TPS65214

MARCH 2025

TPS65214 配备 3 个降压转化器与 2 个 LDO 的电源管理 IC (适用于工业应用)

1 特性

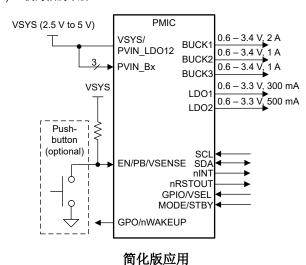
- 3 个高达 2.3MHz 开关频率的降压转换器:
 - 1个VIN: 2.5V至 5.5V; I_{OUT}: 2A; V_{OUT} 0.6V
 - 2 个 VIN:2.5V 至 5.5V;I_{OUT}:1A;V_{OUT} 0.6V 至 3.4V
- 2 个线性稳压器:
 - 1 个 VIN : 1.4V 至 5.5V ; I_{OUT} : 300mA ; V_{OUT}: 0.6V 至 3.3V (可配置为负载开关)
 - 1个VIN:1.4V至5.5V;I_{OUT}:500mA; V_{OUT}: 0.6V 至 3.3V (可配置为负载开关)
- 所有 3 降压转换器均支持动态电压调节
- 低 IQ/PFM 的 PWM 模式(准固定频率)
- 可编程电源时序和默认电压
- I²C 接口,支持标准模式、快速模式和快速+模式
- 3个多功能引脚
- 一次性可编程 (OTP) 非易失性存储器 (NVM)

- 低功耗工业 MPU, 例如 AM62L
- 低功耗工业 MCU,例如 AM261
- 电器
- 楼宇安全
- 电动汽车充电基础设施
- 防火安全系统
- HMI
- **HVAC**
- 工业 PC
- 光学模块
- 患者监护和诊断
- PLC
- 智能仪表
- 测试和测量
- 视频监控

3 说明

TPS65214 是一款电源管理集成电路 (PMIC),设计用 于便携式与固定式应用的各种 SoC 供电。该器件的额 定环境温度范围为 --40°C 至 +105°C, 也正因此, PMIC 成为了各种工业应用的理想选择。该器件包括 3 个同步直流/直流降压转换器与2个线性稳压器。

直流/直流转换器能够提供 1 个 2A 电流与 2 个 1A 电 流。该等转换器需要一个 470nH 小型电感器、一个 4.7 μ F 输入电容,以及每个电源轨一个最小 10 μ F 的 输出电容。


一个 LDO 支持 300mA 的最大输出电流,另一个支持 500mA 最大输出电流。两个 LDO 均具有 0.6V 至 3.3V 的稳压输出电压范围,也可以在负载开关模式下工作。

I2C接口、IO、GPIO和多功能引脚 (MFP)可实现与各 种 SoC 的无缝连接。

封装信息

器件型号	封装 ^{(1) (2)}	封装尺寸(标称值)
TPS65214	24 引脚 QFN	3.50mm × 3.50mm

- 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 (1) 录。
- 仅为预发布版。 (2)

ADVANCE INFORMATION

内容

1 特性	6.6 器件寄存器	44
2 应用	7 应用和实施	113
3 说明1	7.1 应用信息	
4 引脚配置和功能3	7.2 典型应用	113
5 规格6	7.3 电源相关建议	117
5.1 绝对最大额定值6	7.4 布局	117
5.2 ESD 等级6	8 器件和文档支持	
5.3 建议运行条件6	8.1 器件支持	119
5.4 热性能信息7	8.2 文档支持	119
5.5 BUCK1 转换器7	8.3 接收文档更新通知	119
5.6 BUCK2、BUCK3 转换器8	8.4 支持资源	119
5.7 通用 LDO (LDO1、LDO2)9	8.5 商标	119
6 详细说明10	8.6 静电放电警告	119
6.1 概述10	8.7 术语表	119
6.2 功能方框图11	9 修订历史记录	119
6.3 特性说明11	10 机械、封装和可订购信息	119
6.4 器件功能模式35	10.1 封装选项附录	120
6.5 用户寄存器43	10.2 卷带包装信息	121

4 引脚配置和功能

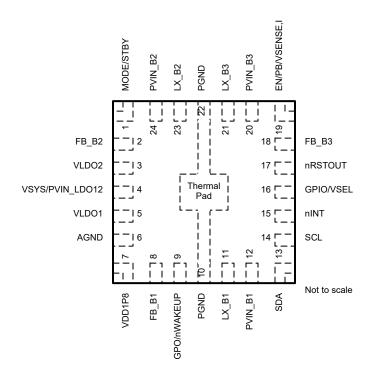


图 4-1. VAF 封装, 24 引脚 QFN (顶视图)

表 4-1. 引脚功能

引脚		类型(1)	DH HC	土体田林加工的法林
名称	名称编号		未使用情况下的连接 	
MODE/STBY	1	I	配置为 MODE:连接到 SoC 或硬接线上拉/下拉。 强制降压转换器进入 PWM 或允许自动进入 PFM 模式。	不适用(根据配置连接高 电平或低电平,参阅
		I	配置为 STBY: 低功耗模式命令,关闭所选电源轨。MODE和 STBY这两种功能可以组合。该引脚对电平敏感。	PWM/PFM 和低功耗模式 (MODE/STBY))
FB_B2	2	1	Buck2 的反馈输入。连接到 Buck2 输出滤波器。标称输出电压通过 NVM 配置。	连接到 GND
VLDO2	3	PWR	LDO2 的输出电压。标称输出电压通过 NVM 配置。使用 2.2μF 或更大的陶瓷电容器将此引脚旁路至地。	保持悬空
VSYS/PVIN_LDO12	4	PWR	基准系统的输入电源以及 LDO1 与 LDO2 的电源输入。使用 4.7 µ F 或更大的陶瓷电容器将此引脚旁路至地。	不适用
VLDO1	5	PWR	LDO1 的输出电压。标称输出电压通过 NVM 配置。使用 2.2μF 或更大的陶瓷电容器将此引脚旁路至地。	保持悬空
AGND	6	GND	模拟 GND 的接地引脚	不适用
VDD1P8	7	PWR	内部基准电压:仅供器件内部使用。不要连接外部 负载。使用 2.2μF 陶瓷电容器,将该引脚旁路至 地。	不适用
FB_B1	8	I	Buck1 的反馈输入。连接到 Buck1 输出滤波器。标称输出电压通过 NVM 配置。	连接到 GND

Product Folder Links: TPS65214

表 4-1. 引脚功能 (续)

引脚			· 4-1. 引脚功能 (续) ──────────────	
名称	编号	类型 ⁽¹⁾	说明	未使用情况下的连接
		0	配置为 GPO:通用开漏输出。可在上电和断电序列中进行配置,从而启用外部电源轨。	
GPO/nWAKEUP	9	0	配置为 nWAKEUP:向主机发送信号,以便指示上电事件。该引脚为低电平有效的开漏输出。	保持悬空
PGND	10	GND	电源地。该接地连接必须在 PCB 上从两侧(引脚 10 与引脚 22) 布线。通过直接位于 TPS65214 下方的多个互连过孔,将外露焊盘连接至连续接地层,以便最大限度提高电气与热传导性能。	不适用
LX_B1	11	PWR	Buck1 的开关引脚。将 Buck1 电感器的一侧连接到此引脚。	保持悬空
PVIN_B1	12	PWR	BUCK1 的电源输入。使用 4.7 µF 或更大的陶瓷电容器将此引脚旁路至地。PVIN_B1 引脚上的电压不得超过 VSYS 引脚上的电压。	连接至 VSYS
SDA	13	I/O	I2C 串行端口的数据引脚。I2C 逻辑电平取决于外部上拉电压。	连接至 VIO
SCL	14	I	I2C 串行端口的时钟引脚。I2C 逻辑电平取决于外部上拉电压。	连接至 VIO
nINT	15	0	中断请求输出。在故障条件下,开漏驱动器拉至低 电平。位清零时释放。	保持悬空
		0	配置为 GPO:通用开漏输出。可在上电和断电序列中进行配置,从而启用外部电源轨。	不适用(根据配置悬空或
GPIO/VSEL	16	I	配置为 GPI :可在上电与断电序列中配置,以便启用一个或多个器件电源轨。	连接高电平或低电平,参阅通用输入/输出和电压选择引脚(GPIO/VSEL))
		I	配置为 VSEL_BUCK: Buck1 或 Buck3 VOUT 选择。通过外部电阻器硬接线上拉、下拉或浮动。	77 3174 (0. 10, 1022))
nRSTOUT	17	0	复位输出至 SoC。由序列发生器控制。ACTIVE 状态下为高电平。STBY 状态下为可配置电平。	保持悬空
FB_B3	18	I	Buck3 的反馈输入。连接到 Buck3 输出滤波器。标称输出电压通过 NVM 配置。	连接到 GND
		I	配置为 EN:器件使能引脚,高电平为 ON 请求, 低电平为 OFF 请求。	
		I	配置为 PB:按钮监视器输入。600ms 低电平是一个 ON 请求,8s 低电平是一个 OFF 请求。	了话田 / 蓟 閏 4 FN 茶法
EN/PB/VSENSE	19	I	配置为 VSENSE: 电源故障比较器输入。使用从输入端连接到前置稳压器并将该引脚接地的电阻分压器来设置检测电压。检测前置稳压器上的上升/下降电压并触发 ON/OFF 请求。在 PB 配置中,该引脚对边沿变化敏感,并有等待时间;而在 EN 和 VSENSE 配置中,该引脚有抗尖峰脉冲时间。	不适用(配置为 EN 并连 接至 VSYS)
PVIN_B3	20	PWR	BUCK3 的电源输入。使用 4.7 µF 或更大的陶瓷电容器将此引脚旁路至地。PVIN_B3 引脚上的电压不得超过 VSYS 引脚上的电压。	连接至 VSYS
LX_B3	21	PWR	Buck3 的开关引脚。将 Buck3 电感器的一侧连接到此引脚。	保持悬空
PGND	22	GND	电源地。该接地连接必须在 PCB 上从两侧(引脚 10 与引脚 22) 布线。通过直接位于 TPS65214 下方的多个互连过孔,将外露焊盘连接至连续接地层,以便最大限度提高电气与热传导性能。	不适用
LX_B2	23	PWR	Buck2 的开关引脚。将 Buck2 电感器的一侧连接到此引脚。	保持悬空

Product Folder Links: TPS65214

English Data Sheet: SLVSHK7

表 4-1. 引脚功能 (续)

引脚 类型(1) 名称 编号		米 刑(1)		
		PE 193	未使用情况下的连接 	
PVIN_B2	24	PWR	BUCK2 的电源输入。使用 4.7 μ F 或更大的陶瓷电容器将此引脚旁路至地。PVIN_B2 引脚上的电压不得超过 VSYS 引脚上的电压。	连接至 VSYS

5 规格

5.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)。指定的电压电平以器件的 AGND 地为基准。(1)

POS			最小值	最大值	单位
1.1.1	输入电压	VSYS/PVIN_LDO12	-0.3	6	V
1.1.2	输入电压	PVIN_B1、PVIN_B2、PVIN_B3	-0.3	6	V
1.1.5	输入电压	FB_B1、FB_B2、FB_B3	-0.3	6	V
1.1.6	输入电压	EN/PB/VSENSE、MODE/STBY、GPIO/VSEL	-0.3	6	V
1.1.7	输入电压	PGND	-0.3	0.3	V
1.2.1	输出电压	LX_B1、LX_B2、LX_B3	-0.3	PVIN_Bx + 0.3V,高达 6V	V
1.2.2	输出电压	LX_B1、LX_B2、LX_B3 尖峰最长 10ns	-2	10	V
1.2.3	输出电压	GPO/nWAKEUP、GPIO/VSEL	-0.3	6	V
1.2.4	输出电压	VLDO1、VLDO2		PVIN_LDOx + 0.3V,高 达 6 V 6	V
1.2.5	输出电压	VDD1P8	-0.3	2	V
1.2.6	输出电压	SDA、SCL	-0.3	6	V
1.2.7	输出电压	nINT、nRSTOUT	-0.3	6	V
1.4.1	工作结温,TJ			125	°C
1.4.2	贮存温度,T _{stg}			150	°C

⁽¹⁾ 超出*绝对最大额定值*运行可能会对器件造成永久损坏。*绝对最大额定值*并不表示器件能够在该等条件下或在任何超出*建议运行条件*的其他条件下正常运行。如果在*建议运行条件*以外,但在*绝对最大额定值*范围以内使用,器件可能无法完全正常运行,这可能会影响器件的可靠性、功能与性能,并且可能缩短器件寿命。

5.2 ESD 等级

POS				值	单位
2.1	V _(ESD)	静电放电,人体放电模型	人体放电模型 (HBM),符合 ANSI/ESDA/ JEDEC JS-001 标准,所有引脚 ⁽¹⁾	±2000	V
2.2	V _(ESD)	静电放电,充电器件模型	充电器件模型 (CDM),符合 ANSI/ESDA/ JEDEC JS-002 标准,所有引脚 ⁽²⁾	±500	V

- (1) JEDEC 文档 JEP155 指出: 500V HBM 时能够在标准 ESD 控制流程下安全生产。
- (2) JEDEC 文档 JEP157 指出: 250V CDM 时能够在标准 ESD 控制流程下安全生产。

5.3 建议运行条件

在自然通风条件下的工作温度范围内测得(除非另有说明)。指定的电压电平以器件的 AGND 地为基准。

POS			最小值	标称值	最大值	单位
3.1.1a	V _{VSYS/PVIN_LDO12}	LDO 模式下的 LDOx 的输入电压	2.5		5.5	V
3.1.1b	V _{VSYS/PVIN_LDO12}	负载开关模式下 LDO1 和/或 LDO2 的输入电压	2.5		3.3	V
3.1.2	V _{PVIN_B1} , V _{PVIN_B2} , V _{PVIN_B3} V _{LX_B1} , V _{LX_B2} , V _{LX_B3}	BUCKx 引脚	2.5		5.5 ⁽¹⁾	V
3.1.7	C _{PVIN_B1} , C _{PVIN_B2} , C _{PVIN_B3}	BUCKx 输入电容	3.9	4.7		μF
3.1.8	L _{B1} 、L _{B2} 、L _{B3}	BUCKx 输出电感	330	470	611	nH

5.3 建议运行条件 (续)

在自然通风条件下的工作温度范围内测得(除非另有说明)。指定的电压电平以器件的 AGND 地为基准。

POS				最小值	标称值	最大值	单位
3.1.9a	C _{OUT_B1} , C _{OUT_B2} ,	BUCKx 输出电容	低带宽情况	10		75	μF
3.1.10a	C _{OUT_B3}	BUCKX 制山电台	高带宽情况	30		220	μF
3.1.11	V _{FB_B1} , V _{FB_B2} , V _{FB_B3}	BUCKx FB 引脚	·	0		5.5 ⁽¹⁾	V
3.1.15	V _{VLDO1} , V _{VLDO2}	LDO 输出电压范围		0.6		3.3	V
3.1.16	C _{VSYS/PVIN_LDO12}	VSYS 和 LDOx 输入	电容	2.2	4.7		μF
3.1.17	C _{VLDO1} , C _{VLDO2}	LDO 输出电容		1.2	2.2	40	μF
3.1.22	V _{VDD1P8}	VDD1P8 引脚		0		1.8	V
3.1.23	C _{VDD1P8}	内部稳压器去耦电容	内部稳压器去耦电容		2.2	4	μF
3.1.25	V _{nINT} , V _{nRSTOUT}	数字输出		0		3.4	V
3.1.26b	V _{GPO/nWAKEUP}	数字输出		0		5.5	V
3.1.26a	V _{GPIO/VSEL}	数字输出		0		5.5 ⁽¹⁾	V
3.1.27	V _{SCL} , V _{SDA}	I2C 接口		0		3.4	V
3.1.28a	V _{EN/PB/VSENSE}	数字输入		0		5.5	V
3.1.28b	V _{GPIO/VSEL}	数字输入		0		5.5 ⁽¹⁾	V
3.1.28c	V _{MODE/STBY}	数字输入		0		3.4	V
3.1.29	V _{PGND}	PGND Pin Voltage			0		V
3.3.1	T _A	自然通风条件下的工	作温度范围	-40		105	°C
3.3.2	T _J	工作结温		-40		125	°C

(1) 不得超过 VSYS

5.4 热性能信息

		TPS65214	
	热指标 ⁽¹⁾	VAF (QFN)	单位
		24 引脚,3.5x3.5mm ²	
R _{⊕JA}	结至环境热阻	45.5	°C/W
R _{⊕ JC(top)}	结至外壳(顶部)热阻	30.0	°C/W
R _{⊕JB}	结至电路板热阻	14.2	°C/W
Ψ_{JT}	结至顶部特征参数	0.8	°C/W
Ψ_{JB}	结至电路板特征参数	14.1	°C/W
R _{⊕JC(bot)}	结至外壳(底部)热阻	22.9	°C/W

(1) 有关新旧热指标的更多信息,请参阅"半导体和IC 封装热指标"应用报告 (SPRA953)。

5.5 BUCK1 转换器

在自然通风条件下的工作温度范围内测得(除非另有说明)。指定的电压电平以器件的 AGND 地为基准。

POS		参数	测试条件	最小值	典型值	最大值	单位		
电气特性	电气特性								
5.1.1a	V _{IN_BUCK1}	输入电压(1)	降压转换器电源电压,最大为 VSYS	2.5		5.5	V		
5.1.1b	V _{OUT_BUCK1}		输出电压可在 $0.6V \leqslant V_{OUT} \leqslant 1.4V$ 时以 $25mV$ 阶跃配置,在 $1.4V < V_{OUT} \leqslant 3.4V$ 时以 $100mV$ 阶跃配置	0.6		3.4	V		
5.1.4	V _{OUT_STEP_LOW}	Buck1 的输出电压阶跃	$0.6V \leqslant V_{OUT} \leqslant 1.4V$		25		mV		

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

5.5 BUCK1 转换器 (续)

在自然通风条件下的工作温度范围内测得(除非另有说明)。指定的电压电平以器件的 AGND 地为基准。

POS		参数	测试条件	最小值	典型值	最大值	单位
5.1.5	V _{OUT_STEP_HIGH}	Buck1 的输出电压阶跃	$1.5 \text{V} \leqslant \text{V}_{\text{OUT}} \leqslant 3.4 \text{V}$		100		mV
5.1.6a	Vout_acc_dc_pw m	直流输出电压精度	强制 PWM,低和高帯宽情况, $I_{OUT} = I_{OUT_MAX}$, $0.7V \le V_{OUT} \le 3.4V$, $V_{IN} - V_{OUT} > 700mV$, $C_{OUT} = 40\mu F$	-1.5%		1.5%	
5.1.6b	Vout_acc_dc_pw m	直流输出电压精度	强制 PWM,低和高带宽情况, I _{OUT} = I _{OUT_MAX} , 0.6V≤V _{OUT} < 0.7V, V _{IN} - V _{OUT} > 700mV, C _{OUT} = 40μF	-10		10	mV
5.1.6c	V _{OUT_ACC_DC_PFM}	直流输出电压精度	自动 PFM,低和高宽带情况, I _{OUT} = 1mA, V _{OUT} = 0.6V 至 3.4V, V _{IN} - V _{OUT} > 500 mV, C _{OUT} = 40μF	-3.0%		3.5%	
5.3.1	I _{OUT_MAX}	最大工作电流				2.0	Α
5.4.1	L _{SW}	输出电感	DCR = 50m Ω (最大值)	330	470	611	nH
5.4.2a		输出电容,	低带宽情况	10		75	μF
5.4.3a	C _{OUT}	自动 PFM 和强制 PWM, ESR = 10mΩ 最大值	高带宽情况	30		220	μF
开关特!	±						
5.6.1a	f _{SW}	开关频率	强制 PWM,高和低带宽情况, V _{IN} = 3.3V 至 5V, V _{OUT} = 0.8V 至 1.8V, I _{OUT} = 1A 至 1.8A		2.3		MHz

(1) PVIN_Bx 不得超过 VSYS

5.6 BUCK2、BUCK3 转换器

在自然通风条件下的工作温度范围内测得(除非另有说明)。指定的电压电平以器件的 AGND 地为基准。

POS	参数		测试条件	最小值	典型值	最大值	单位
电气特性	±						
6.1.1a	V _{IN_BUCK23}	输入电压(1)	降压转换器电源电压,最大为 VSYS	2.5		5.5	V
6.1.1b	V _{OUT_BUCK23}	降压输出电压可配置范围	输出电压可在 0.6V ≤ V _{OUT} ≤ 1.4V 时以 25mV 阶跃配置,在 1.4V < V _{OUT} ≤ 3.4V 时以 100mV 阶跃配置	0.6		3.4	V
6.1.4	V _{OUT_STEP_LOW}	输出电压阶跃	$0.6V \leqslant V_{OUT} \leqslant 1.4V$		25		mV
6.1.5	V _{OUT_STEP_HIGH}	输出电压阶跃	$1.5V \leqslant V_{OUT} \leqslant 3.4V$		100		mV
6.1.6a	Vout_acc_dc_pw m	直流输出电压精度	强制 PWM,低和高带宽情况, $I_{OUT} = I_{OUT_MAX}$, $0.7V \leqslant V_{OUT} \leqslant 3.4V$, $V_{IN} - V_{OUT} > 500 \text{mV}$, $C_{OUT} = 40 \mu \text{F}$	-1.5%		1.5%	
6.1.6b	Vout_acc_dc_pw m	直流输出电压精度	强制 PWM,低和高带宽情况, I _{OUT} = I _{OUT_MAX} , 0.6V≤V _{OUT} < 0.7V, V _{IN} - V _{OUT} > 500mV C _{OUT} = 40µF	-10		10	mV

提交文档反馈

5.6 BUCK2、BUCK3 转换器 (续)

在自然通风条件下的工作温度范围内测得(除非另有说明)。指定的电压电平以器件的 AGND 地为基准。

POS	参数		测试条件	最小值	典型值	最大值	单位		
6.1.6c	Vout_acc_dc_pfm	直流输出电压精度	自动 PFM,低和高宽带情况, I_{OUT} = 1mA, $0.6V \le V_{OUT} \le 3.4V$, V_{IN} - V_{OUT} > 300 mV C_{OUT} = 40 μ F	-3.0%		3.5%			
6.3.1	I _{OUT_MAX}	最大工作电流				1.0	Α		
6.4.1	L _{SW}	输出电感	DCR = 50m Ω (最大值)	330	470	611	nΗ		
6.4.2a		输出电容,	低带宽情况	10		75	μF		
6.4.3a	100	自动 PFM 和强制 PWM, ESR = 10mΩ 最大值	高带宽情况	30		220	μF		
开关特性	开关特性								
6.6.1a	f _{SW}	开关频率	强制 PWM,高和低带宽情况, V _{IN} = 3.3V 至 5V, V _{OUT} = 0.8V 至 1.8V, I _{OUT} = 0.5A 至 0.9A		2.3		MHz		

(1) PVIN_Bx 不得超过 VSYS

5.7 通用 LDO (LDO1、LDO2)

在自然通风条件下的工作温度范围内测得(除非另有说明)。指定的电压电平以器件的 AGND 地为基准。

POS	参数		测试条件	最小值	典型值	最大值	单位	
电气特性	电气特性							
7.8.1	V _{IN}	输入电压		2.5		5.5	V	
7.8.3	V _{OUT}	输出电压	V _{IN} = 2.5V 至 5.5V	0.6		3.3	V	
7.8.4	V _{OUT_STEP}	输出电压阶跃	$0.6V \leqslant V_{OUT} \leqslant 3.3V$		50		mV	
7.8.5	R _{BYPASS}	旁路电阻	V _{IN} = 3.3V,I _{OUT} = 100mA,LDO 处于负载开关模式			0.8	Ω	
7.8.6	V _{OUT_DC_AC}	总直流精度,包括所有有 效输出电压的直流负载和 线性调整率	LDO 模式,V _{IN} - V _{OUT} > V _{DROPOUT}	-2.5		2.5	%	
7.8.9	V _{LOAD_REG}	DC 负载调节	V_{IN} = 3.8V , V_{OUT} = 3.3V , I_{OUT} = 0 \cong $I_{\text{OUT_MAX}}$		20	35	μV/mA	
7.8.10	V _{LINE_REGU} LATION	DC 线性调整率	V _{IN} = V _{OUT} + V _{DROPOUT} 至 5.5V , V _{OUT} = 1.2V、1.8V 和 3.3V , I _{OUT} = 50mA 和 I _{OUT_MAX}		0.01	0.1	%/V	
7.8.19	I _{OUT_MAX1}	最大工作电流 (LDO1)				300	mA	
7.8.20	I _{OUT_MAX2}	最大工作电流 (LDO2)				500	mA	
7.8.32	C _{OUT}	输出滤波电容		1.2	2.2	4	μF	
7.8.34	C _{ESR}	滤波电容 ESR 最大值	1 至 10 MHz		10	20	mΩ	
7.8.37	C _{OUT_TOTAL}	输出端的总电容(本地 + POL)				40	μF	

6 详细说明

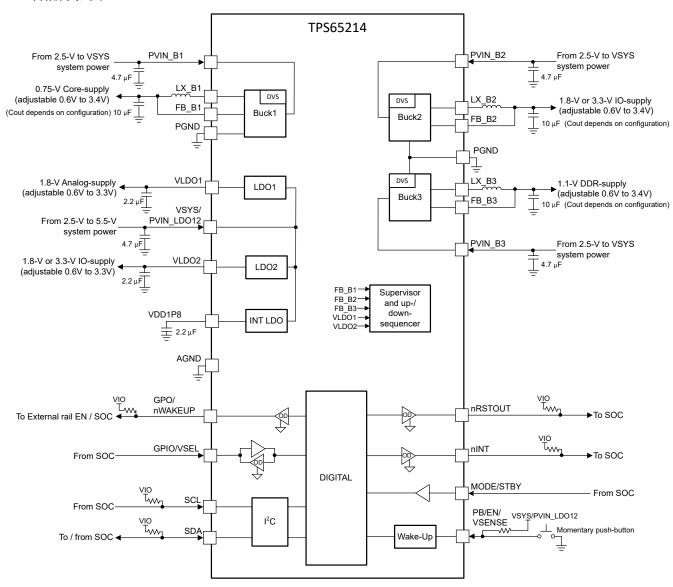
6.1 概述

TPS65214 提供三个降压转换器、两个 LDO、两个通用 I/O 和三个多功能引脚。该系统可以使用单节锂离子电池、两节原电池或稳压电源来供电。该器件的额定运行温度范围为 -40℃ 至 +105℃, 使 PMIC 成为各种工业应用的理想选择。

I2C 接口提供使用 TPS65214 所需的全面特性。通过该接口可以控制所有电源轨、GPO 和 GPIO 的状态。同时,还可以自定义欠压监测的电压阈值。

集成的电压监控器会对 Buck1-3 以及 LDO1-2 进行欠压监测。监控器有两种灵敏度设置。当五条电源轨和 GPO 成功完成上电斜坡过程后,会有一条电源正常信号。nRSTOUT 引脚拉至低电平,直至器件进入 ACTIVE 状态。当从 ACTIVE 或 STBY 状态断电时,nRSTOUT 会再次拉至低电平。nRSTOUT 引脚有一个开漏输出。故障引脚 nINT 会将故障信息传递给 SoC。

Buck1 可在 0.6V 至 3.4V 的输出电压范围内提供高达 2A 的电流。Buck2 和 Buck3 降压转换器可在 0.6V 至 3.4V 输出电压范围内提供高达 1A 的电流。每个转换器的默认输出电压可通过 I2C 接口进行调节。所有三个降压转换器都具有动态电压调节功能。对于噪声敏感型应用,降压转换器在轻负载时以低功耗模式运行,或者可以强制在 PWM 模式下运行。


LDO1 可以支持 300mA 的输出电流, LDO2 则支持 500mA。两款 LDO 均支持 0.6V 至 3.3V 稳压输出电压范围, 也可支持负载开关操作。

I2C接口、IO、GPIO和多功能引脚 (MFP)可实现与各种 SoC的无缝连接。

电源轨的所有配置(例如输出电压、时序控制)都由 NVM 备份。请参阅所选配置的技术参考手册 (TRM)。

6.2 功能方框图

Copyright © 2023, Texas Instruments Incorporated

图 6-1. 功能方框图

6.3 特性说明

6.3.1 上电时序

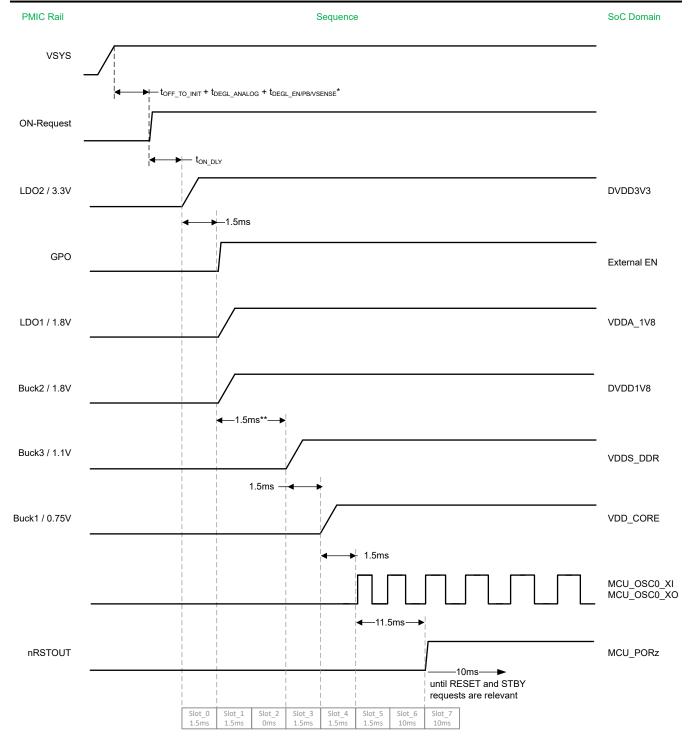
TPS65214 能够实现灵活的电源轨时序控制。电源轨(包括:用于外部电源轨的 GPO 与 GPIO 以及 nRSTOUT 引脚)的顺序由 NVM 定义。在启动上电序列之前,该器件会检查是否所有电源轨上的电压都降至 SCG 阈值以下,从而避免启动到预偏置电源轨。该序列基于时序。此外,前一个电源轨必须已超过 UV 阈值,否则不会启用后一个电源轨。如果已屏蔽 UV,则即使未达到 UV 阈值,也会继续执行序列。对于配置为 LSW 模式的 GPO、GPIO 以及 LDO,不受欠压监控,因此它们的输出不会限制后续电源轨。

如果由于电源轨上未屏蔽的故障而导致序列中断,则器件会断电。TPS65214 会尝试再上电两次。如果这两次重试均未能进入 ACTIVE 状态,则器件会保持 INITIALIZE 状态,直至 VSYS 下电后重新上电。建议让该重试计数

器保持激活状态,但可通过设置 INT_MASK_UV 寄存器中 MASK_RETRY_COUNT 位的方式禁用。设置后,器件会尝试无限次重试。

TPS65214 允许配置独立于上电顺序的断电序列。在非易失性存储器中配置这些序列。

初始上电时,器件会监控 VSYS 电源电压,仅当 VSYS 超过 VSYS_{POR_Rising} 阈值时才允许上电并转换到 INITIALIZE 状态。


上电序列配置如下:

- 对于每个电源轨的时隙(即:在序列中的位置)以及 GPO、GPIO 与 nRSTOUT,利用相应的 * SEQUENCE SLOT 寄存器、适用于上电序列的四个 MSB 以及适用于断电序列的四个 LSB 进行定义。
- 每个时隙的持续时间在 POWER_UP_SLOT_DURATION_x 寄存器中定义,可以配置为 0ms、1.5ms、3ms 或 10ms。总共可配置 8 个时隙。
- 除了上面定义的时序之外,上电序列还由 UV 监视器进行控制:只有在前一个电源轨超过欠压阈值后,才会启用后续电源轨(除非已屏蔽 UV)。如果一个电源轨在 t_{RAMP}(即,t_{RAMP_LSW}、t_{RAMP_SLOW} 和 t_{RAMP_FAST})结束时未达到 UV 阈值,则序列会中止,且器件在时隙持续时间结束时定序关闭。对于相应的电源轨,器件将在 INT_SOURCE 寄存器中设置 INT_BUCK_x_y_IS_SET 或 INT_LDO_x_y_IS_SET 位,在 INT_BUCK_x_y 或 INT_LDO_x_y 寄存器中设置 BUCKx_UV 或 LDOx_UV 位,以及在 INT_TIMEOUT_RV_SD 寄存器中设置 TIMEOUT 位。
- 序列的启动受到内核温度的限制:如果任何一个热检测未屏蔽,那么当由于热事件而进入 INITIALIZE 状态时,在所有传感器上的温度降至低于 T_{WARM_falling} 阈值之前,或者从 OFF 状态进入 INITIALIZE 状态时,在所有传感器上的温度低于 T_{WARM_rising} 阈值之前,器件不会上电。如果屏蔽了所有热传感器(热检测不会导致断电),则在所有传感器上的温度低于 T_{HOT falling} 阈值之前,器件不会上电

备注

启用前,所有电源轨都会放电(无论是否已禁用放电功能)。

ON 请求会进行抗尖峰脉冲处理,避免在噪声情况下触发。对于从抗尖峰脉冲到序列第一个时隙所需时间,通过 $t_{ON\ DIY}$ 给出。图 6-2 为一个上电序列示例。

* depends on EN / PB / VSENSE and long/short configuration, ~0 if FSD is enabled

图 6-2. 上电时序 (示例)

如需了解导通请求相关更多详情,可参阅按钮和使能输入(EN/PB/VSENSE)。

^{**} if applicable, slot-duration needs to adopt for enable- & ramp-time of external rail

小心

I2C 命令必须在 NVM 加载完成后发出。

6.3.2 下电时序

OFF 请求或关断故障会触发断电序列。如果配置为 EN 或 VSENSE,则可以通过 EN/PB/VSENSE 上的下降沿触发 OFF 请求;如果配置为 PB,则可以通过长按按钮触发 OFF 请求;也可以通过向 MFP_CTRL 寄存器中的 I2C OFF REQ 发送 I2C 命令指令来触发 OFF 请求。该位会自我清除。

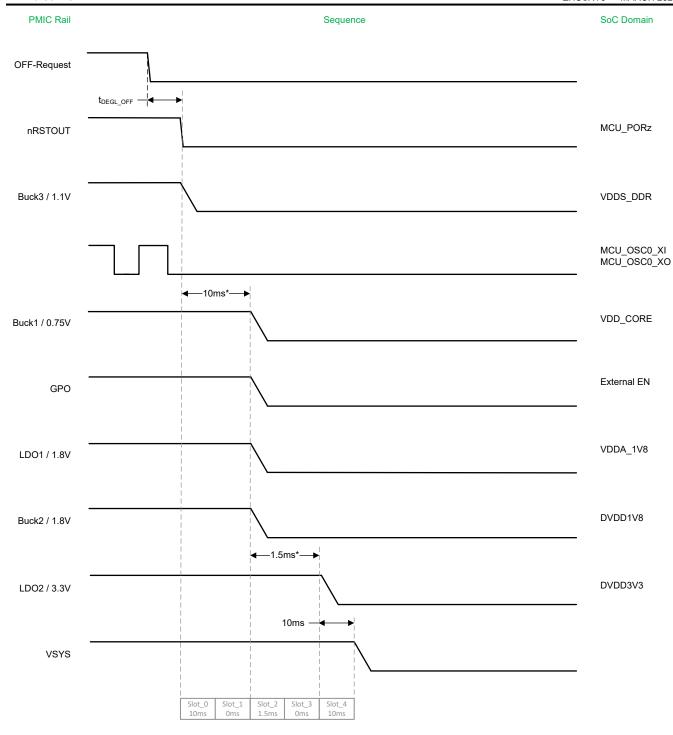
I2C 触发关断需要在 EN/PB/VSENSE 引脚上重新发出 ON 请求。在 EN 或 VSENSE 配置中,需要在 EN/PB/VSENSE 引脚上产生一个下降沿,接着是一个上升沿。EN 或 VSENSE 配置的下降沿抗尖峰脉冲时间 tpegl_en/vsense_i2c 短于由引脚触发的关闭请求的抗尖峰脉冲时间(tpegl_en_fall 和 tpegl_vsense_fall)。PB 配置的抗尖峰脉冲时间保持不变。

在许多情况下,断电序列遵循与上电序列相反的顺序。在某些应用中,需要同时关断所有电源轨,电源轨之间没有延迟,或者需要等待一段时间以确保电源轨放电。

断电序列配置如下:

- 每个电源轨、GPO、GPIO 和 nRSTOUT 的时隙(即,在序列中的位置)是通过相应的*_SEQUENCE_SLOT 寄存器来定义的,其中,寄存器的四个 MSB 用于设置上电序列,四个 LSB 用于设置断电序列。
- 每个时隙的持续时间在 POWER_DOWN_SLOT_DURATION_x 寄存器中定义,可以配置为 0ms、1.5ms、3ms 或 10ms。总共可以配置 8 个时隙。
- 除了时隙持续时间外,除非在前一个电源轨上已禁用有源放电,否则前一个电源轨是否已经放电至 SCG 阈值以下也是断电序列的一个限制因素。如果没有发生这种情况,则暂停后续电源轨的断电。为了在电源轨偏置或短路的情况下断电,在前一个电源轨经过八倍的时隙持续时间(或者在时隙持续时间为 0ms 情况下达到12ms)后,即使前一个电源轨未完全放电,关断序列仍将继续。
- 要绕过放电检查,请将 GENERAL_CONFIG 寄存器中的 BYPASS_RV_FOR_RAIL_ENABLE 位设置为 "1"。

备注


如果禁用了某个电源轨的有源放电功能,该电源轨在时隙持续时间内未能成功放电不会限制后续电源轨的禁用操作,但时序完全按照预定的时间间隔进行。如果存在残余电压,则不管怎样都会设置 RV 位。

默认情况下会启用有源放电,而不基于 NVM。因此,如果需要,在每次 VSYS 下电上电后都需要禁用放电。在 RESET 或 OFF 请求期间,只要存在 VSYS,就不会复位放电配置。不过,在 INITIALIZE 状态下以及在上电序列 之前,无论设置如何,所有电源轨都会放电。

在断电序列期间,除了 *_DISCHARGE_EN 位和某些中断位之外,不受 NVM 支持的位会复位。有关详细信息,请参阅 表 6-8。

Product Folder Links: TPS65214

下图以 NVM-ID 0x01、版本 0x2 为例,展示了断电序列:

^{*} discharge-duration depends on Vout, Cout and load. Slot-duration needs to adopt. Slot-duration extends up to 8x its configured value.

图 6-3. 断电时序 (示例)

小心

不要通过 I2C 命令更改与正在进行的序列相关的寄存器!

在开始转换到 INITIALIZE 状态之后大约 80 μs 内,无法访问不受 NVM 支持的位。

6.3.3 按钮和使能输入 (EN/PB/VSENSE)

EN/PB/VSENSE 引脚用于启用 PMIC。可以通过三种方式配置该引脚:

器件使能 (EN)

当配置为 EN 时,需要将该引脚拉高以生成 ON 请求。将该引脚拉至低电平则会产生 OFF 请求。

- EN 引脚的抗尖峰脉冲时间由 MFP 2 CONFIG 寄存器中的 EN PB VSENSE DEGL 位来配置。
- 如果 EN 输入在配置的 $t_{DEGL\ EN\ RISE}$ 时间内高于 V_{II} 低阈值,则上电序列开始。
- 为了表示 EN/PB/VSENSE 引脚的上电事件,器件会在 POWER_UP_STATUS_REG 寄存器中设置 POWER UP FROM EN PB VSENSE 位。此位不会将 nINT 引脚置为有效。写入 W1C 将该位清零。
- 如果 EN 输入在 t_{DEGLEN FALL} 内低于 V_{IH} 阈值,则断电序列开始。
- 如果出现关断故障,则无需更新 ON 请求。如果 EN 输入仍高于 V_{IH} 阈值,器件会自动执行上电序列。(EN 视为对电平敏感)
- 如果发生冷复位(无论是通过 RESET 引脚还是 I2C 请求),无需更新 ON 请求。如果 EN 输入仍高于 V_{IH} 阈值,器件会自动执行上电序列。(EN 视为对电平敏感)
- 如果在进入 SLEEP 状态后 EN 被拉至低电平,则必须再次将该引脚拉至高电平才能进入 INITIALIZE 状态。 EN 必须保持高电平 t_{EN_PB_WAKEUP} 才能继续进入 ACTIVE 状态。如果在 t_{EN_PB_WAKEUP} 过去之前将 EN 拉至低电平,则器件会重新进入 SLEEP 状态。

按钮 (PB)

当配置为 PB 时,引脚为用于为 PMIC 上电的 CMOS 类型输入。通常情况下,PB 引脚连接到一个接地的瞬时开关和一个外部上拉电阻器。

- 按钮的保持时间由 MFP_2_CONFIG 寄存器中的 EN_PB_VSENSE_DEGL 位来配置。
- 如果 PB 输入在配置的 t_{PB} ON 低于 V_{IL} 阈值低电平,则上电序列开始。
- 为了表示 EN/PB/VSENSE 引脚的上电事件,器件会在 POWER_UP_STATUS_REG 寄存器中设置 POWER UP FROM EN PB VSENSE 位。此位不会将 nINT 引脚置为有效。写入 W1C 将该位清零。
- PB 引脚有一个上升沿抗尖峰脉冲 t_{DEGL PB RISE} 来过滤开关抖动
- 如果 PB 输入保持低电平的时间达到 t_{PB OFF} (不可配置),则断电序列开始。
- 如果出现关断故障,则无需更新 ON 请求。该器件在不按下按钮按钮的情况下自动执行上电序列。
- 如果发生冷复位(无论是通过 RESET 引脚还是 I2C 请求),无需更新 ON 请求。该器件在不按下按钮按钮的情况下自动执行上电序列。
- 如果器件处于 SLEEP 状态,PB 上的下降沿会转换为 INITIALIZE 状态。PB 必须保持低电平的时间达到 $t_{\text{EN_PB_WAKEUP}}$ 才能继续进入 ACTIVE 状态。如果在 $t_{\text{EN_PB_WAKEUP}}$ 过去之前释放 PB,则器件会重新进入 SLEEP 状态。
- 仅当 VSYS 高于 VSYS_POR 阈值时,才会识别按钮按下操作,或者在 VSYS 高于 VSYS_POR 阈值后,必须 将按钮按下足够长的时间。
- 以下位表示按下按钮事件:
 - PB_FALLING_EDGE_DETECTED:自从上次将此位清零以来,按下 PB 的时间间隔长于 t_{DEGL_PB_INT}。设置此位后,将 nINT 引脚置为有效(如果将 MASK_INT_FOR_PB 位配置为"0")。写入 W1C 以清零。
 - PB_RISING_EDGE_DETECTED:自从上次将此位清零以来,释放 PB 的时间间隔长于 t_{DEGL_PB_INT}。设置此位后,将 nINT 引脚置为有效(如果将 MASK_INT_FOR_PB 位配置为"0")。写入 W1C 以清零。
 - PB_REAL_TIME_STATUS: PB 引脚的抗尖峰脉冲 (t_{DEGL_PB_INT}) 实时状态。仅当 EN/PB/VSENSE 引脚配 置为 PB 时有效。此位不会将 nINT 引脚置为有效。

电源故障比较器输入 (VSENSE)

当配置为 VSENSE 时,该引脚可用于检测前置稳压器的电源电压。从前置稳压器输出连接电阻分压器以配置检测电压。

- VSENSE 引脚的抗尖峰脉冲时间可通过 MFP 2 CONFIG 寄存器中的 EN PB VSENSE DEGL 位来配置。
- 通过使 VSYS 高于 VSYS_{POR_Rising} 阈值,且 VSENSE 输入高于 V_{VSENSE} 阈值(非抗尖峰脉冲)来控制上电。
- 如果 VSENSE 输入上升至高于 V_{VSENSE},则上电序列开始。
- 为了表示 EN/PB/VSENSE 引脚的上电事件,器件会在 POWER_UP_STATUS_REG 寄存器中设置 POWER_UP_FROM_EN_PB_VSENSE 位。此位不会将 nINT 引脚置为有效。写入 W1C 将该位清零。
- 如果 VSENSE 输入在 t_{DEGL_VSENSE_FALL} 降至低于 V_{VSENSE} 阈值,则断电序列开始,以便避免由于 VSYS 电源电压损耗而导致不按正常顺序断电。
- 如果出现关断故障,则无需更新 ON 请求。如果 VSENSE 输入仍高于 V_{VSENSE} 阈值,器件会自动执行上电序 列。
- 如果发生冷复位(无论是通过 RESET 引脚还是 I2C 请求),无需更新 ON 请求。如果 VSENSE 输入仍高于 V_{VSENSE} 阈值,器件会自动执行上电序列。
- 如果器件处于 SLEEP 状态,则 VSENSE 不能直接转换至 INITIALIZE 状态。器件仅可在 OFF 状态后进入 INITIALIZE 状态。

6.3.4 通过 I2C 命令发出的关断请求

也可以通过向 MFP_CTRL 寄存器中的 I2C_OFF_REQ 位发送 I2C 命令来触发 OFF 请求。发出该等关断请求 后,需要发出新的导通请求:

- 对于 EN 配置, EN 输入需要一个上升沿(EN 视为边沿敏感型)
- 对于 PB 配置,需要按下按钮才能发出有效的 ON 请求
- 对于 VSENSE 配置,VSENSE 输入需要一个上升沿(VSENSE 视为边沿敏感型)。通过对前置稳压器断电重启,可实现 VSENSE 输入的上升沿。
- EN 或 VSENSE 配置的下降沿抗尖峰脉冲时间 t_{DEGL_EN/VSENSE_I2C} 短于由引脚触发的关闭请求的抗尖峰脉冲时间(t_{DEGL_EN_Fall} 和 t_{DEGL_VSENSE_Fall})。PB 配置的抗尖峰脉冲时间保持不变。

6.3.5 首次电源检测 (FSD)

即使 EN/PB/VSENSE 引脚处于 OFF_REQ 状态,首次电源检测 (FSD) 也支持在施加电源电压后就上电。FSD 可与任何 ON 请求配置 (EN、PB 或 VSENSE) 结合使用,并可通过设置寄存器 MFP_2_CONFIG 中的PU_ON_FSD 位来启用。首次上电时,将 EN/PB/VSENSE 引脚视为具有有效的 ON 请求。VSYS 高于VSYS_{POR Rising} 阈值之后,PMIC 就会

- 加载 NVM
- 进入 INITIALIZE 状态
- 启动上电序列,而不管 EN/PB/VSENSE 引脚状态如何

为了表示基于 FSD 的上电,器件会在 POWER_UP_STATUS_REG 寄存器中设置 POWER_UP_FROM_FSD 位。nINT 引脚不会基于此位进行切换。写入 W1C 将该位清零。

EN/PB/VSENSE 引脚视为具有有效的 ON 请求,直至我们进入 ACTIVE 状态(上电序列的最后一个时隙到期)。在进入 ACTIVE 状态后,器件保持抗尖峰脉冲后的 EN/PB/VSENSE 引脚状态:如果在进入 ACTIVE 状态之前或处于 ACTIVE 状态时引脚状态发生了变化,则器件会保持该引脚状态。例如,如果 EN/PB/VSENSE 引脚配置为 EN,则在器件进入 ACTIVE 状态时,如果 EN 引脚处于低电平(持续时间超过抗尖峰脉冲时间),器件会断电。因为 PMIC 仅在序列的最后一个时隙到期后才会进入 ACTIVE 状态,所以无论引脚状态如何,ON 请求被视为有效的持续时间都可以通过 nRSTOUT 时隙(以及之后的空时隙)的长度进行控制。

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

17

6.3.6 具有自动上电功能时的输入电压压摆率

备注

为了实现稳定加电,当电源序列中启用电源轨时,每个输出电源轨都需要足够的输入到输出电压余量。对于降压稳压器,所需的电压余量设定为 V_{DROPOUT} 。 V_{DROPOUT} 。

在 PMIC 随系统输入电压自动上电的应用中(例如,当 FSD 启用或 EN 在外部上拉至 VSYS/PVIN_LDO12 时),器件会在输入电压达到 VSYSPOR_Rising 且 t_{NVM_LOAD} 过去后启动电源序列。支持每个稳压器所需的输入电压压摆率是根据余量要求和电源序列中分配的时隙 y 计算所得。对于分配给 SLOT_0 的输出电源轨,计算只需包含 t_{NVM_LOAD} 。不需要考虑 SR v_{IN} 为零或负的情况,因为在 VSYSPOR_Rising 阈值时已经满足调节所需的最小输入电压。对于所有其他情况,产生系统输入电压的前置稳压器必须满足所需的最高压摆率。

$$SR_{VSYS} \ge \frac{V_{OUT} + V_{HEADROOM} - VSYS_{POR_Rising}}{t_{NVM_LOAD} + t_{SLOT_0} + t_{SLOT_1} + \dots + t_{SLOT_(y-1)}} \left(V/ms \right)$$
(1)

如果不支持所需的最高压摆率,则当在电源序列中启用时,输出电源轨的余量不足会生成 UV 故障。设备会递增 RETRY_COUNT 并尝试再上电 2 次,如 图 6-4 中所示。如果输入电压仍然无法为输出电源轨提供足够的余量,则器件会进入 INITIALIZE 状态直到循环 VSYS/PVIN LDO12,以更新 ON 请求。

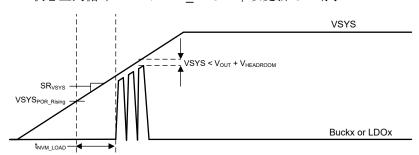


图 6-4. 具有 FSD 和 MASK_RETRY_COUNT_ON_FIRST_PU ="0" 的 VSYS 慢速斜坡

对于需要自动上电但无法满足压摆率要求的应用,可以在第一次上电时通过寄存器 MFP_2_CONFIG 中的位 MASK_RETRY_COUNT_ON_FIRST_PU 屏蔽 RETRY_COUNT。设置此位后,设备将屏蔽 RETRY_COUNT,直到上电序列完成后,如 图 6-5 中所示。上电后,RETRY_COUNT 会取消屏蔽,以便在发生永久故障时使器件关断。

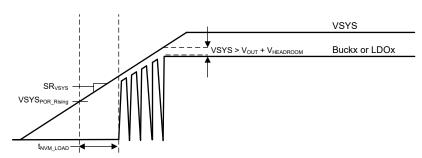


图 6-5. 具有 FSD 和 MASK_RETRY_COUNT_ON_FIRST_PU ="1" 的 VSYS 慢速斜坡

6.3.7 降压转换器 (Buck1、Buck2 和 Buck3)

TPS65214 提供了三个降压转换器。Buck1 能够处理高达 2A 的负载电流。Buck2 和 Buck3 能够支持高达 1A 的负载电流。这些降压转换器的输入电压范围为 2.5V 至 5.5V,可以直接连接到系统电源或另一个降压转换器的输出。输出电压可在 0.6V 至 3.4V 的范围内进行编程:在 1.4V 以下为 25mV 阶跃,1.4V 和 3.4V 之间为 100mV 阶跃。

• 处于 ACTIVE 状态的降压转换器的开/关状态由 ENABLE CTRL 寄存器中的相应 BUCKx EN 位控制。

- STBY 状态下的降压转换器的开/关状态由 STBY_1_CONFIG 寄存器中的相应 BUCKx_STBY_EN 位控制。
- 在 INITIALIZE 和 SLEEP 状态下,无论位如何设置,降压转换器都会关闭。

小心

如果根本不使用降压稳压器,则FB Bx 引脚必须连接到 GND,并且Lx Bx 引脚必须保持悬空。

• 转换器活动可由序列发生器或通过 I2C 通信控制。

降压开关模式:准固定频率模式

无论负载电流如何,这些转换器都可以在强制 PWM 模式下运行,也可以进入脉冲频率调制 (PFM) 模式以实现低负载电流。当配置为"MODE"或"MODE&STBY"时,MODE/STBY 引脚可控制该模式。向 MFP_1_CONFIG 寄存器中的 MODE_I2C_CTRL 位发送 I2C 命令也可以将降压转换器配置为强制 PWM 或 PFM 模式运行。有关详细信息,请参阅 引脚配置和功能 和 PWM/PFM 和低功耗模式 (MODE/STBY)。

- 在转换至 ACTIVE 状态或 INITIALIZE 状态期间,无论引脚状态如何,都会将降压转换器配置为强制 PWM 模式运行。当器件在完成序列且最后一个上电时隙到期时进入 ACTIVE 状态,才允许进入 PFM。
- 如果是 DVFS 引起的输出电压变化, TPS65214 会暂时强制降压稳压器进入 PWM, 直到电压变化完成。如果允许 PFM,则进入和退出 PFM 取决于负载电流。当电感电流达到 0A 时启动 PFM,这时负载电流约计算为:

$$I_{LOAD} = \frac{1}{2} \times \frac{V_{PVIN_Bx} - V_{BUCKx}}{L} \times \frac{V_{BUCKx}}{V_{PVIN_Bx}} \times \frac{1}{f_{SW}}$$
 (2)

可配置转换器带宽

这些转换器可以单独进一步配置为高带宽模式,以实现最优瞬态响应或更低的带宽,从而更大限度地减小输出滤波电容。该选择由 GENERAL_CONFIG 寄存器中的 BUCKx_BW_SEL 位完成。仅当未启用此稳压器时,才能更改此位。请注意,高带宽使用案例对输出电容的要求更高!

外部可配置输出电压

如果 GPIO/VSEL 通过 MFP_1_CONFIG 寄存器中的 GPIO_VSEL_CONFIG 位配置为"VSEL",则可通过将 GPIO/VSEL 引脚拉至高电平、低电平或将引脚保持悬空来控制 Buck1 或 Buck3 的输出电压。这些设置支持多种 内核电源电压或 DDR3LV、DDR4 和 DDR4LV 电源电压,无需更改 NVM。有关详细信息,请参阅通用输入/输出和电压选择引脚 (GPIO/VSEL)。

小心

当 GPIO/VSEL 配置为 VSEL 运行时,该引脚需要硬接线、并且在运行期间不得更改。

有源放电

降压转换器具有有源放电功能。可以在 DISCHARGE_CONFIG 寄存器中为每个电源轨单独暂停放电功能。如果启用了放电,只要禁用电源轨,该器件就会将输出放电至地电位。

- 在电源序列中启用电源轨之前,该器件会对电源轨进行放电,以避免出现预偏置输出。
- 如果通过 I2C 命令启用了电源轨,则不会强制执行有源放电,但仅当输出电压低于 SCG 阈值时才会启用电源轨。
- 该寄存器不受 NVM 支持,并且在器件进入 OFF 状态时复位。
- 处于 INITIALIZE 状态 (在复位期间或 I2C-OFF 请求期间)时,不会复位放电配置。注意:如果未启用放电功能,则可能违反断电序列。

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

动态电压调节

所有降压转换器均支持动态电压频率调节 (DVFS)。在运行期间可以更改输出电压,以便在 0.6V 至 1.375V 的较 低输出电压范围内优化 SoC 工作点的工作电压。通过将 BUCKx_VSET 写入相应的 BUCKx_VOUT 寄存器可控制 电压变化。在 DVFS 引起的电压转换期间,无论放电配置如何,有源放电功能都会暂时启用。

可以根据 STBY 请求通过 MODE/STBY 引脚或 I2C 将降压转换器配置为 DVFS。当接收到 STBY 请求时,在 STBY_1_CONFIG 寄存器中启用并通过 BUCKx_DVS_STBY 位配置为 DVFS 的所有 BUCK 都将更改为相应 BUCKx VOUT STBY 寄存器中由 BUCKx VSET STBY 指定的输出电压。如果在 STBY 状态下清除 BUCKx DVS STBY,则输出电压会恢复为 BUCKx VSET。如果 BUCKx DVS STBY未设置,则在从 ACTIVE 转换到 STBY 状态时,相应的 BUCKx 输出电压不会更改。

输出电容要求

降压转换器需要足够的输出电容来实现稳定性。所需的最小和支持的最大电容取决于配置:

- 对于低带宽配置,需要最小 10μF 的电容,支持的最大总电容为 75μF
- 对于高带宽配置,需要最小 30µF 的电容,支持的最大总电容为 220µF

降压故障处理

欠压 (UV) 监控

TPS65214 会检测降压转换器输出上的欠压。欠压阈值通过 BUCKx VOUT 寄存器中的 BUCKx UV THR 位进行 配置。对欠压检测的反应取决于 MASK_CONFIG 寄存器中相应的 BUCKx_UV_MASK 位和 MASK_EFFECT 位的 配置。如果未屏蔽,器件会设置 INT_SOURCE 寄存器中相应的 INT_BUCK_1_2_IS_SET 或 INT_BUCK_3_IS_SET 位。该器件还在 INT_BUCK_1_2 或 INT_BUCK_3 寄存器中设置相应的 BUCKx UV 位。

在电压转换(例如,当由 DVFS 引起的电压变化触发时)期间,器件默认会屏蔽欠压检测,并在电压转换完成时 激活欠压检测。如果器件在(从 INITIALIZE 状态或 STBY 状态)进入 ACTIVE 状态的序列期间检测到欠压,且 UV 未屏蔽,断电序列会在当前时隙结束时启动。

如果器件在 ACTIVE 状态或 STBY 状态下检测到欠压且 UV 未被 INT MASK UV 寄存器中的 BUCKx UV MASK 位屏蔽,则断电序列会立即启动。OC 检测不可屏蔽。

过流 (OC) 限制

TPS65214 针对降压转换器输出提供逐周期电流限制。如果器件检测到过流持续 t_{DEGLITCH OC short} 或 t_{DEGLITCH OC long} (可通过 OC_DEGL_CONFIG 寄存器中的 EN_LONG DEGL FOR OC BUCKx 对每个电源轨 分别配置;仅适用于上升沿),器件会在 INT SOURCE 寄存器中设置 INT BUCK 1 2 IS SET 或 INT BUCK 3 IS SET 位,并在 INT BUCK 1 2 或 INT BUCK 3 寄存器中设置 BUCKx OC 位(对于正过流) 或 BUCKx NEG OC 位(对于负过流)。

在电压转换(例如,当由 DVFS 引发电压变化触发时)期间,过流检测被消隐,仅在电压转换完成时激活。

如果在(从 INITIALIZE 状态或 STBY 状态)进入 ACTIVE 状态的序列期间发生过流,器件会立即禁用受影响的电 源轨并在当前时隙结束时启动断电序列。

如果在 ACTIVE 状态或 STBY 状态下发生过流,器件会立即禁用受影响的电源轨并启动断电序列。

OC 检测不可屏蔽,但抗尖峰脉冲时间是可配置的。TI 建议配置最短抗尖峰脉冲时间,t_{DEGLITCH} OC SHORT。长时 间过流可能会加剧老化或增大恢复时过冲。

接地短路 (SCG) 监控

TPS65214 会检测降压输出上的接地短路 (SCG) 故障。对 SCG 事件检测的反应是在 INT SOURCE 寄存器中设 置 INT BUCK 1 2 IS SET 位或 INT BUCK 3 IS SET 位,以及在 INT BUCK 1 2 或 INT BUCK 3 寄存器中

Product Folder Links: TPS65214

设置 BUCKx_SCG 位。受影响的电源轨会立即遭到禁用。该器件会定序关闭所有输出并转换至 INITIALIZE 状态。

SCG 检测不可屏蔽。

如果启用了某个电源轨,器件最初会消隐 SCG 检测,以允许该电源轨斜升到 SCG 阈值以上。

残余电压 (RV) 监控

TPS65214 会检测降压输出上的残余电压 (RV) 故障。对 RV 事件检测的反应是在 INT_SOURCE 寄存器中设置 INT_RV_IS_SET 位以及在 INT_RV 寄存器中设置 BUCKx_RV 位。RV 检测不可屏蔽,但可以通过 INT_MASK_WARM 寄存器中的 MASK_INT_FOR_RV 为所有电源轨全局配置 nINT 反应。不管屏蔽与否,都会设置 BUCKx_RV 标志,仅当 nINT 置为有效时才会设置 INT_RV_IS_SET 位。故障反应时间和潜在的状态转换取决于检测到残余电压时的情况:

- 如果器件在上电、ACTIVE_TO_STANDBY 或 STANDBY_TO_ACTIVE 序列期间检测到残余电压,则序列会中止,器件会断电。关断故障反应可通过寄存器 GENERAL_CONFIG 中的 BYPASS_RV_FOR_RAIL_ENABLE 位进行屏蔽。
- 如果在请求退出 STBY 状态期间,器件检测到在 STBY 状态期间被禁用的任何电源轨上的残余电压超过 80ms,器件会转换至 INITIALIZE 状态。如果该情况持续 4ms 至 5ms 但小于 80ms,则器件会设置 BUCKx RV 位。
- 如果在 I2C 执行电源轨 EN 命令期间检测到残余电压,则会立即设置 BUCKx_RV 标志,但不会发生状态转换。

温度监测

降压转换器有一个本地过热传感器。对温度警告的反应取决于 MASK_CONFIG 寄存器中相应 SENSOR_x_WARM_MASK 位以及 INT_MASK_BUCK 寄存器中 MASK_EFFECT 位的配置。如果传感器上的温度超过 T_{WARM_Rising} 且未被屏蔽,器件会在 INT_SOURCE 寄存器中设置 INT_SYSTEM_IS_SET 位并在 INT_SYSTEM 寄存器中设置 SENSOR_x_WARM 位。如果传感器检测到温度超过 T_{HOT_Rising},则转换器功率耗散和结温将超出安全工作值。器件会立即将所有有效输出断电,并在 INT_SOURCE 寄存器中设置 INT_SYSTEM_IS_SET 位并在 INT_SYSTEM 寄存器中设置 SENSOR_x_HOT 位。一旦温度降至 T_{WARM_Falling} 阈值以下(或在 T_WARM 被屏蔽的情况下低于 T_{HOT_Falling} 阈值),TPS65214 便会自动恢复。_HOT 位保持设置状态并需要通过写入"1"来清零。HOT 检测不可屏蔽。

小心

降压转换器只能提供高达相应电流限制的输出电流,包括在启动期间。根据流入滤波器和负载电容的充电电流,器件可能无法在斜坡期间将全部输出电流驱动至负载。根据经验,对于超过 50 μ F 的总负载电容,负载电流不得超过额定输出电流的 25%。该限制同样适用于输出电压的动态变化。

小心

TPS65214 不会提供差分反馈引脚。该器件不支持遥感。由于单端布线易受噪声影响,必须尽可能短,从而直接连接到输出滤波器。

表 6-1. BUCK 输出电压设置

BUCKx_VSET [十进制]	BUCKx_VSET [二进制]	BUCKx_VSET [十六进制]	VOUT(Buck1、Buck2 和 Buck3)[V]
0	000000	00	0.600
1	000001	01	0.625
2	000010	02	0.650
3	000011	03	0.675
4	000100	04	0.700
5	000101	05	0.725

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

21

表 6-1 BUCK 输出电压设置 (续)

	表 6-1. BUCK 输出电压设置 (续)								
BUCKx_VSET [十进制]	BUCKx_VSET [二进制]	BUCKx_VSET [十六进制]	VOUT(Buck1、Buck2 和 Buck3)[V]						
6	000110	06	0.750						
7	000111	07	0.775						
8	001000	08	0.800						
9	001001	09	0.825						
10	001010	0A	0.850						
11	001011	0B	0.875						
12	001100	0C	0.900						
13	001101	0D	0.925						
14	001110	0E	0.950						
15	001111	OF	0.975						
16	010000	10	1.000						
17	010001	11	1.025						
18	010010	12	1.050						
19	010011	13	1.075						
20	010100	14	1.100						
21	010101	15	1.125						
22	010110	16	1.150						
23	010111	17	1.175						
24	011000	18	1.200						
25	011001	19	1.225						
26	011010	1A	1.250						
27	011011	1B	1.275						
28	011100	1C	1.300						
29	011101	1D	1.325						
30	011110	1E	1.350						
31	011111	1F	1.375						
32	100000	20	1.400						
33	100001	21	1.500						
34	100010	22	1.600						
35	100011	23	1.700						
36	100100	24	1.800						
37	100101	25	1.900						
38	100110	26	2.000						
39	100111	27	2.100						
40	101000	28	2.200						
41	101001	29	2.300						
42	101010	2A	2.400						
43	101011	2B	2.500						
44	101100	2C	2.600						
45	101101	2D	2.700						
46	101110	2E	2.800						
47	101111	2F	2.900						
48	110000	30	3.000						
49	110001	31	3.100						

提交文档反馈

Copyright © 2025 Texas Instruments Incorporated

22

表 6-1. BUCK 输出电压设置 (续)

BUCKx_VSET [十进制]	BUCKx_VSET [二进制]	BUCKx_VSET [十六进制]	VOUT(Buck1、Buck2 和 Buck3)[V]
50	110010	32	3.200
51	110011	33	3.300
52	110100	34	3.400
53	110101	35	3.400
54	110110	36	3.400
55	110111	37	3.400
56	111000	38	3.400
57	111001	39	3.400
58	111010	3A	3.400
59	111011	3B	3.400
60	111100	3C	3.400
61	111101	3D	3.400
62	111110	3E	3.400
63	111111	3F	3.400

6.3.8 线性稳压器 (LDO1 和 LDO2)

TPS65214 总共能提供两个线性稳压器。LDO1 是一款用于为 SOC 或外设上的模拟电路供电的通用型 LDO。LDO 可支持 300mA 的输出电流。LDO2 是一款为 SOC 与外设上的数字电路供电的通用型 LDO。LDO 可支持 500mA 的输出电流。

工作模式

LDO1 与 LDO2 的输入电压范围均为 2.5V 至 5.5V,必须直接连接到系统电源。输出电压可在 0.6V 至 3.3V 范围内以 50mV 阶跃进行编程。LDO 支持负载开关模式 (LSW_mode):这种情况下,支持 2.5V 至 3.4V 的输出电压。在 LSW_mode 下,不需要在 LDOx_VOUT 寄存器中配置所需电压。

• LDO 可以配置为线性稳压器,也可以配置为负载开关(LSW 模式)。该模式可通过 LDOx_VOUT 寄存器的 LSW_BYP_CONFIG 位进行配置。

小心LSW 模式下,LDO 充当开关,其中,VOUT 为 VIN 减去 FET 电阻上的压降(R_{LSW})。

- 处于 ACTIVE 状态的 LDO 的开/关状态由 ENABLE CTRL 寄存器中相应的 LDOx EN 位控制。
- 处于 STBY 状态的 LDO 的开/关状态由 STBY 1 CONFIG 寄存器中相应的 LDOx STBY EN 位控制。
- "初始化"状态下,无论位设置如何,LDO均处于关断状态。

小心如果根本不使用线性稳压器,VLDOx 引脚必须悬空。

有源放电

LDO 具有有源放电功能。只要 LDOx 未启用,输出就会对地放电。可以在 DISCHARGE_CONFIG 寄存器中为每个电源轨单独禁用放电功能。

- 启用电源序列电源轨以前,该器件会对电源轨放电,避免出现预偏置输出的情况。
- 如果通过 I2C 命令启用了电源轨,则不会强制执行有源放电,但仅当输出电压低于 SCG 阈值时才会启用电源轨。
- 该寄存器不受 EEPROM 支持,并且会在器件进入 OFF 状态时复位。

• 处于 INITIALIZE 状态 (在复位期间或 I2C-OFF 请求期间)时,不会复位放电配置。注:如果未启用放电功能,则可能违反断电序列。

动态电压调节

所有 LDO 均支持动态电压调节 (DVS)。运行期间,可改变输出电压,以便优化负载运行点的工作电压。可通过写入相应 LDO1_VOUT 或 LDO2_VOUT 寄存器的 LDO1_VSET 或 LDO2_VSET 的方式,控制电压变化。在 DVS 引起的电压转换期间,无论放电配置如何,有源放电功能都会暂时启用。

可根据 STBY 请求,通过 MODE/STBY 引脚或 I2C,将 LDO 配置为 DVS。收到 STBY 请求时,对于在 STBY_1_CONFIG 寄存器中启用并且通过 LDOx_DVS_STBY 位配置为 DVFS 的所有 LDO,都会更改为 LDOx_VOUT_STBY 寄存器中 LDOx_VSET_STBY 指定的输出电压。如果在 STBY 状态下清除 LDOx_DVS_STBY,输出电压将恢复为 LDOx_VSET。如果并未设置 LDOx_DVS_STBY,那么在从 ACTIVE 状态过渡到 STBY 状态时,相应的 LDOx 输出电压不会发生变化。

小心

STBY 状态下,当 LDO 配置为 DVS 时,相应上电时隙的持续时间必须足够长,以便支持从 STBY 至 ACTIVE 的电源序列期间的完整电压斜坡。如果时隙持续时间不够长,器件会记录一个"超时"故障。

输出电容要求

LDO 稳压器需要足够的输出电容才能保持稳定性。所需的最小和支持的最大电容取决于配置:

- LDO 模式下,需要 1.2µF 的最小电容,并且支持 40µF 的最大总负载电容(输出滤波器与负载点组合)
- LSW 模式下,需要 1.2μF 的最小电容,并且支持 50μF 的最大总电容(输出滤波器与负载点组合)

LDO 故障处理

欠压 (UV) 监控器

TPS65214 会检测 LDO 输出上的欠压。对于欠压阈值,可通过 LDOx_VOUT 寄存器中的 LDOx_UV_THR 位进行配置。对欠压检测的反应取决于 INT_MASK_LDO 寄存器中 LDOx_UV_MASK 位的配置以及INT_MASK_BUCKS 寄存器中 MASK_EFFECT 位的配置。如果未屏蔽,器件会在 INT_SOURCE 寄存器中设置INT LDO 1 2 IS SET 或,在 INT LDO 1 2 寄存器中设置 LDOx UV 位。

电压转换(例如,上电时)期间,该器件会默认将欠压检测功能置空,并且在电压转换完成之时激活欠压检测。如果器件在(从 INITIALIZE 或 STBY 状态)进入 ACTIVE 状态的序列期间检测到欠压并且未屏蔽 UV,那么断电序列会在当前时隙结束时开始。

如果器件在(从 INITIALIZE 或 STBY 状态)进入 ACTIVE 状态的序列期间检测到欠压且 UV 未被屏蔽,则断电序列会在当前时隙结束时开始。

如果器件在 ACTIVE 状态或 STBY 状态下检测到欠压且 UV 未被屏蔽,则断电序列会立即启动。OC 检测不可屏蔽。

小心

如果 LDO 配置为 LSW 模式,则不支持 UV 检测。

过流限制 (OC)

TPS65214 在 LDO 输出上提供电流限制。如果 PMIC 在 t_{DEGLITCH_OC_short} 或 t_{DEGLITCH_OC_long} 时分别检测到过流(可通过 OC DEGL CONFIG 寄存器的 EN LONG DEGL FOR OC LDOx 对每个电源轨单独配置;仅适用

于上升沿),该器件会在 INT_SOURCE 寄存器中设置 INT_LDO_1_2_IS_SET 位,在 INT_LDO_1_2 寄存器中设置 LDOx OC 位。受影响的电源轨会立即被禁用。

电压转换期间(例如:上电时),过流检测会被消隐,并且在电压转换完成时激活。

如果在(从 INITIALIZE 状态或 STBY 状态)进入 ACTIVE 状态的序列期间发生过流,器件会立即禁用受影响的电源轨,并且在当前时隙结束之时启动断电序列。

如果在 ACTIVE 状态或 STBY 状态下发生过流,器件会立即禁用受影响的电源轨,并且启动断电序列。

OC 检测不可屏蔽,但抗尖峰脉冲时间是可配置的。德州仪器 (TI) 建议使用 t_{DEGLITCH_OC_short}。长时间过流可能会加剧老化或增大恢复时过冲。

接地短路 (SCG) 监测器

TPS65214 会检测 LDO 输出上的接地短路 (SCG) 故障。对 SCG 事件检测的反应是设置 INT_SOURCE 寄存器 INT_LDO_1_2 IS_SET 位与 INT_LDO_1_2 寄存器 LDOx_SCG 位。受影响的电源轨会立即被禁用。该器件会定序关闭所有输出并转换至 INITIALIZE 状态。

SCG 检测不可屏蔽。

如果启用了某个电源轨,器件最初会消隐 SCG 检测,以允许该电源轨斜升到 SCG 阈值以上。

残余电压 (RV) 监测器

TPS65214 会检测 LDO 输出上的残余电压 (RV) 故障。对 RV 事件检测的反应是在 INT_SOURCE 寄存器中设置 INT_RV_IS_SET 位以及在 INT_RV 寄存器中设置 LDOx_RV 位。RV 检测不可屏蔽,但可以通过 INT_MASK_WARM 寄存器中的 MASK_INT_FOR_RV 为所有电源轨全局配置 nINT 反应。无论是否屏蔽,器件都会设置 LDOx_RV 标志,只有在断言 nINT 时才设置 INT_RV_IS_SET 位。故障反应时间和潜在的状态转换取决于检测到故障时的情况:

- 如果器件在上电、ACTIVE_TO_STANDBY 或 STANDBY_TO_ACTIVE 序列期间检测到残余电压,则序列会中止,器件会断电。对于关断故障反应,可通过寄存器 GENERAL_CONFIG 的 BYPASS RV FOR RAIL ENABLE 位进行屏蔽。
- 如果在请求退出 STBY 状态期间,器件检测到 STBY 状态下被禁用的任何电源轨的残余电压超过 80ms,器件会转换至 INITIALIZE 状态。如果该情况持续 4ms 至 5ms 但少于 80ms,器件会设置 LDOx RV 位。
- 如果在通过 I2C 执行电源轨 EN 命令期间检测到残余电压,就会立即设置 LDOx_RV-bit 标志,但不会发生状态转换。

温度监测

LDO 有一个局部过热传感器。对温度警告的反应取决于 INT_MASK_BUCKS 寄存器中相应 SENSOR_x_WARM_MASK 位和 MASK_EFFECT 位的配置。如果传感器上的温度超过 T_{WARM_Rising} 且未被屏蔽,器件会在 INT_SOURCE 寄存器中设置 INT_SYSTEM_IS_SET 位并在 INT_SYSTEM 寄存器中设置 SENSOR_x_WARM 位。如果传感器检测到温度超过 T_{HOT_Rising},则转换器功率耗散和结温将超出安全工作值。器件会立即将所有有效输出断电,并在 INT_SOURCE 寄存器中设置 INT_SYSTEM_IS_SET 位并在 INT_SYSTEM 寄存器中设置 SENSOR_x_HOT 位。一旦温度降至 T_{WARM_FAlling} 阈值以下(或在 T_WARM 被屏蔽的情况下低于 T_{HOT_FAlling} 阈值),TPS65214 便会自动恢复。_HOT 位保持设置状态并需要通过写入"1"来清零。HOT 检测不可屏蔽。

表 6-2. LDO 输出电压设置

LDOx_ VSET [十进制]	LDOx_VSET [二进制]	LDOx_ VSET [十六进制]	VOUT(LDO1 和 LDO2、LDO 模式)[V]
0	000000	00	0.60
1	000001	01	0.60
2	000010	02	0.60

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

25

表 6-2. LDO 输出电压设置 (续)

表 6-2. LDO 输出电压设置 (续)								
LDOx_ VSET [十进制]	LDOx_VSET [二进制]	LDOx_ VSET [十六进制]	VOUT(LDO1 和 LDO2、LDO 模式)[V]					
3	000011	03	0.65					
4	000100	04	0.70					
5	000101	05	0.75					
6	000110	06	0.80					
7	000111	07	0.85					
8	001000	08	0.90					
9	001001	09	0.95					
10	001010	0A	1.00					
11	001011	0B	1.05					
12	001100	0C	1.10					
13	001101	0D	1.15					
14	001110	0E	1.20					
15	001111	0F	1.25					
16	010000	10	1.30					
17	010001	11	1.35					
18	010010	12	1.40					
19	010011	13	1.45					
20	010100	14	1.50					
21	010101	15	1.55					
22	010110	16	1.60					
23	010111	17	1.65					
24	011000	18	1.70					
25	011001	19	1.75					
26	011010	1A	1.80					
27	011011	1B	1.85					
28	011100	1C	1.90					
29	011101	1D	1.95					
30	011110	1E	2.00					
31	011111	1F	2.05					
32	100000	20	2.10					
33	100001	21	2.15					
34	100010	22	2.20					
35	100011	23	2.25					
36	100100	24	2.30					
37	100101	25	2.35					
38	100110	26	2.40					
39	100111	27	2.45					

Product Folder Links: TPS65214

提交文档反馈

26

Copyright © 2025 Texas Instruments Incorporated

父又怕汉顷

表 6-2. LDO 输出电压设置 (续)

LDOx_ VSET [十进制]	LDOx_VSET [二进制]	LDOx_ VSET [十六进制]	VOUT (LDO1 和 LDO2、LDO 模式) [V]
40	101000	28	2.50
41	101001	29	2.55
42	101010	2A	2.60
43	101011	2B	2.65
44	101100	2C	2.70
45	101101	2D	2.75
46	101110	2E	2.80
47	101111	2F	2.85
48	110000	30	2.90
49	110001	31	2.95
50	110010	32	3.00
51	110011	33	3.05
52	110100	34	3.10
53	110101	35	3.15
54	110110	36	3.20
55	110111	37	3.25
56	111000	38	3.30
57	111001	39	3.30
58	111010	3A	3.30
59	111011	3B	3.30
60	111100	3C	3.30
61	111101	3D	3.30
62	111110	3E	3.30
63	111111	3F	3.30

6.3.9 复位到 SoC (nRSTOUT)

复位输出 (nRSTOUT) 是一个开漏输出,用于在上电序列结束时将复位释放到 SoC 或 FPGA。按顺序配置 nRSTOUT 的时序。nRSTOUT 会驱动为低电平,直至器件进入 ACTIVE 状态,或从 ACTIVE 状态或 STBY 状态断电。在 ACTIVE 状态期间,此引脚驱动至高电平。在 STBY 状态下,引脚驱动为高电平或低电平取决于寄存器 STBY_2_CONFIG 中的 nRSTOUT_STBY_CONFIG 位。

6.3.10 中断引脚 (nINT)

上电期间,nINT 引脚的输出取决于是否设置了任何 INT_SOURCE 标志,以及 INT_MASK_BUCKS 寄存器中MASK_EFFECT 位的配置。如果设置了一个或多个标志,nINT 引脚会被拉低,并且仅在通过向这些标志写入"1"来清除这些标志后才被释放为高电平。请注意,仅当用于上拉的 VIO 电压可用时,nINT 引脚才能转换为"高"电平。

在 SLEEP 状态下,nINT 引脚始终释放为高电平。在 ACTIVE 或 STBY 状态下,nINT 引脚可以被拉低,从而向主机处理器发出事件或故障状况的信号。每当 IC 中发生故障或事件时,就会在 INT 寄存器中设置相应的中断位,并且开漏输出被驱动为低电平。如果器件转换到 INITIALIZE 状态,nINT 引脚也会被拉低,无论转换是由 OFF 请求触发的,还是由故障触发的都是如此。

如果故障不再存在,需要对故障位执行 W1C (写入"1"以清除)。此命令还允许 nINT 引脚释放(返回到高阻态状态)。如果故障仍然存在,相应的位将保持设置状态,并且 INT 引脚将保持低电平。

可以在 INT_MASK_UV 寄存器中单独屏蔽每个电源轨的 UV 故障。热传感器可以通过 MASK_CONFIG 寄存器中的 SENSOR_x_WARM_MASK 单独屏蔽。UV 和 WARM 的屏蔽效果由 MASK_CONFIG 寄存器中的 MASK EFFECT 位全局定义。

RV 故障的 nINT 反应由 MASK CONFIG 寄存器中的 MASK INT FOR RV 位全局定义。

- 00b = 无状态变化, 无 nINT 反应, 未设置位
- 01b = 无状态变化, 无 nINT 反应,设置了位
- 10b = 无状态变化, nINT 反应, 设置了位(与 11b 相同)
- 11b = 无状态变化, nINT 反应, 设置了位(与 10b 相同)

小心

屏蔽会给器件或系统带来风险。如果通过 I2C 命令执行屏蔽,在转换到 INITIALIZE 状态后,屏蔽位会重置为基于 NVM 的默认值。不会清除与通过 I2C 新配置为 SD 故障的故障相对应的位。

TI 建议不要在同一电源轨上屏蔽 OC 和 UV 检测。

6.3.11 PWM/PFM 和低功耗模式 (MODE/STBY)

TPS65214 通过 I2C 控制或通过 MODE/STBY 引脚支持低功耗模式。通过 MFP_2_CONFIG 寄存器中的 MODE_STBY_CONFIG 位选择引脚的配置。可以通过写入 MFP_1_CONFIG 寄存器中的 MODE_STBY_POLARITY 位来配置此引脚的极性。上电后,不得更改极性配置。

MODE/STBY 配置为 "MODE"

如果配置为"MODE",则引脚状态决定降压转换器的开关模式。强制此引脚的持续时间超过 $t_{DEGLITCH_MFP}$ 会强制降压稳压器进入 PWM 模式(与负载电流无关)。将此引脚置为低电平无效可让降压稳压器进入 PFM 模式。进入 PFM 和从 PFM 退出由负载电流控制。

- 也可以通过写入 MFP_1_CONFIG 寄存器中的 MODE_I2C_CTRL 位来控制自动 PFM/强制 PWM 的选择。
- MODE 的改变不会导致状态转换。
- 在三个降压转换器之一上电期间,屏蔽此电源轨上的 MODE 更改,仅在斜坡完成后更改才会生效。

表 6-3. MODE 配置

引脚	引脚设置	极性	引脚状态	MODE_I2C_CTRL 位	器件模式
MODE/STBY	模式	х	х	1	强制 PWM
MODE/STBY	模式	0	L	0	自动 PFM
MODE/STBY	模式	0	Н	0	强制 PWM
MODE/STBY	模式	1	L	0	强制 PWM
MODE/STBY	模式	1	Н	0	自动 PFM

MODE/STBY 配置为 "STBY"

如果配置为"STBY",当强制该引脚的时长超过 t_{DEGLITCH_MFP} 时,会将器件定序进入 STBY 或 SLEEP 状态,具体根据寄存器 STBY 2 CONFIG 中的 STBY SLEEP CONFIG 位设置而定。

• 如果配置为 STBY 状态,器件会定序关断 STBY_1_CONFIG 和 STBY_2_CONFIG 寄存器中所选的电源轨。将此引脚置为无效会再次对所选的电源轨进行定序开启。

• 如果配置为 SLEEP 状态,则器件会定序关断电源轨并忽略 MODE/STBY 引脚状态。

如果在 STBY 或 SLEEP 状态期间支持 I2C 通信,则还可以通过写入 MFP_CTRL 寄存器中的 STBY_I2C_CTRL 位来控制进入和退出 STBY 状态的转换。

- 根据定义,配置为"STBY"的 MODE/STBY 引脚的变化确实会导致状态转换。
- 无论引脚设置如何,器件始终会上电以进入 ACTIVE 状态。器件仅在进入 ACTIVE 状态后才会对 STBY 引脚 状态或 I2C 命令作出反应。

表 6-4. SIBY 配直							
引脚	引脚设置	极性	引脚状态	STBY_I2C_CTRL 位	器件状态		
MODE/STBY	STBY	х	x	1	STBY 或 SLEEP		
MODE/STBY	STBY	0	L	0	STBY 或 SLEEP		
MODE/STBY	STBY	0	Н	0	运行		
MODE/STBY	STBY	1	L	0	运行		
MODE/STBY	STBY	1	Н	0	STBY 或 SLEEP		

表 6-4 STRY 配置

MODE/STBY 配置为 "MODE 和 STBY"

该引脚可配置为同时执行 MODE 和 STBY 功能。仅当 STBY_SLEEP_CONFIG 配置为 STBY 状态时,才会实现双重功能。

强制此引脚持续时间超过 t_{DEGLITCH_MFP} 会定序关断在 STBY_1_CONFIG 和 STBY_2_CONFIG 寄存器中选择关闭的电源轨(STBY 功能)。任何配置为在 STBY 状态下仍保持开启的任何降压稳压器都以自动 PFM 模式(MODE 功能)运行。将此引脚置为无效会再次对所选的电源轨进行定序开启,并强制降压稳压器进入强制PWM 模式。此配置需要协调极性设置。

- 如果通过写入 MFP_CTRL 寄存器中的 STBY_I2C_CTRL 位来命令进入和退出 STBY 状态的转换(前提是在 STBY 状态期间支持 I2C 通信),则需要通过写入 MFP_1_CONFIG 寄存器中的 MODE_I2C_CTRL 位来单独 执行 MODE 更改命令。
- 根据定义,配置为"MODE和 STBY"的 MODE/MODE 引脚的变化确实会导致状态转换。
- 默认情况下,STBY 会置为无效且忽略该引脚,直至器件完成上电序列。在三个降压转换器之一上电期间,屏蔽此电源轨上的 MODE 更改,仅在斜坡完成后更改才会生效。即使在电源轨斜坡期间(INITIALIZE 转换到ACTIVE 期间除外),系统也会对 STBY 引脚发出的状态更改命令作出反应。

请查看下面的引脚和 I2C 命令真值表。

表 6-5. MODE 和 STBY 配置

引脚	引脚设置	极性	引脚状态	STBY_I2C_CT RL 位	MODE_I2C_CT RL 位	器件状态	器件模式
MODE/STBY	MODE 和 STBY	0	L	x	0	STBY 或 SLEEP	自动 PFM
MODE/STBY	MODE 和 STBY	0	L	x	1	STBY 或 SLEEP	强制 PWM
MODE/STBY	MODE 和 STBY	0	Н	0	x	运行	强制 PWM
MODE/STBY	MODE 和 STBY	0	Н	1	х	STBY 或 SLEEP	强制 PWM
MODE/STBY	MODE 和 STBY	1	L	0	x	运行	强制 PWM
MODE/STBY	MODE 和 STBY	1	L	1	х	STBY 或 SLEEP	强制 PWM
MODE/STBY	MODE 和 STBY	1	Н	х	0	STBY 或 SLEEP	自动 PFM

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

表 6-5. MODE 和 STBY 配置 (续)

引脚	引脚设置	极性	引脚状态		MODE_I2C_CT RL 位	器件状态	器件模式
MODE/STBY	MODE 和 STBY	1	Н	х	1	STBY 或 SLEEP	强制 PWM

6.3.12 通用输入/输出和电压选择引脚 (GPIO/VSEL)

TPS65214 GPIO/VSEL 引脚功能可以通过 MFP 1 CONFIG 寄存器中的 GPIO VSEL CONFIG 位进行配置。

小心

GPIO VSEL CONFIG 在运行期间不得更改。

GPIO/VSEL 配置为"GPIO":

如果配置为"GPIO",则该引脚可通过 GENERAL_CONFIG 寄存器中的 GPIO_CONFIG 位配置为输入或输出。 GPIO 配置位在器件运行期间可更改。

- 当配置为输入时,引脚电平可用作序列输入,并由 GPIO SEQUENCE SLOT 寄存器分配时隙,并具有相应的 时隙持续时间。内部序列发生器等待 GPIO/VSEL 引脚达到 GPIO SEQUENCE POLARITY 位配置的开启状 态,然后再继续执行电源序列。如果该引脚未在80ms内达到ON状态,器件会设置TIMEOUT位并转换到 INITIALIZE 状态。
- 当配置为输出时,该引脚可用于对外部电源轨排序。该引脚可以包含在序列中,或者在 GENERAL CONFIG 寄存器中写入 GPIO EN 位通过 I2C 接口进行控制。如果激活, GPIO 将释放为高电平。极性无法更改。

GPIO/VSEL 配置为 "VSEL":

如果配置为"VSEL",则引脚电平会用于通过 MFP 1 CONFIG 寄存器中的 VSEL RAIL 位来设置 Buck1 或 Buck3 的输出电压。下表显示了各种组合。

小心

VSEL 功能需要进行硬接线,并且在运行期间不得更改。

表 6-6. GPIO/VSEL 配置选项

	GPIO_CONFIG	VSEL_RAIL	PIN 状态	输出 (V)	电源轨
G					
0:GPIO	0 = output	Х	GPIO_EN	VIO	GPIO
0:GPIO	1 = input	Х	外部驱动	不适用	GPIO
1:VSEL	Х	0 = Buck1	0	BUCK1_VOUT	BUCK1
1:VSEL	Х	0 = Buck1	开路	0.75V	BUCK1
1:VSEL	Х	0 = Buck1	1	1.1V	BUCK1
1:VSEL	Х	1 = Buck3	0	BUCK3_VOUT	BUCK3
1:VSEL	X	1 = Buck3	开路	1.1V	BUCK3
1:VSEL	X	1 = Buck3	1	1.2V	BUCK3

6.3.13 通用输出和 nWAKEUP (GPO/nWAKEUP)

TPS65214 GPO/nWAKEUP 功能可通过 MFP_2_CONFIG 寄存器中的 GPO_nWAKEUP_CONFIG 位进行配置。 此函数在运行期间可更改。

Product Folder Links: TPS65214

提交文档反馈

GPO/nWAKEUP 配置为 "GPO"

如果配置为"GPO",则引脚可用于对外部电源轨排序。GPO 可以包含在序列中,或者在 GENERAL_CONFIG 寄存器中写入 GPO EN 位通过 I2C 接口进行控制。如果激活,GPO 将释放为高电平。极性无法更改。

GPO/nWAKEUP 配置为 "nWAKEUP"

如果配置为"nWAKEUP",则该引脚是向主机指示上电事件的信号。nWAKEUP 在器件进入 INITIALIZE 状态之前驱动为低电平并保持低电平,直到器件退出 INITIALIZE 状态。在所有其他状态和状态转换中,nWAKEUP 被释放为高电平。极性无法更改。有关详细信息,请参阅 器件功能模式。

6.3.14 通过 I2C 命令发出 RESET 请求

也可以通过在 MFP_CTRL 寄存器中写入 WARM_RESET_I2C_CTRL 或 COLD_RESET_I2C_CTRL 位来触发器件的复位。仅当器件处于 ACTIVE 状态、STBY 状态或在这两种状态之间转换时,才会通过引脚或 I2C 发送RESET 请求。

COLD 复位

如果请求冷复位,则器件执行断电序列并转换到 INITIALIZE 状态。然后,重新加载 NVM,电源轨在正常上电序列中再次上电,前提是没有故障且没有 OFF 请求。冷复位会将所有由 NVM 支持的寄存器位恢复为其启动值。不受 NVM 支持的寄存器位 会保持其值,但 STBY_I2C_CTRL、 POWER_UP_FROM_OFF、POWER_UP_FROM_EN_PB_VSENSE 、 POWER_UP_FROM_FSD 、 CUST_PROG_DONE 、CUST_NVM_VERIFY_DONE 和 CUST_NVM_VERIFY_ERR 除外。有关由 NVM 支持的寄存器的详细信息,请参阅 节 6.5。

执行冷复位会在 POWER_UP_STATUS_REG 寄存器中设置 COLD_RESET_ISSUED 位。读出此位的值可以用来追踪是否执行了冷复位。nINT 引脚不会基于此位进行切换。写入 W1C 将该位清零。

WARM 复位

如果请求热复位,则所有启用的电源轨都保持开启状态,但支持动态电压变化的电源轨的输出电压会复位为启动电压。具体而言,以下配置会复位为其启动值:BUCK1_VSET、BUCK2_VSET、BUCK3_VSET、LDO1_VSET和LDO2_VSET。甚至是同一寄存器中的所有其他位,也会保持其当前状态。例如,LDOx_LSW_CONFIG、BUCKx_BW_SEL、BUCKx_UV_THR_SEL和MFP_1_CONFIG寄存器位在热复位期间不会复位。

备注

关断故障和 OFF 请求优先于 RESET 请求。如果一个 RESET 请求与其中一个关断故障或 OFF 请求同时发生,器件会进入 INITIALIZE 状态,且需要一个新的 ON 请求来启动。

6.3.15 寄存器访问控制

Copyright © 2025 Texas Instruments Incorporated

通过 REG_LOCK 寄存器限制对器件寄存器的写入访问,以防止意外更改。任何包含 R/W 访问类型的寄存器都受 REG_LOCK 保护。必须将 5Ah 的 REG_ACCESS_CMD 写入 REG_LOCK 寄存器,才能解锁受保护的寄存器进行修改。更改完成后,将除 5Ah 以外的任何值写入 REG_LOCK 寄存器来锁定受保护的寄存器。

表 6-7. TPS65214 可写寄存器不受 REG_LOCK 保护

	<u> </u>	
寄存器地址	寄存器名称	
0x29	MFP_CTRL	
0x34	USER_NVM_CMD_REG	

Product Folder Links: TPS65214

6.3.16 与 I²C 兼容的接口

TPS65214 的默认 I²C1 7 位器件地址设置为 0x30 (二进制 0b0110000),但可以根据需要进行更改。

可通过与 I²C 兼容的同步串行接口来访问器件上的可配置功能和寄存器。该协议使用两线制接口在连接到总线的器件之间进行双向通信。两条接口线是串行数据线 (SDA) 和串行时钟线 (SCL)。总线上的每个器件都分配有一个唯一的地址,并根据它是产生还是接收串行时钟 SCL 来充当控制器或目标。SCL 和 SDA 线必须各自在线路上的某处放置一个上拉电阻器,即使在总线空闲时也保持高电平。当 VIO 为 3.3V 或 1.8V 时,TPS65214 支持标准模式 (100kHz)、快速模式 (400kHz) 和超快速模式 (1MHz)。

小心

在以下时间段内,对部分或全部寄存器的 I2C 事务操作可能无效:

- 当进入 INITIALIZE 状态时,在 t_{NVM LOAD} 时间段内,对所有寄存器的 I2C 事务操作均无效
- 当启动热复位时,在 60 微秒的时间内,对由 NVM 支持的寄存器的 I2C 事务操作无效
- 当开始向 INITIALIZE 状态转换时,在 80 微秒的时间内,对非 NVM 支持的寄存器的 I2C 事务操作 无效

有关哪些寄存器由 NVM 支持的详细信息,请参阅 节 6.5。

6.3.16.1 数据有效性

在时钟信号 (SCL) 的高电平期间, SDA 线上的数据必须保持稳定。换句话说,只有在时钟信号为低电平时才能改变数据线的状态。

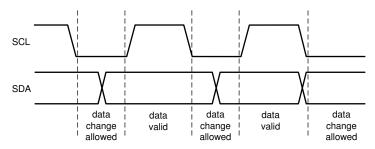


图 6-6. 数据有效性图

6.3.16.2 启动和停止条件

通过兼容 I²C 的接口控制该器件。启动和停止条件对 I²C 会话的开始和结束进行分类。启动条件定义为当 SCL 信号为高电平时 SDA 信号从高电平转换到低电平。停止条件定义为当 SCL 信号为高电平时 SDA 信号从低电平转换到高电平。I²C 控制器器件始终生成启动和停止条件。

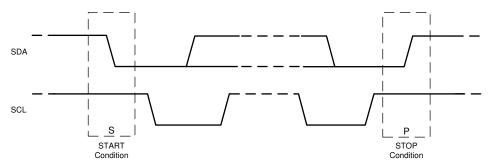


图 6-7. 启动和停止序列

I²C 总线在启动条件之后被视为处于忙状态,在停止条件之后别视为处于空闲状态。I²C 控制器器件可以在数据传输期间生成重复的启动条件。启动和重复启动条件在功能上是等效的。图 6-8 显示了 I²C 兼容总线的 SDA 和 SCL 信号时序。有关时序值,请参阅*规格* 部分。

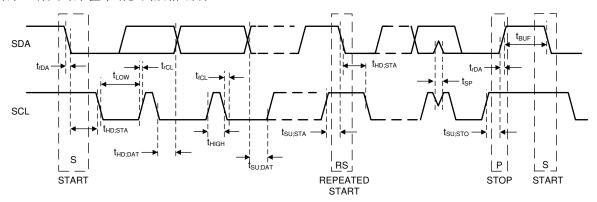


图 6-8. 与 I²C 兼容的时序

6.3.16.3 传送数据

放置在 SDA 线上的每个字节必须具有 8 位的长度,首先传输最高有效位 (MSB)。每个数据字节必须后跟一个确认位。控制器器件生成与确认相关的时钟脉冲。控制器器件会在确认时钟脉冲期间释放 SDA 线(高电平)。该器件在第 9 个时钟脉冲期间将 SDA 线拉低,表示确认。该器件在收到每个字节后生成确认。

在*每个字节后确认*的规则有一个例外。当控制器器件是接收器时,它必须通过不确认(*否定确认*)从目标器件输出的最后一个字节来向发送器指示数据结束。此*否定确认*仍包含确认时钟脉冲(由控制器器件产生),但未下拉 SDA 线。

在启动条件之后,总线控制器器件会发送一个芯片地址。该地址为 7 位长地址,后跟第 8 位,作为数据方向位(读取或写入)。对于第 8 位,0 表示写入操作, 1 表示读取操作。第 2 个字节选择要向其中写入数据的寄存器。第 3 个字节包含要写入所选寄存器的数据。图 6-9 显示了器件地址 110000-Bin = 60Hex 的示例位格式。

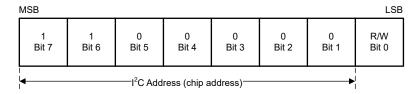


图 6-9. 器件地址示例

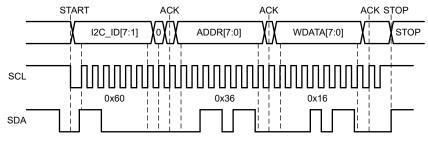


图 6-10. 的 I²C 写入周期

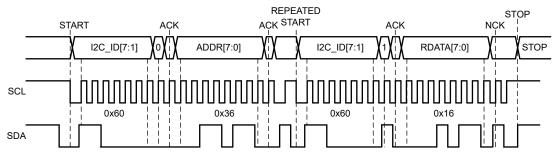
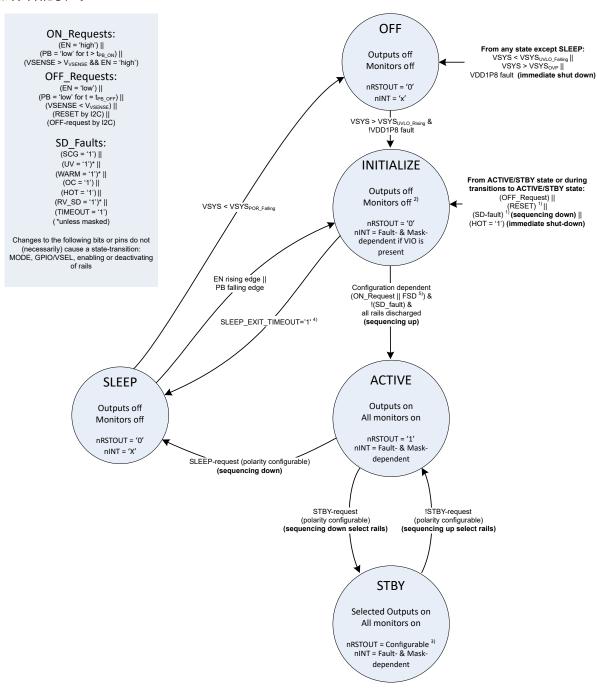


图 6-11. 的 I²C 读取周期

要完成读取功能,必须在进行读取功能以前先执行写入功能,如上所示。

提交文档反馈


Copyright © 2025 Texas Instruments Incorporated

34

Product Folder Links: TPS65214

6.4 器件功能模式

- 1) In case of a RESET or a SD-fault, the device transitions from INITIALIZE state to the ACTIVE state without a new Push-button-ON_Request. In EN or VSENSE configuration, the ON-request must still be valid to transition to ACTIVE state.
- 2) If INITIALIZE state was entered due to a Thermal-Shut-Down, the temperature monitors remain active until the temperature on all sensors fell below T_{WARM} threshold. Thermal-Shut-Down causes immediate shut-down, no sequencing down.
- 3) State of nRSTOUT driver is determined by nRSTOUT_STBY_CONFIG bit.
- 4) SLEEP can only be entered from INITIALIZE via SLEEP_EXIT_TIMEOUT.
- 5) First Supply Detection (FSD) only applicable when VSYS is applied.

图 6-12. 状态图

Product Folder Links: TPS65214

6.4.1 运行模式

6.4.1.1 关断状态

在 OFF 状态下,PMIC 供电不足。内部逻辑电源或外部电源轨均不可用。如果 VSYS 超过 VSYS_{UVLO_Rising} 电压且内部 1.8V 电源轨 (VDD1P8) 保持稳压状态,则器件进入 INITIALIZE 状态。

6.4.1.2 INITIALIZE 状态

在 INITIALIZE 状态下,除了几个用于监控 EN/PB/VSENSE 输入的电路外,器件完全关闭。每当进入 INITIALIZE 状态时,PMIC 都会读取存储器,并将寄存器加载到其 NVM 默认值。I²C 通信接口关闭。

如果任何一个热传感器高于 T_{WARM_Rising} 阈值,并且未屏蔽 WARM 检测,则进入 INITIALIZE 状态。

NVM 加载时间由 t_{NVM LOAD} 确定。仅当 NVM 加载完成之后,

如果从 OFF 状态进入 INITIALIZE 状态,将设置 POWER_UP_STATUS_REG 寄存器中的位POWER_UP_FROM_OFF,并保持设置状态,直到发出 write-1-clear 为止。读出此位可以确定 INITIALIZE 状态是从 OFF 状态进入的,还是由于关闭故障或 OFF 请求而进入的。

在 INITIALIZE 状态下,nINT 引脚状态取决于是否存在故障,以及是否屏蔽了故障的 nINT 反应。如果不存在故障或屏蔽了故障的 nINT 反应,并且用于上拉的 VIO 电压可用,nINT 引脚将被拉高。

要从 INITIALIZE 状态转换到 ACTIVE 状态,必须发生以下 ON 请求之一:

- EN 输入为"高电平"(如果 EN/PB/VSENSE 配置为"EN"或"VSENSE")
- PB 输入被拉至低电平的时间至少为 t_{PB ON SLOW} 或 t_{PB ON FAST} (如果 EN/PB/VSENSE 配置为 "PB")

备注

当从 ACTIVE 或 STBY 状态进入 INITIALIZE 状态时,DISCHARGE_CONFIG 寄存器被有意从复位中忽略。当从 OFF 状态进入 INITIALIZE 状态时,会加载 NVM 内容。如果上电后放电配置发生变化,可能会发生不同的启动行为,具体取决于 INITIALIZE 状态是从 OFF 状态进入的,还是从 ACTIVE/STBY 状态进入的。

6.4.1.3 运行状态

ACTIVE 状态是系统启动并运行时的正常工作模式。所有已启用的降压转换器和 LDO 均可正常运行并可通过 I2C 接口进行控制。通过将 STBY 引脚置为高电平无效或通过 I2C 命令,也可以直接从 STBY 状态进入 ACTIVE 状态。如需了解更多详细信息,可参阅 STBY 状态。要转换到 STBY,必须强制设置 STBY 引脚,或者必须向 MFP CTRL 寄存器中的 STBY I2C CTRL 发出 I2C 命令。

若要转换到 INITIALIZE 状态,必须发生以下 OFF Request 之一:

- EN 输入为"低电平"(如果 EN/PB/VSENSE 配置为"EN"或"VSENSE")
- PB 输入被拉低至少 t_{PB OFF} (如果 EN/PB/VSENSE 配置为"PB")
- 发出了 I2C OFF 请求

如果在 ACTIVE 状态下发生关断故障 (SD_Fault), TPS65214 会定序关闭有效输出并转换到 INITIALIZE 状态。在 没有新的 Push-button-ON_Request 的情况下,器件会转换至 ACTIVE 状态。在 EN 或 VSENSE 配置中,ON 请求仍必须有效才能转换为 ACTIVE 状态。

6.4.1.4 STBY 状态

STBY 状态是一种低功耗运行模式,用于支持系统的待机功能。如果配置为"STBY",则可以通过 MODE/STBY 引脚进入该模式,也可以通过向 MFP_CTRL 寄存器中的 STBY_I2C_CTRL 位发送 I2C 命令来进入该模式。通常,除了此状态下 SoC 所需的电源轨外,大部分电源轨都处于 OFF 状态。可以在 STBY_1_CONFIG 和 STBY 2 CONFIG 寄存器中配置哪些电源轨在 STBY 状态下断电。

监控功能全都可用:欠压 (UV)、接地短路 (SCG) 和过流 (OC) 检测、热警告 (WARM) 和热关断 (TSD/HOT) 保持运行状态。

如果 STBY 置为无效或接收到 I2C 命令,器件会进入 ACTIVE 状态(前提是 VIO 电源保持运行状态)。进入和退出 STBY 状态的序列与断电或上电序列相同。STBY 状态下,会跳过保持导通状态的电源轨,但仍会执行相应的时隙。

小心

切换至 ACTIVE 状态以前,器件必须先进入 STBY 状态。

小心

只有在 ACTIVE 状态下启用的电源轨才能在 STBY 状态下保持启用。STBY 状态下,无法开启先前禁用 的 电 源 轨 。 STBY 状态下的活动要求对 LDOx_EN/BUCKx_EN 和 LDOx_STBY_EN/BUCKx STBY EN 进行 AND 逻辑运算。

小心

不要通过 I2C 命令更改与正在进行的序列相关的寄存器!

开始切换到 INITIALIZE 状态后的大约 80 μs 以内,无法访问非 NVM 位。

6.4.1.5 休眠状态

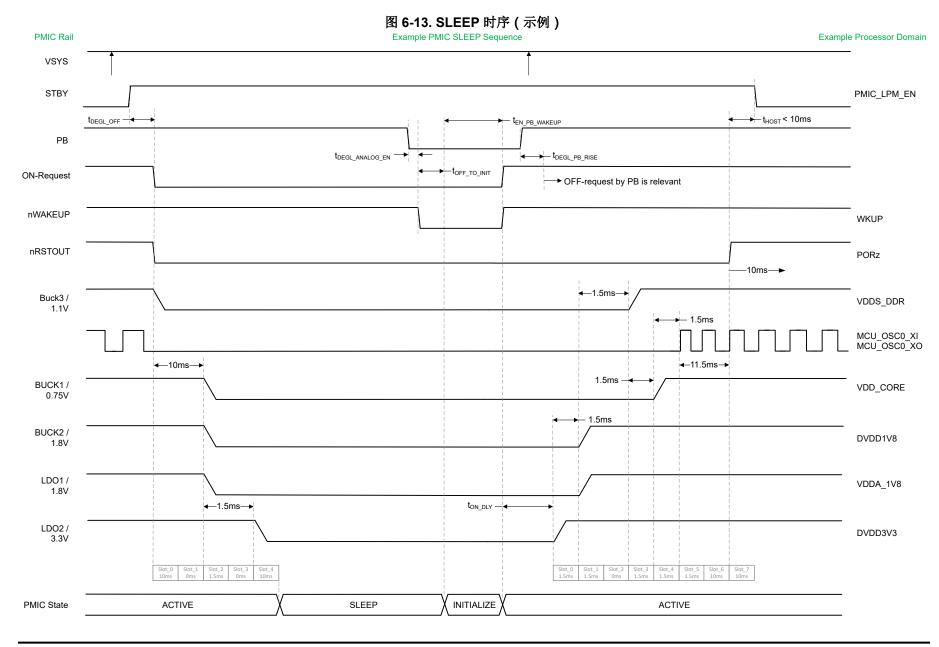
SLEEP 状态是一种旨在最超低功大限度降低功耗的耗运行模式。设置 STBY_SLEEP_CONFIG 位后,可通过 MODE/STBY 引脚(如果配置为 "STBY")或 MFP_CTRL 寄存器中 STBY_I2C_CTRL 的 I2C 命令进入 SLEEP 模式。该状态下,所有电源轨与大多数功能块(包括:所有监控器)都处于关断状态。唯一激活的 I/O 是 EN/PB/VSENSE,必须配置为 EN 或 Pb,才能从 SLEEP 状态直接转换至 INITIALIZE 状态。如果 EN/PB/VSENSE 配置为 VSENSE,器件只能通过进入关断状态的方式退出 SLEEP 状态。

当 EN/PB/VSENSE 通过 "EN_PB_VSENSE_CONFIG"配置为 EN 或 PB 时,器件会在检测到 EN 上升沿或 PB 下降沿与相关的抗尖峰脉冲(t_{DEGL_ANALOG_EN} 之后为 t_{OFF_TO_INIT})时,从 SLEEP 状态转换至 INITIALIZE 状态。PMIC 读取 NVM 内容,并且将 NVM 默认值加载至寄存器。随后,PMIC 等待 t_{EN_PB_WAKEUP} 与相关抗尖峰脉 冲 计 时 结 束 。 计 时 器 计 时 结 束 后 , 会 设 置 POWER_UP_STATUS_REG 寄 存 器 POWER_UP_FROM_EN_PB_VSENSE 位,器件转换至 ACTIVE 状态,在不存在其他故障的情况下,开始上电序列。如果 EN/PB/VSENSE 引脚的状态发生变化,并且在 t_{EN_PB_WAKEUP} 结束以前超过相关抗尖峰脉冲(t_{DEGL_EN_RISE_Fall} 或 t_{DEGL_PB_RISE}),那么会检测到 PB_EN_SLEEP_EXIT_TIMEOUT,器件也会转回 SLEEP 状态。

进入 SLEEP 状态的序列与断电序列相同。有关更多详细信息,请参阅图 6-13。

小心

器件只能从 ACTIVE 状态(通过"STBY"或 STBY_I2C_CTRL)或从 INITIALIZE 状态(通过 SLEEP EXIT TIMEOUT)转换至 SLEEP 状态。


小心

运行期间,可更改"EN_PB_VSENSE_CONFIG"设置。对于唤醒检测,该器件在进入 SLEEP 状态时,可参考"EN_PB_VSENSE_CONFIG"设置。

小心

不要通过 I2C 命令更改与正在进行的序列相关的寄存器!

开始切换到 INITIALIZE 状态后的大约 80 μ s 以内,无法访问非 NVM 位。

Product Folder Links: TPS65214

6.4.1.6 故障处理

TPS65214 能够提供各种故障检测。默认情况下,所有这些故障都会导致定序关断。其中一些是可屏蔽的,并且对已屏蔽故障的反应是可配置的。

电源电压监控

该器件能够对电源电压 (VSYS) 与内部电源电压 (VDD1P8) 提供以下故障检测。这些故障均不可屏蔽。

- VSYS 上的欠压,导致转换到 OFF 状态或门控启动
- VSYS 上的过压保护,导致转换到 OFF 状态
- 内部 1.8V 电源 (VDD1P8) 上的欠压或过压,导致转换到 OFF 状态或门控启动。

稳压器输出监控

TPS65214 能够对降压输出端与 LDO 输出端进行以下故障检测:

- 欠压检测 (UV)
- 过流检测 (OC),达到正电流限值和(对于降压转换器)负电流限值时触发
- 接地短路检测 (SCG)
- 温度警告 (WARM) 和热关断 (TSD / HOT)
- 残余电压 (RV) 和残余电压 关断 (RV SD)
- 超时 (TO)

SCG、OC、HOT、 与 TO 不可屏蔽。如果出现以上任一情况,器件会断电。每个稳压器的正负电流限值共用同一掩码位。

对 UV、RV 和 WARM 故障的反应是可配置的。如果未屏蔽,故障会触发定序关断。可以在INT_MASK_BUCKS、INT_MASK_LDOS 和 INT_MASK_WARM 寄存器中为每个稳压器单独屏蔽 UV、RV 和WARM。在发生屏蔽故障的情况下不会进行状态转换。可以通过 MASK_CONFIG 寄存器中的 MASK_EFFECT 位全局配置是否设置了位以及 nINT 是否拉至低电平。每个稳压器的正负电流限值共用同一掩码位。

- 00b = 无状态变化, 无 nINT 反应, 未设置位
- 01b = 无状态变化, 无 nINT 反应, 设置了位
- 10b = 无状态变化, nINT 反应, 设置了位(与 11b 相同)
- 11b = 无状态变化, nINT 反应, 设置了位(与 10b 相同)

对于任何与关断条件对应的故障,故障位将保持有效状态,直到通过 I2C 执行 W1C(写 1 清除)操作(假设故障不再存在)。如果出现关断故障,则无需更新 ON 请求。如果只要 EN/VSENSE 仍为高电平并且无需按下按钮即可重新启动,故障就不再存在,那么该器件会自动执行上电序列。

对于任何非关断条件的故障(例如,因为故障被屏蔽),该位在进入INITIALIZE状态时被清除。

热警告和热关断

有两个热阈值:热警告 (WARM) 和热关断 (TSD / HOT)。

热警告, WARM 阈值

如果温度超过 T_{WARM_Rising} 阈值,则会设置 SENSOR_x_WARM 位并且 PMIC 会定序关闭(除非已屏蔽)。如果温度降至 T_{WARM_Falling} 阈值以下,无需发出新的 Push-button-ON_Request,器件会再次上电。在 EN 或 VSENSE 配置中,ON 请求仍必须有效才能转换为 ACTIVE 状态。

如果温度超过 T_{WARM_Rising} 阈值,但设置了 SENSOR_x_WARM_MASK 位,PMIC 仍会处于 ACTIVE 状态。故障报告由 MASK_EFFECT 位配置。处理器决定是定序关断还是控制正在运行的应用程序,从而降低功耗并有望避免热关断情况。

Product Folder Links: TPS65214

热关断, HOT 阈值

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

39

如果温度超过 T_{HOT_Rising} 阈值,则会设置 SENSOR_x_HOT 位,并且 PMIC 会立即关断所有电源轨。这种关断是同时进行,而不是按时序进行。

- 如果所有传感器都屏蔽了 WARM 检测(设置了所有 SENSOR_x_WARM_MASK 位),那么一旦温度降至 THOT Falling 阈值以下,PMIC 会重新上电,但前提条件是:存在有效的导通请求。
- 如果其中任一传感器未能屏蔽 WARM 检测,那么一旦温度降至 T_{WARM_Falling} 阈值以下,那么无需发出新的 Push-button-ON_Request,PMIC 会重新上电。在 EN 或 VSENSE 配置中,ON 请求仍必须有效才能转换为 ACTIVE 状态。

残余电压

无论是在序列期间还是通过 I2C 命令,在启用每条电源轨以前,都会进行残余电压检查。RV 故障的处理取决于故障发生时的情况。说明残余电压检查的简化状态图如 图 6-14 所示。

担大士拟广烛

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

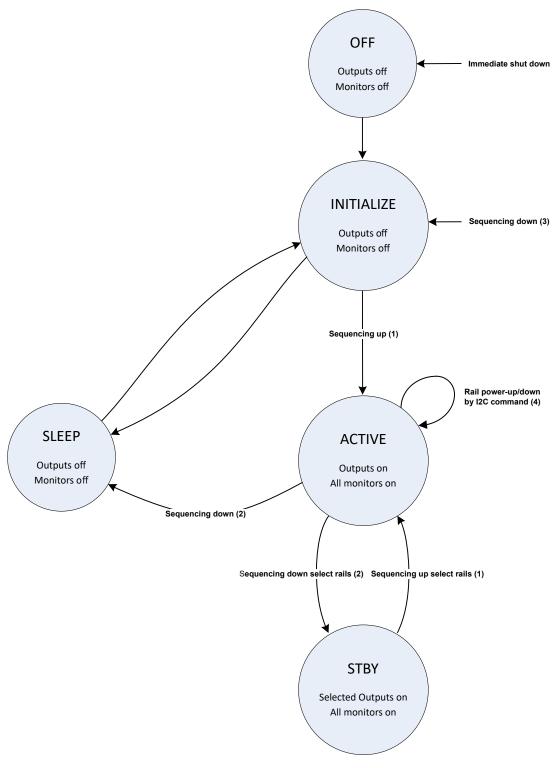


图 6-14. 残余电压检查

1. 如果升序时存在残余电压,器件会在 INT_SOURCE 寄存器中设置相应的 INT_TIMEOUT_RV_SD_IS_SET 位,在 INT_TIMEOUT_RV_SD 寄存器中设置 LDOx_RV_SD 或 BUCKx_RV_SD 位和 TIMEOUT 位,并且会在时隙结束时启动断电序列。

- 2. 如果降序至 STBY 或 SLEEP 状态时存在残余电压,器件会在断电时隙持续时间的八倍时间以内,对后续电源轨进行门控断电。如果残余电压仍然存在,器件会设置以下位,并且启动断电序列。
 - a. 寄存器 INT SOURCE 中的 INT TIMEOUT RV SD IS SET 位
 - b. 寄存器 INT TIMEOUT RV SD 中的相应位 LDOx RV SD 或 BUCKx RV SD
 - c. 寄存器 INT_TIMEOUT_RV_SD 中的位超时
- 3. 如果降序至 INITIALIZE 状态时存在残余电压,不会设置任何状态位,并且断电序列会在断电时隙持续时间的 八倍时间以后继续执行。
- 4. 如果通过 I2C 命令对电源轨上电或断电期间存在残余电压,器件会设置相应的 LDOx_RV 或 BUCKx_RV 位。如果未设置 MASK_INT_FOR_RV 位(RV 未屏蔽),器件会将 nINT 引脚拉至低电平。

备注

如果禁用了电源轨上的有源放电,那么即使该电源轨未能在时隙持续时间内成功放电,也不会触发后续电源轨断电。此外,断电期间,该器件不会设置 RV 位或 RV SD 位。

如果在升序或降序时检测到残余电压,可通过 GENERAL_CONFIG 寄存器的 BYPASS_RV_FOR_RAIL_ENABLE 位 屏 蔽 关 断 故 障 反 应 。 如 果 通 过 I2C 命 令 检 测 到 残 余 电 压 , 可 通 过 MASK_CONFIG 寄 存 器 的 MASK_INT_FOR_RV 位屏蔽 nINT 引脚的反应。

如果在上电时隙持续时间以后或在断电时隙持续时间八倍时间以后未能释放残余电压,则会发生超时。器件会设置 INT_TIMEOUT_RV_SD 寄存器的 TIMEOUT 位。

重试计数器

每检测到一次关断故障,重试计数器(POWER_UP_STATUS_REG 寄存器的 RETRY_COUNT)都会递增。器件会尝试两次重试上电。如果两次都失败,则需要在 VSYS 上进行一次电源循环,以便重置重试计数器。任何成功的上电都会重置重试计数器。屏蔽故障不会导致关断,也不会导致重试计数器递增。

可通过 MFP_2_CONFIG 寄存器的 MASK_RETRY_COUNT_ON_FIRST_PU 位,在首次上电时停用重试计数器。设置后,在完成首次上电序列以前,器件会无限重试。

也可以通过 INT_MASK_UV 寄存器的 MASK_RETRY_COUNT 位,永久禁用重试计数器。设置后,器件会在发生任何关断故障以后无限重试。

故障反应概述

下表概述了在 ACTIVE 和 STBY 状态下的故障行为(如果未屏蔽)以及故障是否可屏蔽。

小心

屏蔽故障可能会给器件或系统带来风险(包括但不限于:启动进入预偏置输出)。

德州仪器 (TI) 不建议在同一电源轨上屏蔽 OC 检测与 UV 检测。

表 6-8. 中断与故障处理

块	事件	状态转换(未屏蔽时)	可屏蔽	中断状态位(根据 MASK_EFFECT 设 置)	中断状态位清除
PB/EN/VSENSE	按钮上升沿	无状态转换	否	_	W1C、INITIALIZE 状态或 VSYS UVLO
PB/EN/VSENSE	按钮下降沿	无状态转换	~	_	W1C、INITIALIZE 状态或 VSYS UVLO

表 6-8. 中断与故障处理 (续)

块	事件	状态转换(未屏蔽时)	可屏蔽	中断状态位(根据 MASK_EFFECT 设 置)	中断状态位清除
PB/EN/VSENSE	睡眠退出超时	转换至 SLEEP 状态	否	PB_EN_SLEEP_EXI T_TIMEOUT	W1C 或 VSYS UVLO
BUCK 与 LDO	残余电压 - RV	无状态转换	是	*_RV	W1C、INITIALIZE 状态或 VSYS UVLO
BUCK 与 LDO	残余电压 - 关断故障 - RV_SD *)	有序关断至 INITIALIZE 状态	是	*_RV_SD	W1C 或 VSYS UVLO
BUCK 与 LDO	超时 - TO *)	有序关断至 INITIALIZE 状态	部分 (MASK_UV)	TIMEOUT	W1C 或 VSYS UVLO
BUCK 与 LDO	欠压 - UV	有序关断至 INITIALIZE 状态	是	*_UV	W1C、INITIALIZE 状态(如果屏蔽)或 VSYS UVLO
BUCK 与 LDO	过流 - OC	有序关断至 INITIALIZE 状态	否	*_OC	W1C 或 VSYS UVLO
BUCK 与 LDO	接地短路 - SCG	有序关断至 INITIALIZE 状态	否	*_ SCG	W1C 或 VSYS UVLO
BUCK 与 LDO	温度警告 - WARM	有序关断至 INITIALIZE 状态	是	SENSOR_x_WARM	W1C、INITIALIZE 状态(如果屏蔽)或 VSYS UVLO
BUCK 与 LDO	温度关断 - HOT	立即关断至 INITIALIZE 状态 (未定序)	否	SENSOR_x_HOT	W1C 或 VSYS UVLO
VSYS	欠压 - UV	立即关断至关断状态(未定序)	否	无	不适用
VSYS	过压保护 (OVP)	立即关断至关断状态(未 定序)	否	无	不适用
VDD1P8	欠压或过压 (UV 或 OV)	立即关断至关断状态(未 定序)	否	无	不适用

*) RV_SD 和 TIMEOUT 故障只能在序列期间发生

6.5 用户寄存器

对于早于寄存器 USER_GENERAL_NVM_STORAGE_REG (地址 27h)的寄存器,可通过 NVM 提供支持。复位值与可订购部件号的配置相对应,用"X"表示。请参阅相应可订购器件型号的技术参考手册 (TRM)。

对于寄存器 MANUFACTURING_VER (28h) 至 SPARE_3 (37h),无法通过 NVM 支持,可复位至寄存器映射所示数值。

用户无法更改寄存器 TI_DEV_ID (00h)、NVM_ID (01h)、MANUFACTURING_VER (28h)与FACTORY_CONFIG_2 (41h)。

6.6 器件寄存器

表 6-9 列出了器件寄存器的存储器映射寄存器。表 6-9 中未列出的所有寄存器偏移地址都应视为保留的位置,并且不应修改寄存器内容。

表 6-9. 器件寄存器

		表 6-9. 器件寄存器	
偏移	首字母缩写词	寄存器名称	部分
0h	TI_DEV_ID	器件 ID	转到
1h	NVM_ID	NVM 配置 ID	转到
2h	ENABLE_CTRL	启用/按钮/Vsense 控制	转到
3h	REG_LOCK	锁定/解锁命令寄存器	转到
4h	LDO1_VOUT_STBY	STBY 模式下的 LDO1 配置	转到
5h	LDO1_VOUT	LDO1 配置	转到
6h	LDO2_VOUT	LDO2 配置	转到
7h	LDO2_VOUT_STBY	STBY 模式下的 LDO2 配置	转到
8h	BUCK3_VOUT	Buck3 配置	转到
9h	BUCK2_VOUT	Buck2 配置	转到
Ah	BUCK1_VOUT	Buck1 配置	转到
Ch	LDO1_SEQUENCE_SLOT	LDO1 的上电和断电时隙	转到
Dh	LDO2_SEQUENCE_SLOT	LDO2 的上电和断电时隙	转到
Fh	BUCK3_SEQUENCE_SLOT	Buck3 的上电和断电时隙	转到
10h	BUCK2_SEQUENCE_SLOT	Buck2 的上电和断电时隙	转到
11h	BUCK1_SEQUENCE_SLOT	Buck1 的上电和断电时隙	转到
12h	nRST_SEQUENCE_SLOT	nRSTOUT 的上电和断电时隙	转到
13h	GPIO_SEQUENCE_SLOT	GPIO 的上电和断电时隙	转到
15h	GPO_SEQUENCE_SLOT	GPO 的上电和断电时隙	转到
16h	POWER_UP_SLOT_DURATION_1	slot0-3 上电时的时隙持续时间	转到
17h	POWER_UP_SLOT_DURATION_2	slot4-7 上电时的时隙持续时间	转到
19h	BUCK3_VOUT_STBY	STBY 模式下的 Buck3 配置	转到
1Ah	POWER_DOWN_SLOT_DURATION_1	slot0-3 断电时的时隙持续时间	转到
1Bh	POWER_DOWN_SLOT_DURATION_2	slot4-7 断电时的时隙持续时间	转到
1Ch	BUCK2_VOUT_STBY	STBY 模式下的 Buck2 配置	转到
1Dh	BUCK1_VOUT_STBY	STBY 模式下的 Buck1 配置	转到
1Eh	GENERAL_CONFIG	LDO 欠压和 GPO 使能	转到
1Fh	MFP_1_CONFIG	多功能引脚配置 1	转到
20h	MFP_2_CONFIG	多功能引脚配置 2	转到
21h	STBY_1_CONFIG	STBY 配置 LDO 和降压	转到
22h	STBY_2_CONFIG	STBY 配置 GPIO 和 GPO	转到
23h	OC_DEGL_CONFIG	每个电源轨的过流抗尖峰脉冲时间	转到
24h	INT_MASK_UV	欠压故障屏蔽	转到
25h	MASK_CONFIG	WARM 屏蔽和屏蔽效果	转到
26h	I2C_ADDRESS_REG	I2C 地址	转到
27h	USER_GENERAL_NVM_STORAGE_REG	用户可配置寄存器(由 NVM 支持)	转到
28h	MANUFACTURING_VER	器件修订版(只读)	转到
29h	MFP_CTRL	针对 RESET、STBY、OFF 的 I2C 控制	转到
2Ah	DISCHARGE_CONFIG	每个电源轨的放电配置	—————————————————————————————————————

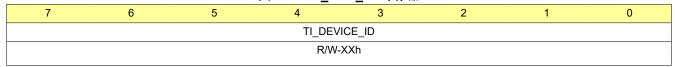
表 6-9. 器件寄存器 (续)

偏移	首字母缩写词	寄存器名称	部分
2Bh	INT_SOURCE	中断源	转到
2Dh	INT_LDO_1_2	LDO1 和 LDO2 的 OC、UV、SCG	转到
2Eh	INT_BUCK_3	Buck3 的 OC、UV、SCG	转到
2Fh	INT_BUCK_1_2	Buck1 和 Buck2 的 OC、UV、SCG	转到
30h	INT_SYSTEM	WARM 和 HOT 故障标志	转到
31h	INT_RV	每个电源轨的 RV (残余电压)	转到
32h	INT_TIMEOUT_RV_SD	导致关断的每个电源轨的 RV (残余电压)	转到
33h	INT_PB	按钮状态和边沿检测	转到
34h	USER_NVM_CMD_REG	DIY - 用户编程命令	转到
35h	POWER_UP_STATUS_REG	上电状态和 STATE	转到
36h	SPARE_2	备用寄存器 (不由 NVM 提供支持)	转到
37h	SPARE_3	备用寄存器 (不由 NVM 提供支持)	转到
41h	FACTORY_CONFIG_2	NVM 配置的修订版 (只读)	转到

复杂的位访问类型经过编码可适应小型表单元。表 6-10 展示了适用于此部分中访问类型的代码。

表 6-10. 器件访问类型代码

表 0 10. 福门 约内 久里 门内						
访问类型	代码	说明				
读取类型						
R	R	读取				
写入类型						
W	W	写入				
W1C	W 1C	写入 1 以清零				
复位或默认值						
-n		复位后的值或默认值				



6.6.1 TI_DEV_ID 寄存器(偏移 = 0h)[复位 = XXh]

图 6-15 展示了 TI_DEV_ID,表 6-11 中对此进行了介绍。

返回到汇总表。

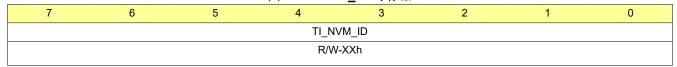
图 6-15. TI_DEV_ID 寄存器

表 6-11. TI_DEV_ID 寄存器字段说明

位	字段	类型	复位	说明
7-0	TI_DEVICE_ID	R/W	X	TI_DEVICE_ID[7:0] = 器件 GPN
				注意:该寄存器只能由制造商编程!
				如需了解具体编号与相关配置相关信息,可参阅技术参考手册/用户指
				南。
				(来自 NVM 存储器的默认值)

Product Folder Links: TPS65214

提交文档反馈



6.6.2 NVM_ID 寄存器 (偏移 = 1h) [复位 = XXh]

图 6-16 展示了 NVM_ID,表 6-12 中对此进行了介绍。

返回到汇总表。

图 6-16. NVM_ID 寄存器

表 6-12. NVM_ID 寄存器字段说明

位	字段	类型	复位	说明
7-0	TI_NVM_ID	R/W		IC 的 NVM ID 注意:该寄存器只能由制造商编程! 有关具体编号和相关配置,请参阅技术参考手册/用户指南。 (来自 NVM 存储器的默认值)

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

47

6.6.3 ENABLE_CTRL 寄存器 (偏移 = 2h) [复位 = XXh]

图 6-17 展示了 ENABLE_CTRL,表 6-13 中对此进行了介绍。

返回到汇总表。

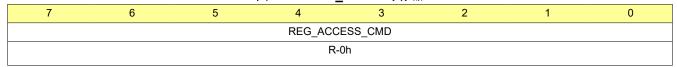
图 6-17. ENABLE_CTRL 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	LDO1_EN	LDO2_EN	RESERVED	BUCK3_EN	BUCK2_EN	BUCK1_EN
R-0h	R-0h	R/W-Xh	R/W-Xh	R-0h	R/W-Xh	R/W-Xh	R/W-Xh

表 6-13. ENABLE_CTRL 寄存器字段说明

	农 0-10. ENABLE_OTTLE 制作曲 7 技能为						
位	字段	类型	复位	说明			
7	RESERVED	R	0h	保留			
6	RESERVED	R	0h	保留			
5	LDO1_EN	R/W	Х	启用 LDO1 稳压器 (来自 NVM 存储器的默认值) 0h = 未启用 1h = 启用			
4	LDO2_EN	R/W	Х	启用 LDO2 稳压器 (来自 NVM 存储器的默认值) 0h = 未启用 1h = 启用			
3	RESERVED	R	0h	保留			
2	BUCK3_EN	R/W	Х	启用 BUCK3 稳压器 (来自 NVM 存储器的默认值) 0h = 未启用 1h = 启用			
1	BUCK2_EN	R/W	Х	启用 BUCK2 稳压器 (来自 NVM 存储器的默认值) 0h = 未启用 1h = 启用			
0	BUCK1_EN	R/W	Х	启用 BUCK1 稳压器 (来自 NVM 存储器的默认值) 0h = 未启用 1h = 启用			

48 提交文档反馈



6.6.4 REG_LOCK 寄存器 (偏移 = 3h) [复位 = 00h]

REG_LOCK 如 图 6-18 所示,相应说明如 表 6-14 所述。

返回到汇总表。

图 6-18. REG_LOCK 寄存器

表 6-14. REG_LOCK 寄存器字段说明

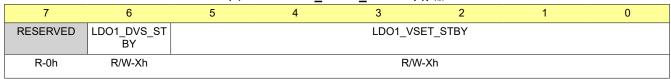
位	字段	类型	复位	说明
7-0	REG_ACCESS_CMD	R	0h	对该寄存器执行写操作,可锁定或解锁受保护寄存器。该寄存器回读会导致"0h"。任何不可接受的写操作(即:除5Ah以外的其他)都会锁定受保护寄存器。5Ah=解锁受保护寄存器

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

49



6.6.5 LDO1_VOUT_STBY 寄存器 (偏移 = 4h) [复位 = XXh]

LDO1_VOUT_STBY 如 图 6-19 所示,相应说明如表 6-15 所述。

返回到汇总表。

图 6-19. LDO1_VOUT_STBY 寄存器

表 6-15. LDO1_VOUT_STBY 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	LDO1_DVS_STBY	R/W		STANDBY 模式下的 LDO1 DVS 转换。 0h = STBY 状态下不进行 DVS 转换 1h = STBY 状态下通过 LDO1_VSET_STBY 配置的输出电压进行 DVS 转换

Product Folder Links: TPS65214

表 6-15. LDO1_VOUT_STBY 寄存器字段说明 (续)

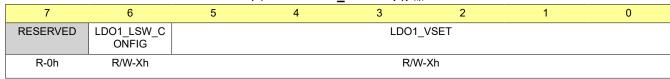
Γ	υ.				BY 寄存器字段说明 (续)
	位 5-0	字段 LDO1_VSET_STBY	<u>* 大型</u> R/W	_VOUI_SI <u>复位</u> X	送明
					1Ah = 1.800V 1Bh = 1.850V 1Ch = 1.900V 1Dh = 1.950V 1Eh = 2.000V 1Fh = 2.050V 20h = 2.100V 21h = 2.150V 22h = 2.200V 23h = 2.250V 24h = 2.300V
					26h = 2.400V 27h = 2.450V 28h = 2.500V 29h = 2.550V 2Ah = 2.600V 2Bh = 2.650V 2Ch = 2.700V 2Dh = 2.750V 2Eh = 2.800V 2Fh = 2.850V
					30h = 2.900V 31h = 2.950V 32h = 3.000V 33h = 3.050V 34h = 3.100V 35h = 3.150V 36h = 3.200V 37h = 3.250V 38h = 3.300V 39h = 3.300V 3Ah = 3.300V 3Ch = 3.300V 3Ch = 3.300V 3Ch = 3.300V 3Ch = 3.300V

Product Folder Links: TPS65214

表 6-15. LDO1 VOUT STBY 寄存器字段说明 (续)

位	字段	类型	复位	说明	
				3Fh = 3.300V	

Product Folder Links: TPS65214



6.6.6 LDO1_VOUT 寄存器(偏移 = 5h)[复位 = XXh]

LDO1_VOUT 如 图 6-20 所示,相应说明如 表 6-16 所述。

返回到汇总表。

图 6-20. LDO1_VOUT 寄存器

表 6-16. LDO1_VOUT 寄存器字段说明

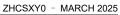
位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	LDO1_LSW_CONFIG	R/W		LDO1 LDO 或 LSW 模式。注意:仅可在电源轨启用时更改!(来自 NVM 存储器的默认值) 0h = LDO 模式 1h = LSW 模式

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

53


表 6-16. LDO1_VOUT 寄存器字段说明 (续)

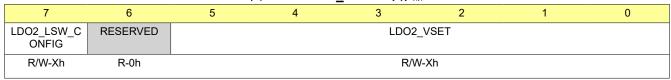
**				时 行奋 子权说明 (终)
位	字段	类型	复位	说明
5-0	LDO1_VSET	R/W	X	LDO1 的电压选择。输出电压范围为 0.6V 至 3.3V。(来自 NVM 存储
				器的默认值)
				0h = 0.600V
				1h = 0.600V
				2h = 0.600V
				3h = 0.650V
				4h = 0.700V
				5h = 0.750V
				6h = 0.800V
				7h = 0.850V
				8h = 0.900V
				9h = 0.950V
				Ah = 1.000V
				Bh = 1.050V
				Ch = 1.100V Dh = 1.150V
				Eh = 1.200V
				Fh = 1.250V
1				10h = 1.300V
				11h = 1.350V
				12h = 1.400V
				13h = 1.450V
				14h = 1.500V
				15h = 1.550V
				16h = 1.600V
				17h = 1.650V
				18h = 1.700V
				19h = 1.750V
				1Ah = 1.800V
				1Bh = 1.850V
				1Ch = 1.900V
				1Dh = 1.950V 1Eh = 2.000V
				1Fh = 2.050V
				20h = 2.100V
				21h = 2.150V
				22h = 2.200V
				23h = 2.250V
				24h = 2.300V
				25h = 2.350V
				26h = 2.400V
				27h = 2.450V
				28h = 2.500V
1				29h = 2.550V
				2Ah = 2.600V
				2Bh = 2.650V
				2Ch = 2.700V 2Dh = 2.750V
				2Dh = 2.750V 2Eh = 2.800V
				2Fh = 2.850V
1				30h = 2.900V
				31h = 2.950V
				32h = 3.000V
1				33h = 3.050V
				34h = 3.100V
				35h = 3.150V
1				36h = 3.200V
				37h = 3.250V
				38h = 3.300V
				39h = 3.300V
				3Ah = 3.300V
				3Bh = 3.300V
				3Ch = 3.300V
				3Dh = 3.300V
1				3Eh = 3.300V

提交文档反馈 Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: TPS65214

表 6-16. LDO1_VOUT 寄存器字段说明 (续)

位	字段	类型	复位	说明
				3Fh = 3.300V



6.6.7 LDO2_VOUT 寄存器 (偏移 = 6h) [复位 = XXh]

LDO2_VOUT 如 图 6-21 所示,相应说明如 表 6-17 所述。

返回到汇总表。

图 6-21. LDO2_VOUT 寄存器

表 6-17. LDO2_VOUT 寄存器字段说明

位	字段	类型	复位	说明
7	LDO2_LSW_CONFIG	R/W		LDO2 LDO 或 LSW 模式。注意:仅可在电源轨启用时更改!(来自 NVM 存储器的默认值) 0h = LDO 模式 1h = LSW 模式
6	RESERVED	R	0h	保留

Product Folder Links: TPS65214

表 6-17. LDO2 VOUT 寄存器字段说明 (续)

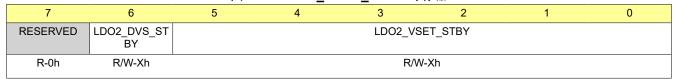
依 学
(来自 NVM 存储器的默认值) の = 0.600V 1h = 0.600V 2h = 0.600V 3h = 0.650V 4h = 0.700V 5h = 0.750V 6h = 0.800V 77 = 0.850V 8h = 0.950V Ah = 1.000V Bh = 1.050V Ch = 1.100V Dh = 1.150V Eh = 1.250V 10h = 1.350V 11h = 1.3560V 12h = 1.450V 13h = 1.450V 15h = 1.550V 16h = 1.800V 17h = 1.850V 18h = 1.750V 18h = 1.750V 18h = 1.750V 18h = 1.550V 16h = 1.800V 17h = 1.850V 18h = 1.750V
28h = 2.500V 29h = 2.550V 2Ah = 2.600V 2Bh = 2.650V 2Ch = 2.700V 2Dh = 2.750V 2Eh = 2.800V 2Fh = 2.850V 30h = 2.900V 31h = 2.950V 32h = 3.000V 33h = 3.050V 34h = 3.100V 35h = 3.150V 36h = 3.200V 37h = 3.250V

表 6-17. LDO2 VOUT 寄存器字段说明 (续)

		• • -	_	
位	字段	类型	复位	说明
				3Fh = 3.300V

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈



6.6.8 LDO2_VOUT_STBY 寄存器 (偏移 = 7h) [复位 = XXh]

LDO2_VOUT_STBY 如 图 6-22 所示,相应说明如 表 6-18 所述。

返回到汇总表。

图 6-22. LDO2_VOUT_STBY 寄存器

表 6-18. LDO2_VOUT_STBY 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	LDO2_DVS_STBY	R/W		STANDBY 模式下的 LDO2 DVS 转换。 0h = STBY 状态下不进行 DVS 转换 1h = STBY 状态下通过 LDO2_VSET_STBY 配置的输出电压进行 DVS 转换

表 6-18. LDO2 VOUT STBY 寄存器字段说明 (续)

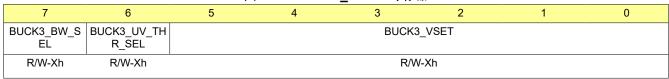
				BY 奇仔器子段说明 (续)
位	字段	类型	复位	说明
5-0	LDO2_VSET_STBY	R/W	X	STANDBY 状态下 LDO2 的电压选择。输出电压范围为 0.6V 至
				3.3V。(来自 NVM 存储器的默认值)
				0h = 0.600V
				1h = 0.600V
				2h = 0.600V
				3h = 0.650V
				4h = 0.700V
				5h = 0.750V 6h = 0.800V
				7h = 0.850V
				8h = 0.900V
				9h = 0.950V
				Ah = 1.000V
				Bh = 1.050V
				Ch = 1.100V
				Dh = 1.150V
				Eh = 1.200V
				Fh = 1.250V
				10h = 1.300V
				11h = 1.350V 12h = 1.400V
				13h = 1.450V
				14h = 1.500V
				15h = 1.550V
				16h = 1.600V
				17h = 1.650V
				18h = 1.700V
				19h = 1.750V
				1Ah = 1.800V
				1Bh = 1.850V 1Ch = 1.900V
				1Dh = 1.950V
				1Eh = 2.000V
				1Fh = 2.050V
				20h = 2.100V
				21h = 2.150V
				22h = 2.200V
				23h = 2.250V
				24h = 2.300V
				25h = 2.350V
				26h = 2.400V 27h = 2.450V
				28h = 2.500V
				29h = 2.550V
				2Ah = 2.600V
				2Bh = 2.650V
				2Ch = 2.700V
				2Dh = 2.750V
				2Eh = 2.800V
				2Fh = 2.850V 30h = 2.900V
				31h = 2.950V
				32h = 3.000V
				33h = 3.050V
				34h = 3.100V
				35h = 3.150V
				36h = 3.200V
				37h = 3.250V
				38h = 3.300V
				39h = 3.300V
				3Ah = 3.300V
				3Bh = 3.300V 3Ch = 3.300V
				3Dh = 3.300V
				3Eh = 3.300V
		l	l	JOEN 0.000 V

提交文档反馈

60

表 6-18. LDO2_VOUT_STBY 寄存器字段说明 (续)

位	字段	类型	复位	说明
				3Fh = 3.300V



6.6.9 BUCK3_VOUT 寄存器 (偏移 = 8h) [复位 = XXh]

BUCK3_VOUT 如 图 6-23 所示,相应说明如 表 6-19 所述。

返回到汇总表。

图 6-23. BUCK3_VOUT 寄存器

表 6-19. BUCK3_VOUT 寄存器字段说明

位	字段	类型	复位	说明
7	BUCK3_BW_SEL	R/W	X	BUCK3 带宽选择。注意:仅可在电源轨启用时更改!(来自 NVM 存储器的默认值) 0h = 低带宽 1h = 高带宽
6	BUCK3_UV_THR_SEL	R/W		BUCK3 的 UV 阈值选择。(来自 NVM 存储器的默认值) 0h = -5% UV 检测 1h = -10% UV 检测

提交文档反馈 Product Folder Links: *TPS65214*

表 6-19. BUCK3_VOUT 寄存器字段说明 (续)

Г	n				· 寄存器字段说明 (续)
	位	字段	类型	复位	说明
	<u>11/1</u> 5-0	BUCK3_VSET	R/W	文 位 X	BUCK3 的电压选择。输出电压范围为 0.6V 至 3.4V。(来自 NVM 存储器的默认值) 0h = 0.600V 1h = 0.625V 2h = 0.650V 3h = 0.675V 4h = 0.700V 5h = 0.725V 6h = 0.750V 7h = 0.775V 8h = 0.800V
					9h = 0.825V Ah = 0.850V Bh = 0.875V Ch = 0.900V Dh = 0.925V Eh = 0.950V Fh = 0.975V 10h = 1.000V 11h = 1.025V 12h = 1.050V
					13h = 1.075V 14h = 1.100V 15h = 1.125V 16h = 1.150V 17h = 1.175V 18h = 1.200V 19h = 1.225V 1Ah = 1.250V 1Bh = 1.275V 1Ch = 1.300V
					1Dh = 1.325V 1Eh = 1.350V 1Fh = 1.375V 20h = 1.400V 21h = 1.500V 22h = 1.600V 23h = 1.700V 24h = 1.800V 25h = 1.900V 26h = 2.000V
					27h = 2.100V 28h = 2.200V 29h = 2.300V 2Ah = 2.400V 2Bh = 2.500V 2Ch = 2.600V 2Dh = 2.700V 2Eh = 2.800V 2Fh = 2.900V
					30h = 3.000V 31h = 3.100V 32h = 3.200V 33h = 3.300V 34h = 3.400V 35h = 3.400V 37h = 3.400V 38h = 3.400V 38h = 3.400V 39h = 3.400V 38h = 3.400V 36h = 3.400V 37h = 3.400V 38h = 3.400V 38h = 3.400V 38h = 3.400V

表 6-19. BUCK3 VOUT 寄存器字段说明 (续)

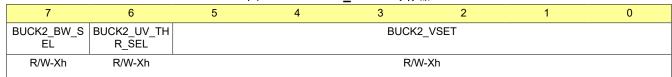
	-			
位	字段	类型	复位	说明
				3Fh = 3.400V

提交文档反馈

Copyright © 2025 Texas Instruments Incorporated

64

Product Folder Links: TPS65214



6.6.10 BUCK2_VOUT 寄存器 (偏移 = 9h) [复位 = XXh]

BUCK2_VOUT 如 图 6-24 所示,相应说明如 表 6-20 所述。

返回到汇总表。

图 6-24. BUCK2_VOUT 寄存器

表 6-20. BUCK2_VOUT 寄存器字段说明

位	字段	类型	复位	说明
7	BUCK2_BW_SEL	R/W	X	BUCK2 带宽选择。注意:仅可在电源轨启用时更改!(来自 NVM 存储器的默认值) 0h = 低带宽 1h = 高带宽
6	BUCK2_UV_THR_SEL	R/W	X	BUCK2 的 UV 阈值选择。(来自 NVM 存储器的默认值) 0h = -5% UV 检测 1h = -10% UV 检测

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

65

表 6-20. BUCK2_VOUT 寄存器字段说明 (续)

				「
位	字段	类型	复位	说明
5-0	BUCK2_VSET	R/W	X	BUCK2 的电压选择。输出电压范围为 0.6V 至 3.4V。(来自 NVM 存
				储器的默认值)
				0h = 0.600V
				1h = 0.625V
				2h = 0.650V
				3h = 0.675V
				4h = 0.700V
				5h = 0.725V
				6h = 0.750V
				7h = 0.775V 8h = 0.800V
				9h = 0.825V
				Ah = 0.850V
				Bh = 0.875V
				Ch = 0.900V
				Dh = 0.925V
				Eh = 0.950V
				Fh = 0.975V
				10h = 1.000V
				11h = 1.025V
				12h = 1.050V 13h = 1.075V
				14h = 1.100V
				15h = 1.125V
				16h = 1.150V
				17h = 1.175V
				18h = 1.200V
				19h = 1.225V
				1Ah = 1.250V
				1Bh = 1.275V
				1Ch = 1.300V 1Dh = 1.325V
				1Eh = 1.350V
				1Fh = 1.375V
				20h = 1.400V
				21h = 1.500V
				22h = 1.600V
				23h = 1.700V
				24h = 1.800V
				25h = 1.900V
				26h = 2.000V 27h = 2.100V
				28h = 2.200V
				29h = 2.300V
				2Ah = 2.400V
				2Bh = 2.500V
				2Ch = 2.600V
				2Dh = 2.700V
				2Eh = 2.800V
				2Fh = 2.900V 30h = 3.000V
				31h = 3.100V
				32h = 3.200V
				33h = 3.300V
				34h = 3.400V
				35h = 3.400V
				36h = 3.400V
				37h = 3.400V
				38h = 3.400V
				39h = 3.400V
				3Ah = 3.400V 3Bh = 3.400V
				3Ch = 3.400V
				3Dh = 3.400V
				3Eh = 3.400V
1	T	I	1	<u> </u>

Product Folder Links: TPS65214

提交文档反馈

66

Copyright © 2025 Texas Instruments Incorporated

近义人归汉顷

表 6-20. BUCK2_VOUT 寄存器字段说明 (续)

位	字段	类型	复位	说明
				3Fh = 3.400V



6.6.11 BUCK1_VOUT 寄存器 (偏移 = Ah) [复位 = XXh]

BUCK1_VOUT 如 图 6-25 所示,相应说明如表 6-21 所述。

返回到汇总表。

图 6-25. BUCK1_VOUT 寄存器

表 6-21. BUCK1_VOUT 寄存器字段说明

位	字段	类型	复位	说明
7	BUCK1_BW_SEL	R/W		BUCK1 带宽选择。注意:仅可在电源轨启用时更改!(来自 NVM 存储器的默认值) 0h = 低带宽 1h = 高带宽
6	BUCK1_UV_THR_SEL	R/W		BUCK1 的 UV 阈值选择。(来自 NVM 存储器的默认值) 0h = -5% UV 检测 1h = -10% UV 检测

表 6-21. BUCK1_VOUT 寄存器字段说明 (续)

	والم الماد			JT 寄存器字段说明 (续)
位	字段	类型	复位	说明
5-0	BUCK1_VSET	R/W	X	BUCK1 的电压选择。输出电压范围为 0.6V 至 3.4V。(来自 NVM 存
				储器的默认值)
				0h = 0.600V
				1h = 0.625V 2h = 0.650V
				3h = 0.675V
				4h = 0.700V
				5h = 0.725V
				6h = 0.750V
				7h = 0.775V
				8h = 0.800V 9h = 0.825V
				Ah = 0.850V
				Bh = 0.875V
				Ch = 0.900V
				Dh = 0.925V
				Eh = 0.950V
				Fh = 0.975V
				10h = 1.000V 11h = 1.025V
				12h = 1.050V
				13h = 1.075V
				14h = 1.100V
				15h = 1.125V
				16h = 1.150V
				17h = 1.175V
				18h = 1.200V 19h = 1.225V
				1Ah = 1.250V
				1Bh = 1.275V
				1Ch = 1.300V
				1Dh = 1.325V
				1Eh = 1.350V
				1Fh = 1.375V 20h = 1.400V
				21h = 1.500V
				22h = 1.600V
				23h = 1.700V
				24h = 1.800V
				25h = 1.900V
				26h = 2.000V
				27h = 2.100V 28h = 2.200V
				29h = 2.300V
				2Ah = 2.400V
				2Bh = 2.500V
				2Ch = 2.600V
				2Dh = 2.700V
				2Eh = 2.800V 2Fh = 2.900V
				30h = 3.000V
				31h = 3.100V
				32h = 3.200V
				33h = 3.300V
				34h = 3.400V
				35h = 3.400V
				36h = 3.400V 37h = 3.400V
				3/n = 3.400V 38h = 3.400V
				39h = 3.400V
				3Ah = 3.400V
				3Bh = 3.400V
				3Ch = 3.400V
				3Dh = 3.400V
				3Eh = 3.400V

表 6-21. BUCK1_VOUT 寄存器字段说明 (续)

	位	字段	类型	复位	说明
Ī					3Fh = 3.400V

70

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.12 LDO1_SEQUENCE_SLOT 寄存器 (偏移 = Ch) [复位 = XXh]

LDO1_SEQUENCE_SLOT 如 图 6-26 所示,相应说明如表 6-22 所述。

返回到汇总表。

图 6-26. LDO1_SEQUENCE_SLOT 寄存器

				_			
7	6	5	4	3	2	1	0
RESERVED	LDO1_SEQUENCE_ON_SLOT			RESERVED	LDO1_SEQUENCE_OFF_SLOT		
R-0h	R/W-Xh			R-0h		R/W-Xh	

表 6-22. LDO1_SEQUENCE_SLOT 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6-4	LDO1_SEQUENCE_ON_ SLOT	R/W	X	上电时的 LDO1 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7
3	RESERVED	R	0h	保留
2-0	LDO1_SEQUENCE_OFF_ SLOT	R/W	X	断电时的 LDO1 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

71

6.6.13 LDO2_SEQUENCE_SLOT 寄存器 (偏移 = Dh) [复位 = XXh]

LDO2_SEQUENCE_SLOT 如 图 6-27 所示,相应说明如表 6-23 所述。

返回到汇总表。

图 6-27. LDO2_SEQUENCE_SLOT 寄存器

7	6	5	4	3	2	1	0
RESERVED	LDO2_SEQUENCE_ON_SLOT			RESERVED	LDO2_SEQUENCE_OFF_SLOT		
R-0h	R/W-Xh			R-0h	R/W-Xh		

表 6-23. LDO2_SEQUENCE_SLOT 寄存器字段说明

位	字段	类型	复位	· 说明
7	RESERVED	R	0h	保留
6-4	LDO2_SEQUENCE_ON_ SLOT	R/W	X	上电时的 LDO2 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7
3	RESERVED	R	0h	保留
2-0	LDO2_SEQUENCE_OFF_ SLOT	R/W	X	断电时的 LDO2 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7

Product Folder Links: TPS65214 English Data Sheet: SLVSHK7

6.6.14 BUCK3_SEQUENCE_SLOT 寄存器 (偏移 = Fh) [复位 = XXh]

BUCK3_SEQUENCE_SLOT 如 图 6-28 所示,相应说明如 表 6-24 所述。

返回到汇总表。

图 6-28. BUCK3_SEQUENCE_SLOT 寄存器

7	6	5	4	3	2	1	0	
RESERVED	BUCK3_SEQUENCE_ON_SLOT			RESERVED	BUCK3_SEQUENCE_OFF_SLOT			
R-0h	R/W-Xh			R-0h		R/W-Xh		

表 6-24. BUCK3_SEQUENCE_SLOT 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6-4	BUCK3_SEQUENCE_ON _SLOT	R/W	X	上电时的 BUCK3 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7
3	RESERVED	R	0h	保留
2-0	BUCK3_SEQUENCE_OF F_SLOT	R/W	X	断电时的 BUCK3 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

74

English Data Sheet: SLVSHK7

6.6.15 BUCK2_SEQUENCE_SLOT 寄存器 (偏移 = 10h) [复位 = XXh]

BUCK2_SEQUENCE_SLOT 如图 6-29 所示,相应说明如表 6-25 所述。

返回到汇总表。

图 6-29. BUCK2_SEQUENCE_SLOT 寄存器

7	6	5	4	3	2	1	0
RESERVED	BUCK2_SEQUENCE_ON_SLOT			RESERVED	BUCK2_SEQUENCE_OFF_SLOT		
R-0h	R/W-Xh			R-0h	R/W-Xh		

表 6-25. BUCK2_SEQUENCE_SLOT 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6-4	BUCK2_SEQUENCE_ON _SLOT	R/W	X	上电时的 BUCK2 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7
3	RESERVED	R	0h	保留
2-0	BUCK2_SEQUENCE_OF F_SLOT	R/W	X	断电时的 BUCK2 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7

提交文档反馈 Copyright © 2025 Texas Instruments Incorporated

6.6.16 BUCK1_SEQUENCE_SLOT 寄存器 (偏移 = 11h) [复位 = XXh]

BUCK1_SEQUENCE_SLOT 如 图 6-30 所示,相应说明如 表 6-26 所述。

返回到汇总表。

图 6-30. BUCK1_SEQUENCE_SLOT 寄存器

7	6	5	4	3	2	1	0
RESERVED	BUCK1_SEQUENCE_ON_SLOT			RESERVED	BUCK1_SEQUENCE_OFF_SLOT		
R-0h	R/W-Xh			R-0h		R/W-Xh	

表 6-26. BUCK1_SEQUENCE_SLOT 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6-4	BUCK1_SEQUENCE_ON _SLOT	R/W	X	上电时的 BUCK1 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7
3	RESERVED	R	0h	保留
2-0	BUCK1_SEQUENCE_OF F_SLOT	R/W	X	断电时的 BUCK1 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.17 nRST_SEQUENCE_SLOT 寄存器 (偏移 = 12h) [复位 = XXh]

图 6-31 展示了 nRST_SEQUENCE_SLOT,表 6-27 中对此进行了介绍。

返回到汇总表。

图 6-31. nRST_SEQUENCE_SLOT 寄存器

7	6	5	4	3	2	1	0
RESERVED	nRST_SEQUENCE_ON_SLOT			RESERVED	nRST_SEQUENCE_OFF_SLOT		
R-0h	R/W-Xh			R-0h		R/W-Xh	

表 6-27. nRST_SEQUENCE_SLOT 寄存器字段说明

位	字段	类型		说明
7	RESERVED	R	0h	保留
6-4	nRST_SEQUENCE_ON_ SLOT	R/W	X	上电时的 nRST 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7
3	RESERVED	R	0h	保留
2-0	nRST_SEQUENCE_OFF_ SLOT	R/W	X	断电时的 nRST 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7

Product Folder Links: *TP*S65214

English Data Sheet: SLVSHK7

6.6.18 GPIO_SEQUENCE_SLOT 寄存器 (偏移 = 13h) [复位 = XXh]

图 6-32 展示了 GPIO_SEQUENCE_SLOT,表 6-28 中对此进行了介绍。

返回到汇总表。

图 6-32. GPIO_SEQUENCE_SLOT 寄存器

7	6	5	4	3	2	1	0
GPIO_SEQUE NCE_POLARIT Y	GPIO_S	SEQUENCE_ON	_SLOT	RESERVED	GPIO_	SEQUENCE_OF	F_SLOT
R/W-Xh		R/W-Xh		R-0h		R/W-Xh	

表 6-28. GPIO_SEQUENCE_SLOT 寄存器字段说明

位	字段	类型	复位	说明
7	GPIO_SEQUENCE_POLA RITY	R/W	Х	GPIO 作为序列输入的导通/关断极性 0h = 低电平-关断/高电平-导通 1h = 高电平-关断/低电平-导通
6-4	GPIO_SEQUENCE_ON_ SLOT	R/W	X	上电时的 GPIO 时隙编号。配置为输出时,引脚会根据时隙按顺序导通。配置为输入时,定序器会等待引脚达到导通状态。(来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7
3	RESERVED	R	0h	保留
2-0	GPIO_SEQUENCE_OFF_ SLOT	R/W	X	断电的 GPIO 时隙编号。配置为输出时,引脚会根据时隙按顺序关断。配置为输入时,定序器会等待引脚达到关断状态。(来自 NVM 存储器的默认值) 0h = 时隙 0

English Data Sheet: SLVSHK7

78

6.6.19 GPO_SEQUENCE_SLOT 寄存器 (偏移 = 15h) [复位 = XXh]

图 6-33 展示了 GPO_SEQUENCE_SLOT,表 6-29 中对此进行了介绍。

返回到汇总表。

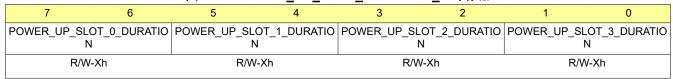
图 6-33. GPO_SEQUENCE_SLOT 寄存器

7	6	5	4	3	2	1	0
RESERVED	GPO_SEQUENCE_ON_SLOT			RESERVED	GPO_SEQUENCE_OFF_SLOT		
R-0h	R/W-Xh			R-0h		R/W-Xh	

表 6-29. GPO_SEQUENCE_SLOT 寄存器字段说明

12.	는 pt.	-16-16d		жш жш
位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6-4	GPO_SEQUENCE_ON_S LOT	R/W	X	上电的 GPO 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7
3	RESERVED	R	0h	保留
2-0	GPO_SEQUENCE_OFF_ SLOT	R/W	X	断电的 GPO 时隙编号 (来自 NVM 存储器的默认值) 0h = 时隙 0 1h = 时隙 1 2h = 时隙 2 3h = 时隙 3 4h = 时隙 4 5h = 时隙 5 6h = 时隙 6 7h = 时隙 7

提交文档反馈 Product Folder Links: TPS65214 English Data Sheet: SLVSHK7



6.6.20 POWER_UP_SLOT_DURATION_1 寄存器 (偏移 = 16h) [复位 = XXh]

POWER_UP_SLOT_DURATION_1 如图 6-34 所示,相应说明如表 6-30 所述。

返回到汇总表。

图 6-34. POWER_UP_SLOT_DURATION_1 寄存器

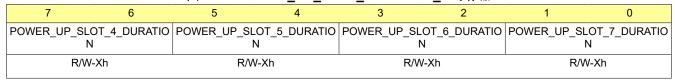
表 6-30. POWER_UP_SLOT_DURATION_1 寄存器字段说明

位	字段	类型	复位	说明
7-6	POWER_UP_SLOT_0_D URATION	R/W	X	上电以及从待机切换到运行状态序列期间时隙 0 的持续时间。(来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms
5-4	POWER_UP_SLOT_1_D URATION	R/W	X	上电以及从待机切换到运行状态序列期间时隙 1 的持续时间。 (来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms
3-2	POWER_UP_SLOT_2_D URATION	R/W	X	上电以及从待机切换到运行状态序列期间时隙 2 的持续时间。 (来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms
1-0	POWER_UP_SLOT_3_D URATION	R/W	X	上电以及从待机切换到运行状态序列期间时隙 3 的持续时间。 (来自 NVM 存储器的默认值) 0h = 0ms

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈



6.6.21 POWER_UP_SLOT_DURATION_2 寄存器 (偏移 = 17h) [复位 = XXh]

POWER_UP_SLOT_DURATION_2 如图 6-35 所示,相应说明如表 6-31 所述。

返回到汇总表。

图 6-35. POWER_UP_SLOT_DURATION_2 寄存器

表 6-31. POWER_UP_SLOT_DURATION_2 寄存器字段说明

位	字段	类型	复位	说明
7-6	POWER_UP_SLOT_4_D URATION	R/W	X	上电以及从待机切换到运行状态序列期间时隙 4 的持续时间。(来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms
5-4	POWER_UP_SLOT_5_D URATION	R/W	X	上电以及从待机切换到运行状态序列期间时隙 5 的持续时间。 (来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms
3-2	POWER_UP_SLOT_6_D URATION	R/W	X	上电以及从待机切换到运行状态序列期间时隙 6 的持续时间。(来自 NVM 存储器的默认值) 0h = 0ms
1-0	POWER_UP_SLOT_7_D URATION	R/W	X	上电以及从待机切换到运行状态序列期间时隙 7 的持续时间。(来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms

提交文档反馈 Copyright © 2025 T Product Folder Links: *TPS65214*

English Data Sheet: SLVSHK7

6.6.22 BUCK3_VOUT_STBY 寄存器 (偏移 = 19h) [复位 = XXh]

BUCK3_VOUT_STBY 如 图 6-36 所示,相应说明如表 6-32 所述。

返回到汇总表。

图 6-36. BUCK3_VOUT_STBY 寄存器

7	6	5	4	3	2	1	0
RESERVED	BUCK3_DVS_S TBY	RESERVED		В	UCK3_VSET_STE	3Y	
R-0h	R/W-Xh	R-0h			R/W-Xh		

表 6-32. BUCK3_VOUT_STBY 寄存器字段说明

位	字段	类型	复位	
7	RESERVED	R	Oh	保留
6	BUCK3_DVS_STBY	R/W	X	STANDBY 模式下的 BUCK3 DVS 转换。 Oh = STBY 状态下不进行 DVS 转换 Th = STBY 状态下通过 BUCK3_VSET_STBY 配置的输出电压进行 DVS 转换
5	RESERVED	R	0h	保留
4-0	BUCK3_VSET_STBY	R/W	X	STANDBY 状态下的 BUCK3 电压选择。输出电压范围为 0.6V 至 1.375V。(来自 NVM 存储器的默认值) 0h = 0.600V 1h = 0.625V 2h = 0.650V 3h = 0.675V 4h = 0.700V 5h = 0.725V 6h = 0.750V 7h = 0.775V 8h = 0.800V 9h = 0.825V Ah = 0.850V Bh = 0.875V Ch = 0.900V Dh = 0.925V Eh = 0.950V Fh = 0.975V 10h = 1.000V 11h = 1.025V 12h = 1.050V 13h = 1.075V 14h = 1.175V 14h = 1.175V 18h = 1.250V 18h = 1.255V 18h = 1.250V 18h = 1.275V 10h = 1.3300V 10h = 1.325V 11ch = 1.3300V 11ch = 1.3300V 11ch = 1.3350V
				1Fh = 1.375V

6.6.23 POWER_DOWN_SLOT_DURATION_1 寄存器(偏移 = 1Ah)[复位 = XXh]

POWER_DOWN_SLOT_DURATION_1 如图 6-37 所示,相应说明如表 6-33 所述。

返回到汇总表。

图 6-37. POWER_DOWN_SLOT_DURATION_1 寄存器

7	6	5	4	3	2	1	0
POWER_DOWN ATIO			N_SLOT_1_DUR ION	POWER_I	DOWN_SLOT_2_DUR ATION		N_SLOT_3_DUR ON
R/W	-Xh	RΛ	V-Xh		R/W-Xh	R/W	/-Xh

表 6-33. POWER_DOWN_SLOT_DURATION_1 寄存器字段说明

位	字段	类型	复位	说明
7-6	POWER_DOWN_SLOT_0 _DURATION	R/W	x	断电以及从运行状态切换到待机序列期间时隙 0 的持续时间。(来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms
5-4	POWER_DOWN_SLOT_1 _DURATION	R/W	х	断电以及从运行状态切换到待机序列期间时隙 1 的持续时间。(来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms
3-2	POWER_DOWN_SLOT_2 _DURATION	R/W	X	断电以及从运行状态切换到待机序列期间时隙 2 的持续时间。(来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms
1-0	POWER_DOWN_SLOT_3 _DURATION	R/W	X	断电以及从运行状态切换到待机序列期间时隙 3 的持续时间。 (来自NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms

提交文档反馈 Copyright © 2025 Texas Instruments Incorporated

6.6.24 POWER_DOWN_SLOT_DURATION_2 寄存器(偏移 = 1Bh)[复位 = XXh]

POWER_DOWN_SLOT_DURATION_2 如 图 6-38 所示,相应说明如表 6-34 所述。

返回到汇总表。

图 6-38. POWER_DOWN_SLOT_DURATION_2 寄存器

7	6	5	4	3		2	1	0
POWER_DOWN_ ATIO		_	N_SLOT_5_DUR ION	POWER_	DOWN_SL ATION	OT_6_DUR	POWER_DOWN ATIO	
R/W-	Xh	R/V	V-Xh		R/W-Xh		R/W	-Xh

表 6-34. POWER_DOWN_SLOT_DURATION_2 寄存器字段说明

位	字段	类型	复位	说明
7-6	POWER_DOWN_SLOT_4 _DURATION	R/W	X	断电以及从运行状态切换到待机序列期间时隙 4 的持续时间。(来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms
5-4	POWER_DOWN_SLOT_5 _DURATION	R/W	X	断电以及从运行状态切换到待机序列期间时隙 5 的持续时间。(来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms
3-2	POWER_DOWN_SLOT_6 _DURATION	R/W	x	断电以及从运行状态切换到待机序列期间时隙 6 的持续时间。 (来自 NVM 存储器的默认值) 0h = 0ms 1h = 1.5ms 2h = 3ms 3h = 10ms
1-0	POWER_DOWN_SLOT_7 _DURATION	R/W	X	断电以及从运行状态切换到待机序列期间时隙 7 的持续时间。 (来自 NVM 存储器的默认值) 0h = 0ms

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.25 BUCK2_VOUT_STBY 寄存器 (偏移 = 1Ch) [复位 = XXh]

BUCK2_VOUT_STBY 如 图 6-39 所示,相应说明如表 6-35 所述。

返回到汇总表。

图 6-39. BUCK2_VOUT_STBY 寄存器

7	6	5	4	3	2	1	0
RESER	VED BUCK2_D TBY				BUCK2_VSET_	STBY	
R-0	n R/W-X	(h R-0h			R/W-Xh		

表 6-35. BUCK2_VOUT_STBY 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	BUCK2_DVS_STBY	R/W	Х	STANDBY 模式下的 BUCK2 DVS 转换。 Oh = STBY 状态下不进行 DVS 转换 Th = STBY 状态下通过 BUCK2_VSET_STBY 配置的输出电压进行 DVS 转换
5	RESERVED	R	0h	保留
4-0	BUCK2_VSET_STBY	R/W	X	STANDBY 状态下的 BUCK2 电压选择。输出电压范围为 0.6V 至 1.375V。(来自 NVM 存储器的默认值) 0h = 0.600V 1h = 0.625V 2h = 0.650V 3h = 0.675V 4h = 0.700V 5h = 0.725V 6h = 0.750V 7h = 0.775V 8h = 0.800V 9h = 0.825V Ah = 0.850V Bh = 0.825V Ah = 0.850V Bh = 0.875V Ch = 0.900V Dh = 0.925V Eh = 0.950V Fh = 0.975V 10h = 1.000V 11h = 1.025V 12h = 1.050V 13h = 1.075V 14h = 1.1050V 15h = 1.125V 16h = 1.150V 17h = 1.175V 18h = 1.225V 18h = 1.225V 18h = 1.225V 1Ah = 1.255V 12h = 1.050V 15h = 1.325V 15h = 1.350V 15h = 1.325V 15h = 1.335V 15h = 1.355V 15h = 1.375V

Product Folder Links: *TPS65214*

English Data Sheet: SLVSHK7

6.6.26 BUCK1_VOUT_STBY 寄存器 (偏移 = 1Dh) [复位 = XXh]

BUCK1_VOUT_STBY 如 图 6-40 所示,相应说明如表 6-36 所述。

返回到汇总表。

图 6-40. BUCK1_VOUT_STBY 寄存器

7	6	5	4	3	2	1	0
RESERVED	BUCK1_DVS_S TBY	RESERVED		В	UCK1_VSET_STE	BY	
R-0h	R/W-Xh	R-0h			R/W-Xh		

表 6-36. BUCK1_VOUT_STBY 寄存器字段说明

位	字段	类型	复位	
7	RESERVED	R	0h	保留
6	BUCK1_DVS_STBY	R/W	X	STANDBY 模式下的 BUCK1 DVS 转换。 Oh = STBY 状态下不进行 DVS 转换 Th = STBY 状态下通过 BUCK1_VSET_STBY 配置的输出电压进行 DVS 转换
5	RESERVED	R	0h	保留
4-0	BUCK1_VSET_STBY	R/W	X	STANDBY 状态下的 BUCK1 电压选择。输出电压范围为 0.6V 至 1.375V。(来自 NVM 存储器的默认值) 0h = 0.600V 1h = 0.625V 2h = 0.650V 3h = 0.675V 4h = 0.700V 5h = 0.725V 6h = 0.725V 6h = 0.750V 7h = 0.850V 8h = 0.875V 7h = 0.950V 7h = 0.925V 7h = 0.950V 7h = 0.950V 7h = 1.050V 7h = 1.050V 7h = 1.050V 7h = 1.175V 7h = 1.250V 7h = 1.350V 7h

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.27 GENERAL_CONFIG 寄存器 (偏移 = 1Eh) [复位 = XXh]

图 6-41 展示了 GENERAL_CONFIG,表 6-37 中对此进行了介绍。

返回到汇总表。

图 6-41. GENERAL_CONFIG 寄存器

7	6	5	4	3	2	1	0
BYPASS_RV_F OR_RAIL_ENA BLE	RESERVED	LDO1_UV_THR	LDO2_UV_THR	RESERVED	GPIO_EN	GPIO_CONFIG	GPO_EN
R/W-Xh	R-0h	R/W-Xh	R/W-Xh	R-0h	R/W-Xh	R/W-Xh	R/W-Xh

表 6-37. GENERAL_CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7	BYPASS_RV_FOR_RAIL_ ENABLE	R/W	X	启用稳压器以前,绕过 RV(预偏置)条件检查。(来自 NVM 存储器的默认值) Oh = 强制执行放电检查 1h = 绕过放电检查
6	RESERVED	R	0h	保留
5	LDO1_UV_THR	R/W	X	LDO1 的 UV 阈值选择位。仅在配置为 LDO 时适用。 (来自 NVM 存储器的默认值) 0h = -5% UV 检测 1h = -10% UV 检测
4	LDO2_UV_THR	R/W	X	LDO2 的 UV 阈值选择位。仅在配置为 LDO 时适用。(来自 NVM 存储器的默认值) 0h = -5% UV 检测 1h = -10% UV 检测
3	RESERVED	R	0h	保留
2	GPIO_EN	R/W	X	GPIO 的启用和状态控制。该位启用 GPIO 功能并控制 GPIO 引脚的状态。(来自 NVM 存储器的默认值) 0h = 不启用 GPIO 功能。输出状态为低电平。 1h = 启用 GPIO 功能。输出状态为高电平。
1	GPIO_CONFIG	R/W	Х	GPIO 引脚配置。(来自 NVM 存储器的默认值) 0h = 配置为输入 1h = 配置为输出
0	GPO_EN	R/W	X	GPO 的启用和状态控制。该位启用 GPO 功能并控制 GPO 引脚的状态。(来自 NVM 存储器的默认值) 0h = 启用 GPO。输出状态为低电平。 1h = 启用 GPO。输出状态为高阻态。

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TPS65214*

6.6.28 MFP_1_CONFIG 寄存器 (偏移 = 1Fh) [复位 = XXh]

MFP_1_CONFIG 如 图 6-42 所示,相应说明如表 6-38 所述。

返回到汇总表。

图 6-42. MFP_1_CONFIG 寄存器

7	6	5	4	3	2	1	0
MODE_I2C_CT RL	RESERVED	RESERVED	MODE_STBY_ POLARITY	GPIO_VSEL_C ONFIG	VSEL_RAIL	RESERVED	RESERVED
R/W-Xh	R-0h	R-0h	R/W-Xh	R/W-Xh	R/W-Xh	R-0h	R-0h

表 6-38. MFP_1_CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7	MODE_I2C_CTRL	R/W	Х	使用 I2C. 进行 MODE 控制。通过 MODE/STBY 引脚与 STBY 控制合并。请参阅数据表中的表格。(来自 NVM 存储器的默认值) 0h = 自动 PFM 1h = 强制 PWM
6	RESERVED	R	0h	保留
5	RESERVED	R	0h	保留
4	MODE_STBY_POLARITY	R/W	X	MODE_STBY 引脚极性配置。注意:可以在操作期间更改,但请考虑即时反应:模式更改或状态更改!(来自 NVM 存储器的默认值) 0h = [如果配置为 MODE] 低电平 - 自动 PFM/高电平 - 强制 PWM。 [如果配置为 STBY] 低电平 - STBY 状态/高电平 - ACTIVE 状态。 1h = [如果配置为 MODE] 高电平 - 自动 PFM/低电平 - 强制 PWM。 [如果配置为 STBY] 高电平 - STBY 状态/低电平 - ACTIVE 状态。
3	GPIO_VSEL_CONFIG	R/W	Х	GPIO_VSEL 引脚配置。注意:仅在 INITIALIZE 状态下更改!(来自 NVM 存储器的默认值) 0h =配置为 GPIO 1h =配置为 VSEL
2	VSEL_RAIL	R/W	Х	配置为 VSEL 时,通过 GPIO/VSEL 控制降压。注意:仅在 INITIALIZE 状态下更改!(来自 NVM 存储器的默认值) 0h = BUCK1 1h = BUCK3
1	RESERVED	R	0h	保留
0	RESERVED	R	0h	保留

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.29 MFP_2_CONFIG 寄存器 (偏移 = 20h) [复位 = XXh]

MFP_2_CONFIG 如 图 6-43 所示,相应说明如表 6-39 所述。

返回到汇总表。

图 6-43. MFP_2_CONFIG 寄存器

7	6	5	4	3	2	1	0
PU_ON_FSD	MASK_RETRY _COUNT_ON_ FIRST_PU	EN_PB_VSENS	E_CONFIG	EN_PB_VSENS E_DEGL	GPO_nWAKEU P_CONFIG	MODE_STB	Y_CONFIG
R/W-Xh	R/W-Xh	R/W-X	(h	R/W-Xh	R/W-Xh	R/W-	-Xh

表 6-39. MFP_2_CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7	PU_ON_FSD	R/W	X	首次电源检测 (FSD) 时上电。因此,当应用 VSYS 时,即使 EN/PB/ VSENSE 引脚处于 OFF_REQ 状态,器件也会上电至 ACTIVE 状态。(来自 NVM 存储器的默认值) 0h = 未启用首次电源检测 (FSD)。 1h = 启用首次电源检测 (FSD)。
6	MASK_RETRY_COUNT_ ON_FIRST_PU	R/W	X	首次上电期间屏蔽 RETRY_COUNT。器件进入 ACTIVE 状态后,RETRY_COUNT 就会解除屏蔽。 0h = 首次上电时,未屏蔽 RETRY_COUNT。 1h = 首次上电时,屏蔽 RETRY_COUNT。
5-4	EN_PB_VSENSE_CONFI G	R/W	X	启用/按钮/VSENSE 配置。加载 NVM 后,请勿通过 I2C 进行更改 (除非作为编程 NVM 前的预备步骤)(来自 NVM 存储器的默认值) 0h = 按钮配置 1h = 器件启用配置 2h = VSENSE 配置 3h = 器件启用配置
3	EN_PB_VSENSE_DEGL	R/W	X	使能/按钮/VSENSE 抗尖峰脉冲。注意:仅在 INITIALIZE 状态下更改!考虑从 EN/VSENSE 更改为 PB 或反向更改时的即时反应:上电!(来自 NVM 存储器的默认值) 0h = 短时型(典型值:EN/VSENSE 为 120ms,PB 为 200ms) 1h = 长时型(典型值:EN/VSENSE 为 50ms,PB 为 600ms)
2	GPO_nWAKEUP_CONFI	R/W	Х	GPO/nWAKEUP 配置(来自 NVM 存储器的默认值) 0h = GPO 1h = nWAKEUP
1-0	MODE_STBY_CONFIG	R/W	X	MODE_STBY 配置(来自 NVM 存储器的默认值) 0h = MODE 1h = STBY 2h = MODE 和 STBY 3h = MODE

 $\label{eq:copyright @ 2025 Texas Instruments Incorporated}$ Product Folder Links: TPS65214

6.6.30 STBY_1_CONFIG 寄存器 (偏移 = 21h) [复位 = XXh]

STBY_1_CONFIG 如 图 6-44 所示,相应说明如表 6-40 所述。

返回到汇总表。

图 6-44. STBY_1_CONFIG 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	LDO1_STBY_E N	LDO2_STBY_E N	RESERVED	BUCK3_STBY_ EN	BUCK2_STBY_ EN	BUCK1_STBY_ EN
R-0h	R-0h	R/W-Xh	R/W-Xh	R-0h	R/W-Xh	R/W-Xh	R/W-Xh

表 6-40. STBY_1_CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	RESERVED	R	0h	保留
5	LDO1_STBY_EN	R/W	X	在 STANDBY 状态下启用 LDO1。(来自 NVM 存储器的默认值) 0h = STBY 模式下未启用 1h = STBY 模式下启用
4	LDO2_STBY_EN	R/W	X	在 STANDBY 状态下启用 LDO2。(来自 NVM 存储器的默认值) 0h = STBY 模式下未启用 1h = STBY 模式下启用
3	RESERVED	R	0h	保留
2	BUCK3_STBY_EN	R/W	X	在 STANDBY 状态下启用 BUCK3。(来自 NVM 存储器的默认值) 0h = STBY 模式下未启用 1h = STBY 模式下启用
1	BUCK2_STBY_EN	R/W	Х	在 STANDBY 状态下启用 BUCK2。(来自 NVM 存储器的默认值) 0h = STBY 模式下未启用 1h = STBY 模式下启用
0	BUCK1_STBY_EN	R/W	Х	在 STANDBY 状态下启用 BUCK1。(来自 NVM 存储器的默认值) 0h = STBY 模式下未启用 1h = STBY 模式下启用

6.6.31 STBY_2_CONFIG 寄存器 (偏移 = 22h) [复位 = XXh]

STBY_2_CONFIG 如 图 6-45 所示,相应说明如 表 6-41 所述。

返回到汇总表。

图 6-45. STBY_2_CONFIG 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED	STBY_SLEEP_ CONFIG	nRSTOUT_STB Y_CONFIG	GPIO_STBY_E N	RESERVED	GPO_STBY_E N
R-0h	R-0h	R-0h	R/W-Xh	R/W-Xh	R/W-Xh	R-0h	R/W-Xh

表 6-41. STBY_2_CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	RESERVED	R	0h	保留
5	RESERVED	R	0h	保留
4	STBY_SLEEP_CONFIG	R/W	Х	通过 STBY 请求实现器件运行。(来自 NVM 存储器的默认值) 0h = STBY 模式 1h = SLEEP 模式
3	nRSTOUT_STBY_CONFI G	R/W	Х	STANDBY 状态下的 nRSTOUT 配置。(来自 NVM 存储器的默认值) 0h = STBY 状态下 nRSTOUT 置为有效 1h = STBY 状态下 nRSTOUT 变为失效状态
2	GPIO_STBY_EN	R/W	Х	在 STANDBY 状态下启用 GPIO。(来自 NVM 存储器的默认值) 0h = STBY 模式下未启用 1h = STBY 模式下启用
1	RESERVED	R	0h	保留
0	GPO_STBY_EN	R/W	Х	在 STANDBY 状态下启用 GPO。(来自 NVM 存储器的默认值) 0h = STBY 模式下未启用 1h = STBY 模式下启用

90 提交文档反馈

Copyright © 2025 Texas Instruments Incorporated

6.6.32 OC_DEGL_CONFIG 寄存器 (偏移 = 23h) [复位 = 0Xh]

图 6-46 展示了 OC_DEGL_CONFIG,表 6-42 中对此进行了介绍。

返回到汇总表。

图 6-46. OC_DEGL_CONFIG 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	EN_LONG_DE GL_FOR_OC_ BUCK3	EN_LONG_DE GL_FOR_OC_ BUCK2	EN_LONG_DE GL_FOR_OC_ BUCK1
R-0h	R-0h	R-0h	R-0h	R-0h	R/W-Xh	R/W-Xh	R/W-Xh

表 6-42. OC_DEGL_CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	RESERVED	R	0h	保留
5	RESERVED	R	0h	保留
4	RESERVED	R	0h	保留
3	RESERVED	R	0h	保留
2	EN_LONG_DEGL_FOR_ OC_BUCK3	R/W	X	该位置位时,启用 BUCK3 过流信号的长抗尖峰脉冲选项。清除时,启用 BUCK3 过流信号的短抗尖峰脉冲选项。(来自 NVM 存储器的默认值) 0h = BUCK3 过流信号(高压侧过流、低压侧过流以及低压侧反向/负向过流)的抗尖峰脉冲持续时间约为 20us 1h = BUCK3 过流信号(高压侧过流、低压侧过流以及低压侧反向/负向过流)的抗尖峰脉冲持续时间约为 2ms
1	EN_LONG_DEGL_FOR_ OC_BUCK2	R/W	X	该位置位时,启用 BUCK2 过流信号的长抗尖峰脉冲选项。清除时,启用 BUCK2 过流信号的短抗尖峰脉冲选项。(来自 NVM 存储器的默认值) 0h = BUCK2 过流信号(高压侧过流、低压侧过流以及低压侧反向/负向过流)的抗尖峰脉冲持续时间约为 20us 1h = BUCK2 过流信号(高压侧过流、低压侧过流以及低压侧反向/负向过流)的抗尖峰脉冲持续时间约为 2ms
0	EN_LONG_DEGL_FOR_ OC_BUCK1	R/W	X	该位置位时,启用 BUCK1 过流信号的长抗尖峰脉冲选项。清除时,启用 BUCK1 过流信号的短抗尖峰脉冲选项。(来自 NVM 存储器的默认值) 0h = BUCK1 过流信号(高压侧过流、低压侧过流以及低压侧反向/负向过流)的抗尖峰脉冲持续时间约为 20us 1h = BUCK1 过流信号(高压侧过流、低压侧过流以及低压侧反向/负向过流)的抗尖峰脉冲持续时间约为 2ms

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.33 INT_MASK_UV 寄存器 (偏移 = 24h) [复位 = XXh]

图 6-47 展示了 INT_MASK_UV,表 6-43 中对此进行了介绍。

返回到汇总表。

图 6-47. INT_MASK_UV 寄存器

7	6	5	4	3	2	1	0
MASK_RETRY _COUNT	BUCK3_UV_M ASK	BUCK2_UV_M ASK	BUCK1_UV_M ASK	RESERVED	LDO1_UV_MA SK	LDO2_UV_MA SK	RESERVED
R/W-Xh	R/W-Xh	R/W-Xh	R/W-Xh	R-0h	R/W-Xh	R/W-Xh	R-0h

表 6-43. INT_MASK_UV 寄存器字段说明

位	字段	类型	复位	说明
7	MASK_RETRY_COUNT	R/W	X	该位置位时,器件甚至可以在重试两次后上电。(来自 NVM 存储器的默认值) 0h = 器件最多重试 2 次,然后保持关闭状态 1h = 器件无限重试
6	BUCK3_UV_MASK	R/W	X	BUCK3 欠压屏蔽。 (来自 NVM 存储器的默认值) 0h = 未屏蔽(报告故障) 1h = 已屏蔽(未报告故障)
5	BUCK2_UV_MASK	R/W	Х	BUCK2 欠压屏蔽。(来自 NVM 存储器的默认值) 0h = 未屏蔽(报告故障) 1h = 已屏蔽(未报告故障)
4	BUCK1_UV_MASK	R/W	Х	BUCK1 欠压屏蔽。(来自 NVM 存储器的默认值) 0h = 未屏蔽(报告故障) 1h = 已屏蔽(未报告故障)
3	RESERVED	R	0h	保留
2	LDO1_UV_MASK	R/W	Х	LDO1 欠压屏蔽 - 在 BYP 或 LSW 模式下始终屏蔽。(来自 NVM 存储器的默认值) 0h = 未屏蔽(报告故障) 1h = 已屏蔽(未报告故障)
1	LDO2_UV_MASK	R/W	Х	LDO2 欠压屏蔽 - 在 BYP 或 LSW 模式下始终屏蔽。(来自 NVM 存储器的默认值) Oh = 未屏蔽(报告故障) 1h = 已屏蔽(未报告故障)
0	RESERVED	R	0h	保留

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

6.6.34 MASK_CONFIG 寄存器 (偏移 = 25h) [复位 = XXh]

图 6-48 展示了 MASK_CONFIG,表 6-44 中对此进行了介绍。

返回到汇总表。

图 6-48. MASK_CONFIG 寄存器

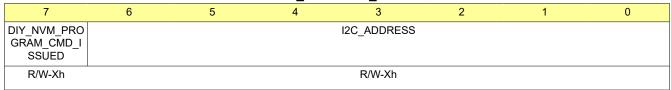
7	6	5	4	3	2	1	0
MASK_INT_FO R_PB	MASK_E	FFECT	MASK_INT_FO R_RV	SENSOR_0_W ARM_MASK	SENSOR_1_W ARM_MASK	SENSOR_2_W ARM_MASK	RESERVED
R/W-Xh	R/W-	Xh	R/W-Xh	R/W-Xh	R/W-Xh	R/W-Xh	R-0h

表 6-44. MASK_CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7	MASK_INT_FOR_PB	R/W	Х	用于控制 nINT 引脚是否对按钮 (PB) 按下/释放事件敏感的屏蔽位。 (来自 NVM 存储器的默认值) 0h = 未屏蔽(对于任何 PB 事件, nINT 均拉至低电平) 1h = 已屏蔽(nINT 对任何 PB 事件均不敏感)
6-5	MASK_EFFECT	R/W	X	屏蔽影响(全局)(来自 NVM 存储器的默认值) Oh = 无状态变化,无 nINT 反应,未设置故障位 1h = 无状态变化,无 nINT 反应,已设置故障位 2h = 无状态变化,有 nINT 反应,已设置故障位(与 11b 相同) 3h = 无状态变化,有 nINT 反应,已设置故障位(与 10b 相同)
4	MASK_INT_FOR_RV	R/W	X	用于控制 nINT 引脚是否对 RV(残余电压)事件敏感的屏蔽位。(来自 NVM 存储器的默认值) Oh = 未屏蔽(对于任何 RV 事件,nINT 在过渡到 ACTIVE 状态期间或在启用电源轨期间被拉低) 1h = 己屏蔽(nINT 对任何 RV 事件均不敏感)
3	SENSOR_0_WARM_MAS	R/W	Х	芯片温度热故障屏蔽,传感器 0。(来自 NVM 存储器的默认值) 0h = 未屏蔽(报告故障) 1h = 己屏蔽(未报告故障)
2	SENSOR_1_WARM_MAS	R/W	Х	芯片温度热故障屏蔽,传感器 1。(来自 NVM 存储器的默认值) 0h = 未屏蔽(报告故障) 1h = 已屏蔽(未报告故障)
1	SENSOR_2_WARM_MAS	R/W	Х	芯片温度热故障屏蔽,传感器 2。(来自 NVM 存储器的默认值) 0h = 未屏蔽(报告故障) 1h = 已屏蔽(未报告故障)
0	RESERVED	R	0h	保留

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈



6.6.35 I2C_ADDRESS_REG 寄存器(偏移 = 26h)[复位 = XXh]

I2C_ADDRESS_REG 如 图 6-49 所示,相应说明如表 6-45 所述。

返回到汇总表。

图 6-49. I2C_ADDRESS_REG 寄存器

表 6-45. I2C_ADDRESS_REG 寄存器字段说明

位	字段	类型	复位	说明
	DIY_NVM_PROGRAM_C MD_ISSUED	R/W	X	指示是否尝试了 DIY 编程命令的位。一旦置位,将始终保持置位状态。(来自 NVM 存储器的默认值) Oh = NVM 数据未更改 1h = 尝试通过 DIY 程序命令更改 NVM 数据
6-0	I2C_ADDRESS	R/W	X	I2C 从地址。注意:可以在操作期间更改,但请考虑即时反应:新的读/写地址!(来自 NVM 存储器的默认值)

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

6.6.36 USER_GENERAL_NVM_STORAGE_REG 寄存器(偏移 = 27h)[复位 = XXh]

图 6-50 展示了 USER_GENERAL_NVM_STORAGE_REG,表 6-46 中对此进行了介绍。返回到汇总表。

图 6-50. USER_GENERAL_NVM_STORAGE_REG 寄存器

	•	-	-	_	_		
7	6	5	4	3	2	1	0
USER_CONFIG _PROG			USER_G	ENERAL_NVM_S	STORAGE		
R/W-Xh				R/W-Xh			

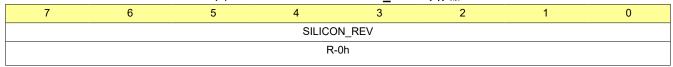
表 6-46. USER_GENERAL_NVM_STORAGE_REG 寄存器字段说明

位	字段	类型	复位	说明
7	USER_CONFIG_PROG	R/W	Х	指示已编程 NVM 用户配置区域。(来自 NVM 存储器的默认值) Oh = 未编程用户区域 1h = 已编程用户区域
6-0	USER_GENERAL_NVM_ STORAGE	R/W	X	基于 8 位 NVM 的寄存器可供用户用来存储用户数据(例如客户修改的 NVM 版本的 NVM-ID),或者用于其他用途。(来自 NVM 存储器的默认值)

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈



6.6.37 MANUFACTURING_VER 寄存器 (偏移 = 28h) [复位 = 00h]

图 6-51 展示了 MANUFACTURING_VER,表 6-47 中对此进行了介绍。

返回到汇总表。

图 6-51. MANUFACTURING_VER 寄存器

表 6-47. MANUFACTURING_VER 寄存器字段说明

位	字段	类型	复位	说明
7-0	SILICON_REV	R		SILICON_REV[7:6] - 保留 SILICON_REV[5:3] - ALR SILICON_REV[2:0] - 金属器件修订版 - 硬接线(不受 NVM 控制)

Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: TPS65214

6.6.38 MFP_CTRL 寄存器 (偏移 = 29h) [复位 = 00h]

图 6-52 展示了 MFP_CTRL,表 6-48 中对此进行了介绍。

返回到汇总表。

图 6-52. MFP_CTRL 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED	GPIO_STATUS	WARM_RESET _I2C_CTRL	COLD_RESET_ I2C_CTRL	STBY_I2C_CT RL	I2C_OFF_REQ
R-0h	R-0h	R-0h	R-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h

表 6-48. MFP_CTRL 寄存器字段说明

	1		_	
位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	RESERVED	R	0h	保留
5	RESERVED	R	0h	保留
4	GPIO_STATUS	R	0h	指示 GPIO 引脚的实时值 0h = GPIO 引脚当前为 "0" 1h = GPIO 引脚当前为 "1"
3	WARM_RESET_I2C_CTR L	R/W	0h	当写为"1"时,触发 WARM RESET。注意:该位会自动清除,因此写入后不能读为"1"。 0h = 正常运行 1h = WARM_RESET
2	COLD_RESET_I2C_CTR L	R/W	0h	当设置为高电平时触发 COLD RESET。进入 INITIALIZE 状态时清除。 Oh = 正常运行 1h = COLD_RESET
1	STBY_I2C_CTRL	R/W	0h	使用 I2C. 进行 STBY 控制。通过 MODE/STBY 引脚与 STBY 控制合并。参阅 MODE 与 STBY 配置表以及 STBY_SLEEP_CONFIG 位。 0h = 正常运行 1h = STBY 模式或睡眠模式
0	I2C_OFF_REQ	R/W	0h	将"1"写入此位时:触发 OFF 请求。设置为"0"时:没有影响。可自行清除。 0h = 无影响 1h = 触发关断请求

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.39 DISCHARGE_CONFIG 寄存器 (偏移 = 2Ah) [复位 = 37h]

图 6-53 展示了 DISCHARGE_CONFIG,表 6-49 中对此进行了介绍。

返回到汇总表。

图 6-53. DISCHARGE_CONFIG 寄存器

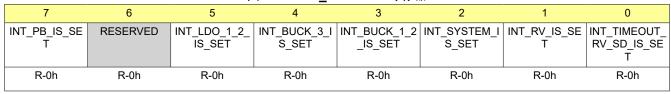
7	6	5	4	3	2	1	0
RESERVED	RESERVED	LDO1_DISCHA RGE_EN	LDO2_DISCHA RGE_EN	RESERVED	BUCK3_DISCH ARGE_EN	BUCK2_DISCH ARGE_EN	BUCK1_DISCH ARGE_EN
R-0h	R-0h	R/W-1h	R/W-1h	R-0h	R/W-1h	R/W-1h	R/W-1h

表 6-49. DISCHARGE_CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	RESERVED	R	0h	保留
5	LDO1_DISCHARGE_EN	R/W	1h	LDO1 的放电设置 0h = 无放电 1h = 250 Ω
4	LDO2_DISCHARGE_EN	R/W	1h	LDO2 的放电设置 0h = 无放电 1h = 200 Ω
3	RESERVED	R	0h	保留
2	BUCK3_DISCHARGE_EN	R/W	1h	BUCK3 的放电设置 0h = 无放电 1h = 125 Ω
1	BUCK2_DISCHARGE_EN	R/W	1h	BUCK2 的放电设置 0h = 无放电 1h = 125 Ω
0	BUCK1_DISCHARGE_EN	R/W	1h	BUCK1 的放电设置 0h = 无放电 1h = 125 Ω

提交文档反馈 Copy Product Folder Links: *TPS65214*

English Data Sheet: SLVSHK7



6.6.40 INT_SOURCE 寄存器 (偏移 = 2Bh) [复位 = 00h]

图 6-54 展示了 INT_SOURCE,表 6-50 中对此进行了介绍。

返回到汇总表。

图 6-54. INT_SOURCE 寄存器

表 6-50. INT SOURCE 寄存器字段说明

	X 5 50. III_5001(62 H 1 H 1 X H)									
位	字段	类型	复位	说明						
7	INT_PB_IS_SET	R	0h	寄存器 INT_PB 中存在一个或多个 INT 源 0h = 未设置 INT_PB 任何位 1h = 已设置 INT_PB 一个或多个位						
6	RESERVED	R	0h	保留						
5	INT_LDO_1_2_IS_SET	R	0h	寄存器 INT_LDO_1_2 中存在一个或多个 INT 源 0h = 未设置 INT_LDO_1_2 任何位 1h = 已设置 INT_LDO_1_2 一个或多个位						
4	INT_BUCK_3_IS_SET	R	0h	寄存器 INT_BUCK_3 中存在一个或多个 INT 源 0h = 未设置 INT_BUCK_3 任何位 1h = 已设置 INT_BUCK_3 一个或多个位						
3	INT_BUCK_1_2_IS_SET	R	0h	寄存器 INT_BUCK_1_2 中存在一个或多个 INT 源 0h = 未设置 INT_BUCK_1_2 任何位 1h = 已设置 INT_BUCK_1_2 一个或多个位						
2	INT_SYSTEM_IS_SET	R	Oh	寄存器 INT_SYSTEM 中存在一个或多个 INT 源 0h = 未设置 INT_SYSTEM 任何位 1h = 已设置 INT_SYSTEM 一个或多个位						
1	INT_RV_IS_SET	R	0h	寄存器 INT_RV 中存在一个或多个 INT 源 0h = 未设置 INT_RV 任何位 1h = 已设置 INT_RV 一个或多个位						
0	INT_TIMEOUT_RV_SD_I S_SET	R	0h	寄存器 INT_TIMEOUT_RV_SD 中存在一个或多个 INT 源 0h = 未设置 INT_TIMEOUT_RV_SD 任何位 1h = 已设置 INT_TIMEOUT_RV_SD 一个或多个位						

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.41 INT_LDO_1_2 寄存器 (偏移 = 2Dh) [复位 = 00h]

INT_LDO_1_2 如 图 6-55 所示,相应说明如表 6-51 所述。

返回到汇总表。

图 6-55. INT_LDO_1_2 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	LDO2_UV	LDO2_OC	LDO2_SCG	LDO1_UV	LDO1_OC	LDO1_SCG
R-0h	R-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h

表 6-51. INT_LDO_1_2 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	RESERVED	R	0h	保留
5	LDO2_UV	R/W1C	0h	LDO2 欠压故障。如果寄存器 INT_MASK_UV 相应的 *_UV_MASK 位为 "1" , 那么在转为 INITIALIZE 状态时是否自动清除 0h = 未检测到故障 1h = 检测到故障
4	LDO2_OC	R/W1C	0h	LDO2 过流故障 0h = 未检测到故障 1h = 检测到故障
3	LDO2_SCG	R/W1C	0h	LDO2 接地短路故障 0h = 未检测到故障 1h = 检测到故障
2	LDO1_UV	R/W1C	0h	LDO1 欠压故障。如果寄存器 INT_MASK_UV 相应的 *_UV_MASK 位为 "1" , 那么在转为 INITIALIZE 状态时是否自动清除 0h = 未检测到故障 1h = 检测到故障
1	LDO1_OC	R/W1C	0h	LDO1 过流故障 0h = 未检测到故障 1h = 检测到故障
0	LDO1_SCG	R/W1C	0h	LDO1 接地短路故障 0h = 未检测到故障 1h = 检测到故障

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TPS65214*

6.6.42 INT_BUCK_3 寄存器 (偏移 = 2Eh) [复位 = 00h]

INT_BUCK_3 如 图 6-56 所示,相应说明如 表 6-52 所述。

返回到汇总表。

图 6-56. INT_BUCK_3 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED	RESERVED	BUCK3_UV	BUCK3_NEG_ OC	BUCK3_OC	BUCK3_SCG
R-0h	R-0h	R-0h	R-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h

表 6-52. INT_BUCK_3 寄存器字段说明

位	字段	类型	复位	说明						
7	RESERVED	R	0h	保留						
6	RESERVED	R	0h	保留						
5	RESERVED	R	0h	保留						
4	RESERVED	R	0h	保留						
3	BUCK3_UV	R/W1C	0h	BUCK3 欠压故障。如果寄存器 INT_MASK_UV 相应的 *_UV_MASK 位为 "1" ,那么在转为 INITIALIZE 状态时是否自动清除 0h = 未检测到故障 1h = 检测到故障						
2	BUCK3_NEG_OC	R/W1C	Oh	BUCK3 负向过流故障 0h = 未检测到故障 1h = 检测到故障						
1	BUCK3_OC	R/W1C	Oh	BUCK3 正向过流故障 0h = 未检测到故障 1h = 检测到故障						
0	BUCK3_SCG	R/W1C	0h	BUCK3 接地短路故障 0h = 未检测到故障 1h = 检测到故障						

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.43 INT_BUCK_1_2 寄存器 (偏移 = 2Fh) [复位 = 00h]

INT_BUCK_1_2 如 图 6-57 所示,相应说明如表 6-53 所述。

返回到汇总表。

图 6-57. INT_BUCK_1_2 寄存器

7	6	5	4	3	2	1	0
BUCK2_UV	BUCK2_NEG_ OC	BUCK2_OC	BUCK2_SCG	BUCK1_UV	BUCK1_NEG_ OC	BUCK1_OC	BUCK1_SCG
R/W1C-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h

表 6-53. INT_BUCK_1_2 寄存器字段说明

位	字段	类型	复位	说明
7	BUCK2_UV	R/W1C	Oh	BUCK2 欠压故障。如果寄存器 INT_MASK_UV 相应的 *_UV_MASK 位为 "1" ,那么在转为 INITIALIZE 状态时是否自动清除 0h = 未检测到故障 1h = 检测到故障
6	BUCK2_NEG_OC	R/W1C	0h	BUCK2 负向过流故障 0h = 未检测到故障 1h = 检测到故障
5	BUCK2_OC	R/W1C	0h	BUCK2 正向过流故障 0h = 未检测到故障 1h = 检测到故障
4	BUCK2_SCG	R/W1C	0h	BUCK2 接地短路故障 Oh = 未检测到故障 1h = 检测到故障
3	BUCK1_UV	R/W1C	Oh	BUCK1 欠压故障。如果寄存器 INT_MASK_UV 相应的 *_UV_MASK 位为 "1" ,那么在转为 INITIALIZE 状态时是否自动清除 Oh = 未检测到故障 1h = 检测到故障
2	BUCK1_NEG_OC	R/W1C	0h	BUCK1 负向过流故障 0h = 未检测到故障 1h = 检测到故障
1	BUCK1_OC	R/W1C	0h	BUCK1 正向过流故障 0h = 未检测到故障 1h = 检测到故障
0	BUCK1_SCG	R/W1C	0h	BUCK1 接地短路故障 0h = 未检测到故障 1h = 检测到故障

Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: TPS65214

6.6.44 INT_SYSTEM 寄存器 (偏移 = 30h) [复位 = 00h]

图 6-58 展示了 INT_SYSTEM,表 6-54 中对此进行了介绍。

返回到汇总表。

图 6-58. INT_SYSTEM 寄存器

7	6	5	4	3	2	1	0
SENSOR_0_H OT	SENSOR_1_H OT	SENSOR_2_H OT	RESERVED	SENSOR_0_W ARM	SENSOR_1_W ARM	SENSOR_2_W ARM	RESERVED
R/W1C-0h	R/W1C-0h	R/W1C-0h	R-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h	R-0h

表 6-54. INT SYSTEM 寄存器字段说明

	次 0-54. INT_STOTEM 向行船子及此为										
位	字段	类型	复位	说明							
7	SENSOR_0_HOT	R/W1C	0h	传感器 0 的 TSD 热检测 0h = 未检测到故障 1h = 检测到故障							
6	SENSOR_1_HOT	R/W1C	Oh	传感器 1 的 TSD 热检测 0h = 未检测到故障 1h = 检测到故障							
5	SENSOR_2_HOT	R/W1C	Oh	传感器 2 的 TSD 热检测 0h = 未检测到故障 1h = 检测到故障							
4	RESERVED	R	0h	保留							
3	SENSOR_0_WARM	R/W1C	0h	TSD 传感器 0 的温检测。如果寄存器 MASK_CONFIG 相应的 *_WARM_MASK 位为 "1" ,那么在转为 INITIALIZE 状态时是否自 动清除 0h = 未检测到故障 1h = 检测到故障							
2	SENSOR_1_WARM	R/W1C	0h	TSD 传感器 1 的温检测。如果寄存器 MASK_CONFIG 相应的 *_WARM_MASK 位为 "1" ,那么在转为 INITIALIZE 状态时是否自 动清除 0h = 未检测到故障 1h = 检测到故障							
1	SENSOR_2_WARM	R/W1C	0h	TSD 传感器 2 的温检测。如果寄存器 MASK_CONFIG 相应的 *_WARM_MASK 位为"1",那么在转为 INITIALIZE 状态时是否自 动清除 0h = 未检测到故障 1h = 检测到故障							
0	RESERVED	R	0h	保留							

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.45 INT_RV 寄存器 (偏移 = 31h) [复位 = 00h]

图 6-59 展示了 INT_RV , 表 6-55 中对此进行了介绍。

返回到汇总表。

图 6-59. INT_RV 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	LDO2_RV	RESERVED	LDO1_RV	BUCK3_RV	BUCK2_RV	BUCK1_RV
R-0h	R-0h	R/W1C-0h	R-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h

表 6-55. INT_RV 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	RESERVED	R	0h	保留
5	LDO2_RV	R/W1C	0h	在电源轨启动阶段,或在进入 ACTIVE 状态电源序列前执行放电检查的 4-5ms 期间,检测到 LDO2 RV 事件 0h = 未检测到 RV 1h = 检测到 RV
4	RESERVED	R	0h	保留
3	LDO1_RV	R/W1C	0h	在电源轨启动阶段,或在进入 ACTIVE 状态电源序列前执行放电检查的 4-5ms 期间,检测到 LDO1 RV 事件0h = 未检测到 RV1h = 检测到 RV
2	BUCK3_RV	R/W1C	0h	在电源轨启动阶段,或在进入 ACTIVE 状态电源序列前执行放电检查的 4-5ms 期间,检测到 BUCK3 RV 事件0h = 未检测到 RV1h = 检测到 RV
1	BUCK2_RV	R/W1C	0h	在电源轨启动阶段,或在进入 ACTIVE 状态电源序列前执行放电检查的 4-5ms 期间,检测到 BUCK2 RV 事件0h = 未检测到 RV1h = 检测到 RV
0	BUCK1_RV	R/W1C	0h	在电源轨启动阶段,或在进入 ACTIVE 状态电源序列前执行放电检查的 4-5ms 期间,检测到 BUCK1 RV 事件0h = 未检测到 RV1h = 检测到 RV

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: TPS65214

6.6.46 INT_TIMEOUT_RV_SD 寄存器 (偏移 = 32h) [复位 = 00h]

图 6-60 展示了 INT_TIMEOUT_RV_SD,表 6-56 中对此进行了介绍。

返回到汇总表。

图 6-60. INT_TIMEOUT_RV_SD 寄存器

7	6	5	4	3	2	1	0
TIMEOUT	RESERVED	LDO1_RV_SD	LDO2_RV_SD	RESERVED	BUCK3_RV_SD	BUCK2_RV_SD	BUCK1_RV_SD
R/W1C-0h	R-0h	R/W1C-0h	R/W1C-0h	R-0h	R/W1C-0h	R/W1C-0h	R/W1C-0h

表 6-56. INT_TIMEOUT_RV_SD 寄存器字段说明

位	字段	类型		说明
7	TIMEOUT	R/W1C	0h	在以下情况下,如果超时导致关闭,是否设置该位:1.转换到ACTIVE 状态,并且一个或多个电源轨在指定时隙结束时未上升到超过 UV 电平(且该电源轨上的 UV 被配置为 SD 故障)。哪个/些电源轨由 INT_* 寄存器中的*_UV 位指示。2.转换到 STANDBY 状态,并且一个或多个电源轨在指定时隙结束时未降至 SCG 电平以下,且为该电源轨启用了放电(哪个/些电源轨由该寄存器中相应的 RV_SD 位指示)。Oh = 未发生超时导致的 SD 1h = 发生超时导致的 SD
6	RESERVED	R	0h	保留
5	LDO1_RV_SD	R/W1C	Oh	在以下情况下,LDO1 电源轨上的 RV 导致关断:1.转换到 STANDBY 状态,该电源轨在指定时隙结束时未放电,且该电源轨已启用放电功能。2.转换到 STANDBY 状态,当关断该电源轨并且启用放电功能以后,该电源轨检测到 RV 事件。3.转换到 ACTIVE 状态,转换过程中当该电源轨处于 OFF 状态时,在该电源轨上观察到 RV (预计电源轨将在时序进入 ACTIVE 状态之前放电)。4.该电源轨未放电,因此在开始从 STANDBY 状态转换为 ACTIVE 状态期间尝试对所有电源轨放电时,导致超时 SD (这种情况下,也会设置 TIMEOUT 位) Oh = LDO1 未发生 RV/DISCHARGE_TIMEOUT 导致的 SD 1h = LDO1 发生 RV/DISCHARGE_TIMEOUT 导致的 SD
4	LDO2_RV_SD	R/W1C	Oh	在以下情况下,LDO2 电源轨上的 RV 导致关断:1.转换到 STANDBY 状态,该电源轨在指定时隙结束时未放电,且该电源轨已启用放电功能。2.转换到 STANDBY 状态,当关断该电源轨并且启用放电功能以后,该电源轨检测到 RV 事件。3.转换到 ACTIVE 状态,转换过程中当该电源轨处于 OFF 状态时,在该电源轨上观察到 RV (预计电源轨将在时序进入 ACTIVE 状态之前放电)。4.该电源轨未放电,因此在开始从 STANDBY 状态转换为 ACTIVE 状态期间尝试对所有电源轨放电时,导致超时 SD (这种情况下,也会设置 TIMEOUT 位) 0h = LDO2 未发生 RV/DISCHARGE_TIMEOUT 导致的 SD 1h = LDO2 发生 RV/DISCHARGE_TIMEOUT 导致的 SD
3	RESERVED	R	0h	保留
2	BUCK3_RV_SD	R/W1C	Oh	在以下情况下,BUCK3 电源轨上的 RV 导致关断:1.转换到STANDBY 状态,该电源轨在指定时隙结束时未放电,且该电源轨已启用放电功能。2.转换到 STANDBY 状态,当关断该电源轨并且启用放电功能以后,该电源轨检测到 RV 事件。3.转换到 ACTIVE 状态,转换过程中当该电源轨处于 OFF 状态时,在该电源轨上观察到 RV(预计电源轨将在时序进入 ACTIVE 状态之前放电)。4.该电源轨未放电,因此在开始从 STANDBY 状态转换为 ACTIVE 状态期间尝试对所有电源轨放电时,导致超时 SD(这种情况下,也会设置 TIMEOUT 位)Oh = BUCK3 未发生 RV/DISCHARGE_TIMEOUT 导致的 SD 1h = BUCK3 发生 RV/DISCHARGE_TIMEOUT 导致的 SD

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

106

表 6-56. INT_TIMEOUT_RV_SD 寄存器字段说明 (续)

位	字段	类型	复位	说明				
1	BUCK2_RV_SD	R/W1C	Oh	在以下情况下,BUCK2 电源轨上的 RV 导致关断:1.转换到 STANDBY 状态,该电源轨在指定时隙结束时未放电,且该电源轨已 启用放电功能。2.转换到 STANDBY 状态,当关断该电源轨并且启用 放电功能以后,该电源轨检测到 RV 事件。3.转换到 ACTIVE 状态,转换过程中当该电源轨处于 OFF 状态时,在该电源轨上观察到 RV (预计电源轨将在时序进入 ACTIVE 状态之前放电)。4.该电源轨未放电,因此在开始从 STANDBY 状态转换为 ACTIVE 状态期间尝试对 所有电源轨放电时,导致超时 SD(这种情况下,也会设置 TIMEOUT 位) Oh = BUCK2 未发生 RV/DISCHARGE_TIMEOUT 导致的 SD 1h = BUCK2 发生 RV/DISCHARGE_TIMEOUT 导致的 SD				
0	BUCK1_RV_SD	R/W1C	Oh	在以下情况下,BUCK2 电源轨上的 RV 导致关断:1.转换到 STANDBY 状态,该电源轨在指定时隙结束时未放电,且该电源轨已 启用放电功能。2.转换到 STANDBY 状态,当关断该电源轨并且启用 放电功能以后,该电源轨检测到 RV 事件。3.转换到 ACTIVE 状态,转换过程中当该电源轨处于 OFF 状态时,在该电源轨上观察到 RV (预计电源轨将在时序进入 ACTIVE 状态之前放电)。4.该电源轨未 放电,因此在开始从 STANDBY 状态转换为 ACTIVE 状态期间尝试对 所有电源轨放电时,导致超时 SD(这种情况下,也会设置 TIMEOUT 位) 0h = BUCK1 未发生 RV/DISCHARGE_TIMEOUT 导致的 SD 1h = BUCK1 发生 RV/DISCHARGE TIMEOUT 导致的 SD				

 $\label{eq:copyright @ 2025 Texas Instruments Incorporated}$ Product Folder Links: \$TPS65214\$

提交文档反馈

6.6.47 INT_PB 寄存器 (偏移 = 33h) [复位 = 04h]

图 6-61 展示了 INT_PB,表 6-57 中对此进行了介绍。

返回到汇总表。

图 6-61. INT_PB 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED	RESERVED	PB_EN_SLEEP _EXIT_TIMEOU 		PB_RISING_E DGE_DETECT ED	PB_FALLING_E DGE_DETECT ED
R-0h	R-0h	R-0h	R-0h	R/W1C-0h	R-1h	R/W1C-0h	R/W1C-0h

表 6-57. INT_PB 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0h	保留
6	RESERVED	R	0h	保留
5	RESERVED	R	0h	保留
4	RESERVED	R	0h	保留
3	PB_EN_SLEEP_EXIT_TI MEOUT	R/W1C	0h	唤醒超时后,器件会重新进入睡眠状态。仅当 EN/PB/VSENSE 引脚配置为 PB 或 EN 时有效。 Oh = 未检测到睡眠模式退出超时 1h = 检测到睡眠模式退出超时
2	PB_REAL_TIME_STATUS	R	1h	PB 引脚的抗尖峰脉冲 (64ms - 128ms) 实时状态。仅当 EN/PB/ VSENSE 引脚配置为 PB 时有效。 0h = PB 的当前抗尖峰脉冲状态:按下 1h = PB 的当前抗尖峰脉冲状态:释放
1	PB_RISING_EDGE_DET ECTED	R/W1C	0h	自上次清除该位以来,PB 释放的时间超过了抗尖峰脉冲周期 (64ms - 128ms)。设置此位后,将 nINT 引脚置为有效(如果将 MASK_INT_FOR_PB 位配置为"0")。 0h = 未检测到 PB 释放 1h = 检测到 PB 释放
0	PB_FALLING_EDGE_DE TECTED	R/W1C	0h	自上次清除该位以来,PB 按下的时间超过了抗尖峰脉冲周期 (64ms - 128ms)。设置此位后,将 nINT 引脚置为有效 (如果将 MASK_INT_FOR_PB 位配置为 "0")。 0h = 未检测到 PB 按下 1h = 检测到 PB 按下

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.48 USER_NVM_CMD_REG 寄存器 (偏移 = 34h) [复位 = 00h]

图 6-62 展示了 USER_NVM_CMD_REG,表 6-58 中对此进行了介绍。

返回到汇总表。

图 6-62. USER_NVM_CMD_REG 寄存器

7	6	5	4	3	2	1	0
CUST_NVM_V ERIFY_ERR	CUST_NVM_V ERIFY_DONE	CUST_PROG_ DONE	I2C_OSC_ON		USER_NV	M_CMD	
R/W1C-0h	R/W1C-0h	R/W1C-0h	R-0h		R-0	h	

表 6-58. USER_NVM_CMD_REG 寄存器字段说明

位	字段	类型	复位	说明
7	CUST_NVM_VERIFY_ER R	R/W1C	0h	指示 NVM 验证错误的标志,在 NVM 验证功能运行后立即设置。 0h = PASS 1h = FAIL
6	CUST_NVM_VERIFY_DO NE	R/W1C	Oh	执行 CUST_NVM_VERIFY_CMD 后是否设置为"1"。在用户 W1C 之前保持为"1"。 Oh = 尚未完成/未在进行中 1h = 完成
5	CUST_PROG_DONE	R/W1C	0h	执行 CUST_PROG_CMD 后是否设置为 "1"。在用户 W1C 之前保持为 "1"。 0h = 尚未完成/未在进行中 1h = 完成
4	I2C_OSC_ON	R	0h	如果收到 EN_OSC_DIY,则该寄存器字段设置为"1"。 0h = OSC 不通过 I2C 控制 1h = 因 I2C 命令 EN_OSC_DIY 导致 OSC 无条件导通
3-0	USER_NVM_CMD	R	Oh	用于进入 DIY 编程模式并对用户 NVM 空间进行编程的命令。始终读为 0。 6h = DIS_OSC_DIY 7h = CUST_NVM_VERIFY_CMD 9h = EN_OSC_DIY Ah = CUST_PROG_CMD

Product Folder Links: TPS65214

6.6.49 POWER_UP_STATUS_REG 寄存器 (偏移 = 35h) [复位 = 00h]

图 6-63 展示了 POWER_UP_STATUS_REG,表 6-59 中对此进行了介绍。

返回到汇总表。

图 6-63. POWER_UP_STATUS_REG 寄存器

7	6	5	4	3	2	1	0
POWER_UP_F ROM_FSD	POWER_UP_F ROM_EN_PB_ VSENSE	COLD_RESET_ ISSUED	状	态	RETRY_	COUNT	POWER_UP_F ROM_OFF
R/W1C-0h	R/W1C-0h	R/W1C-0h	R-	0h	R-	∙0h	R/W1C-0h

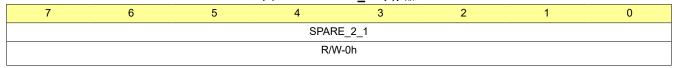
表 6-59. POWER_UP_STATUS_REG 寄存器字段说明

位	字段	类型	复位	说明
7	POWER_UP_FROM_FSD	R/W1C	0h	如果因 FSD 触发 ON_REQ,则设置 0h = 未检测到通过 FSD 上电 1h = 检测到通过 FSD 上电
6	POWER_UP_FROM_EN_ PB_VSENSE	R/W1C	0h	如果因 EN/PB/VSENSE 引脚触发 ON_REQ,则设置 0h = 未检测到通过引脚上电 1h = 检测到通过引脚上电
5	COLD_RESET_ISSUED	R/W1C	0h	如果通过 I2C 收到 COLD_RESET,则设置 0h = 未收到 COLD RESET 1h = 通过 I2C 收到 COLD RESET
4-3	状态	R	0h	指示当前器件状态 0h = 转换状态 1h = INITIALIZE 2h = STANDBY 3h = ACTIVE
2-1	RETRY_COUNT	R	0h	读取状态机中的当前重试计数。如果 RETRY_COUNT = 3 并且未屏蔽,则器件不会上电。
0	POWER_UP_FROM_OFF	R/W1C	Oh	指示是否从关断状态(UVLO置为有效)上电 Oh = 自该位上次清除后未进入关断状态 1h = 自该位上次清除后进入关断状态

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈



6.6.50 SPARE_2 寄存器 (偏移 = 36h) [复位 = 00h]

SPARE_2 如 图 6-64 所示,相应说明如表 6-60 所述。

返回到汇总表。

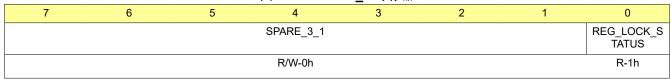
图 6-64. SPARE_2 寄存器

表 6-60. SPARE_2 寄存器字段说明

位	字段	类型	复位	说明
7-0	SPARE_2_1	R/W	0h	用户非 NVM 空间中的备用位

110 提交文档反馈 Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: TPS65214



6.6.51 SPARE_3 寄存器 (偏移 = 37h) [复位 = 01h]

SPARE_3 如 图 6-65 所示,相应说明如表 6-61 所述。

返回到汇总表。

图 6-65. SPARE_3 寄存器

表 6-61. SPARE_3 寄存器字段说明

位	字段	类型	复位	说明				
7-1	SPARE_3_1	R/W 0h		用户非 NVM 空间中的备用位				
0	REG_LOCK_STATUS	R		寄存器锁定状态 0h = 允许根据 REG_LOCK 寄存器进行写入访问 1h = 不允许根据 REG_LOCK 寄存器进行写入访问				

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.6.52 FACTORY_CONFIG_2 寄存器 (偏移 = 41h) [复位 = XXh]

FACTORY_CONFIG_2 如 图 6-66 所示,相应说明如表 6-62 所述。

返回到汇总表。

图 6-66. FACTORY_CONFIG_2 寄存器

7	7 6 5		4	3	3 2		0	
	SPARE_TI_NVM		保留 RESERVED		RESERVED	RESERVED	保留	
R/W-Xh			R-0h	R-0h R-0h		R-0h	R-0h	

表 6-62. FACTORY_CONFIG_2 寄存器字段说明

位	Z 字段 类型 复		复位	说明
7-5	SPARE_TI_NVM	R/W	X	指定 NVM 配置的版本。注意:该寄存器只能由制造商编程。 0h = V0 1h = V1
4	RESERVED	R	X	保留
3	RESERVED	R	Х	保留
2	RESERVED	R	Х	保留
1	RESERVED	R	X	保留
0	RESERVED	R	Х	保留

7应用和实施

备注

以下应用部分中的信息不属于 TI 元件规格, TI 不担保其准确性和完整性。TI 的客户负责确定元件是否适合其用途,以及验证和测试其设计实现以确认系统功能。

7.1 应用信息

以下各节提供了有关正确使用 PMIC 的详细信息。每个可订购器件型号都具有唯一的默认非易失性存储器 (NVM) 设置,并且该可订购器件的相关技术参考手册 (TRM) 可在产品文件夹中的技术文档下找到。有关特定应用的信息,请参阅这些 TRM。此处概述了更多通用主题和一些示例。

为了协助您进行新设计,产品文件夹中提供了各种工具和文档。一些示例为:

- 评估模块和用户指南。
- GUI 与 PMIC 通信
- 原理图和布局检查清单
- 用户指南介绍了如何使用 PMIC 为特定处理器和 SoC 供电。
- 技术参考手册 (TRM) 介绍了每个可订购产品上的默认寄存器设置。

7.2 典型应用

TPS65214 PMIC 包含 5 个稳压器: 3 个降压稳压器与 2 个低压降稳压器 (LDO)。除了电源资源以外,它还集成了 3 个可配置的多功能引脚以及 1 个 GPO 与 I2C 通信,也正因此,该电源管理 IC 成为了为多个处理器与 SoC 供电的理想成本与尺寸优化解决方案。设计为处理器与外设供电的 TPS65214 时,需要考虑若干因素。在确定电源轨的数量以及与之一起使用的外部组件数量时,所需的稳压器数量、期望的时序控制、负载电流要求和电压特性都是很重要的因素。下一部分说明了一般情况。对于特定情况,请参阅相关的用户指南和可订购器件型号对应的 TRM。

7.2.1 典型应用示例

在此示例中,使用单个 TPS65214 PMIC 为通用处理器供电。此配电网络 (PDN) 显示了一个为降压稳压器和 LDO 供电的 3.3V 输入电源。由于 Buck1 是具有最高电流能力的稳压器,因此将它分配去为处理器的 CORE 电源轨供电。Buck3 被分配为应用 DRAM 的 VDDQ 供电。GPIO/VSEL 多功能引脚配置为 GPIO,用于控制进行 3.3V 供电的分立式电源开关的供电顺序。Buck2 为系统提供 1.8V IO 电压,以支持配套 WiFi 器件等外设的电流要求。低噪声 LDO1 为 SoC 模拟电路供电,LDO2 为 2.5V 的外设电源轨供电。

114

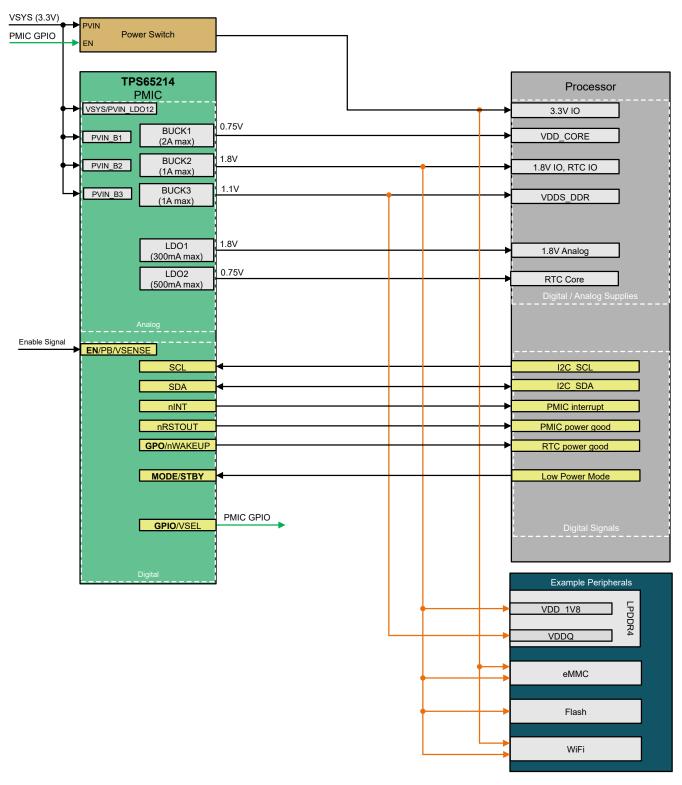


图 7-1. 示例电源图

7.2.2 设计要求

本节介绍的典型应用的设计要求概述如下:

- VDD CORE 电源轨需要 0.75V 电源轨以及高负载瞬态响应。
- 模拟域需要低噪声 1.8V 电源。
- 处理器 IO 域和外设需要 3.3V 和 1.8V 电源。
- LPDDR4 需要 1.1V 电源轨。

7.2.3 详细设计过程

本部分介绍了 TPS65214 PMIC 中集成的每个电源模块的设计过程。请注意,本节中提到的大多数外部元件值都基于典型规格。有关最小值和最大值,请参阅"规格"部分中的相应参数。

7.2.3.1 Buck1、Buck2、Buck3 设计过程

输入电容 - Buck1、Buck2、Buck3

每个降压转换器要求在相应的 PVIN_Bx 引脚上有一个输入电容器。选择电容值时必须考虑电压和温度降额。由于 开关转换器的性质,需要使用低 ESR 陶瓷电容器来实现出色的输入电压滤波。推荐的典型电容为 4.7μF 10V 电容器。如果 PCB 尺寸允许更大的占用空间,则可以使用更高的输入电容。

输出电容 - Buck1、Buck2、Buck3

每个降压输出都需要一个本地输出电容器来构成 LC 输出滤波器的电容部分。建议使用具有 X7 温度系数的陶瓷电容器。非汽车应用可以根据工作温度使用 X6 或更低系数。降压转换器具有两个能够影响输出电容器选择的带宽配置。带宽选择是每个降压转换器的一个独立寄存器字段。请参阅技术参考手册 (TRM) 以了解具体的可订购器件型号,确定 NVM 配置和相应的输出电容要求。表 7-1 展示了每种开关模式和带宽配置所需的最小和最大电容 (降额后)。必须考虑陶瓷电容器的直流偏置电压特性、容差、老化和温度影响。ESR 必须为 10m Ω 或更低。

	衣	7-1. 降压制山电谷				
	带宽选择		电容			
开关模式	寄存器字段: BUCK1_BW_SEL、 BUCK2_BW_SEL、 BUCK3_BW_SEL	规格参数	最小值	最大值 (包括本地 + 负载点)		
准固定频率	低带宽	COUT	10uF	75uF		
(自动 PFM 或强制 PWM)	京 带 密	COUT HIGH BW	30uF	220uF		

表 7-1. 降压输出电容

电感器选型 - Buck1、Buck2、Buck3

降压转换器的内部参数针对 470nH 电感器进行了优化。DCR 必须为 $50m\Omega$ 或更低。确保所选电感器的额定值能够支持至少 5.4A (对于 Buck1) 与 4.4A (对于 Buck2 与 Buck3) 的饱和电流。

7.2.3.2 LDO1、LDO2 设计过程

输入电容 - LDO1、LDO2

LDO1 和 LDO2 的输入电源引脚需要一个输入去耦电容器,以尽可能降低输入纹波电压。这两个 LDO 与 VSYS 共享同一个输入电源引脚。建议使用至少 4.7 μ F 的输入电容。根据 LDO 的输入电压,可以使用 6.3V 或更高额定值的电容器。当 LDO 配置为 LDO 或"负载开关"时,相同的输入电容要求适用。

输出电容 - LDO1、LDO2

LDO 输出需要一个输出电容器,以在负载阶跃或输入电压变化期间保持输出电压。建议对每个 LDO 输出使用 2.2µF 本地电容, ESR 为 100mOhm 或更小。每个 LDO 可支持的总电容(本地 + 负载点)取决于 NVM 配置。

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

LDOx 输出电容 显示了允许的最大总输出电容。请参阅具体可订购器件型号的技术参考手册 (TRM),以根据寄存 器设置和适用的最大总电容来确定 LDO 配置。

表 7-2. LDOx 输出电容

寄存器设置	LDO 配置	最大总电容(2.2μF 本地 + 负载点)				
LDOx_LSW_CONFIG						
0	LDO	40uF				
1	负载开关	50uF				

7.2.3.3 VSYS、VDD1P8

VSYS 引脚为 LDO1、LDO2、内部 VDD1P8 LDO 和其他内部功能供电。此引脚需要一个典型值为 4.7uF 的陶瓷 电容器。为了实现更好的输入电压滤波,可以无任何限制地增大输入电容器。在典型应用中,此引脚连接到为 PVIN Bx 引脚供电的同一前置稳压器。

VDD1P8 是内部基准 LDO,不得有任何负载。此引脚需要一个 2.2µF 的陶瓷电容器。

7.2.3.4 数字信号设计过程

此部分介绍了数字引脚所需的外部连接。3.3V 或 1.8V 的 VIO 电源通常用作需要外部上拉电阻的数字信号的电压 电平。不过,也可以使用更高电压(最高不超过最大规格)。PMIC 上数字引脚的 VIO 电源必须与连接到处理器 上的数字信号的 IO 域相同。EN/PB/VSENSE 推荐使用 100kΩ 上拉电阻。可以根据系统要求计算 I2C 引脚的上 拉电阻。所有其他数字引脚均可使用 $10k\Omega$ 上拉电阻。

如果将 GPO 或 GPIO 分配给上电序列第一个时隙,以便启用外部分立元件,那么可以将它们上拉至 VSYS。

可通过外部驱动 EN/PB/VSENSE 引脚来启用 PMIC。但是,如果应用没有专门用于驱动该引脚的外部信号,则可 以将其上拉至 VSYS。

各注

在 I2C 发送 I2C OFF 请求 (I2C OFF REQ) 后,需要使用外部信号驱动 EN/PB/VSENSE 引脚以唤醒 PMIC。如果 I2C 发送 OFF 请求并且 EN/PB/VSENSE 不是由外部信号驱动,则必须对 VSYS 执行下 电上电,以将 PMIC 从 INITIALIZE 状态转换为 ACTIVE 状态。

表 7-3. 数字信号要求

数字引脚	外部连接
nINT	开漏输出。需要外部上拉。
nRSTOUT	开漏输出。需要外部上拉。
EN/PB/VSENSE	配置为 EN 时,该信号可通过外部逻辑驱动,以便启用 PMIC。 当配置为 PB 时,该信号需要将一个上拉电阻连接到 VSYS 引脚。按钮是可选的。 当配置为 VSENSE 时,该信号需要一个外部电阻分压器来监控前置稳压器。
SDA	I2C 时钟信号。需要外部上拉。
SCL	I2C 数据信号。需要外部上拉。
GPIO/VSEL	配置为 GPIO 时,该引脚需要外部上拉。 配置为 VSEL 时,必须在指定的 PMIC 电源轨斜升以前设置初始状态(上拉或下拉)。例如,如果该引脚用于设置 BUCK3 上的电压,则必须在 BUCK3 上电之前设置状态。
GPO/nWAKEUP	主机的开漏通用输出或上电事件信号。需要外部上拉。
MODE/STBY	输入数字引脚。必须在上电序列完成之前设置初始状态(上拉或下拉)。

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: TPS65214

7.3 电源相关建议

该器件设计为在 2.5V 至 5.5V 的输入电源电压范围内工作。可由一节锂离子电池、两节原电池或一个经过调节的 前置稳压器生成此输入电源。在定义和选择电源电压时,必须考虑每个 PMIC 稳压器所需的电压余量。对于降压转换器,建议输入电源至少超出输出电压 V_{HEADROOM_PWM}。对于 LDO,建议输入电源至少比输出电压高出 V_{DROPOUTx}。输入电源轨的电阻必须很低,以防止在输入电流瞬变期间发生 UVLO 故障。如果输入电源距离器件超过几英寸,那么除了陶瓷旁路电容器之外,还可能需要额外的大容量电容。通常,选择电容值为 47µF 的电解电容器。当使用前置稳压器为 PMIC 供电时,TI 建议选择不带有源放电的前置稳压器,以便在不受控制断电期间尽可能长时间地保持 PMIC 输入端的电压。

小心

时序控制和电压要求: PVIN_Bx 和上的电压不得超过 VSYS。用于数字信号的上拉电源在任何时候都不得超过 VSYS。

7.4 布局

7.4.1 布局指南

对于所有开关电源来说,布局都是设计中的一个重要步骤。如果布局不仔细,稳压器可能会出现稳定性和 EMI 问题。因此,对于主电流路径和电源地路径,应使用宽而短的布线。输入电容器、输出电容器和电感器必须放置在尽可能靠近器件的位置。输出电容器必须具有低接地阻抗。直接在电容器的接地着陆焊盘上使用多个 VIAS (至少三个)。以下是一些布局指南:

- PVIN_Bx: 在布局 DRC 规则允许的范围内,将输入电容器放置在尽可能靠近 IC 的位置。输入电容器和 PVIN_Bx 引脚之间的任何额外寄生电感都会产生电压尖峰。请使用宽而短的布线或多边形,以帮助尽可能减少 布线电感。请勿将任何敏感信号路由到靠近输入电容器和器件引脚的位置,因为该节点具有高频开关电流。在 每个直流/直流的 GND 焊盘上为每安培电流添加 3-4 个过孔。如果空间有限,不允许将输入电容器与 PMIC 放置在同一层,则将输入电容器放置在与 VIAS 相反的一层上。
- LX_Bx:将电感器放置在靠近 PMIC 的位置,而不影响 PVIN 输入电容器,并使用短而宽的布线或多边形将引脚连接到电感器。请勿将任何敏感信号路由到靠近该节点的位置。电感器必须放置在与 IC 相同的层中,以防止不得不在 SW 节点中使用 VIAS。由于电压会从输入电压摆动到接地,有着极快的上升和下降时间,因此 SW 节点是磁干扰 (EMI) 的主要来源。为了降低 EMI,如果需要,可以在 SW 节点添加 RC 缓冲器。
- FB_Bx:将每个 FB_Bx 引脚作为布线连接到输出电容器。请勿将输出电压多边形延伸到 FB_Bx 引脚,因为该引脚需要作为布线进行连接。从输出电容器到 FB_Bx 引脚的布线电阻必须小于 1Ω。由于 TPS65214 不支持遥感,因此 FB_Bx 引脚必须连接到 PMIC 的本地电容器。避免将 FB_Bx 布线至靠近任何噪声信号(例如开关节点)或电感器下方以避免耦合。如果空间有限,FB Bx 引脚可以通过内层布线。请查看布局示例。
- 降压稳压器计数:本地输出电容器必须放置在尽可能靠近电感器的位置,以尽可能减少电磁辐射。
- VSYS/PVIN_LDO12:将输入电容器放置在尽可能靠近 VSYS/PVIN_LDO12 引脚的位置。如果空间有限,不允许将输入电容器与 PMIC 放置在同一层,而是将输入电容器放置在与 VIAS 相反的一层上靠近 IC 的位置。
- VLDOx:将输出电容器放置在靠近 VLDOx 引脚的位置。对于 LDO 稳压器,反馈连接为内部连接。因此,请 务必将 LDO 输出和目标负载之间的 PCB 电阻控制在 LDO 可接受的 IR 压降范围内。
- VDD1P8:将 2.2µF 电容器放置在尽可能靠近 VDD1P8 引脚的位置。需要将该电容器放置在与 IC 同一层上。可以使用两到三个 VIAS 将电容器的 GND 侧连接到 PCB 的 GND 平面。
- 电源板: 散热焊盘必须通过至少四个 VIAS 连接到 PCB 接地层。
- **AGND**:请勿将 AGND 连接到电源板(或散热焊盘)。AGDN 引脚必须通过 VIA 连接到 PCB 接地层。使 AGDN 引脚与 VIA 之间的布线较短。

7.4.2 布局示例

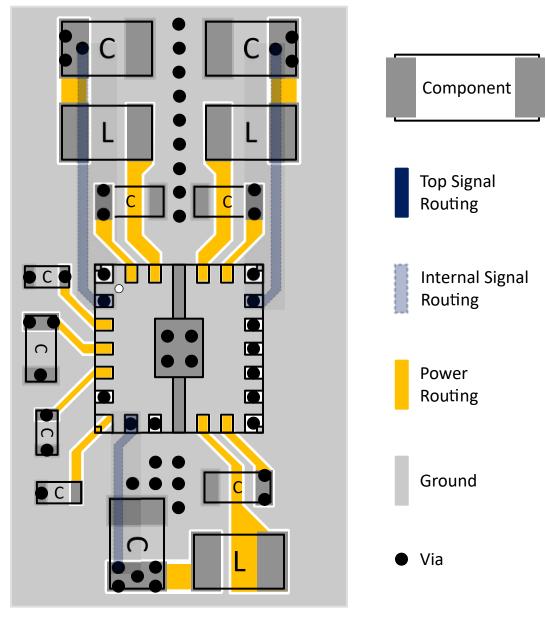


图 7-2. 示例 PMIC 布局

8 器件和文档支持

TI 提供广泛的开发工具。下面列出了用于评估器件性能、生成代码和开发解决方案的工具和软件。

8.1 器件支持

- 8.2 文档支持
- 8.2.1 相关文档

8.3 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

8.4 支持资源

TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

8.5 商标

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

8.6 静申放申警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

8.7 术语表

TI 术语表

本术语表列出并解释了术语、首字母缩略词和定义。

9 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

日期	修订版本	注释			
March 2025	*	初始发行版			

10 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知, 且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

10.1 封装选项附录

封装信息

环保计划(2) 可订购器件 状态(1) 科装类型 科装图 引脚 包装数量 铅/焊球镀层(3) MSL 峰值温度(4) 工作温度 (°C) 器件标识(5)(6) 绿色环保 VAF PTPS6521401VAFR 预发布 WQFN 24 3000 (RoHS, 无 SN 2级-260C-1年 -40°C 至 105°C O65214 锑/溴)

(1) 销售状态值定义如下:

正在供货:建议用于新设计的产品器件。

限期购买:TI 已宣布器件即将停产,但仍在购买期限内。

NRND:不推荐用于新设计。为支持现有客户,器件仍在生产,但TI不建议在新设计中使用此器件。

PRE PROD:器件未发布,尚未量产,未向大众市场供货,也未在网络上供应,未提供样片。

预发布:器件已发布,但未量产。可能提供样片,也可能无法提供样片。

已停产:TI 已停止生产该器件。

(2) 环保计划-规划的环保分级包括:无铅(RoHS),无铅(RoHS 豁免)或绿色环保(RoHS,无锐/溴)-如需了解最新供货信息及更多产品内容详情,请访问 http://www.ti.com/ productcontent.

待定:无铅/绿色环保转换计划尚未确定。

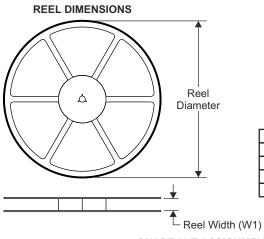
无铅 (RoHS): TI 所说的"无铅"或"无 Pb"是指半导体产品符合针对所有 6 种物质的现行 RoHS 要求,包括要求铅的重量不超过同质材料总重量的 0.1%。因在设计时就考虑到了高温 焊接要求,因此 TI 的无铅产品适用于指定的无铅作业。

无铅(RoHS 豁免):该元件在以下两种情况下可享受 RoHS 豁免:1)芯片和封装之间使用铅基倒装芯片焊接凸点;2)芯片和引线框之间使用铅基芯片粘合剂。否则,元件将根据上述规 定视为无铅(符合 RoHS)。

绿色环保(RoHS,无锑/溴):TI将"绿色环保"定义为无铅(符合 RoHS 标准)、无溴 (Br) 和无锑 (Sb) 基阻燃剂 (Br 或 Sb 在同质材料中的质量不超过总质量的 0.1%)

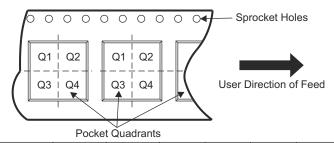
- (3) 铅/焊球镀层-可订购器件可能有多种镀层材料选项。各镀层选项用垂直线隔开。如果铅/焊球镀层值超出最大列宽,则会折为两行。
- MSL,峰值温度--湿敏等级额定值(符合 JEDEC 工业标准分级)和峰值焊接温度。
- 器件上可能还有与标识、批次跟踪代码信息或环境分级相关的标记
- 如有多个器件标识,将用括号括起来。不过,器件上仅显示括号中以"~"隔开的器件标识。如果某一行缩进,说明该行续接上一行,这两行合在一起表示该器件的完整器件标识。

重要信息和免责声明:本页面上提供的信息代表 TI 在提供该信息之日的认知和观点。TI 的认知和观点基于第三方提供的信息,TI 不对此类信息的正确性做任何声明或保证。TI 正在致力于更好地整合第三方信息。 TI 已经并将继续采取合理的措施来提供有代表性且准确的信息,但是可能尚未对引入的原料和化学制品进行破坏性测试或化学分析。TI 和 TI 供应商认为某些信息属于专有信息,因此可能不会公布其 CAS 编号及 其他受限制的信息。


在任何情况下,TI 因此类信息产生的责任决不超过TI 每年向客户销售的本文档所述TI 器件的总购买价。

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: TPS65214

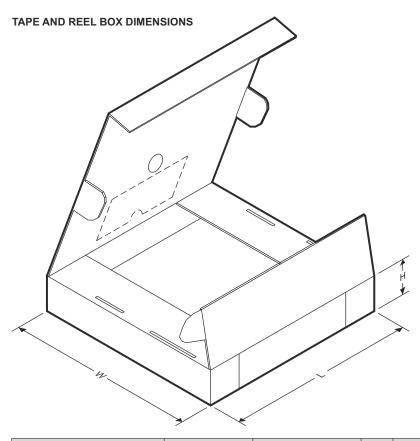
提交文档反馈


10.2 卷带包装信息

TAPE DIMENSIONS Ф Ф B₀

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


器件	封装 类型	封装图	引脚	SPQ	卷带 直径 (mm)	卷带 宽度 W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 象限
PTPS6521401VAFR	WQFN	VAF	24	3000	330.0	12.4	3.75	3.75	1.15	8.0	9.1	Q2

Product Folder Links: TPS65214

Copyright © 2025 Texas Instruments Incorporated

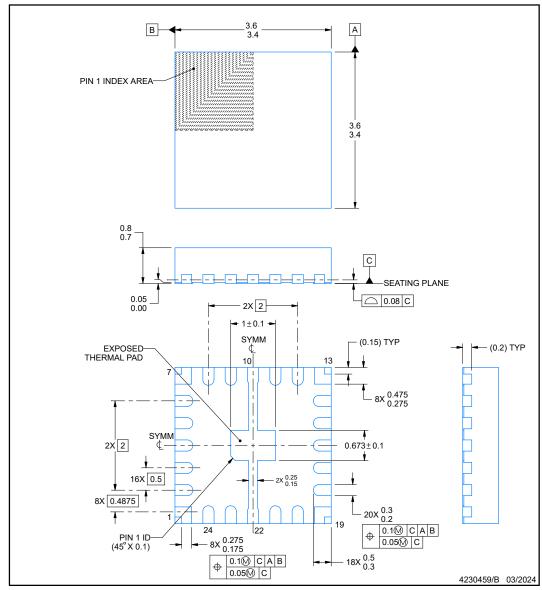
提交文档反馈

器件	封装类型	封装图	引脚	SPQ	长度 (mm)	宽度 (mm)	高度 (mm)
PTPS6521401VAFR	WQFN	VAF	24	3000	367	367	35

122 提交文档反馈

Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: TPS65214



VAF0024A

PACKAGE OUTLINE

WQFN-HR - 0.8 mm max height

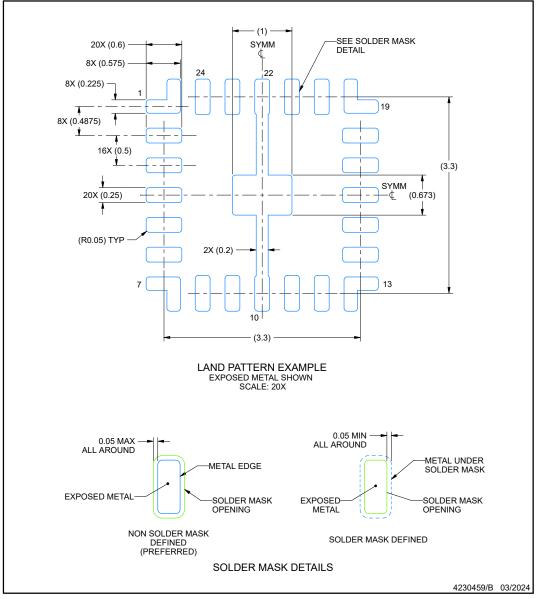
PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



EXAMPLE BOARD LAYOUT

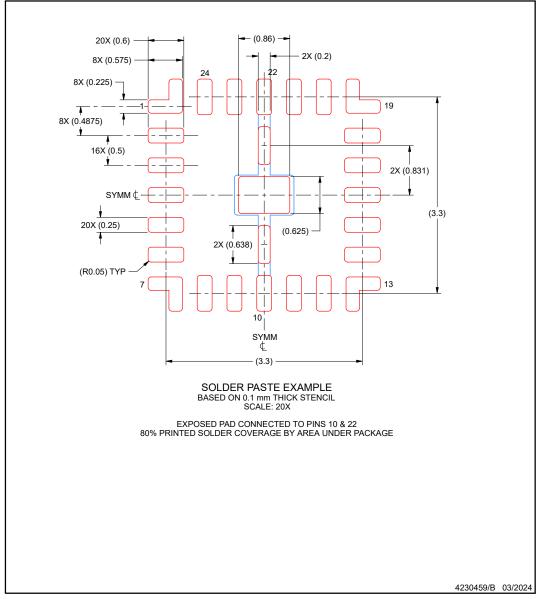
VAF0024A

WQFN-HR - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



EXAMPLE STENCIL DESIGN

VAF0024A

WQFN-HR - 0.8 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

English Data Sheet: SLVSHK7

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司