TPS61094 # 具有超级电容管理功能的 TPS61094 60-nA 静态电流升压转换器 ### 1 特性 - 宽电压范围和电流范围 - 0.7V 至 5.5V 输入电压范围 - 启动时的最小输入电压为 1.8V - 可编程升压输出电压,设置范围为 2.7V 至 5.4V - 可编程降压充电终止电压,设置范围为 1.7V 至 5.4V - 可编程降压充电输出电流,设置范围为 2.5mA 至 600mA - 超低静态电流 - 在升压模式或降压充电模式下为 60nA - 在强制旁路模式下为 4nA - 较高的效率和功率容量 - 典型 2.0A 的电感器谷值电流限制 - 两个 60m Ω (LS)/140m Ω (HS) MOSFET - **100m**Ω 旁路开关电阻 - 1MHz 开关频率 - 轻负载下采用自动贪睡模式运行 - V_{IN} = 3V、V_{OUT} = 3.6V 且 I_{OUT} = 10 μ A 时效率 高达 92.3% - V_{IN} = 3V、V_{OUT} = 3.6V 且 I_{OUT} = 100mA 时效 率高达 96.3% - 由 MODE 和 EN 引脚控制的四个运行模式 - 丰富的保护特性 - 输出短路保护 - 热关断保护 - 2mm × 3mm 12 引脚 WSON 封装 ### 2 应用 - 燃气表、水表 - 便携式医疗设备 - 能量收集 ### 3 说明 TPS61094 是具有超级电容器管理的 60nA I_O 升压转 换器。该器件可为智能仪表和超级电容器备用电源应用 提供电源解决方案。 TPS61094 具有宽输入电压范围和高达 5.5V 的输出电 压。当 TPS61094 在降压模式下为超级电容器充电 时,可通过两个外部电阻器对充电电流和终止电压进行 编程。当 TPS61094 在升压模式下工作时,可使用一 个外部电阻器对输出电压进行编程。 在自动降压或升压模式下(EN = 1, MODE = 1),施 加输入电源后,该器件会将输入电压旁路到输出,同时 还能为备用超级电容器充电。当输入电源已断开或低于 输出目标电压时, TPS61094 将进入升压模式, 并通过 备用超级电容器调节输出电压。TPS61094 在此模式下 消耗 60nA 静态电流。 TPS61094 支持真关断模式 (EN = 0, MODE = 1) 和 强制旁路模式 (EN = 0, MODE = 0)。在真正关断模 式下, TPS61094 将负载与输入电源完全断开。在支持 强制旁路模式时,TPS61094 通过旁路开关直接将负载 连接到输入电压并且仅消耗 4nA 电流,从而延长电池 寿命。 #### **哭**件信息 | | | ישי בון ון אור | | |------|----------|-------------------|---------------| | 器件型号 | | 封装 ⁽¹⁾ | 封装尺寸(标称值) | | | TPS61094 | WSON (12) | 2.0mm × 3.0mm | 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 # **Table of Contents** | 1 特性 | 8.1 Application Information | 2 | |---------------------------------------|--|----| | 2 应用 | 8.2 Typical Application - 3.6-V Output Boost | | | 3 说明1 | Converter with Bypass | 2 | | 4 Revision History2 | 9 Power Supply Recommendations | | | 5 Pin Configuration and Functions3 | 10 Layout | | | 6 Specifications4 | 10.1 Layout Guidelines | 30 | | 6.1 Absolute Maximum Ratings4 | 10.2 Layout Example | 30 | | 6.2 ESD Ratings4 | 11 Device and Documentation Support | 32 | | 6.3 Recommended Operating Conditions4 | 11.1 Device Support | 32 | | 6.4 Thermal Information4 | 11.2 Documentation Support | 32 | | 6.5 Electrical Characteristics5 | 11.3 接收文档更新通知 | | | 6.6 Typical Characteristics8 | 11.4 支持资源 | | | 7 Detailed Description10 | 11.5 Trademarks | | | 7.1 Overview | 11.6 Electrostatic Discharge Caution | | | 7.2 Functional Block Diagram12 | | | | 7.3 Feature Description12 | 12 Mechanical, Packaging, and Orderable | | | 7.4 Device Functional Modes15 | Information | 33 | | 8 Application and Implementation21 | | | | | | | | | | | # **4 Revision History** | 4 Revision history | | |---|------| | Changes from Revision B (September 2021) to Revision C (December 2021) • 更改了标题 • 更新了典型应用 • 将 "最小 1.4A 的电感器谷值电流限制"更改为"典型 2.0A 的电感器谷值电流" • 更新了节 3 • Add the description about the quiescent current at pass through mode Changes from Revision A (February 2021) to Revision B (September 2021) | | | • 更改了标题 | 1 | | • 更新了典型应用 | 1 | | • 将"最小 1.4A 的电感器谷值电流限制"更改为"典型 2.0A 的电感器谷值电流" | 1 | | • 更新了节 3 | 1 | | Add the description about the quiescent current at pass through mode | 18 | | Changes from Revision A (February 2021) to Revision B (September 2021) | Page | | • 将文档状态从"预告信息"更改为"量产数据" | | Submit Document Feedback Product Folder Links: TPS61094 # **5 Pin Configuration and Functions** 图 5-1. 12-Pin WSON DSS Package (Top View) 表 5-1. Pin Functions | | PIN | I/O ⁽¹⁾ | DESCRIPTION | |---|------|--|--| | NO. | NAME | 1/0(1) | DESCRIPTION | | 1 | OSEL | ı | Boost output voltage selection pin. Connect a resistor between this pin and ground to select one of sixteen output voltages of Boost mode. | | 2 MODE I Operation mode selection pin. The MODE pin and EN pin work together to set device operation See 表 7-4. | | Operation mode selection pin. The MODE pin and EN pin work together to set device operation mode. See 表 7-4. | | | 3 EN I | | ı | Operation mode selection pin. The MODE pin and EN pin work together to set device operation mode. See 表 7-4. | | 4 | VIN | PWR | IC power supply input | | 5 | sw | PWR | The switching node pin of the converter. It is connected to the drain of the internal low-side power MOSFET and the source of the internal high-side power MOSFET. | | 6 | SUP | I | Output of buck converter to sense the voltage of the supercap | | 7 | PGND | PWR | Power ground | | 8 | AGND | PWR | Signal ground | | 9, 10 | VOUT | PWR | Output of the device | | 11 | ICHG | ı | Charging current selection pin. Connect a resistor between this pin and ground to select one of sixteen output currents of Buck mode. | | 12 | VCHG | ı | Charging voltage selection pin. Connect a resistor between this pin and ground to select one of sixteen regulation voltages of Buck mode. | (1) I = Input, PWR = Power ### **6 Specifications** ### **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |------------------|--|-------|-----|------| | | VIN, VOUT, SW, SUP, MODE, EN, OSEL, VCHG, ICHG | - 0.3 | 6.5 | | | Voltage | SW spike at 10 ns | - 0.7 | 8 | V | | | SW spike at 1 ns | - 0.7 | 9 | | | TJ | Operating junction temperature | - 40 | 125 | °C | | T _{stg} | Storage temperature | - 65 | 150 | °C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. ### 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | V _(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/
JEDEC JS-001, allpins ⁽¹⁾ | ±2000 | \/ | | | | Charged device model (CDM), per ANSI/ESDA/
JEDEC JS-002, all pins ⁽²⁾ | ±500 | V | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - 2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ### **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM | MAX | UNIT | |------------------|---|------|-----|------|------| | V _{IN} | Input voltage | 0.7 | | 5.5 | V | | V _{OUT} | Boost output voltage | 1.8 | | 5.4 | V | | V _{SUP} | Buck output voltage | 2.0 | | 5.4 | V | | T _J | Junction temperature | - 40 | | 125 | °C | | L | Effective inductance | 0.7 | 2.2 | 2.86 | μH | | C _{IN} | Effective input capacitance at the VIN pin | 2.2 | | | μF | | C _{OUT} | Effective output capacitance at the OUT pin | 20 | 30 | | μF | | C _{SUP} | Effective output capacitance at the SUP pin | 2.2 | | | μF | ### 6.4 Thermal Information | | | TPS61094 | TPS61094 | | |------------------------|--|-------------|-------------|------| | | THERMAL METRIC ⁽¹⁾ | DSS 12-PINS | DSS 12-PINS | UNIT | | | | Standard | EVM | | | R ₀ JA | Junction-to-ambient thermal resistance | 58.4 | 55.3 | °C/W | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 23.0 | N/A | °C/W | | R ₀ JB | Junction-to-board thermal resistance | 55.6 | N/A | °C/W | | ΨЈТ | Junction-to-top characterization parameter | 1.6 | 1.5 | °C/W | | Y_{JB} | Junction-to-board characterization parameter | 22.9 | 22.3 | °C/W | | R _θ JC(bot) | Junction-to-case (bottom) thermal resistance | 10.0 | N/A | °C/W | (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Product Folder Links: TPS61094 ### **6.5 Electrical Characteristics** T_J = -40° C to 125°C, V_{IN} = 2.0 V, V_{OUT} = 3.6 V, and VSUP = 2.0 V, with an 2.2- μ H inductor. Typical values are at T_J = 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------|--|---|------|---------------------------|----------|------| | POWER SUP | PLY | | | | | | | V _{IN} | Input voltage range | | 0.7 | | 5.5 | V | | V _{IN_UVLO} | Undervoltage lockout (UVLO) threshold at the VIN pin | V _{IN} rising, T _J up to 85 °C | | 1.7 | 1.8 | V | | V | Undervoltage lockout (UVLO) | V _{SUP} rising | , | 0.85 | | V | | V _{SUP_UVLO} | threshold at the SUP pin | V _{SUP} falling | | 0.6 | 0.7 | V | | I _{Q_BOOST} | Quiescent current into the VIN pin at Boost mode | IC enabled, no load, no switching, V_{IN} = 0.7 V to 5.5 V, V_{SUP} = V_{IN} , V_{OUT} = V_{OUT_REG} + 0.1 V, T_{J} up to 85°C | | 1 | | nA | | | Quiescent current into the VOUT pin at Boost mode | IC enabled, no load, no switching,
V _{OUT} = 1.8 V to 5.4 V, T _J up to 85°C | | 60 | 300 | nA | | I _{Q BUCK} | Quiescent current into the VIN pin at Buck mode | IC enabled, no load, no switching, V _{IN} = 1.8 V to 5.5 V, V _{SUP} = V _{CHG_REG} + 0.1
V, T _J up to 85°C | | 60 | 300 | nA | | | Quiescent current into the SUP pin at Buck mode | IC enabled, no load, no switching,
V _{SUP} = 1.7 V to 5.4 V, T _J up to 85°C | | 1 | | nA | | 1 | Quiescent current into the VIN pin at Forced bypass mode | V _{EN} = 0 V, V _{MODE} = 0 V, no load, V _{IN} = V _{SUP} = 1.8 V to 5.5 V, T _J up to 85°C | | 2 | 50 | nA | | I _{Q_BYPASS} | Quiescent current into the SUP pin at Forced bypass mode | V _{EN} = 0 V, V _{MODE} = 0 V, no load, V _{IN} = V _{SUP} = 1.8 V to 5.5 V, T _J up to 85°C | 2 | | 50 | nA | | ı | Shutdown current into the VIN pin | IC disabled, V_{IN} = 1.8 V to 5.5 V, V_{OUT} = 0 V, T_J up to 85°C | | 100 | 550 | nA | | I _{SD} | Shutdown current into the SUP pin | IC disabled, V _{SUP} = 0.7 V to 5.5 V,
V _{OUT} = 0 V, T _J up to 85°C | 100 | | 250 | nA | | | Ladaman and the OM six (form | V_{IN} = 1.8 V, V_{SW} = V_{SUP} = 1.8 V to 5.5 V, V_{OUT} = 0 V, no switching, T_{J} = 25°C | | 1 | 40 | nA | | I _{LKG_SW_} VOUT | Leakage current into the SW pin (from SW pin to VOUT) | V_{IN} = 1.8 V, V_{SW} = V_{SUP} = 1.8 V to 5.5 V, V_{OUT} = 0 V, no switching, T_J up to 85 °C | | 1 | 250 | nA | | | Leakage current into the SW pin (from | V_{IN} = 1.8 V, V_{SW} = V_{SUP} = 1.8 V to 5.5 V, V_{OUT} = V_{SW} , no switching, T_J = 25 °C | | 1 | 20 | nA | | I _{LKG_SW_GND} | SW pin to GND) | V_{IN} = 1.8 V, V_{SW} = V_{SUP} = 1.8 V to 5.5 V, V_{OUT} = V_{SW} , no switching, T_J up to 85°C | | 1 | 220 | nA | | BOOST OUT | PUT | | , | | | | | V _{OUT} | Output voltage setting range | 16 options | 2.7 | | 5.4 | V | | \/ | Undervoltage lockout (UVLO) | V _{OUT} rising | 1.6 | 1.7 | 1.8 | V | | V _{OUT_UVLO} | threshold at the VOUT pin | V _{OUT} falling | 1.5 | 1.6 | 1.7 | V | | V _{OUT_PWM_AC} | | V _{IN} = 1.8 V, PWM mode | - 2% | 0% | 2% | | | V _{OUT_PFM_} AC
Y | Output voltage accuracy in Boost mode | V _{IN} = 1.8 V, PFM mode | | OUT_PW
I_ACY +
1% | | | | Vout_snooze
_acy | | V _{IN} = 1.8 V, Snooze mode | | OUT_PW
I_ACY +
1.5% | | | | I _{SHORT} | Output short circuit current | | 190 | 300 | 500 | mA | | BUCK OUTPU | JT | | | | <u>'</u> | | | V _{SUP} | Charge voltage range | 16 options | 1.7 | | 5.4 | V | T_J = -40° C to 125 $^{\circ}$ C, V_{IN} = 2.0 V, V_{OUT} = 3.6 V, and VSUP = 2.0 V, with an 2.2- μ H inductor. Typical values are at T_J = 25 $^{\circ}$ C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--------------------------------|--|--|-------|-------|-----|------| | V _{SUP_ACY} | Charge termination voltage accuracy in Buck mode | | - 2% | 0% | 2% | | | V _{SUP_HYS} | Charge termination voltage hysteresis in Buck mode | | 50 | 75 | 100 | mV | | I _{CHG_SET} | Programmable charging current options | 15 options; IC enabled, no load, V _{IN} = 5 V, V _{SUP} = 0.8 V to 4 V, T _J up to 85°C | 2.5 | | 600 | mA | | 1 | ICHG setting charging current | ICHG = 2.5 mA or 5 mA; V_{IN} = 5 V, V_{SUP} = 0.8 V to 4 V | - 2 | 0 | 2 | mA | | I _{CHG_ACY} | accuracy | ICHG \geqslant 10 mA; V _{IN} = 5 V, V _{SUP} = 0.8 V to 4 V | - 20% | 0% | 20% | | | 1 | Terminate charging current at ICHG ≥ 10 mA | IC enabled, no load, V_{IN} = 1.8 V to 5.5 V, ICHG \geqslant 10 mA, V_{SUP} > VCHG - 50 mV, T_J up to 85°C | | 10 | | mA | | I _{CHG_TERM} | Terminate charging current at ICHG < 10 mA | IC enabled, no load, V _{IN} = 1.8 V to 5.5 V, ICHG = 2.5 mA or 5 mA, V _{SUP} > VCHG - 50 mV, T _J up to 85°C | | 2.5 | | mA | | POWER SWI | тсн | | | | | | | | High side FET as a lite | V _{OUT} = 5.0 V | | 150 | | mΩ | | $R_{DS(on)_HS}$ | High-side FET on resistance | V _{OUT} = 3.6 V | | 180 | | mΩ | | | | V _{OUT} = 5.0 V | | 60 | | mΩ | | $R_{DS(on)_LS}$ | Low-side FET on resistance | V _{OUT} = 3.6 V | | 70 | | mΩ | | | | V _{OUT} = 5.0 V | | 120 | | mΩ | | $R_{DS(on)_BYP}$ | Bypass FET on resistance | V _{OUT} = 3.6 V | | 150 | | mΩ | | CURRENT LI | ⊥
MIT | | | | | | | | High side switch valley current limit in Boost mode | | 1.7 | 2 | 2.6 | Α | | I _{SW_LIM} | High side switch peak current limit in Buck mode | | | 2.5 | | Α | | | | ICHG = 2.5 mA or 5 mA, V _{SUP} > 0.8 V | | 250 | | mA | | I _{PEAK} | Inductor peak current at PFM | 10 mA \leq ICHG \leq 250 mA, V _{SUP} > 0.8 V | | 500 | | mA | | 1 | 5 | V _{IN} = 1.8 V to 5.5 V, V _{OUT} < 0.4 V | | 300 | | mA | | I _{SS} | Pre-charge current at soft start | V _{IN} = 3.6 V, V _{OUT} = 1.8 V | 500 | | | mA | | SWITCHING | FREQUENCY | | | | | | | fow poor | Switching frequency at Boost mode | $V_{IN} = V_{SUP} = 3.6 \text{ V}, V_{OUT} = 5.0 \text{ V},$
PWM mode | | 1 | | MHz | | f _{SW_BOOST} | ownering requertey at Boost mode | $V_{IN} = V_{SUP} = 1 \text{ V, } V_{OUT} = 5.0 \text{ V, PWM}$ mode | | 0.5 | | MHz | | t _{OFF_MIN_BOO}
st | Minimum off time at Boost mode | V _{OUT} = 5.0 V | | 80 | 140 | ns | | f _{SW_BUCK} | Switching frequency at Buck mode | V_{SUP} = 3.6 V, V_{IN} = V_{OUT} = 5.0 V, PWM mode | | 1 | | MHz | | VOLTAGE MO | ONITORING | | | | | | | V _{BYPASS} | Enter Bypass mode when $V_{IN} \ge V_{OUT_TARGET} + V_{BY_PASS}$ | | 50 | 100 | 150 | mV | | V _{BYPASS_HYS} | Hysteresis of V _{BYPASS} | | | 50 | | mV | | V _{PASS_THROU} | Enter Pass-through mode when V _{SUP} ≥ V _{OUT} + V _{PASS_THROUGH} | | | - 30 | | mV | | GH | Exit Pass-through mode when V _{SUP} < V _{OUT_TARGET} + V _{PASS_THROUGH} | | | - 100 | | mV | | | | | | | | | Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated T_J = -40° C to 125°C, V_{IN} = 2.0 V, V_{OUT} = 3.6 V, and VSUP = 2.0 V, with an 2.2- μ H inductor. Typical values are at T_J = 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------|---------------------------------|--|------|-----|------|------| | LOGIC INTE | RFACE | | | | | | | \/ | EN logic bigh throubold | V _{OUT} > 1.8 V | | | 0.58 | V | | V _{EN_H} | EN logic high threshold | V _{OUT} < 1.8 V | | | 1.0 | V | | \/ | EN logic low threshold | V _{OUT} > 1.8 V | 0.2 | | | V | | V_{EN_L} | EN logic low tilleshold | V _{OUT} < 1.8 V | 0.45 | | | V | | I _{EN_LKG} | Leakage current into the EN pin | V _{EN} = 1.2 V, T _J up to 85°C | | 1 | | nA | | R _{EN} | EN pin pulldown resistor | V _{EN} = 0 V, T _J up to 85°C | | 800 | | kΩ | | \/ | MODE logic high threshold | V _{OUT} > 1.8 V | | | 0.58 | V | | V_{MODE_H} | | V _{OUT} < 1.8 V | | | 1.0 | V | | \/ | MODE to vio boundary about | V _{OUT} > 1.8 V | 0.2 | | | V | | V_{MODE_L} | MODE logic low threshold | V _{OUT} < 1.8 V | 0.45 | | | V | | I _{MODE_LKG} | Leakage current into MODE pin | V _{MODE} = 1.2 V, T _J up to 85°C | | 1 | | nA | | R _{MODE} | MODE pin pulldown resistor | V _{MODE} = 0 V, T _J up to 85°C | | 800 | | kΩ | | PROTECTIO | ON | | | , | | | | T _{SD} | Thermal shutdown | Junction temperature rising | | 150 | | °C | | T _{SD_HYS} | Thermal shutdown hysteresis | Junction temperature falling below T _{SD} | | 20 | | °C | ### 6.6 Typical Characteristics ### 7 Detailed Description #### 7.1 Overview The TPS61094 is a 60-nA quiescent current synchronous bi-directional buck/boost converter with a bypass switch between the input and output. The TPS61094 can operate with a wide input voltage from 0.7 V to 5.5 V and output voltage from 2.7 V to 5.4 V. The device provides a ultra-low power solution optimized for applications that require ultra-low quiescent current, use a supercap or battery as a backup power supply, or both. The TPS61094 has four operation modes by the EN pin and MODE pin selection: - Auto buck or boost mode (EN = 1; MODE = 1) - Forced buck mode (EN = 1; MODE = 0) - Forced bypass mode (EN = 0: MODE = 0) - True shutdown mode (EN = 0; MODE = 1) In Auto buck or Boost mode, the TPS61094 can automatically transform between Buck charging mode and Boost mode based on the input voltage. When the input voltage is lower than the setting boost regulation voltage, the TPS61094 generates a regulation voltage from the low input voltage of a supercap or a battery. When the input voltage is 0.1 V higher than the setting boost regulation voltage, the output voltage of the TPS61094 equals the input voltage. Meanwhile, the TPS61094 charges the backup supercap by Buck mode. When the TPS61094 works in Forced buck mode, the TPS61094 connects the output of the device directly to the input while the buck converter outputs a setting constant current charging a backup supercap. When the supercap is charged to a pre-set termination voltage, the buck converter stops charging. When the supercap voltage drops 75 mV below the setting voltage, the buck converter starts charging the supercap again. In Forced bypass mode, the TPS61094 turns on the bypass MOSFET, thus the output voltage equals to input voltage. The TPS61094 has approximately 4-nA I_Q in this mode. In True shutdown mode, the TPS61094 can disconnect the load from the input and SUP pin. #### 7.1.1 The Configuration of VCHG Pin, ICHG Pin, and OSEL Pin The TPS61094 supports sixteen internal setting options for charging termination voltage (VCHG), charging current (ICHG), and output voltage (OSEL) by connecting a resistor between the VCHG, ICHG, or OSEL pin and ground. During start-up, when output voltage reaches close to input voltage, the device starts to detect the configuration conditions of the VCHG, ICHG, and OSEL pins (in that order). The TPS61094 checks the VCHG, ICHG, and OSEL pins by lowering setting options to higher setting options until the user finds the setting configuration by a 10- μ s clock. After detecting the configuration, the TPS61094 latches the charging
current in Buck mode, the charging termination voltage in Buck mode, and the setting output regulation voltage in Boost mode. To save detection time, TI suggests shorting the VCHG and ICHG pins to ground when Buck mode is not used. The TPS61094 does not detect the VCHG, ICHG, and OSEL pins during operation, so changing the resistor during operation does not change the VCHG, ICHG, and OSEL settings. Toggling the EN pin during operation is one way to refresh the VCHG, ICHG, and OSEL settings. For proper operation, TI suggests that the setting resistance accuracy must be 1% and the parasitic capacity of the VCHG, ICHG, and OSEL pins should be less than 10 pF. Product Folder Links: TPS61094 #### 7.1.1.1 OSEL: Output Voltage Selection In Boost mode operation, the device supports sixteen internally set output voltages by connecting a resistor between the OSEL pin and ground. $\frac{1}{2}$ 7-1 lists the output voltage options with respect to resistance. 表 7-1. Output Voltage Options | RESISTANCE (ΚΩ) | V _{OUT_REG} (V) | RESISTANCE (KΩ) | V _{OUT_REG} (V) | RESISTANCE (KΩ) | V _{OUT_REG} (V) | RESISTANCE (KΩ) | V _{OUT_REG} (V) | |-----------------|--------------------------|-----------------|--------------------------|-----------------|--------------------------|-----------------|--------------------------| | 0 | 2.7 | 9.53 | 3.45 | 28.7 | 3.8 | 150 | 4.8 | | 3.09 | 3.0 | 13.0 | 3.5 | 49.9 | 4.0 | 205 | 5.0 | | 4.75 | 3.3 | 17.4 | 3.6 | 75.0 | 4.2 | 274 | 5.2 | | 6.65 | 3.4 | 22.1 | 3.7 | 107 | 4.5 | open | 5.4 | ### 7.1.1.2 VCHG: Charging Termination Voltage Selection In Buck mode operation, the device supports sixteen internally set charging termination voltages by connecting a resistor between the VCHG pin and ground. 表 7-2 lists the termination voltage options with respect to resistance. 表 7-2. Charging Termination Voltage Options | RESISTANCE (KΩ) | V _{CHG_REG} (V) | RESISTANCE
(KΩ) | V _{CHG_REG} (V) | RESISTANCE (KΩ) | V _{CHG_REG} (V) | RESISTANCE (KΩ) | V _{CHG_REG} (V) | |-----------------|--------------------------|--------------------|--------------------------|-----------------|--------------------------|-----------------|--------------------------| | 0 | 1.7 | 9.53 | 2.6 | 28.7 | 3.7 | 150 | 4.9 | | 3.09 | 2.0 | 13.0 | 2.7 | 49.9 | 4.1 | 205 | 5.0 | | 4.75 | 2.2 | 17.4 | 3.6 | 75.0 | 4.15 | 274 | 5.1 | | 6.65 | 2.5 | 22.1 | 3.65 | 107 | 4.2 | open | 5.4 | ### 7.1.1.3 ICHG: Charging Output Current Selection In Buck mode operation, the device supports sixteen internally-set charging currents by connecting a resistor between the ICHG pin and ground. $\frac{1}{2}$ T-3 lists the charging current options with respect to resistance. 表 7-3. Charging Current Options | RESISTANCE (KΩ) | I _{CHG} (MA) | RESISTANCE (KΩ) | I _{CHG} (MA) | RESISTANCE
(KΩ) | I _{CHG} (MA) | RESISTANCE
(KΩ) | I _{CHG} (MA) | |-----------------|-----------------------|-----------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------| | 0 | 0 (disabled) | 9.53 | 25 | 28.7 | 150 | 150 | 350 | | 3.09 | 2.5 | 13.0 | 50 | 49.9 | 200 | 205 | 400 | | 4.75 | 5 | 17.4 | 75 | 75.0 | 250 | 274 | 500 | | 6.65 | 10 | 22.1 | 100 | 107 | 300 | open | 600 | Copyright © 2022 Texas Instruments Incorporated ### 7.2 Functional Block Diagram #### 7.3 Feature Description ### 7.3.1 Undervoltage Lockout The TPS61094 has a built-in undervoltage lockout (UVLO) circuit to make sure the device works properly. When the voltage at the VIN pin is above the undervoltage lockout (UVLO) rising threshold (typically 1.7 V), the TPS61094 can be enabled. After the TPS61094 starts up and the output voltage is above 1.7 V typically, the TPS61094 can work with SUP pin voltage as low as 0.6 V and input voltage down to 0 V. When the voltage at the VIN pin is down to 0 V and the voltage at the SUP pin are below the undervoltage lockout falling threshold (typically 0.6 V), the TPS61094 goes into Shutdown mode to avoid malfunction. In this condition and in Auto boost mode, the TPS61094 disconnects the bypass switch and high-side switch to prevent the reverse current from the VOUT pin to the VIN pin and SW pin when the VOUT voltage is above 1.6 V. When the voltages at the VIN pin and SUP pin are below 1.7 V (typical) and the voltage at V_{OUT} is below 1.6 V (typical), the TPS61094 goes into Shutdown mode. #### 7.3.2 Enable and Soft Start When the voltage at the VIN pin is above the undervoltage lockout (UVLO) rising threshold (typically 1.7 V) and the EN pin is pulled to logic high voltage, the TPS61094 is enabled and starts ramping up the output voltage. At Auto boost mode, the TPS61094 starts charging the output capacitor with a 300-mA constant current through the bypass switch when the output voltage is below 0.5 V. When the output voltages is charged above 0.5 V, the output current is changed to have output current capability to drive the 3.6- Ω resistance load until the output voltage reaches close to input voltage. After the output voltage reaches close to the input voltage, the TPS61094 starts to detect the configuration conditions of the VCHG, ICHG, and OSEL pins, then latches the configuration. According to the configurations and setup, the TPS61094 enters Boost mode or Buck mode. When input voltage is less than the output voltage setting, the TPS61094 enters Boost mode soft start. The TPS61094 starts www.ti.com.cn switching and output ramps up further. The soft-start time in Boost mode varies with the different output capacitance, load condition, and configuration conditions. When input voltage is higher than the output voltage setting adding 100 mV, the TPS61094 enters Buck mode soft start. The charging current can increase slowly. The start-up of Forced buck mode is similar to Buck mode in Auto boost mode except the TPS61094 enters Buck mode after the output voltage is close to the input voltage and does not need to have the input voltage higher than the output voltage setting adding 100 mV. At Forced bypass mode, there is no soft start. The bypass switch is always on and the output is connected to the input directly. When the voltage at the EN pin is below 0.2 V and MODE is higher than 0.58 V at output voltage higher than 1.8 V, the internal enable comparator turns the device into True shutdown mode. In True shutdown mode, the device is entirely turned off. The output is disconnected from the VIN and SUP pin power supply. #### 7.3.3 Active Pulldown for the EN and MODE Pins The EN and MODE pins have an active 800-k Ω pulldown resistor to ground. When the EN and MODE pins are logic high, there is high impedance to make sure there is no high leakage current in these pins. When the EN and MODE pins are logic low or floating, there is a 800-k Ω pulldown resistor to make sure the EN and MODE pins cannot be coupled to the logic high by the noise. TI suggests the pulling high capability be stronger than the 800-k Ω pulldown resistor when enabling the TPS61094. #### 7.3.4 Current Limit Operation The TPS61094 has the peak current limit in Buck mode and valley current limit in Boost mode. Current limit detection occurs when the high-side MOSFET turns on. In Buck mode, the TPS61094 has average output current control, so the current limit in Buck mode is hard to reach. In Boost mode, when the load current is increased such that the inductor current is above the current limit within the whole switching cycle time, the off time is increased to allow the inductor current to decrease to this threshold before the next on time begins (called the frequency foldback mechanism). When the current limit is reached, the output voltage decreases during further load increase. The maximum continuous output current (I_{OUT(LC)}), before entering current limit (CL) operation, can be defined by 方程式 1. $$I_{OUT(CL)} = (1-D) \times \left(I_{LIM} + \frac{1}{2}\Delta I_{L(P-P)}\right)$$ (1) #### where - D is the duty cycle. - $\Delta I_{L(P-P)}$ is the inductor ripple current. The duty cycle can be estimated by 方程式 2. $$D = 1 - \frac{V_{IN} \times \eta}{V_{OUT}}$$ (2) #### where - V_{OUT} is the output voltage of the boost converter. - V_{IN} is the input voltage of the boost converter. - η is the efficiency of the converter; use 90% for most applications. The peak-to-peak inductor ripple current is calculated by 方程式 3. $$\Delta I_{L(P-P)} = \frac{V_{IN} \times D}{L \times f_{SW}}$$ (3) #### where - · L is the inductance value of the inductor. - f_{SW} is the switching frequency. - · D is the duty cycle. - V_{IN} is the input voltage of the boost converter. #### 7.3.5 Output Short-to-Ground Protection The TPS61094 starts to limit the output current when the output voltage is below the minimum value (V_{IN} , V_{OUT_REG}). The lower the output voltage reaches, the smaller the output current is. When the output voltage is below 0.5 V, the output current is limited to approximately 200 mA. Once the short circuit is released, the TPS61094 goes through the soft start-up again to output the regulated voltage. #### 7.3.6 Thermal Shutdown The TPS61094 goes into thermal shutdown once the junction temperature exceeds 150°C. When the junction temperature drops below the thermal shutdown temperature threshold less the hysteresis, typically 130°C, the device starts operating again. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated #### 7.4 Device Functional Modes #### 7.4.1 Operation Mode Setting The TPS61094 has four operation modes by the EN pin and MODE pin selection. 表 7-4 lists the operation modes of the device with respect to the status of the EN and MODE pin. | 表: | 7-4. | Operation | Modes | |----|------|-----------|-------| |----|------|-----------|-------| | MODES | EN | MODE | BYPASS | BOOST | виск | FUNCTION | |--------------------|----|------|--------|----------|------
--| | Forced bypass | 0 | 0 | √ | × | × | Turn on bypass MOSFET, turn off boost/buck, V _{OUT} = V _{IN} | | True shutdown | 0 | 1 | × | × | × | Bypass disconnect, turn off boost/buck, V _{OUT} = 0 V | | Forced buck | 1 | 0 | √ | × | √ | Buck enabled, turn on bypass MOSFET, $V_{\text{OUT}} = V_{\text{IN}}$ while charging the supercap or backup battery | | Auto buck or boost | 1 | 1 | √ | × | √ | Buck enable, when V_{IN} > target V_{OUT} +100 mV and V_{OUT} > target V_{OUT} , supercap is charged by buck | | | 1 | 1 | ✓ | √ | × | Boost and bypass enabled; when V_{OUT} + 100 mV > V_{IN} > target V_{OUT} and V_{OUT} = target V_{OUT} , V_{OUT} is from both V_{IN} through bypass and supercap by boost. | | | 1 | 1 | × | √ | × | Boost enable; when V _{IN} < target V _{OUT} , V _{OUT} is powered from supercap by boost. | ### 7.4.2 Forced Bypass Mode Operation The TPS61094 works in Forced bypass mode when the voltage at the MODE and EN pins are logic low level (EN = low, MODE = low). In Forced bypass mode, the bypass switch is turned on, thus the voltage at the VOUT pin equals the input voltage. The TPS61094 has approximately 4-nA I_Q in Forced bypass mode. The TPS61094 does not detect input voltage and output voltage, so it cannot to protect the reverse current from output to input in Forced bypass mode. ### 7.4.3 True Shutdown Mode Operation The TPS61094 works in True shutdown mode when the voltage at the MODE pin is logic high level and the voltage at the EN pin is logic low level (EN = low, MODE = high). In True shutdown mode, the TPS61094 is entirely turned off, the bypass MOSFET and high-side MOSFET are true shutdown, and the output is disconnected from the VIN pin and SUP pin power supply. #### 7.4.4 Forced Buck Mode Operation When the TPS61094 is enabled working in Buck mode (EN = high, MODE = low), the TPS61094 works in constant output current control scheme with the bypass switch always turned on. The TPS61094 supports sixteen internally set options for the charging termination voltage (VCHG) and charging current (ICHG) by connecting a resistor between the VCHG pin, ICHG pin, and ground. When V_{OUT} voltage is above the 1.7-V UVLO rising threshold, the buck function starts working to charge the supercap at the SUP pin. The typical charging operation (VCHG < VIN-800 mV) works as shown in $\ ^{\ }$ 7-1. At t_0 , the TPS61094 starts to charge the SUP pin by constant current. From t_0 to t_1 , when the SUP pin voltage is lower than VSUP_UVLO, typically 0.85 V, the TPS61094 charges the SUP pin by the constant current (ICHG_PRE), which is smaller than or equal to 250 mA. From t_1 to t_2 , when the SUP pin voltage reaches VSUP_UVLO, the TPS61094 charges the SUP pin by constant current (ICHG), which is set by the ICHG pin. At t_2 , the SUP pin voltage reaches VCHG (charging termination voltage) and the TPS61094 reduces the charging current to ICHG_TERM, the device stops switching until the SUP voltage reaches VCHG without the supercap ESR voltage drop. This can be avoided if the supercap is not fully charged when the SUP pin reaches VCHG in high charging current because of supercap ESR voltage drop. The TPS61094 starts switching when the SUP voltage drops 75 mV below the target value (VCHG). If VCHG > VIN-500 mV, the TPS61094 will decrease the charging current when the SUP pin voltage is close to VIN. Copyright © 2022 Texas Instruments Incorporated 图 7-1. Typical Charging Operation - 1. ICHG_PRE is 250 mA when ICHG is equal or larger than 250 mA; ICHG_PRE is ICHG when ICHG is lower than 250 mA. - 2. ICHG_TERM is 10 mA when ICHG is equal or larger than 10 mA; ICHG_TERM is 2.5 mA when ICHG is lower than 10 mA. #### 7.4.5 Auto Buck or Boost Mode Operation The TPS61094 is enabled working in Auto buck or Boost mode at EN = high and MODE = high. ### 7.4.5.1 Three States (Boost_on, Buck_on, and Supplement) Transition In Auto buck or Boost mode operation, there are three states: boost_on, buck_on, and supplement, as shown in \(\begin{align*} \) 7-2 to \(\begin{align*} \begin{align*} \) 7-4. The boost_on state occurs when the bypass switch is turned off and the TPS61094 works in Boost mode to regulate output voltage to the OSEL setting. The buck_on state occurs when the bypass switch is turned on and the TPS61094 works in Buck mode, charging the SUP pin by an input source according to the charging current and termination voltage settings at the ICHG and VCHG pin in this situation, which is similar to the Forced buck mode operation. Supplement mode is the intermediate state when the TPS61094 transfers between boost_on and buck_on opetation. In Supplement mode, Boost mode is active and the bypass MOSFET operates as an LDO, the VIN and SUP power source supply the output load together. 图 7-2. Typical Boost_on State Circuit 图 7-3. Typical Buck_on State Circuit 图 7-4. Typical Supplement State Circuit The TPS61094 can automatically transfer in these three states based on input voltage and output voltage, as shown in $\boxed{8}$ 7-5. 图 7-5. Three States(Boost_on, Buck_on, and Supplement) Transition Path 1: The TPS61094 works at buck_on state first. There is a heavy load transient in the output load and the input source cannot hold it, which makes the output voltage lower than the output target voltage (OSEL pin setting). The TPS61094 transfers from buck_on to supplement state. Input and SUP power source can supply the heavy load together. Path 2: In supplement state, if the input voltage is higher than the output target voltage + 100 mV and the output voltage is higher than the output target voltage, meaning the input power source can support the output load, the TPS61094 transfers from supplement to buck_on state. Path 3: In supplement operation, if the output load is light, the output voltage is higher than the output target voltage. The TPS61094 transfers from supplement to boost_on state. The TPS61094 has approximately 60-nA I_{Ω} in Boost mode, which can help the system has higher efficiency at light load. Path 4: In boost_on state, when the input power source is higher than the output target voltage + 100 mV, the TPS61094 transfers from boost on to supplement state. Path 5: A quick way to transfer from buck_on to boost_on state. At buck_on state, if the load is light and input voltage is lower than the output target voltage + 100 mV, the TPS61094 can enter boost_on state. In boost_on mode, when the SUP pin voltage is higher than output target voltage, the TPS61094 enters Pass-through mode. The TPS61094 stops switching and fully turns on high-side MOSFET. The devices stays in boost on (Pass-through mode) until the SUP pin voltage is lower than the output target voltage. #### 7.4.5.2 Boost, Bypass, and Pass-Through When the voltage at the VIN pin is below the boost regulation voltage, the bypass switch is turned off. The TPS61094 works in Boost mode to regulate the output voltage. When the voltage at the VIN pin is 0.1 V above the boost regulation voltage, the boost operation stops and the bypass switch is turned on. To make the transfer between Boost mode and Bypass mode smooth, there is a Pass-through mode when the input voltage is close to thetarget output voltage, as shown in $\boxed{3}$ 7-6. The quiescent current at pass through mode is much higher than boost mode and bypass mode because the TPS61094 can detect the high-side MOS current. 图 7-6. Typical Supplement Operation Circuit ### 7.4.5.3 PWM, PFM, and Snooze Modes in Boost Operation The TPS61094 has three switching operation modes in boost operation: PWM mode in moderate-to-heavy load conditions, pulse frequency modulation (PFM) in light load conditions, and Snooze mode in ultra-low load. #### 7.4.5.3.1 PWM Mode The TPS61094 uses a quasi-constant 1.0-MHz frequency pulse width modulation (PWM) at moderate-to-heavy load current. Based on the input-to-output voltage ratio, a circuit predicts the required on time. At the beginning of the switching cycle, the low-side FET turns on. The input voltage is applied across the inductor and the inductor current ramps up. In this phase, the output capacitor is discharged by the load current. When the on time expires, the low-side FET is turned off and the high-side FET is turned on. The inductor transfers its stored energy to replenish the output capacitor and supply the load. The inductor current declines because the output voltage is higher than the input voltage. When the inductor current hits the valley current threshold determined by the output of the error amplifier, the next switching cycle starts again. The TPS61094 has a built-in compensation circuit that can accommodate a wide range of input voltage, output voltage, inductor value, and output capacitor value for stable operation. #### 7.4.5.3.2 PFM Mode The TPS61094 integrates the one-pulse PFM to improve efficiency and decrease output ripple at light load. When the load current decreases, the inductor valley current setting by the output of the error amplifier no longer regulates the output voltage. When the inductor valley current hits the low limit, the output voltage exceeds the setting voltage as the load current decreases further. The TPS61094 goes into PFM mode. In PFM mode, the off time is extended by decreasing load and the TPS61094 regulates output voltage to the PFM reference voltage (typically 101% × VOUT_REG). The PFM operation reduces the switching losses and improves efficiency at light load condition by reducing the average switching frequency. #### 7.4.5.3.3 Snooze Mode The TPS61094 integrates Snooze mode to decrease quiescent current. If the load current is reduced further, the boost converter enters into Snooze mode. In Snooze mode, the boost converter ramps up the output voltage with several switching cycles. Once the
output voltage exceeds a setting threshold, the device stops switching and goes into a sleep status. In sleep status, the device consumes less quiescent current. It resumes switching when the output voltage is below the setting threshold. It exits Burst mode when the output current can no longer be supported in this mode. Refer to \$\mathbb{R}\$ 7-7 for Burst mode operation details. Copyright © 2022 Texas Instruments Incorporated 图 7-7. Boost Mode Operation ### 8 Application and Implementation #### 备注 以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 ### 8.1 Application Information The TPS61094 is a 60-nA quiescent current synchronous bi-directional buck/boost converter with a bypass switch between the input and output. The TPS61094 can operate with a wide input voltage from 0.7 V to 5.5 V and output voltage from 1.8 V to 5.5 V. The device provides an ultra-low power solution optimized for applications that require ultra-low quiescent current, use a supercap or battery as backup power supply, or both. The TPS61094 has two typical application circuits. One is the pure boost with bypass function, as shown in 8-1, which connects the SUP pin and VIN pin together. The other is the supercap backup application, which separates the SUP pin and VIN pin, as shown in 8-14, which can charge supercap or boost supercap to power the output. ### 8.2 Typical Application - 3.6-V Output Boost Converter with Bypass 图 8-1. Li-ion Battery to 3.6-V Boost Converter with Bypass #### 8.2.1 Design Requirements The design parameters are listed in 表 8-1. 表 8-1. Design Requirements | PARAMETERS | VALUES | | | | |-----------------------|---------------|--|--|--| | Input Voltage | 2.7 V ~ 4.3 V | | | | | Output Voltage | 3.6 V | | | | | Output Current | 500 mA | | | | | Output Voltage Ripple | ± 50 mV | | | | #### 8.2.2 Detailed Design Procedure #### 8.2.2.1 Programming the Output Voltage The output voltage is set by the resistor between the OSEL pin and ground. Take $\frac{1}{8}$ 7-1 as reference, R₁ = 17.4 k Ω for V_{OUT} = 3.6 V. For proper operation, the resistance accuracy must be 1%. TI suggests to short the VCHG pin and ICHG pin to ground at the pure boost with bypass application. Copyright © 2022 Texas Instruments Incorporated #### 8.2.2.2 Maximum Output Current The maximum output capability of the TPS61094 is determined by the input-to-output ratio and the current limit of the boost converter. It can be estimated by 方程式 4. $$I_{OUT(max)} = \frac{V_{IN} \cdot (I_{LIM} - \frac{I_{LH}}{2}) \cdot \eta}{V_{OUT}}$$ (4) #### where - η is the conversion efficiency, use 85% for estimation. - I_{LH} is the current ripple value. - · I_{LIM} is the switch current limit. Minimum input voltage, maximum boost output voltage, and minimum current limit I_{LIM} should be used as the worst case condition for the estimation. #### 8.2.2.3 Inductor Selection Because the selection of the inductor affects steady-state operation, transient behavior, and loop stability, the inductor is the most important component in power regulator design. There are three important inductor specifications: inductor value, saturation current, and DC resistance (DCR). The TPS61094 is designed to work with 1- μ H or 2.2- μ H inductor values. Follow 52 5 to 52 7 to calculate the inductor peak current for the application. To calculate the current in the worst case, use the minimum input voltage, maximum output voltage, and maximum load current of the application. To have enough design margins, choose the inductor value with -30% tolerances and low power-conversion efficiency for the calculation. In a boost regulator, the inductor DC current can be calculated by 方程式 5. $$I_{L(DC)} = \frac{V_{OUT} \times I_{OUT}}{V_{IN} \times \eta}$$ (5) #### where - V_{OUT} is the output voltage of the boost converter. - I_{OUT} is the output current of the boost converter. - V_{IN} is the input voltage of the boost converter. - η is the power conversion efficiency, use 90% for most applications. The inductor ripple current is calculated by 方程式 6. $$\Delta I_{L(P-P)} = \frac{V_{IN} \times D}{L \times f_{SW}} \tag{6}$$ #### where - D is the duty cycle, which can be calculated by 方程式 2. - · L is the inductance value of the inductor. - f_{SW} is the switching frequency. - V_{IN} is the input voltage of the boost converter. Therefore, the inductor peak current is calculated by 方程式 7. $$I_{L(P)} = I_{L(DC)} + \frac{\Delta I_{L(P-P)}}{2}$$ (7) Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor current for maximum output current. A smaller ripple from a larger-valued inductor reduces the magnetic hysteresis losses in the inductor and EMI, but in the same way, load transient response time is increased. The saturation current of the inductor must be higher than the calculated peak inductor current. 表 8-2 lists the recommended inductors for the TPS61094. | 表: | 8-2 | Recommended | Inductors for | or the TPS61094 | |-----|---------------|------------------|---------------|---| | 10. | U- L . | INCCOMMINICATION | IIIUUUUUUU I | <i>,</i> , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | PART NUMBER | L (µH) | DCR MAX (m Ω) | SATURATION CURRENT (A) | SIZE (LxWxH) | VENDOR ⁽¹⁾ | |-----------------|--------|---------------|------------------------|-----------------|-----------------------| | XGL4020-222ME | 2.2 | 21.5 | 4.4 | 4.0 × 4.0 × 2.1 | Coilcraft | | VCHA042A-2R2MS6 | 2.2 | 23.0 | 4.5 | 4.3 x 4.3 x 2.1 | Cyntec | | 744383560 22 | 2.2 | 35.0 | 6.2 | 4.1 x 4.1 x 2.1 | Wurth Elecktronik | (1) See the Third-Party Products disclaimer #### 8.2.2.4 Output Capacitor Selection The output capacitor is mainly selected to meet the requirements for output ripple and loop stability. The ripple voltage is related to capacitor capacitance and its equivalent series resistance (ESR). Assuming a ceramic capacitor with zero ESR, the minimum capacitance needed for a given ripple voltage can be calculated by 方程 式 8. $$C_{OUT} = \frac{I_{OUT} \times D_{MAX}}{f_{SW} \times V_{RIPPLE}}$$ (8) #### where - D_{MAX} is the maximum switching duty cycle. - V_{RIPPLE} is the peak-to-peak output ripple voltage. - I_{OUT} is the maximum output current. - f_{SW} is the switching frequency. The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are used. The output peak-to-peak ripple voltage caused by the ESR of the output capacitors can be calculated by 方程式 9. $$V_{RIPPLE(ESR)} = I_{L(P)} \times R_{ESR}$$ (9) Take care when evaluating the derating of a ceramic capacitor under DC bias voltage, aging, and AC signal. For example, the DC bias voltage can significantly reduce capacitance. A ceramic capacitor can lose more than 50% of its capacitance at its rated voltage. Therefore, always leave margin on the voltage rating to make sure there is adequate capacitance at the required output voltage. Increasing the output capacitor makes the output ripple voltage smaller in PWM mode. TI recommends using the X5R or X7R ceramic output capacitor in the range of 4-μF to 1000-μF effective capacitance. The output capacitor affects the small signal control loop stability of the boost regulator. If the output capacitor is below the range, the boost regulator can potentially become unstable. Increasing the output capacitor makes the output ripple voltage smaller in PWM mode. #### 8.2.2.5 Input Capacitor Selection Multilayer X5R or X7R ceramic capacitors are excellent choices for the input decoupling of the step-up converter as they have extremely low ESR and are available in small footprints. Input capacitors must be located as close as possible to the device. While a 10- µ F input capacitor is sufficient for most applications, larger values can be used to reduce input current ripple without limitations. Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the power is being supplied through long wires, a load step at the output can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or can even damage the part. In this circumstance, place additional bulk capacitance (tantalum or Copyright © 2022 Texas Instruments Incorporated aluminum electrolytic capacitor) between ceramic input capacitor and the power source to reduce ringing that can occur between the inductance of the power source leads and ceramic input capacitor. #### 8.2.3 Application Curves #### 8.2.4 Typical Application - 3.3-V Output Boost Converter with Automatic Buck or Boost Function 图 8-14. 5-V Input Source to 3.3-V Boost Converter with Automatic Buck or Boost Function ### 8.2.4.1 Design Requirements The design parameters are listed in 表 8-3. 表 8-3. Design Requirements | PARAMETERS | VALUES | | | | | |---------------------------------------|-------------|--|--|--|--| | Input Voltage | 5 V ± 0.5 V | | | | | | Output Voltage | 3.3 V | | | | | | Output Current | 250 mA | | | | | | Output Voltage Ripple | ± 50 mV | | | | | | Supercap Charging Termination Voltage | 2.6 V | | | | | | Supercap Charging Current | 100 mA | | | | | #### 8.2.4.2 Detailed Design Procedure #### 8.2.4.2.1 Programming the Voltage and Current The output voltage is set by the resistor between the OSEL pin and ground. Take as reference R_1 = 4.75 k Ω for V_{OUT} = 3.3 V. The charging termination voltage is set by the resistor between the VCHG pin and ground. Take as reference R_1 = 9.53 k Ω for V_{CHG_REG} = 2.6 V. The charging current is set by the resistor between the ICHG pin and ground. Take as reference R_1 = 22.1 k Ω for I_{CHG_REG} = 100 mA. For proper operation, the resistance accuracy must be 1%. Product Folder Links: TPS61094 ### 8.2.4.3 Application Curves ## 9 Power Supply Recommendations The device is designed to operate from an input voltage supply range between 0.7 V to
5.5 V. This input supply must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk capacitance can be required in addition to the ceramic bypass capacitors. A typical choice is a tantalum or aluminum electrolytic capacitor with a value of 100 μ F. Output current of the input power supply must be rated according to the supply voltage, output voltage, and output current of the TPS61094. Copyright © 2022 Texas Instruments Incorporated ### 10 Layout ### 10.1 Layout Guidelines As for all switching power supplies, the layout is an important step in the design, especially at high peak currents and high switching frequencies. If the layout is not carefully done, the regulator can show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC. ### 10.2 Layout Example The bottom layer is a large GND plane connected by vias. 图 10-1. Layout: Boost Converter with Bypass Mode 图 10-2. Layout: Boost Converter with Automatic Bypass and Buck function ### 11 Device and Documentation Support ### 11.1 Device Support ### 11.1.1 第三方产品免责声明 TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。 #### 11.2 Documentation Support #### 11.2.1 Related Documentation For related documentation see the following: - Texas Instruments, Performing Accurate PFM Mode Efficiency Measurements Application Report - Texas Instruments, Accurately Measuring Efficiency of Ultra-low-IQ Devices Technical Brief - Texas Instruments, IQ: What it is, What it isn' t, and How to Use it Techanical Brief ### 11.3 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 #### 11.4 支持资源 TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 #### 11.5 Trademarks TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 ### 11.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 11.7 术语表 TI术语表本术语表列出并解释了术语、首字母缩略词和定义。 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated # 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2022 Texas Instruments Incorporated www.ti.com 17-Jun-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/ | 5 | | Part marking | |-----------------------|--------|---------------|-----------------|-----------------------|------|---------------|--------------------|------------|--------------| | | (1) | (2) | | | (3) | Ball material | Peak reflow | | (6) | | | | | | | | (4) | (5) | | | | TPS61094DSSR | Active | Production | WSON (DSS) 12 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | S61094 | | TPS61094DSSR.A | Active | Production | WSON (DSS) 12 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | S61094 | | TPS61094DSSRG4 | Active | Production | WSON (DSS) 12 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | S61094 | | TPS61094DSSRG4.A | Active | Production | WSON (DSS) 12 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | S61094 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE MATERIALS INFORMATION** www.ti.com 18-Jun-2025 ### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS61094DSSR | WSON | DSS | 12 | 3000 | 180.0 | 8.4 | 2.25 | 3.25 | 1.05 | 4.0 | 8.0 | Q1 | | TPS61094DSSRG4 | WSON | DSS | 12 | 3000 | 180.0 | 8.4 | 2.25 | 3.25 | 1.05 | 4.0 | 8.0 | Q1 | **PACKAGE MATERIALS INFORMATION** www.ti.com 18-Jun-2025 ### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | TPS61094DSSR | WSON | DSS | 12 | 3000 | 210.0 | 185.0 | 35.0 | | TPS61094DSSRG4 | WSON | DSS | 12 | 3000 | 210.0 | 185.0 | 35.0 | Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4209244/D PLASTIC SMALL OUTLINE - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance. PLASTIC SMALL OUTLINE - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC SMALL OUTLINE - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ### 重要通知和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI
提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司