectively defined as the voltages on Node-A and Node-B, and with T, less than or
equal to T, A and B can be calculated by Equation 1 and Equation 2:

A:VR_(T_TRT)XK (1)
B=Vg,—Te xK 2
8 ToF Camera Sensor: The Pixel SBAU219D—-December 2013—-Revised May 2014
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Distance can be calculated with Equation 3. The unambiguous range is defined by Equation 4.

ined dist _ distance N _ Tpr Vg — B
normalized distance = range phase === = 2V, — (A+ B)
©)
T Xc
range = ——
€T
4

Note that phase and normalized distance are used interchangeably throughout this document.

3.2 Practical Pixel: Offset, Scene with Ambient Light
With the same timing as in Section 3.1, if the voltages developed resulting from ambient light (V,y) are
introduced and the pixel reset voltages (Voy) are different on nodes A and B, the formulae listed in
Section 3.1 no longer work. Instead, the voltages on Node-A and Node-B are now defined by Equation 5
and Equation 6.
A=V + Vo + Vg — (T =Tgy) XK ©)
B:VAB+VOB+VR_TRTXK (6)
Now there are four unknowns [(Vas + Voa), (Vag + Vog), K, and Tg;] and only two equations. Therefore, to
resolve the additional unknowns, one more measurement must be performed. A simple way to run the
additional experiment is to run the experiment without illumination. Doing so results in four equations
(Equation 7, Equation 8, Equation 9, and Equation 10).
This gives us 4 equations :
AOZVAA+VOA+VR_(T_TRT)XK (7)
Bo=Vae + Vog + Vg = Ter XK (8)
AOFF = VAA + VOA + VR (9)
Borr = Vag + Ve + Vi (10)
A, and B, are determined with a modulating illumination and Ay and B are determined with
illumination off.
If we use Equation 11 and Equation 12 (again solving for Tk;), distance is determined by Equation 13.
A= Ao - AOFF = _(T - TRT) x K (11)
B = By — Bogr = —Tar X K (12)
phase =B/ (A + B) (23)
3.3 Practical Pixel: Gain Error
With the same timing as in Section 3.3, if the capacitances C, and Cg are different in value or discharge
at different rates for the same amount of light, the formulae listed in Section 3.3 no longer work. A and B
are now given by Equation 14 and Equation 15:
A= _GA x (T - TRT) x K (14)
B=-Ggx TerxK (15)
SBAU219D—-December 2013—-Revised May 2014 ToF Camera Sensor: The Pixel 9
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Voltage

|

Now there are four unknowns (G,, Gg, Trr, and K) and only two equations. Therefore, to determine the
additional unknowns, more measurements must be performed, which brings us to the typical 4-quad ToF
system. One way to perform the measurements is to delay the illumination modulation phase by 0°, 90°,
180°, and 270° with respect to the sensor demodulation signal phase, as shown in Figure 3-4. Each
measurement is called a quad.

Quad

. Integration

Modulation

MODO

MOD1

Modulation L |

L1

DMIX0 | | J
|
[

DMIX1

Figure 3-4. Sensor Demodulation Signal Phase

The waveforms in Figure 3-5 and Figure 3-6 show the ideal relationship between A-B and Tx;, assuming
that the modulation and demodulation waveforms are perfect square waves.

In practice, the modulation and demodulation waveforms are not as perfectly square as depicted in
Figure 3-5. As a result, the A-B versus T waveforms resemble sinusoids more than triangular waves.
Figure 3-6 depicts the waveforms with sinusoids.

T/4 T/4 T/4 T/4 T/4 T/4 T/4 T/4
T/4 T/4 T/4 T/4 T/4 T/4 T/4 T/4

A _B /\ /\
0Po S~~—. ~ A /\/\
0™Po
T P
AgoBoo N ~l
qu’c Agg-Bgg \/’\/\
Ao B \\//\\// 2
180" 180 o
Tnzﬁou_ndtfipﬂme X = Aixo'Blso \\//\\//
A LT~ LT~ | T = lllumination pulse period T4r = Round trip time
27072270 ~_— ~_ A B /\/\/ T = lllumination pulse period
27072270
E—
Tar

TRT
Figure 3-5. Waveform 1 )
Figure 3-6. Waveform 2

Incidentally, the sinusoids are simpler to work with for rigorous mathematical applications. The formulae
for A-B for the quads are listed in Equation 16, Equation 17, Equation 18, and Equation 19.

Ao - Bo = (VAA + VOA + VR) - (VAB + VOB + VR) - (GA + GB) x 2cos (TRT / T) (16)

Augo = Bigo = (Van + Vou + Vi) = (Vg + Vo + Vi) + (G, + Gg) X 2¢0S (Trr / T) a7

Ago = Bgo = (Van + Vou + Vi) = (Vg + Vg + Vi) = (G + Gg) % 2sin (T / T) (18)

Az70 - Bz70 = (VAA + VOA + VR) - (VAB + VOB + VR) + (GA + GB) x 2sin (TRT / T) (19)

The in-phase component can be calculated as | (Equation 20) and Q (Equation 21).

I'= (A — By) = (Ago — Bigo) = —(G + Gg) x 4c0s (Tgr / T) (20)

Q = (Ago - Bgo) - (A270 - Bz70) = _(GA + GB) x 4sin (TRT / T) (21)

Finally, the formula for phase is determined by Equation 22:

Phase =tan™ (Q /) (22)
10 ToF Camera Sensor: The Pixel SBAU219D—-December 2013—-Revised May 2014
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This theory can be generalized for an N-quad system. The 1/Q computation for a generic N-Quad system
can be generalized to Equation 23 and Equation 24.

i=N .
21
I = D; cos (—)
N
i=0
(23)
i=N ,
0 D s (ZTE)
= sin | —
' N
=0
(24)
The parametric relationship between I, Q, and phase is given in Equation 25 and Equation 26.
Phase =tan™ (Q /) (25)
Distance = (Phase x Range) / 21 (26)

In the parametric form, | and Q can be plotted against phase as in Figure 3-7:

Figure 3-7. Parametric: | and Q versus Phase

As shown in Figure 3-7, phase is the distance information and confidence is the indicator of amplitude of
the signal. If confidence is higher, the radius of the circle in Figure 3-7 is higher and, therefore, the phase
distortion caused by noise is lower. Additionally, if confidence is higher, the signal-to-noise ratio (SNR) is
higher. The formula for confidence is given by Equation 27:

confidence = /12 + Q2

(27)

3.4 Practical Pixel: Non-ldealities in the Conversion of Photons to Voltage

To understand the tradeoffs involved in a ToF system, the non-idealities of a ToF pixel must be

understood. In this section, the following non-idealities are introduced:

+ Fill factor,

* Responsivity, and

» Demodulation contrast.
SBAU219D-December 2013—Revised May 2014 ToF Camera Sensor: The Pixel 11
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3.4.1 Fill Factor

Apart from the active light collection area, a ToF pixel contains other circuitry related to demodulation,
reset, and readout. Therefore, all this circuitry reduces the light collection efficiency. Fill factor is defined
as Equation 28. Therefore, the useful power at the pixel is determined by Equation 29.

_ Active Pixel Area
F Total Pixel Area (28)
Useful Power at Pixel = p = Incident Power x F. = p; X F. (29)

3.4.2 Responsivity

The conversion of photons to electrons is a quantum process and is governed by probability. Thus, not all
the light that hits the pixel is converted to electrons. This non-ideality is called quantum efficiency.
Quantum efficiency is a function of wavelength and, for a particular wavelength, is defined as by
Equation 30:

o no.of electrons generated n,
quantum ef ficiency = n(d) = - — - - =—
no.of photons hitting the active pixel area  n,,

(30)
The total generated electrons (n,) consist of two components, as shown by Equation 31:
n,=n,+n, (31)
n,, represents the number of electrons generated resulting from the modulation signal light and n,
represents the number of electrons generated resulting from ambient light.
Responsivity is another term used to indicate efficiency and is closely related to quantum efficiency.
Responsivity is defined by Equation 32:
. current generated [ Axgq.,xn, AxXgq,
responsivity = — - - =—= = X (1)
power incident on the active pixel area p he xn, hc
where:
* his the plank’s constant,
e cis the speed of light in the medium,
* Ais wavelength of the light used, and
* Q. is the charge of a single electron. (32)
From Equation 32, i and g can be derived by Equation 33 and Equation 34. Therefore, v is calculated by
Equation 35.
i = Responsivity x p (33)
g =i x t, = Responsivity x p x t, (34)

q responsivity X p X t;

v=—
c c

where:
e Qs the charge collected,
et is the integration time, and
* Vs the voltage developed on each node of the pixel. (35)

12 ToF Camera Sensor: The Pixel SBAU219D—-December 2013—-Revised May 2014
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Therefore, confidence can be derived with Equation 36:

responsivity X p; X Fp X t;

confidence «
c

where:
e p,is the incident-modulated power on each pixel during integration time. (36)

In summary, if any fill factor, responsivity, illumination power, or integration time increases, confidence
increases and SNR thus increases. Although decreasing the capacitance of the pixel seems to increase
the confidence, doing so also increases the noise voltage because the input noise current is scaled by the
same factor. Therefore, decreasing capacitance does not lead to a proportional increase in SNR.

Note that when the pixel is chosen, responsivity, fill factor, and pixel capacitance are fixed. Therefore, in a
given system, Equation 36 reduces to Equation 37.

Confidence « p, x t, (37)

3.4.3 Demodulation Contrast

Thus far, demodulation is assumed to be perfect. That is, when DMIXO0 is low and DMIX1 is high, all
generated electrons are collected by Node-A and none are collected by Node-B. Conversely, when DMIX1
is low and DMIXO is high, all generated electrons are assumed to be collected by Node-B and none by
Node-A. In practice, this collection ratio is rarely the case. The non-ideality that represents this
phenomenon is called demodulation contrast.

For example, assume that DMIXO is out-of-phase with illumination and DMIX1 is in-phase for certain
durations. During this time, if the number of electrons collected by Node-A is n., and the number of
electrons collected by Node-B is n,, the demodulation contrast is defined by Equation 38.
. Neq — Nep
demodulation contrast = C; = ———=>
Neq + Nep

(38)
The ideal value of demodulation contrast is 1. If C, is lower, the amplitude of the differential signal A-B
reduces and thus confidence reduces. Demodulation contrast is a function of frequency. Typically,
demodulation contrast is highest at zero frequency (dc) and decreases with increases in frequency.

3.5 Practical Pixel: Modulation Voltage

So far, the demodulation controls are assumed to be ideal switches. The Tl ToF sensors use a current
assisted photonic demodulator (CAPD) pixel. For a CAPD pixel, the correct representation is not a switch
but an electrical field that is setup to move the electrons to preferentially Node-A or Node-B as shown in

Figure 3-8 .
<— Rst Rst —>
7 W F S e scmelowoughout
/I\ T rest of the document.

Address omixo | omixe Address

Decode . Fr . Decode
To Analog $ l To Analog
Readout Readout
Buffers Buffers

Figure 3-8. Practical Pixel
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Node A and Node B consist of reverse biased diodes. Modulation is achieved by alternatively changing
the direction of the voltage applied between the DMIX0 and DMIX1 nodes. The typical pixel structure is as
shown in Figure 3-9.

............ Field Lines

Electron Paths

Figure 3-9. Pixel Structure

Due to this modulating field applied within the substrate, electrons that are generated deeper in the
substrate (>4um) can be collected. The ability to collect electrons that are generated deeper in the
substrate is one of the main reasons for the better responsivity and demodulation contrast of CAPD pixels
with respect to competing technologies. The voltage used for demodulation controls the electric field
intensity and thus the drift velocity of the generated electrons. Therefore with higher demodulation voltage:

» Demodulation contrast is higher.
* Responsivity is higher.

e Current through the substrate increases, sensor power is higher, and more heat is generated within the
sensor due to resistive losses.

3.6 Noise Sources

Thus far, the factors that determine the signal amplitude have been discussed. However, to determine the
phase SNR, the factors that affect noise as well must be identified. The most significant sources of noise
are pixel reset noise and photon shot noise.

3.6.1 Pixel Reset Noise
Capacitors have an inherent reset noise. The amplitude of this noise in terms of charge is given by

Equation 39.
Ny = VKTC
(39)
The amplitude of this noise in terms of number of electrons is given by Equation 40.
VKTC
Np = —
de
(40)
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3.6.2

Photon Shot Noise

Photon generation is governed by probability because the generation of photons is a quantum process.
The rate of photon generation has a Poisson distribution. Similarly, the reflection of photons by the target
and the conversion of photons to electrons within the pixel are also quantum processes that have a
Poisson distribution. As a result, if the total number of electrons generated is n,, the standard deviation
(n,) of n, is given by Equation 41.

ng = \/n_e
(41)

With increases in integration time or incident power, confidence increases proportionally. However, shot
noise increases as a square root at the same time. Therefore, SNR increases only as square root when
shot noise is the dominant form of noise. Note that n, consists of all generated electrons because of the
incident ambient photons and the modulated signal photons.

With increase in demodulation contrast, confidence increases proportionally. Because demodulation
contrast is only responsible for rearranging electrons and not for generating electrons, increases in
demodulation contrast does not lead to an increase in shot noise. As a result, SNR increases
proportionally with demodulation contrast.

3.6.3 Summary
When the number of generated photons is small, n; dominates. When the number of photons is large, ng
dominates.
When confidence is relatively low, pixel reset noise is the dominant form of noise. Likewise, when
confidence is relatively high, shot noise is the dominant form of noise.
3.7 Signal-to-Noise Ratio (SNR)
The phase SNR is governed by the relationship in Equation 42.
Signal n, xCy, n, X Cy
Phase SNR & —— o ——— o« ——
Noise JnZ+ni  Jn,+n
(42)
However, because depth resolution is determined by Equation 43, d, is therefore determined by
Equation 44.
' _ range X 2T C
depth resolution = depth noise = = —
phase SNR  2f,, X (phase SNR)
(43)
¢ X /N, + n
dres = Ny K ———F——+
N, X frn X Cy
where:
« f,is the modulation frequency and
e cis the speed of light. (44)
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When pixel reset noise is the dominant form of noise in the system, Equation 43 reduces to Equation 45.

CXngp
Ng X ————
Ny, X fin X Cq4

(45)

That is, depth noise is inversely proportionate to the number of electrons collected. Therefore, increasing
integration time or illumination power improves the depth noise proportionally in this region of operation.

When ambient light intensity is low and when shot noise is the dominant form of noise in the system,
Equation 43 reduces to Equation 46.

c
Jm X fin X Cy
(46)
That is, depth noise is inversely proportional to the root of the number of electrons collected. Therefore,

increasing integration time or illumination power improves the depth noise only by the root in this region of
operation.

Ny

Also, note that the product of demodulation frequency and demodulation contrast is inversely proportional
to depth noise. The product of demodulation contrast and demodulation frequency peaks at an optimal
frequency because demodulation contrast decreases with frequency for a given pixel. The product of C,
and f at the optimal frequency is an important figure of merit of the pixel, because this product indicates
the best attainable demodulation performance using the pixel. This frequency changes with demodulation
voltage and typically ranges between 40 MHz to 80 MHz for first-generation Tl ToF sensors.

3.8 Well Capacity: Saturation
Each pixel can collect a maximum number of electrons on Node-A and Node-B. This maximum limit is
called well capacity. As discussed previously, when SNR must be improved, integration time or
illumination power can be increased. However, after a point, n, must go beyond the well capacity. One
way to overcome this limitation is to repeat the same measurements multiple times with shorter integration
times to achieve the intended cumulative integration time.
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ToF Camera Sensor: Frame Rate

Each frame is divided into a similar set of measurements called sub-frames, as shown in Figure 4-1. Each
sub-frame has all the measurements necessary for phase computation. Multiple sub-frames are used to
overcome the limitations of pixel saturation, and therefore enhance the dynamic range of the system.

Sub-frame-1 Sub-frame-2 ... Sub-frame-n Frame dead time
Figure 4-1. Sub-Frames
Each sub-frame is divided into quads, as shown in Figure 4-2. Each quad can have a different phase

between illumination and sensor modulation signals.

Sub-frame
Quad-1 Quad-2 Quad-3 L Quad-n

Figure 4-2. Quads

Each quad is further split into four stages, as shown in Figure 4-3. Table 4-1 describes these stages.

Quad
Reset Integration Readout Quad dead time

Figure 4-3. Stages

Table 4-1. Quad Stage

Quad stage Description
Reset The sensor is reset to clear the accumulated signal.
Integration The sensor and illumination are modulated by the TFC. The sensor acquires the raw ToF signal.
Readout _The raw pixel data in the selected region of interest is readout by the TFC to an external ADC and
is then read by the TFC.
Dead time The sensor and ADC are inactive. The TFC places itself and the ADC in low-power mode.

To achieve a higher frame rate for a fixed integration time and number of pixels to be readout, a
combination of the following suggestions can be used:

» Decrease the number of sub-frames and
» Decrease the quad dead time or the frame dead time.
The ratio of total integration time over the entire frame to the total frame time is called the integration duty

cycle (dy). If dead time is reduced, d;, increases. d, decides the ratio of peak power to average power in
the system.
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The receiver optics consists of a lens that forms the image on the sensor and additional filters, if required.
The lens controls the field of view (FoV), aperture (light collection area), and depth of field (DoF).

Field of View (FoV)

FoV is one of the first parameters chosen when a ToF system is designed. A typical field of view is shown
in Figure 5-1. FoV must be chosen appropriately as per the coverage requirements of the application. For
example, for a short-range, gesture-recognition application for laptops, a wide field of view is more
suitable because the subjects are close to the camera. On the other hand, for an application such as
gesture-recognition for TVs, a narrow field of view may be appropriate because the subjects are far away.

< Vi = —>Image Circle

FoV

Lens  Sensor

Figure 5-1. Field of View (FoV)

The diagonal FoV (Equation 47) is a function of the distance between the optical center of the lens and
the sensor (Vi) and the sensor diagonal (Dg). In practice, for applications where the subject distance is
much larger than focal length of the lens, V¢ is nearly equal to the focal length of the lens.

Ds Dg FoV
——%-——::Extan(———)
F Vi 2 )

Likewise, horizontal FoV (HFoV) and vertical FoV (VFoV) are related to the sensor width (Wg) and height
(Hs) respectively, as shown by Equation 48 and Equation 49.

W W HFoV
———x———::than( )
F Ve

(48)

Hg Hg VFoV
——-z-——zIthan( )
F Ve
(49)

Sensor size can be observed by Equation 48 and Equation 49 because the sensor size is fixed. Thus,
when the FoV requirements are chosen, the focal length of the lens is automatically determined. If the FoV
is wider, focal length is smaller. Although focal length is not the only factor that determines the lens stack
height, a smaller focal length typically means a smaller lens stack height.

18
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5.2 Aperture
The aperture of a lens can be defined as the effective area of the lens that collects light from the scene. A
reasonable assumption is that this area is circular in shape and the diagonal can be denoted as D. The
ratio of focal length (f) to D is called the f-number (f.no) of a lens. For a given focal length, if the f-number
is higher, D is smaller and thus aperture is smaller. Conversely, if the f-number is lower, D is larger and
thus aperture is larger. Equation 50 provides a summary.
nD? wf?
aperture = = -
P 4 4x(f.no)?
(50)
If the aperture is higher, light collected is higher. Therefore, illumination power requirements are lower. For
a given focal length, the f-number should be lower. Typically, lenses with lower f-numbers are more
difficult to construct and are thus more expensive.
5.3 Depth of Field (DoF)
DoF is an indicator of the range of the scene that is in focus, as shown in Figure 5-2. For example, if
system-1 has all the objects in the scene from a distance of 1 m to 3 m in focus and system-2 has all the
objects in the scene from a distance of 2 m to 3m in focus, system-1 has a greater DoF. DoF is controlled
by the aperture of the lens. If the aperture is higher, DoF is lower and vice-versa. In most cases, DoF is
usually not the limiting factor because the aperture is limited at the higher end by the practical values of
the lens f-number. However, in some specific cases, when objects at a wide range of distances must be in
focus simultaneously, DoF may limit the aperture.
- =—Depth of Fieid
Figure 5-2. Depth of Field
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The ideal illumination source is shown in Figure 6-1. The illumination source consists of one or more light
emitters that are driven by a modulating current source to emit light in unison. Typical light sources used
are LEDs or laser diodes. The number of emitters required and the amount of power that must be emitted
depends on the system performance required.

Modulation

!

——o '\ o——

v

Figure 6-1. Ideal lllumination Source

6.1 Optical Wavelength Choice

The wavelength of the light emitted by the illumination must fall within the optical bandwidth of the filter
used on the sensor. In most scenarios, using a modulated light that is not visible to the human eye is
preferred. Therefore, a typical Tl ToF sensor optical filter is in the near-IR region.

6.2 Timing and Modulation

lllumination modulation is active during the integration time and can be turned off for the rest of the time.
The phase of the illumination with respect to sensor demodulation is stepped from quad to quad, as
shown in Figure 6-2.

Quad

! . Integration 1
Modulation I } I
| |
Moo I |
LT
Mop1 |
| | |
| |
I(p_hq)l(_ ] . \'
|
Modulation | | I ] |

Figure 6-2. lllumination Phase
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6.3

Like the sensor, the illumination source should be able to modulate well at the frequency of operation.
Typically, laser sources are capable of achieving significantly higher modulation frequency as compared to
LEDs. Most high-frequency LEDs available today have their 3-dB roll-off frequency between 10 MHz and
30 MHz. Laser diodes, on the other hand, have their 3-dB roll-off frequencies beyond 100 MHz. Therefore,
Tl ToF sensors can be operated at their optimal frequency in conjunction with laser diodes. Whereas, with
LEDs, the sensors may have to be operated at lower, sub-optimal frequencies.

lllumination Power Requirement

For the power calculation, work backwards from the depth noise requirement. As discussed earlier, depth
noise is given by Equation 51:

c X y/n, +nz

distance noise = Ny « -
N, X fin X Cy4

(51)
Therefore, to reduce the depth noise, n,, must increase, Equation 52 shows.
Ny« P X 1, (52)

Therefore, n,, can be increased by increasing the illumination power during integration time (p,) or by
increasing the integration time. For SNR performance, increasing p, is preferred because increasing t, also
increases the ambient light collected. p, is related to the illumination power emitted during integration time
(pe) by Equation 53:

p; X 41 X d? X no.of pixels
Pe =

r X aperture

where:
e dis the subject distance and
« ris the reflectivity of the subject in the scene. (53)

The average illumination power during the entire frame can be calculated by Equation 54:

Pg X dp;

=—————————— =pp X dp X fps
PEavg frame time PE 1 X fp

where:
e dy is integration duty cycle and
» f,isthe frame rate. (54)
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In the ideal scenario without phase offset and gain and linearity errors, Equation 55 describes the
relationship between the real-world distance and the measured phase.

phase X range

distance =
21

(59)

In reality, the relationship between distance and phase might be a curve, as shown in Distance and Phase
Relationship.

Range

Phase

— |deal

— Practical

Distance

Distance and Phase Relationship

Offset Correction

Apart from the delay resulting from the distance of the object from the camera, the total measured ToF
contains the difference in delays of modulation signal and demodulation signal. The orange and blue
arrows indicated in Figure 7-1 represent the two paths.

Illumination
Optics

™ Transmitter

Modulation
Block

— Readout

+ ADC
/ Receiver array

Lens  with in-pixel demodulation.

1 Computation > Phase

Figure 7-1. Offset Correction Paths

The illumination modulation path consists of the modulation driver delay and the LED or laser electrical to
optical delay. The sensor modulation path consists of the sensor demodulation driver delay and the intra-
sensor routing delays (which typically are not significant and the discussion of such delays is beyond the
scope of this document).
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For each system, a factory calibration can be done to correct offset error. An object can be placed at a
known distance in the scene and the difference between the actual and measured distance is the offset.
This offset can then be stored in permanent memory on the board. During normal operation, offset can be
subtracted from the measured value to obtain the actual phase. Tl TFCs support fixed offset calibration.
The offset correction value can be programmed into a TFC register to cancel the fixed offset.

Temperature can change the offset error because the change in delay with respect to temperature can be
different for the sensor demodulation path than for the illumination modulation path. Therefore, the total
phase correction to be applied has two components, as Equation 56 shows.

Total Phase Correction = phase_corr + phase_corr_temp

where:
« phase_corr is the fixed offset and
e phase_corr_temp is the component that varies with temperature. (56)

The change in delay can be modeled with a linear approximation, as shown in Equation 57:
phase_corr_temp = Coeﬁ_i”um X (Ti\lum - Til\umicalib) + Coeﬁ_sensor x (Tsensor - Tsensorﬁcalib) (57)

coeff_illum and coeff_sensor are coefficients of phase change with respect to temperature for the
illumination modulation path and sensor demodulation path, respectively. Tium caic @Nd Teensor caiis @€ the
temperatures measured using external temperature sensors near the illumination driver and the sensor,
respectively, at the reference ambient temperature. Reference ambient temperature is defined as the
temperature at which phase_corr is measured.

Unlike fixed-phase offset correction, temperature calibration is typically performed only one time on each
new design rather than on every system. To calibrate, ambient temperature is changed to obtain the least
two operating points other than the reference temperature. The values of phase offset measured in the
experiments can be substituted into Equation 57 to calculate the coefficients. TI TFCs support temperature
calibration. The calculated coefficients can be programmed into the TlI TFCs to compensate for
temperature changes during normal operation.

At the hardware design level, changes in delay resulting from temperature can be reduced by minimizing
the modulation path delays. Typically, the variation in delay resulting from temperature is usually
proportional to the absolute path delay.

7.2 Gain and Linearity Correction
Considering Equation 58, range is a function of speed of light and modulation pulse period and is given by
Equation 59.
] phase X range
distance = -
21
(58)
T Xc
range = ——
2
(59)
In practical systems, the accuracy of T is determined by the accuracy oscillator and the modulation PLL.
Inaccurate values of T results in incorrect conversion factors from phase to distance.
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Among modulation signals and demodulation functions, if one of these is a perfect square and the other is
a sinusoid, phase changes linearly with distance. In the ideal case, as discussed in Section 3.3, the
parametric representation of I/Q with changes in phase is a circle. However, the practical plot (as shown in
Figure 7-2) may resemble a square (shown in red) or may resemble a rhombus (shown in blue).

Figure 7-2. Parametric: Practical Plot

To fix the linearity error, two approaches can be used. The first approach is to sweep the phase offset of
the modulation signal with respect to the demodulation signal and measure the phase of a fixed object in
the scene. The difference in the applied phase offset and the measured phase is an indicator of the
nonlinearity. A look-up table or a function can be generated using the measured values. This mapping can
be used to correct the actual phase measurements during normal operation.

The second approach is to actually use a movable object for calibration. An object can be moved through
the usable range of the ToF system in steps to determine the relationship between measured phase and
actual distance. This relationship can be used for calculating distance from phase directly.

24
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De-Aliasing

The unambiguous range of a ToF system is defined by the modulation frequency (F). This range is given
by Equation 60.

C
R=—
2F
where:
e Cis the speed of light in the medium. (60)

For example, for a modulation frequency of 50 MHz, R = 3 m in open air. If the total range of the
application is beyond the unambiguous range for a given modulation frequency, de-aliasing can be
enabled to extend the unambiguous range. This technique employs two modulation frequencies. The
unambiguous range is given by Equation 61.

C
R =
2 X GCD(F1,F2)
(61)
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As part of the depth data, the TI TFCs also provide confidence and ambient per pixel apart from phase.
Confidence data are an indicator of signal strength received. Ambient data are an indicator of the amount
of non-signal light received. The Tl TFCs optionally provide phase, confidence, and ambient histogram
information that can be used to meter the scene with very little additional computation on the external
host.

9.1 Using the Confidence Information

Confidence can be used to implement filters because confidence is an indicator of strength of the received
signal. For example, a simple mask filter can be implemented if confidence is greater than the threshold. If
confidence is greater than the threshold, use the phase information. Otherwise discard the phase
information.

A generic n x n spatial filter can be implemented where the weights are multiplied with confidence. For
example, a smoothing filter can be implemented as shown in Equation 62.

phase(i, j) = sum(phase matrix(i, j) o (filter matrix) o (canfidence matrix(i,j))/sum(confidence matrix(L,j))

(62)
The operator o signifies the element-by-element product (Hadamard product) of the matrices. The
definitions of the matrices in Equation 62 are given in Equation 63, Equation 64, and Equation 65.
1 2 1
filter matrix =12 4 2|/16
1 2 1 63)

pi—-1j-1) pt-1j) pi-1j+1)
filter matrix(i,j) = p@,j—1) p(i, ) p(,j+1)
p(i+1,j-1) pi+1j) pi+1j+1)

(64)

ci—1j—-1) c(i—=1,j) c(i—1,j+1)
confidence matrix(i,j) =] c(i,j—1) c(i,}) c(i,j+1)
c@i+1,j—-1) c(i+1,j) ci+1j+1)

where:
* c(i,) is the confidence for pixel(i,)),
e p(i,)) is the phase for pixel(i,j), and
« the filter matrix is an example of a Gaussian filter. (65)
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9.2 Using the Ambient Information
Typically, the Tl ToF sensors have built-in optical filters in order to filter out unwanted ambient light.
However, in practical scenarios, ambient light has spectral components that match the signal light and
thus pass through the filter. The ToF sensor pixels develop a common-mode signal as a result of ambient
light. The phase computation relies only on the differential signal and, therefore, ambient light does not
affect phase measurements directly. However, ambient light reduces pixel dynamic range. Furthermore,
the shot noise resulting from the common-mode signal can result in differential noise and thus an increase
in phase noise. Therefore, knowing the level of ambient light is important in order to optimize system
settings.
Example Problem 1:
Loss of dynamic range because of a high ambient. Some pixels are saturated.
Solution:
Increase the number of sub-frames and reduce the integration time per sub-frame to collect the same
amount of signal light while avoiding pixel saturation.
Example Problem 2:
High phase noise because of a high ambient.
Solution:
Increase the illumination peak power and reduce the integration time to reduce the ambient light collected
while keeping the amount of signal light collected the same.
Note that the ambient information consists of true unfiltered ambient light as well as a non-demodulated
signal. Therefore, if the demodulation contrast is lower, the ambient appears to be higher.
9.3 Using the Histogram Information
Histograms give a concise summary of the entire scene and this information can be used to trigger actions
on the host without much additional computation. Some example scenarios are:
Scenario 1:
The system must be placed in a high-power mode only when an object is detected as nearer than the
threshold.
Solution:
The phase histogram is used to check if any pixels are within the threshold and triggers a transition to
high-power mode.
Scenario 2:
The system must perform an auto power control based on the signal strength received.
Solution:
lllumination power is increased or decreased, based on the confidence histogram.
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System Trade-Offs

As a summary of the previous sections, the key relations that govern the system-level trade-offs are
described in this section.

The relationship of illumination power with the other key system parameters is approximately Equation 66:

d X f.no x tan(FoV)]*

Peavg X fpS X Number of Pixels X

Dy
where:
e fps = frame rate,
» d = distance of the subject,
¢ Dg = sensor diagonal,
* FoV =field of view, and
« f.no = ratio of focal length to aperture diameter of the image forming lens. (66)

For low-illumination power and high-ambient scenarios, the relationship between d,. and pg is
approximately Equation 67:

1

d?"ES « o
Cd X fm X pEavg
(67)
For high-illumination power and low-ambient scenarios, the relationship between d,. and pg is
approximately Equation 68:
1
dres oc
Cd X fm X \, pEavg
where:
e Cd = Demodulation contrast and
- f, = frequency of modulation. (68)
10.1 Trade-Off Example: Pixel Binning versus Depth Resolution
Problem:
The system has a strict limitation on the maximum power available.
The depth resolution requirement is 8 mm. However, at maximum power, the attainable depth resolution is
approximately 10 mm.
The system requires 160 x 120 pixels, but the sensor has 320 x 240 pixels.
Solution:
Trade the number of pixels for depth resolution. Binning can be used to bin four pixels into one. This
binning reduces the illumination power requirement by almost four times (this reduction is not exactly four
times because the pixel reset noise is added as well). However, if the same power is retained, d,., reduces
by at least 50% of the original value. Therefore, less than a 5-mm resolution is obtained with 160 x 120
pixels.
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10.2

10.3

10.4

Trade-Off Example: lllumination Power vs f.no
Problem:
The system has a strict limitation on the maximum power available.
f-number of the lens currently selected is 2.0.
For the depth resolution requirement, the calculated power is 2x as much as the maximum limit.
Solution:

Trade the lens f-number for illumination power. A better lens with an f-number of 1.4 can be chosen. This
improvement brings down the power requirement by approximately 2x. In this case, a more expensive
lens must be chosen.

Trade-Off Example: Dynamic Range vs Noise
Problem:

The system has requirements for high dynamic range. For example, the minimum object distance is 30 cm
and the maximum object distance is approximately 3 m.

With the number of sub-frames equal to 2, the pixels corresponding to the objects at a distance of 30 cm
become saturated because the illumination power is adjusted so that the system meets certain depth
resolution requirements at 3 m.

Solution:

Trade SNR for a higher dynamic range. Increase the sub-frames to 4 or 8 and keep the total integration
time the same. With this higher number of sub-frames, the number of photons collected in each quad
decreases and thus the pixels are less likely to saturate. As a result of this increase in number of sub-
frames, the effect of pixel reset noise increases because of the greater number of reset, integration, and
readout cycles. Therefore, the overall SNR suffers. lllumination power, however, can be increased to
overcome this SNR reduction.

Trade-Off Example: Ambient vs Peak lllumination Power
Problem:
The system must function in high ambient light conditions, such as outdoor environments.

With a given integration time per quadrant, some pixels become saturated or very noisy.
Solution:

Increase the peak illumination power and reduce the integration time per quad to keep the overall
illumination energy per quad constant. Increasing the peak power helps to increase the ratio of useful
signals to ambient signals. Thus, the total number of photons collected per pixel decreases. As a positive
side effect, the photon shot noise resulting from ambient light decreases as well. The downside to
increasing the peak power is that the illumination drive current increases and thus the electrical efficiency
of the illumination module will most likely decrease.
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System Design: Step-by-Step Guide

11.1 First Draft of Specifications

Before getting into the details of a ToF system design, the following specifications of the system must be

defined:

» Depth resolution. What is the required depth resolution at maximum distance?

» 2d resolution: number of pixels.

* Range: minimum and maximum object distances in the scene.

e Frame rate: number of frames per second.

» Field of view (FoV): the required horizontal and vertical field of view (and thus the diagonal field of
view).

* Ambient light. Is the system going to be used in high ambient light scenarios?

» Cost sensitivity. Example questions to ask:
— Is it ok to use a higher f-number lens that costs more?
— Can laser diodes be used instead of LEDs?

e Size constraints. Example questions to ask:

— Is it ok to use multiple emitters that are easily available versus one powerful emitter that is
expensive and hard to procure?

— For the FoV and the sensor size chosen, is the lens height ok?
» Temperature. Is the system going to be used in harsh environments?

11.2 Optics

lllumination and receiver optics play a very critical role in the system. For example, the illumination power
varies as the square of the f.no of the lens. Therefore, a lens with as low f.no as possible is important to
have. As far as the illumination optics are concerned, the illumination FoV to sensor FoV must match. If
the illumination module consists of laser diodes, appropriate diffusers may have to be chosen to spread
the light. If LEDs are being used for illumination, lenses that focus or widen the LED light output may have
to be used.

11.3 The Right Trade-Offs
Refer to Chapter 10 for making quick guesses on the achievable trade-offs.

11.4 Output Data Format
Tl ToF chipsets support a variety of data formats. Typically, DVP and SSI protocols are supported.

11.5 Getting to the First Prototype

Tl puts out reference designs based on each ToF device. A good method is to base the prototype design
on one of the reference designs and change the design minimally to obtain optimal performance. Usually,
the illumination driver and the interface between the rest of the system and the Tl ToF chipset depth
output are the only parts of the design that significantly change.

30 System Design: Step-by-Step Guide SBAU219D—-December 2013—-Revised May 2014

Submit Documentation Feedback
Copyright © 2013-2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU219D

13 TEXAS

INSTRUMENTS
www.ti.com Revision History
Revision History
Changes from C Revision (May 2014) to D Revision Page
L @4 = g o T= o B o 10 o T o T 28

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

SBAU219D—-December 2013—-Revised May 2014 Revision History 31

Submit Documentation Feedback
Copyright © 2013-2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SBAU219D

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESDA48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Tl deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No Tl components are authorized for use in FDA Class Ill (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom  www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com

www.dlp.com

dsp.ti.com
www.ti.com/clocks

interface.ti.com

logic.ti.com

power.ti.com
microcontroller.ti.com

www.ti-rfid.com
www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

Tl E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers

www.ti.com/consumer-apps

www.ti.com/energy
www.ti.com/industrial

www.ti.com/medical

www.ti.com/security
www.ti.com/space-avionics-defense

www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	1 Introduction
	1.1 Intended Audience
	1.2 Preliminary Study

	2 Time-of-Flight Basics
	2.1  Single-Pixel ToF System
	2.2  ToF Camera

	3 ToF Camera Sensor: The Pixel
	3.1  Ideal Pixel: Scene With No Ambient Light
	3.2  Practical Pixel: Offset, Scene with Ambient Light
	3.3 Practical Pixel: Gain Error
	3.4  Practical Pixel: Non-Idealities in the Conversion of Photons to Voltage
	3.4.1  Fill Factor
	3.4.2  Responsivity
	3.4.3  Demodulation Contrast

	3.5  Practical Pixel: Modulation Voltage
	3.6  Noise Sources
	3.6.1  Pixel Reset Noise
	3.6.2  Photon Shot Noise
	3.6.3  Summary

	3.7  Signal-to-Noise Ratio (SNR)
	3.8  Well Capacity: Saturation

	4 ToF Camera Sensor: Frame Rate
	5 ToF Receiver Optics
	5.1  Field of View (FoV)
	5.2  Aperture
	5.3  Depth of Field (DoF)

	6 Illumination Module
	6.1 Optical Wavelength Choice
	6.2 Timing and Modulation
	6.3  Illumination Power Requirement

	7 Converting Phase to Distance
	7.1  Offset Correction
	7.2  Gain and Linearity Correction

	8 De-Aliasing
	9 Using Auxiliary Data
	9.1  Using the Confidence Information
	9.2  Using the Ambient Information
	9.3  Using the Histogram Information

	10  System Trade-Offs
	10.1  Trade-Off Example: Pixel Binning versus Depth Resolution
	10.2  Trade-Off Example: Illumination Power vs f.no
	10.3  Trade-Off Example: Dynamic Range vs Noise
	10.4  Trade-Off Example: Ambient vs Peak Illumination Power

	11  System Design: Step-by-Step Guide
	11.1  First Draft of Specifications
	11.2  Optics
	11.3  The Right Trade-Offs
	11.4  Output Data Format
	11.5  Getting to the First Prototype

	Revision History
	Important Notice

