

TPS53219A

ZHCS625B - DECEMBER 2011 - REVISED FEBRUARY 2019

TPS53219A 3V 至 28V 输入、D-CAP、Eco-Mode™ 同步降压控制器

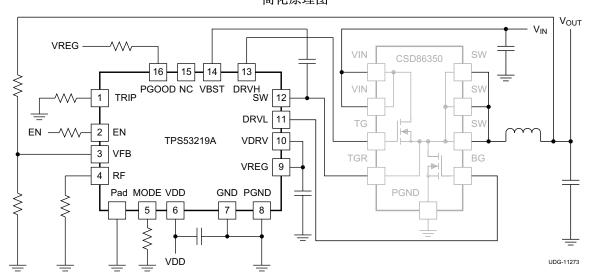
1 特性

- 转换输入电压范围: 3V 至 28V
- VDD 输入电压范围: 4.5V 至 25V
- 输出电压范围: 0.6V 至 5.5V
- 宽输出负载范围: 0A 至 > 20A
- 内置 0.6V (±0.8%) 基准电压
- 内置 LDO 线性稳压器
- 自动跳跃 Eco-Mode, TM可实现轻负载效率
- D-CAP™模式,提供 100ns 的负载阶跃响应
- 自适应导通时间控制架构,具有8种频率设置可供选择
- 4700ppm/°C R_{DS(on)} 电流检测
- 0.7ms、1.4ms、2.8ms 和 5.6ms 可选内部电压伺服器软启动
- 预充电启动能力
- 内置输出放电
- 开漏电源正常状态输出
- 集成升压开关
- 内置过压保护/欠压保护/过流保护
- 热关断(非锁存)
- 3mm × 3mm QFN、16 引脚 (RGT) 封装

2 应用

- 存储计算机
- 服务器计算机
- 多功能打印机
- 嵌入式计算

3 说明


TPS53219A 器件是一款具有自适应导通时间 D-CAP模式控制的小型单路降压控制器。此器件适合用于低输出电压,高电流,PC系统电源轨和数字消费类产品中相似的负载点(POL)电源。此小型封装和最小引脚数量节省了印刷电路板(PCB)上的空间,同时此专用EN引脚和预设定的频率选择简化了电源设计。轻载情况下的跳跃模式、强大的栅极驱动器以及低侧 FET R_{DS(on)}电流检测功能可在广泛的负载范围内支持低损耗和高效率特性。转换输入电压(高侧 FET 漏极电压)范围介于 4.5V 和 25V 之间,并且输出电压范围介于 0.6V 和 5.5V 之间。TPS53219A 采用 16 引脚 VQFN 封装,其额定工作温度为 -40°C 至 +85°C。

器件信息⁽¹⁾

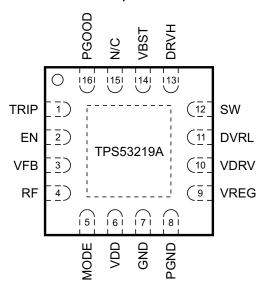
器件型号	封装	封装尺寸(标称值)	
TPS53219A	四方扁平无引线 (QFN) (16)	3.00mm × 3.00mm	

(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品 附录。

简化原理图

	目录	ξ.		
1 2 3 4	特性	8	7.4 Device Functional Modes	17 17
5	Pin Configuration and Functions3	9	Power Supply Recommendations	
6	Specifications 4 6.1 Absolute Maximum Ratings 4 6.2 ESD Ratings 4 6.3 Recommended Operating Conditions 4 6.4 Thermal Information 5 6.5 Electrical Characteristics 5 6.6 Typical Characteristics 7	10	Layout 10.1 Layout Guidelines 10.2 Layout Example 器件和文档支持 11.1 接收文档更新通知 11.2 社区资源 11.3 商标	
7	Detailed Description 10 7.1 Overview 10 7.2 Functional Block Diagram 11 7.3 Feature Description 11	12	11.4 静电放电警告	2 [.]

4 修订历史记录


注: 之前版本的页码可能与当前版本有所不同。

Cł	changes from Revision A (December 2015) to Revision B			
•	仅限编辑更改,无技术更改	1		
Cł	hanges from Original (December 2011) to Revision A	Page		
•	已添加 引脚配置和功能 部分、ESD 额定值 表、特性 说明 部分、器件功能模式、应用和实施 部分、电源建议 部分、布局 部分、器件和文档支持 部分以及机械、封装和可订购信息 部分	1		
•				

5 Pin Configuration and Functions

Pin Functions

PIN		TYPE ⁽¹⁾	DECORPTION		
NAME	NO.	ITPE	DESCRIPTION		
DRVH	13	0	ligh-side MOSFET driver output. The SW node referenced floating driver. The gate drive voltage is efined by the voltage across VBST to SW node bootstrap flying capacitor.		
DRVL	11	0	nchronous MOSFET driver output. The PGND referenced driver. The gate drive voltage is defined b DRV voltage.		
EN	2	I	Enable pin. Place a 1-k Ω resistor in series with this pin if the source voltage is higher than 5.5 V.		
GND	7	G	Ground pin. This is the ground of internal analog circuitry. Connect to GND plane at single point.		
MODE	5	I	Soft-start and skip/CCM selection. Connect a resistor to select soft-start time using Table 1. The soft-start time is detected and stored into internal register during start-up.		
NC	15	_	No connection.		
PAD	-	_	Thermal pad. Use five vias to connect to GND plane.		
PGOOD	16	0	Open-drain power good flag. Provides 1-ms start-up delay after the VFB pin voltage falls within specified limits. When VFB goes out specified limits PGOOD goes low after a 2-µs delay.		
PGND	8	G	Power ground. Connect to GND plane.		
RF	4	I	Switching frequency selection. Connect a resistor to GND or VREG to select switching frequency using Table 2. The switching frequency is detected and stored during the start-up.		
SW	12	Р	Output of converted power. Connect this pin to the output inductor.		
TRIP	1	I	OCL detection threshold setting pin. 10 μ A at room temp, 4700 ppm/°C current is sourced and set the OCL trip voltage as follows. V _{OCL} = V _{TRIP} /8 (V _{TRIP} \leq 3 V, V _{OCL} \leq 375 mV)		
VBST	14	Р	Supply input for high-side FET gate driver (boost terminal). Connect a capacitor from this pin to SW-node. Internally connected to VREG through bootstrap MOSFET switch.		
VDD	6	Р	Controller power supply input. The input range is from 4.5 V to 25 V.		
VDRV	10	I	Gate drive supply voltage input. Connect to VREG if using LDO output as gate drive supply.		
VFB	3	I	Output feedback input. Connect this pin to V _{OUT} through a resistor divider.		
VREG	9	0	6.2-V LDO output. This is the supply of internal analog circuitry and driver circuitry.		

⁽¹⁾ I=Input, O=Output, P=Power, G=Ground

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
	VBST	VBST		37	
	VBST	(2)	-0.3	7	
Input voltage	VDD		-0.3	28	V
Input voltage	CW	DC	-2	30	V
	SW	Pulse <20ns, E = 5 μJ		- 7	
	VDRV	, EN, TRIP, VFB, RF, MODE	-0.3	7	
	DRVH		-2	37	
Output valtage	DRVH ⁽²⁾		-0.3	7	V
Output voltage	DRVL, VREG		-0.5	7	
	PGO	OD O	-0.3	7	
Junction tempera	Junction temperature, T _J			150	°C
Storage temperat	ure, T _{stg}	·	– 55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT	
	VBST	-0.1	34.5		
	VDD	4.5	25		
Input voltage	SW	-1	28	V	
	VBST ⁽¹⁾	-0.1	6.5		
	EN, TRIP, VFB, RF, VDRV, MODE	-0.1	6.5		
	DRVH	-1	34.5		
Outrout walts as	DRVH ⁽¹⁾	-0.1	6.5	V	
Output voltage	DRVL, VREG	-0.3	6.5	V	
	PGOOD	-0.1	6.5		
Operating free-air te	emperature, T _A	-40	85	°C	

(1) Voltage values are with respect to the SW terminal.

⁽²⁾ Voltage values are with respect to the SW terminal

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	RGT (QFN)	UNIT
		16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	51.3	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	85.4	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	20.1	°C/W
ΨЈТ	Junction-to-top characterization parameter	1.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	19.4	°C/W
R ₀ JC(bot)	Junction-to-case (bottom) thermal resistance	6.0	°C/W

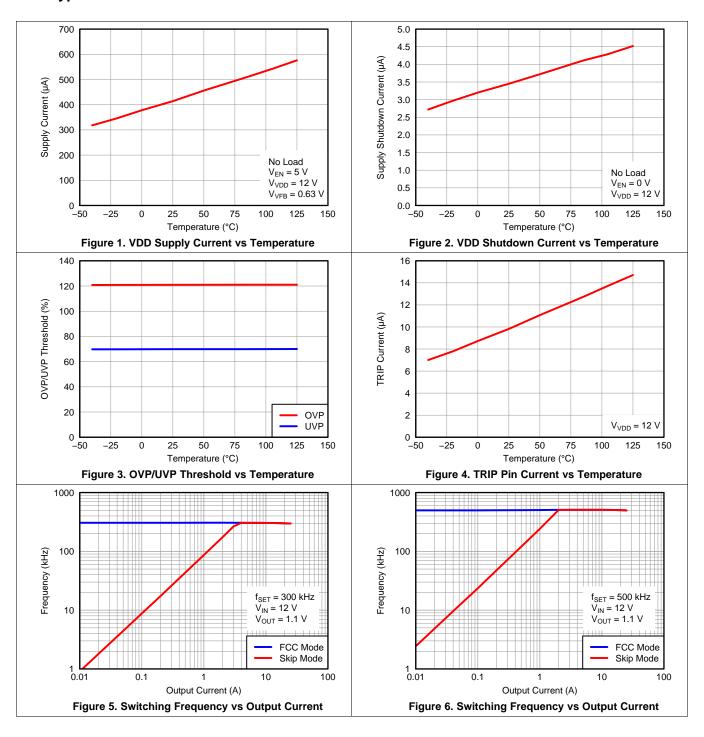
⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over operating free-air temperature range, VDD = 12 V (Unless otherwise noted)

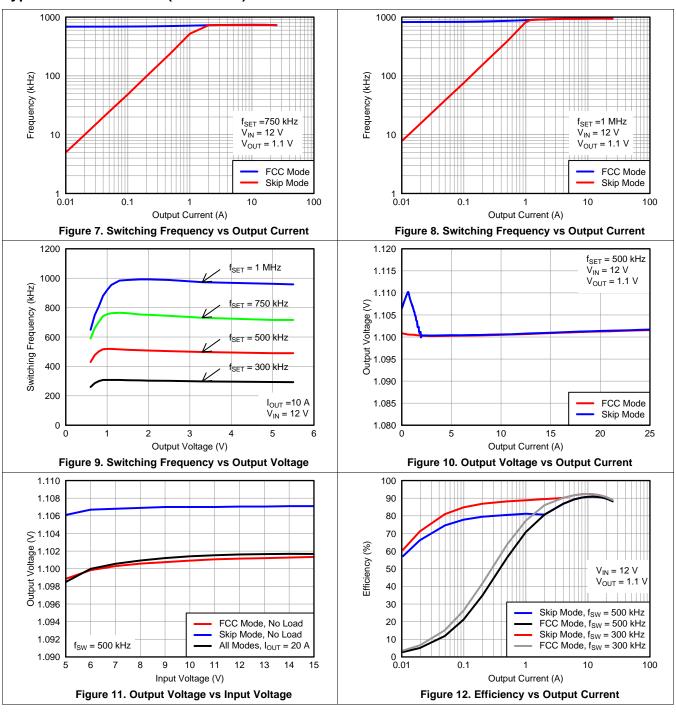
	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY (CURRENT		<u> </u>			
I _{VDD}	VDD supply current	VDD current, T_A = 25°C, No Load, V_{EN} = 5 V, V_{VFB} = 0.630 V		420	590	μΑ
I _{VDDSDN}	VDD shutdown current	VDD current, T _A =25°C, No Load, V _{EN} =0 V			10	μΑ
INTERNA	L REFERENCE VOLTAGE		·			
V _{VFB}	VFB regulation voltage	VFB voltage, CCM condition ⁽¹⁾		600		mV
		T _A = 25°C	597	600	603	
V_{VFB}	VFB regulation voltage	0°C ≤ T _A ≤ 85°C	595.2	600	604.8	mV
		-40°C ≤ T _A ≤ 85°C	594	600	606	
I _{VFB}	VFB input current	V _{VFB} = 0.630V, T _A = 25°C		0.002	0.2	μΑ
OUTPUT	DRIVERS		·			
R _{DRVH}	DD\/LL registeres	Source, I _{DRVH} = -50 mA		1.5	3	
	DRVH resistance	Sink, I _{DRVH} = 50 mA		0.7	1.8	Ω
D	DRVL resistance	Source, I _{DRVL} = -50 mA		1.0	2.2	Ω
R_{DRVL}		Sink, I _{DRVL} = 50 mA		0.5	1.2	
	Dead time	DRVH-off to DRVL-on	7	17	30	
t _{DEAD}		DRVL-off to DRVH-on	10	22	35	ns
LDO OUT	PUT		·			
V_{VREG}	LDO output voltage	0 mA ≤ I _{VREG} ≤ 50 mA	5.76	6.2	6.67	V
I _{VREG}	LDO output current ⁽¹⁾	Maximum current allowed from LDO			50	mA
V_{DO}	LDO drop out voltage	V _{VDD} = 4.5 V, I _{VREG} = 50 mA			364	mV
	RAP SWITCH		<u>'</u>			
V _{FBST}	Forward voltage	V _{VREG-VBST} , I _F = 10 mA, T _A = 25°C		0.1	0.2	V
I _{VBSTLK}	VBST leakagecurrent	V _{VBST} = 23 V, V _{SW} = 17 V, T _A = 25°C		0.01	1.5	μΑ
DUTY AN	D FREQUENCY CONTROL					
t _{OFF(min)}	Minimum off-time	T _A = 25°C	150	260	400	ns
t _{ON(min)}	Minimum ON-time	V_{IN} = 17 V, V_{OUT} = 0.6 V, R_{RF} = 0 Ω to VREG, T_A = 25°C ⁽¹⁾		35		ns
SOFTSTA	ART				· ·	
		$0 \text{ V} \leq \text{V}_{\text{OUT}} \leq 95\%, \text{ R}_{\text{MODE}} = 39 \text{ k}\Omega$		0.7		
		$0 \text{ V} \le \text{V}_{\text{OUT}} \le 95\%, \text{ R}_{\text{MODE}} = 100\text{k}Ω$		1.4		
t _{SS}	Internal soft-start time	$0 \text{ V} \le \text{V}_{\text{OUT}} \le 95\%, \text{ R}_{\text{MODE}} = 200 \text{ k}\Omega$		2.8		ms
		$0 \text{ V} \le \text{V}_{\text{OUT}} \le 95\%, \text{ R}_{\text{MODE}} = 470 \text{ k}\Omega$		5.6		
POWERG	OOD	*	L			

Electrical Characteristics (continued)

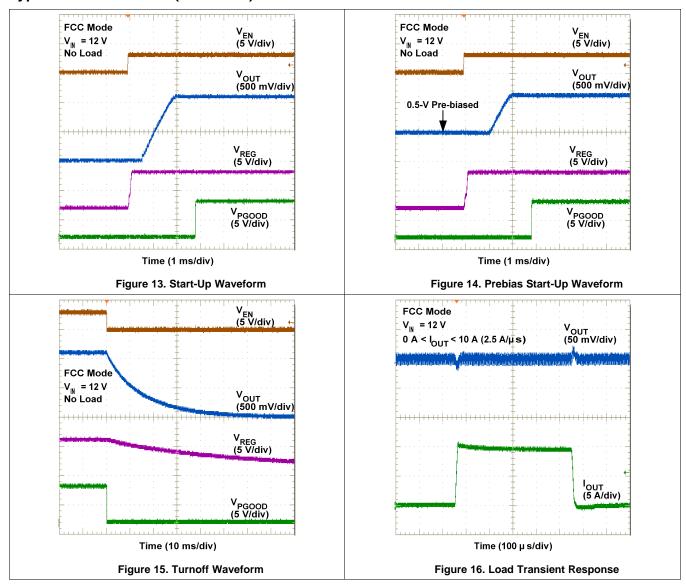

over operating free-air temperature range, VDD = 12 V (Unless otherwise noted)

	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
		PG in from lower	92.5%	96%	98.5%	
V_{THPG}	PG threshold	PG in from higher	108%	111%	114%	
		PG hysteresis	2.5%	5%	7.8%	
R _{PG}	PG transistor on-resistance		15	30	50	Ω
t _{PG(del)}	PG delay after soft-start		0.8	1	1.2	ms
	RESHOLD AND SETTING CONDI	TIONS	1			
		-40°C ≤ T _A ≤ 85°C	1.8			
V _{EN}	EN voltage threshold enable	0°C ≤ T _A ≤ 85°C	1.7			V
	EN voltage threshold disable				0.5	
I _{EN}	EN input current	V _{EN} = 5 V			1	μΑ
		$R_{RF} = 0 \Omega$ to GND, $T_A = 25^{\circ}C^{(2)}$	200	250	300	
		$R_{RF} = 187 \text{ k}\Omega \text{ to GND, } T_A = 25^{\circ}\text{C}^{(2)}$	250	300	350	
		$R_{RF} = 619 \text{ k}\Omega \text{ to GND, } T_A = 25^{\circ}\text{C}^{(2)}$	350	400	450	
		R _{RF} = Open, T _A = 25°C ⁽²⁾	450	500	550	
f_{SW}	Switching frequency	$R_{RF} = 866 \text{ k}\Omega \text{ to } V_{REG}, T_A = 25^{\circ}C^{(2)}$	580	650	720	kHz
		$R_{RF} = 309 \text{ k}\Omega \text{ to } V_{REG}, T_A = 25^{\circ}\text{C}^{(2)}$	670	750	820	
		$R_{RF} = 124 \text{ k}\Omega \text{ to } V_{REG}, T_A = 25^{\circ}C^{(2)}$	770	850	930	
		$R_{RF} = 0 \Omega \text{ to } V_{REG}, T_A = 25^{\circ}C^{(2)}$	880	970	1070	
VO DISCH	ARGE	THE OLD WREE, TA 200	000	0.0		
I _{Dischg}	VO discharge current	V _{EN} = 0 V, V _{SW} = 0.5 V	5	13		mA
	ION: CURRENT SENSE	TEN OV, TSW 5.5 T				
I _{TRIP}	TRIP source current	V _{TRIP} = 1 V, T _A = 25°C	9	10	11	μA
TC _{ITRIP}	TRIP current temp. coef.	$T_A = 25^{\circ}C^{(1)}$		4700		ppm/°C
TOITRIP	Current limit threshold setting			4700		
V_{TRIP}	range	V _{TRIP-GND} voltage	0.2		3	V
		V _{TRIP} = 3 V	355	375	395	
V_{OCL}	Current limit threshold	V _{TRIP} = 1.6 V	185	200	215	mV
		V _{TRIP} = 0.2 V	17	25	33	
		V _{TRIP} = 3 V	-406	-375	-355	
V_{OCLN}	Negative current limit threshold	V _{TRIP} = 1.6 V	-215	-200	-185	mV
	unesnoid	V _{TRIP} = 0.2 V	-33	-25	-17	
	Auto zero cross adjustable	Positive	3	15		
$V_{AZC(adj)}$	range	Negative		-15	-3	mV
PROTECT	ION: UVP AND OVP		L			
V _{OVP}	OVP trip threshold voltage	OVP detect	115%	120%	125%	
t _{OVP(del)}	OVP propagation delay time	VFB delay with 50-mV overdrive		1		μs
V _{UVP}	Output UVP trip threshold voltage	UVP detect	65%	70%	75%	
t _{UVP(del)}	Output UVP propagation delay time		0.8	1	1.2	ms
t _{UVP(en)}	Output UVP enable delay time	from EN to UVP workable, $R_{MODE} = 39 \text{ k}\Omega$	2.00	2.55	3	ms
UVLO	•					
		Wake up	4	4.18	4.5	
V_{UVVREG}	VREG UVLO threshold	Hysteresis		0.25	-	V
THERMAL	SHUTDOWN					
		Shutdown temperature ⁽¹⁾		145		
T_{SDN}	Thermal shutdown threshold	Hysteresis ⁽¹⁾		10		°C
		Tryotoroala ·		10		

⁽²⁾ Not production tested. Test conditions are V_{IN} = 12 V, V_{OUT} = 1.1 V, I_{OUT} = 10 A and using the application circuit shown in Figure 18 and Figure 22.



6.6 Typical Characteristics


TEXAS INSTRUMENTS

Typical Characteristics (continued)

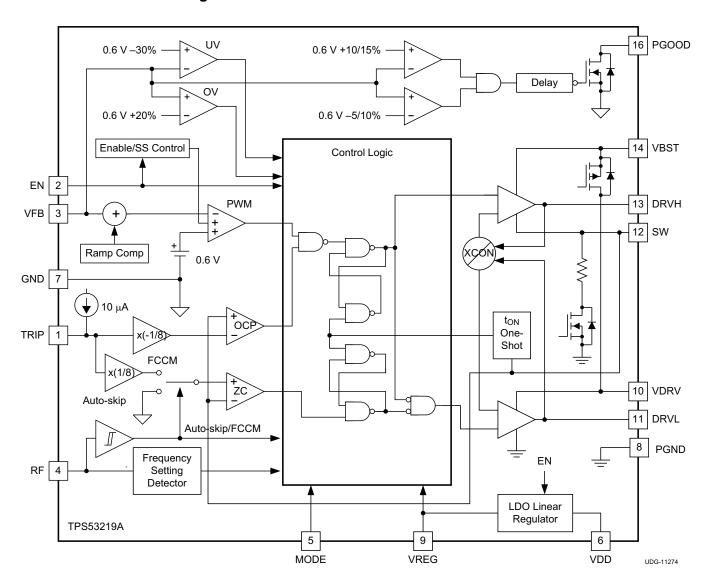
Typical Characteristics (continued)

7 Detailed Description

7.1 Overview

The TPS53219A is a high-efficiency, single-channel, synchronous buck regulator controller suitable for low output voltage point-of-load applications in computing and similar digital consumer applications. The device features proprietary D-CAP mode control combined with an adaptive ON-time architecture. This combination is ideal for building modern low duty ratio, ultra-fast load step response DC-DC converters. The output voltage ranges from 0.6 V to 5.5 V. The conversion input voltage range is from 3 V up to 28 V. The D-CAP mode uses the ESR of the output capacitors to sense the device current. One advantage of this control scheme is that it does not require an external phase compensation network. This allows a simple design with a low external component count. Eight preset switching frequency values can be chosen using a resistor connected from the RF pin to ground or VREG. Adaptive ON-time control tracks the preset switching frequency over a wide input and output voltage range while allowing the switching frequency to increase at the step-up of the load.

The TPS53219A has a MODE pin to select between auto-skip mode and forced continuous conduction mode (FCCM) for light load conditions. The MODE pin also sets the selectable soft-start time ranging from 0.7 ms to 5.6 ms as shown in Table 1. The strong gate drivers allow low R_{DS(on)} FETs for high-current applications.


When the device starts (either by EN or VDD UVLO), the TPS53219A sends out a current that detects the resistance connected to the MODE pin to determine the soft-start time. After that (and before V_{OUT} start to ramp up) the MODE pin becomes a high-impedance input to determine skip mode or FCCM mode operation. When the voltage on the MODE pin is higher than 1.3 V, the converter enters into FCCM mode. If the voltage on MODE pin is less than 1.3 V, then the converter operates in skip mode.

TI recommends to connect the MODE pin to the PGOOD pin if FCCM mode is desired. In this configuration, the MODE pin is connected to the GND potential through a resistor when the device is detecting the soft-start time thus correct soft-start time is used. The device starts up in skip mode and only after the PGOOD pin goes high does the device enter into FCCM mode. When the PGOOD pin goes high there is a transition between skip mode and FCCM. A minimum off-time of 60 ns on DRVL is provided to avoid a voltage spike on the DRVL pin caused by parasitic inductance of the driver loop and gate capacitance of the low-side MOSFET.

For proper operation, the MODE pin must not be connected directly to a voltage source.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Enable and Soft-Start

When the EN pin voltage rises above the enable threshold voltage (typically 1.4 V), the controller enters its start-up sequence. The internal LDO regulator starts immediately and regulates to 6.2 V at the VREG pin. The controller then uses the first 250 µs to calibrate the switching frequency setting resistance attached to the RF pin and stores the switching frequency code in internal registers. However, switching is inhibited during this phase. In the second phase, an internal DAC starts ramping up the reference voltage from 0 V to 0.6 V. Depending on the MODE pin setting, the ramping up time varies from 0.7 ms to 5.6 ms. Smooth and constant ramp-up of the output voltage is maintained during start-up regardless of load current.

Table 1. Soft-Start and MODE

MODE SELECTION	ACTION	SOFT-START TIME (ms)	R _{MODE} (kΩ)
		0.7	39
Auto Skin	Pull down to GND	1.4	100
Auto Skip		2.8	200
		5.6	475
		0.7	39
Forced CCM (1)	Connect to PGOOD	1.4	100
Forced CCIVI (1)		2.8	200
		5.6	475

⁽¹⁾ Device goes into Forced CCM after PGOOD becomes high.

When the EN voltage is higher than 5.5 V, a $1-k\Omega$ series resistor is needed for EN pin

7.3.2 Adaptive ON-Time D-CAP Control and Frequency Selection

The TPS53219A does not have a dedicated oscillator that determines switching frequency. However, the device operates with pseudo-constant frequency by feed-forwarding the input and output voltages into the ON-time one-shot timer. The adaptive ON-time control adjusts the ON-time to be inversely proportional to the input voltage and proportional to the output voltage ($t_{ON} \propto V_{OUT}/V_{IN}$).

This makes the switching frequency fairly constant in steady-state conditions over a wide input voltage range. The switching frequency is selectable from eight preset values by a resistor connected between the RF pin and GND or between the RF pin and the VREG pin as shown in Table 2. Leaving the resistance open sets the switching frequency to 500 kHz.

Table 2. Resistor and Switching Frequency

RESISTOR (R _{RF}) CONNECTIONS	SWITCHING FREQUENCY (kHz)
0 Ω to GND	250
187 k Ω to GND	300
619 k Ω to GND	400
Open	500
866 k Ω to VREG	650
309 k Ω to VREG	750
124 kΩ to VREG	850
$0~\Omega$ to VREG	970

The OFF-time is modulated by a PWM comparator. The VFB node voltage (the mid-point of resistor divider) is compared to the internal 0.6-V reference voltage added with a ramp signal. When both signals match, the PWM comparator asserts a *set* signal to terminate the OFF-time (turn off the low-side MOSFET and turn on high-side MOSFET). The *set* signal is valid if the inductor current level is below the OCP threshold, otherwise the off time is extended until the current level falls below the threshold.

7.3.3 Small Signal Model

From small-signal loop analysis, a buck converter using D-CAP mode can be simplified as shown in Figure 17.

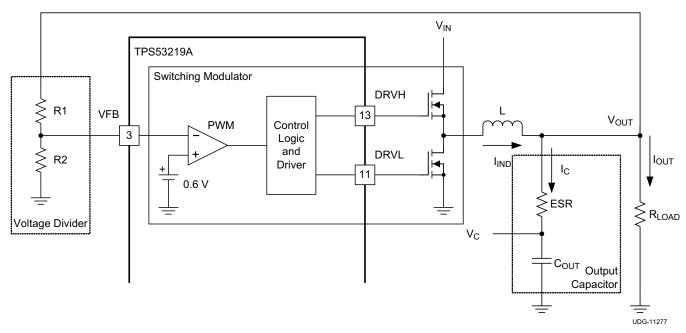


Figure 17. Simplified Modulator Model

The output voltage is compared with the internal reference voltage (ramp signal is ignored here for simplicity). The PWM comparator determines the timing to turn on the high-side MOSFET. The gain and speed of the comparator can be assumed high enough to keep the voltage at the beginning of each on cycle substantially constant.

$$H(s) = \frac{1}{s \times ESR \times C_{OUT}}$$
(1)

For the loop stability, the 0-dB frequency, f_0 , defined below must be lower than $\frac{1}{4}$ of the switching frequency.

$$f_0 = \frac{1}{2\pi \times \text{ESR} \times C_{\text{OUT}}} \le \frac{f_{\text{SW}}}{4}$$
 (2)

According to Equation 2, the loop stability of D-CAP mode modulator is mainly determined by the capacitor chemistry. For example, specialty polymer capacitors (SP-CAP) have an output capacitance on the order of several 100 μ F and ESR in range of 10 m Ω . These yields an f₀ on the order of 100 kHz or less and a more stable loop. However, ceramic capacitors have an f₀ at more than 700 kHz, and require special care when used with this modulator. An application circuit for ceramic capacitor is described in section *External Parts Selection With All Ceramic Output Capacitors*.

7.3.4 Ramp Signal

The TPS53219A adds a ramp signal to the 0.6-V reference in order to improve jitter performance. As described in *Small Signal Model*, the feedback voltage is compared with the reference information to keep the output voltage in regulation. By adding a small ramp signal to the reference, the S/N ratio at the onset of a new switching cycle is improved. Therefore the operation becomes less jittery and more stable. The ramp signal is controlled to start with –7 mV at the beginning of an on-cycle and becomes 0 mV at the end of an off-cycle in steady-state.

During skip mode operation, when the switching frequency is lower than 70% of the nominal frequency (because of longer OFF-time), the ramp signal exceeds 0 mV at the end of the OFF-time but is clamped at 3 mV to minimize DC offset.

7.3.5 Adaptive Zero Crossing

The TPS53219A has an adaptive zero crossing circuit which performs optimization of the zero inductor current detection at skip mode operation. This function pursues ideal low-side MOSFET turning off timing and compensates inherent offset voltage of the Z-C comparator and delay time of the Z-C detection circuit. It prevents SW-node swing-up caused by too late detection and minimizes diode conduction period caused by too early detection. As a result, better light load efficiency is delivered.

7.3.6 Output Discharge Control

When EN becomes low, the TPS53219A discharges output capacitor using internal MOSFET connected between the SW pin and the PGND pin while the high-side and low-side MOSFETs are maintained in the OFF state. The typical discharge resistance is 40 Ω . The soft discharge occurs only as EN becomes low. After VREG becomes low, the internal MOSFET turns off and the discharge function becomes inactive.

7.3.7 Low-Side Driver

The low-side driver is designed to drive high-current low- $R_{DS(on)}$ N-channel MOSFETs. The drive capability is represented by its internal resistance, which is 1.0 Ω for VDRV to DRVL and 0.5 Ω for DRVL to GND. A dead time to prevent shoot through is internally generated between high-side MOSFET off to low-side MOSFET on, and low-side MOSFET off to high-side MOSFET on. The bias voltage VDRV can be delivered from 6.2-V VREG supply or from external power source from 4.5 V to 6.5 V. The instantaneous drive current is supplied by an input capacitor connected between the VDRV and PGND pins.

The average low-side gate drive current is calculated in Equation 3.

$$I_{GL} = C_{GL} \times V_{VDRV} \times f_{SW}$$
(3)

When VDRV is supplied by external voltage source, the device continues to be supplied by the VREG pin. There is no internal connection from VDRV to VREG.

7.3.8 High-Side Driver

The high-side driver is designed to drive high current, low $R_{DS(on)}$ N-channel MOSFETs. When configured as a floating driver, the bias voltage is delivered from the VDRV pin supply. The average drive current is calculated using Equation 4.

$$I_{GH} = C_{GH} \times V_{VDRV} \times f_{SW}$$
(4)

The instantaneous drive current is supplied by the flying capacitor between VBST and SW pins. The drive capability is represented by internal resistance, which is 1.5 Ω for VBST to DRVH and 0.7 Ω for DRVH to SW.

The driving power which needs to be dissipated from TPS53219A package.

$$P_{DRV} = (I_{GL} + I_{GH}) \times V_{VDRV}$$
(5)

7.3.9 Power Good

The TPS53219A has a power-good output that indicates *high* when switcher output is within the target. The power-good function is activated after soft-start has finished. If the output voltage becomes within +10% or -5% of the target value, internal comparators detect power-good state and the power-good signal becomes high after a 1-ms internal delay. If the output voltage goes outside of +15% or -10% of the target value, the power-good signal becomes low after two microsecond (2- μ s) internal delay. The power-good output is an open-drain output and must be pulled up externally.

In order for the PGOOD logic to be valid, the VDD input must be higher than 1 V. To avoid invalid PGOOD logic before the TPS53219A is powered up, TI recommends that the PGOOD pin be pulled up to VREG (either directly or through a resistor divider if a different pullup voltage is desired) because VREG remains low when the device is powered off. The pullup resistance can be chosen from a standard resistor value between 1 k Ω and 100 k Ω .

7.3.10 Current Sense and Overcurrent Protection

TPS53219A has cycle-by-cycle overcurrent limiting control. The inductor current is monitored during the *OFF* state and the controller maintains the *OFF* state during the period in that the inductor current is larger than the overcurrent trip level. In order to provide both good accuracy and cost-effective solution, TPS53219A supports temperature compensated MOSFET $R_{DS(on)}$ sensing. The TRIP pin should be connected to GND through the trip voltage setting resistor, R_{TRIP} . The TRIP terminal sources I_{TRIP} current, which is 10 μ A typically at room temperature, and the trip level is set to the OCL trip voltage V_{TRIP} as shown in Equation 6.

NOTE

The V_{TRIP} is limited up to approximately 3 V internally.

$$V_{TRIP}(mV) = R_{TRIP}(k\Omega) \times I_{TRIP}(\mu A)$$
(6)

The inductor current is monitored by the voltage between GND pin and SW pin so that SW pin should be connected to the drain terminal of the low-side MOSFET properly. I_{TRIP} has 4700-ppm/°C temperature slope to compensate the temperature dependency of the $R_{DS(on)}$. The GND pin is used as the positive current-sensing node. The GND pin should be connected to the proper current sensing device, (for example, the source terminal of the low-side MOSFET.)

As the comparison is done during the OFF state, V_{TRIP} sets the valley level of the inductor current. Thus, the load current at the overcurrent threshold, I_{OCP} , can be calculated as shown in Equation 7.

$$I_{OCP} = \frac{V_{TRIP}}{\left(8 \times R_{DS(on)}\right)} + \frac{I_{IND(ripple)}}{2} = \frac{V_{TRIP}}{\left(8 \times R_{DS(on)}\right)} + \frac{1}{2 \times L \times f_{SW}} \times \frac{\left(V_{IN} - V_{OUT}\right) \times V_{OUT}}{V_{IN}}$$

$$(7)$$

In an overcurrent condition, the current to the load exceeds the current to the output capacitor thus the output voltage tends to fall down. Eventually, it crosses the undervoltage protection threshold and shuts down. After a hiccup delay (16 ms with 0.7-ms sort-start), the controller restarts. If the overcurrent condition remains, the procedure is repeated and the device enters hiccup mode.

During the CCM, the negative current limit (NCL) protects the external FET from carrying too much current. The NCL detect threshold is set as the same absolute value as positive OCL but negative polarity.

NOTE

The threshold still represents the valley value of the inductor current.

7.3.11 Overvoltage and Undervoltage Protection

TPS53219A monitors a resistor divided feedback voltage to detect overvoltage and undervoltage. When the feedback voltage becomes lower than 70% of the target voltage, the UVP comparator output goes high and an internal UVP delay counter begins counting. After 1 ms, TPS53219A latches OFF both high-side and low-side MOSFETs drivers. The controller restarts after a hiccup delay (16 ms with 0.7-ms soft-start). This function is enabled 1.5-ms after the soft-start is completed.

When the feedback voltage becomes higher than 120% of the target voltage, the OVP comparator output goes high and the circuit latches OFF the high-side MOSFET driver and latches ON the low-side MOSFET driver. The output voltage decreases. If the output voltage reaches UV threshold, then both high-side MOSFET and low-side MOSFET driver will be OFF and the device restarts after an hiccup delay. If the OV condition remains, both high-side MOSFET and low-side MOSFET driver remains OFF until the OV condition is removed.

7.3.12 UVLO Protection

The TPS53219A uses VREG undervoltage lockout protection (UVLO). When the VREG voltage is lower than 3.95 V, the device shuts off. When the VREG voltage is higher than 4.2 V, the device restarts. This is non-latch protection.

7.3.13 Thermal Shutdown

The TPS53219A uses temperature monitoring. If the temperature exceeds the threshold value (typically 145°C), the device is shut off. This is non-latch protection.

(8)

7.4 Device Functional Modes

7.4.1 Light Load Condition in Auto-Skip Operation

While the MODE pin is pulled low through R_{MODE} , TPS53219A automatically reduces the switching frequency at light load conditions to maintain high efficiency. Detailed operation is described as follows. As the output current decreases from heavy load condition, the inductor current is also reduced and eventually comes to the point that its rippled valley touches zero level, which is the boundary between continuous conduction and discontinuous conduction modes. The synchronous MOSFET is turned off when this zero inductor current is detected. As the load current further decreases, the converter runs into discontinuous conduction mode (DCM). The ON-time is kept almost the same as it was in the continuous conduction mode so that it takes longer time to discharge the output capacitor with smaller load current to the level of the reference voltage. The transition point to the light load operation $I_{\text{O(LL)}}$ (that is, the threshold between continuous and discontinuous conduction mode) can be calculated as shown in Equation 8.

$$I_{OUT(LL)} = \frac{1}{2 \times L \times f_{SW}} \times \frac{\left(V_{IN} - V_{OUT}\right) \times V_{OUT}}{V_{IN}}$$

where

Switching frequency versus output current in the light load condition is a function of L, V_{IN} and V_{OUT} , but it decreases almost proportionally to the output current from the $IO_{(LL)}$ given in Equation 8. For example, it is 60 kHz at $IO_{(LL)}/5$ if the frequency setting is 300 kHz.

7.4.2 Forced Continuous Conduction Mode

When the MODE pin is tied to PGOOD through a resistor, the controller keeps continuous conduction mode (CCM) in light load condition. In this mode, switching frequency is kept almost constant over the entire load range which is suitable for applications need tight control of the switching frequency at a cost of lower efficiency.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS53219A device is a small-sized, single-buck controller with adaptive ON-time DCAP mode control.

8.2 Typical Applications

8.2.1 Typical Application With Power Block

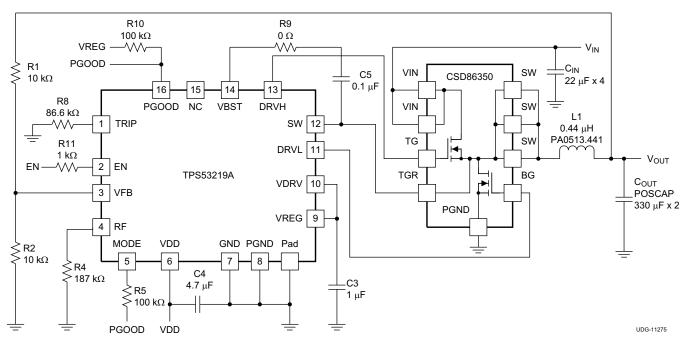


Figure 18. Typical Application Circuit Diagram With Power Block

8.2.1.1 Design Requirements

This design uses the parameters listed in Table 3.

Table 3. Design Specifications

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT (CHARACTERISTICS					
V _{IN}	Voltage range		5	12	18	V
	Maximum input current	V _{IN} = 5 V, I _{OUT} = 25 A		10		Α
I _{MAX}	No load input current	V _{IN} = 12 V, I _{OUT} = 0 A with auto-skip mode				
OUTPU	T CHARACTERISTICS				·-	
V _{OUT}	Output voltage			1.2		
	Output voltage regulation	Line regulation, 5 V ≤ V _{IN} ≤ 14 V with FCCM		0.2%		V
	Output voltage regulation	Load regulation, V _{IN} = 12 V, 0 A ≤ I _{OUT} ≤ 25 A with FCCM		0.5%		

Typical Applications (continued)

Table 3. Design Specifications (continued)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{RIPPLE}	Output voltage ripple	V _{IN} = 12 V, I _{OUT} = 25 A with FCCM		10		mV_PP
I_{LOAD}	Output load current		0		25	٨
I _{OVER}	Output overcurrent			32		Α
t _{SS}	Soft-start time			1		ms
SYSTEMS	CHARACTERISTICS					
f_{SW}	Switching frequency			500		kHz
	Peak efficiency	V _{IN} = 12 V, V _{OUT} = 1.2 V, I _{OUT} = 4 A		91%		
η	Full load efficiency	V _{IN} = 12 V, V _{OUT} = 1.2 V, I _{OUT} = 8 A		91.5%		
T _A	Operating temperature			25		°C

8.2.1.2 Detailed Design Procedure

8.2.1.2.1 External Components Selection

Selecting external components is a simple process using D-CAP Mode.

1. Choose the inductor

The inductance should be determined to give the ripple current of approximately $\frac{1}{2}$ to $\frac{1}{2}$ of maximum output current. Larger ripple current increases output ripple voltage and improves the signal-to-noise ratio and helps stable operation.

$$L = \frac{1}{I_{\text{IND(ripple)}} \times f_{\text{SW}}} \times \frac{\left(V_{\text{IN(max)}} - V_{\text{OUT}}\right) \times V_{\text{OUT}}}{V_{\text{IN(max)}}} = \frac{3}{I_{\text{OUT(max)}} \times f_{\text{SW}}} \times \frac{\left(V_{\text{IN(max)}} - V_{\text{OUT}}\right) \times V_{\text{OUT}}}{V_{\text{IN(max)}}}$$
(9)

The inductor also requires a low DCR to achieve good efficiency. It also requires enough room above the peak inductor current before saturation. The peak inductor current can be estimated in Equation 10.

$$I_{IND(peak)} = \frac{V_{TRIP}}{8 \times R_{DS(on)}} + \frac{1}{L \times f_{SW}} \times \frac{\left(V_{IN(max)} - V_{OUT}\right) \times V_{OUT}}{V_{IN(max)}}$$
(10)

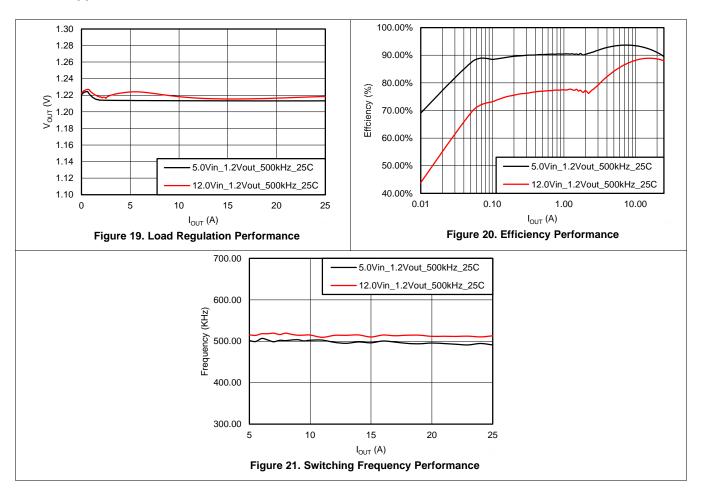
2. Choose the output capacitor

When organic semiconductor capacitors or specialty polymer capacitors are used, for loop stability, capacitance and ESR should satisfy Equation 2. For jitter performance, Equation 11 is a good starting point to determine ESR.

$$ESR = \frac{V_{OUT} \times 10 \,\text{mV} \times (1 - D)}{0.6 \,\text{V} \times I_{IND(ripple)}} = \frac{10 \,\text{mV} \times L \times f_{SW}}{0.6 \,\text{V}} = \frac{L \times f_{SW}}{60} \, \left(\Omega\right)$$

where

- . D is the duty factor
- the required output ripple slope is approximately 10 mV per t_{SW} (switching period) in terms of VFB terminal voltage (11)


3. Determine the value of R1 and R2

The output voltage is programmed by the voltage-divider resistor, R1 and R2 shown in Figure 17. R1 is connected between the VFB pin and the output, and R2 is connected between the VFB pin and GND. Recommended R2 value is between 10 k Ω and 20 k Ω . Determine R1 using Equation 12.

$$R1 = \frac{V_{OUT} - \left(\frac{I_{IND(ripple)} \times ESR}{2}\right) - 0.6}{0.6} \times R2$$
(12)

8.2.1.3 Application Curves

8.2.2 Typical Application With Ceramic Output Capacitors

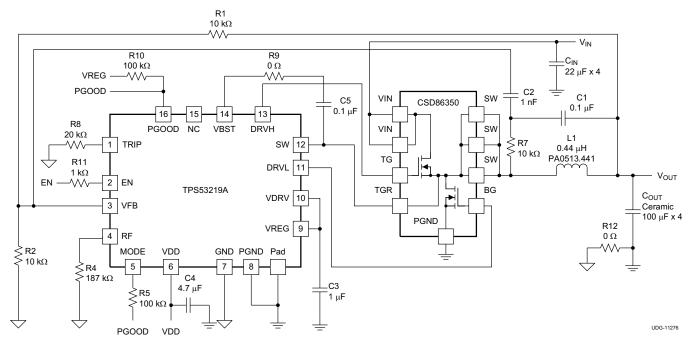


Figure 22. Typical Application Circuit Diagram With Ceramic Output Capacitors

8.2.2.1 Design Requirements

This design uses the parameters listed in Table 4.

Table 4. Design Specifications

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT CI	HARACTERISTICS					
V _{IN}	Voltage range		5	12	18	V
	Maximum input current	V _{IN} = 5 V, I _{OUT} = 8 A		2.5		Α
I _{MAX}	No load input current	V _{IN} = 12 V, I _{OUT} = 0 A with auto-skip mode		1		mA
OUTPUT	CHARACTERISTICS					
	Output voltage			1.2		
V _{OUT}	Output voltage regulation	Line regulation, 5 V ≤ V _{IN} ≤ 14 V with FCCM	0.2%			V
		Load regulation, V _{IN} = 12 V, 0 A ≤ I _{OUT} ≤ 8 A with FCCM		0.5%		
V _{RIPPLE}	Output voltage ripple	V _{IN} = 12 V, I _{OUT} = 8 A with FCCM		10		mV_{PP}
I _{LOAD}	Output load current		0		8	۸
I _{OVER}	Output overcurrent			25		Α
t _{SS}	Soft-start time			1		ms
SYSTEM	S CHARACTERISTICS					
f _{SW}	Switching frequency			500	1000	kHz
	Peak efficiency	V _{IN} = 12 V, V _{OUT} = 1.2 V, I _{OUT} = 4 A		91%		
η	Full load efficiency	V _{IN} = 12 V, V _{OUT} = 1.2 V, I _{OUT} = 8 A		91.5%		
T _A	Operating temperature			25		°C

8.2.2.2 Detailed Design Procedure

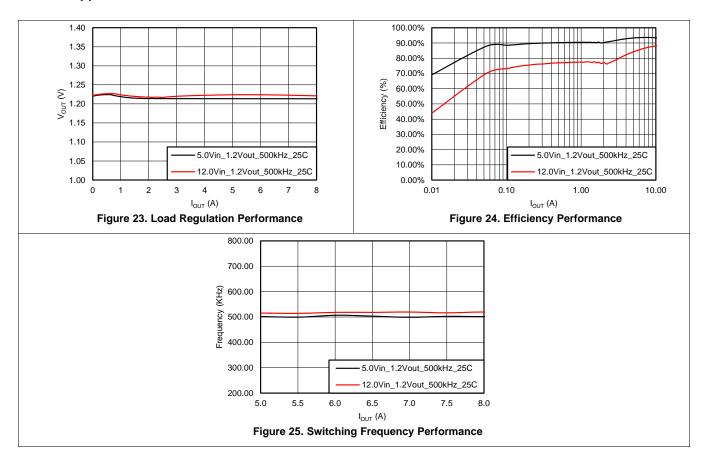
8.2.2.2.1 External Parts Selection With All Ceramic Output Capacitors

When a ceramic output capacitor is used, the stability criteria in Equation 2 cannot be satisfied. The ripple injection approach as shown in Figure 22 is implemented to increase the ripple on the VFB pin and make the system stable. C2 can be fixed at 1 nF. The value of C1 can be selected between 10 nF to 200 nF.

The increased ripple on the VFB pin causes the increase of the VFB DC value. The AC ripple coupled to the VFB pin has two components, one coupled from SW node and the other coupled from V_{OUT} and they can be calculated using Equation 13 and Equation 14.

$$V_{INJ(SW)} = \frac{(V_{IN} - V_{OUT})}{R7 \times C1} \times \frac{D}{f_{SW}}$$
(13)

$$V_{INJ(OUT)} = ESR \times I_{IND(ripple)} + \frac{I_{IND(ripple)}}{8 \times C_{OUT} \times f_{SW}}$$
(14)


The DC value of VFB can be calculated by Equation 15.

$$V_{FB} = 0.6 + \frac{\left(V_{INJ(SW)} + V_{INJ(OUT)}\right)}{2}$$
 (15)

And the resistor divider value can be determined by Equation 16.

$$R1 = \frac{\left(V_{OUT} - V_{FB}\right)}{V_{FB}} \times R2 \tag{16}$$

8.2.2.3 Application Curves

9 Power Supply Recommendations

The TPS53219A is a small-sized single-buck controller with adaptive ON-time D-CAP mode control. The device is suitable for low output voltage, high current, PC system power rail and similar point-of-load (POL) power supplies in digital consumer products.

10 Layout

10.1 Layout Guidelines

Certain points must be considered before starting a layout work using the TPS53219A.

- Inductors, V_{IN} capacitors, V_{OUT} capacitors and MOSFETs are the power components and should be placed on one side of the PCB (solder side). Other small signal components should be placed on another side (component side). At least one inner plane should be inserted, connected to power ground, in order to shield and isolate the small signal traces from noisy power lines.
- All sensitive analog traces and components such as VFB, PGOOD, TRIP, MODE and RF should be placed away from high-voltage switching nodes such as SW, DRVL, DRVH or VBST to avoid coupling. Use internal layers as ground planes and shield feedback trace from power traces and components.
- The DC-DC converter has several high-current loops. The area of these loops should be minimized in order to suppress generating switching noise.
 - The most important loop to minimize the area of is the path from the V_{IN} capacitors through the high and low-side MOSFETs, and back to the capacitors through ground. Connect the negative node of the V_{IN} capacitors and the source of the low-side MOSFET at ground as close as possible.
 - The second important loop is the path from the low-side MOSFET through inductor and V_{OUT} capacitors, and back to source of the low-side MOSFET through ground. Connect source of the low-side MOSFET and negative node of VOUT capacitors at ground as close as possible.
 - The third important loop is of gate driving system for the low-side MOSFET. To turn on the low-side MOSFET, high current flows from VDRV capacitor through gate driver and the low-side MOSFET, and back to negative node of the capacitor through ground. To turn off the low-side MOSFET, high current flows from gate of the low-side MOSFET through the gate driver and PGND of the device, and back to source of the low-side MOSFET through ground. Connect negative node of VDRV capacitor, source of the low-side MOSFET and PGND of the device at ground as close as possible.
- Because the TPS53219A controls output voltage referring to voltage across V_{OUT} capacitor, the high-side resistor of the voltage divider should be connected to the positive node of V_{OUT} capacitor at the regulation point. The low-side resistor should be connected to the GND (analog ground of the device). The trace from these resistors to the VFB pin should be short and thin. Place on the component side and avoid vias between these resistors and the device.
- Connect the overcurrent setting resistors from the TRIP pin to GND and make the connections as close as
 possible to the device. The trace from TRIP pin to resistor and from resistor to GND should avoid coupling to
 a high-voltage switching node.
- Connect the frequency setting resistor from RF pin to GND, or to the PGOOD pin, and make the connections
 as close as possible to the device. The trace from the RF pin to the resistor and from the resistor to GND
 should avoid coupling to a high-voltage switching node.
- Connect all GND (analog ground of the device) trace together and connect to power ground or ground plane with a single via or trace or through a 0-Ω resistor at a quiet point
- Connections from gate drivers to the respective gate of the high-side or the low-side MOSFET should be as short as possible to reduce stray inductance. Use 0.65 mm (25 mils) or wider trace ad) of at least 0.5 mm (20 mils) diameter along this trace.
- The PCB trace defined as switch node, which connects to source of high-side MOSFET, drain of low-side MOSFET and high-voltage side of the inductor, should be as short and wide as possible.
- Connect the ripple injection V_{OUT} signal (V_{OUT} side of the C1 capacitor in Figure 22) from the terminal of ceramic output capacitor. The AC-coupling capacitor (C7 in Figure 22) can be placed near the device.

10.2 Layout Example

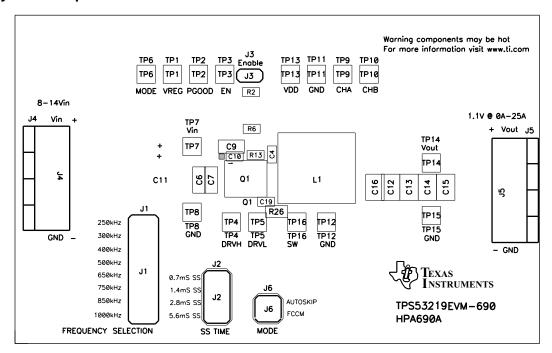


Figure 26. TPS53219EVM-690 Top Layer Assembly Drawing, Top View

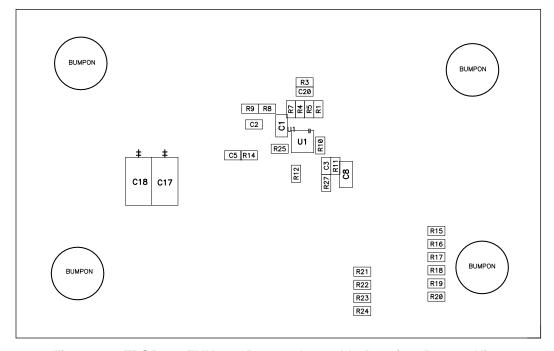


Figure 27. TPS53219EVM-690 Bottom Assembly Drawing, Bottom View

23

Layout Example (continued)

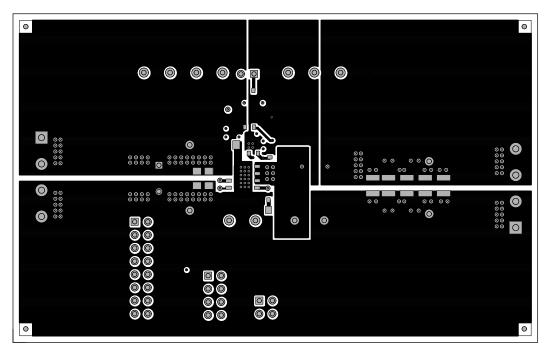


Figure 28. TPS53219EVM-690 Top Copper, Top View

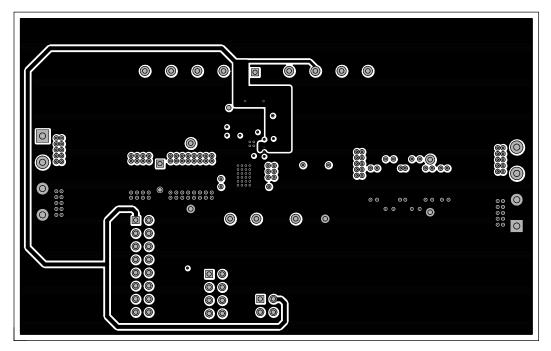


Figure 29. TPS53219EVM-690 Layer-2 Copper, Top View

Layout Example (continued)

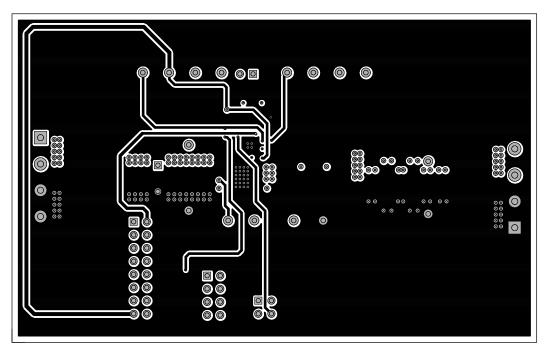


Figure 30. TPS53219EVM-690 Layer-3 Copper, Top View

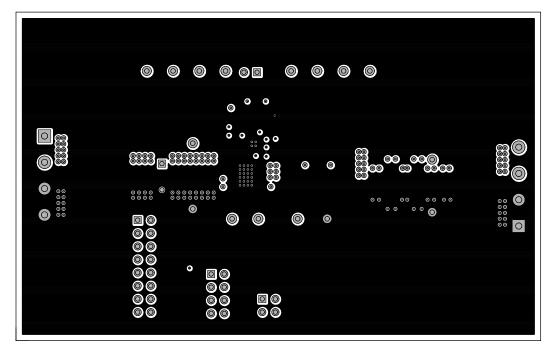


Figure 31. TPS53219EVM-690 Layer-4 Copper, Top View

Layout Example (continued)

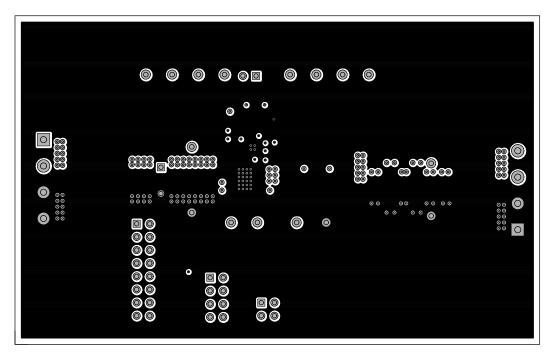


Figure 32. TPS53219EVM-690 Layer-5 Copper, Top View

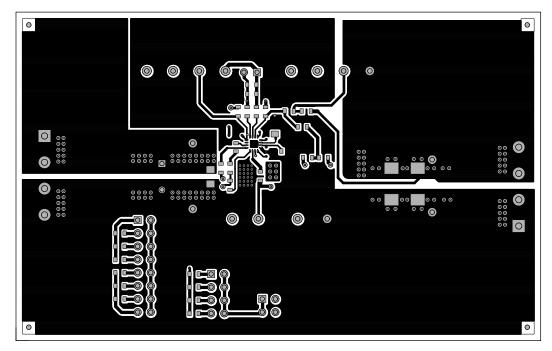


Figure 33. TPS53219EVM-690 Bottom Layer Copper, Top View

11 器件和文档支持

11.1 接收文档更新通知

要接收文档更新通知,请导航至 Tl.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.2 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.3 商标

Eco-Mode, , D-CAP, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

11.4 静电放电警告

这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.5 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、缩写和定义。

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

www.ti.com 24-Jul-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
TPS53219ARGTR	Active	Production	VQFN (RGT) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	3219A
TPS53219ARGTR.A	Active	Production	VQFN (RGT) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	3219A
TPS53219ARGTR.B	Active	Production	VQFN (RGT) 16	3000 LARGE T&R	-	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	3219A
TPS53219ARGTRG4	Active	Production	VQFN (RGT) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	3219A
TPS53219ARGTRG4.A	Active	Production	VQFN (RGT) 16	3000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	3219A
TPS53219ARGTT	Active	Production	VQFN (RGT) 16	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	3219A
TPS53219ARGTT.A	Active	Production	VQFN (RGT) 16	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	3219A
TPS53219ARGTT.B	Active	Production	VQFN (RGT) 16	250 SMALL T&R	-	NIPDAU	Level-1-260C-UNLIM	-40 to 85	3219A

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

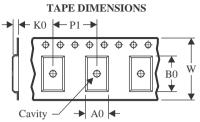
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 24-Jul-2025

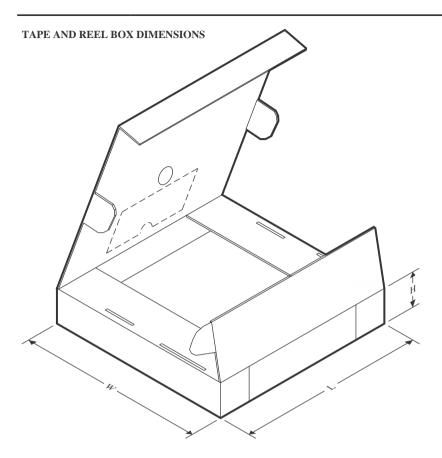

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

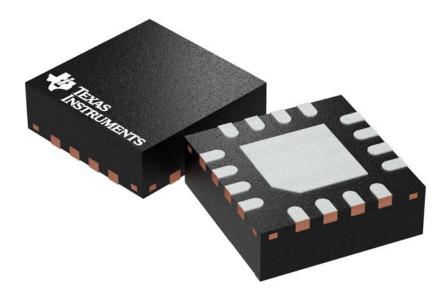
www.ti.com 18-Jun-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

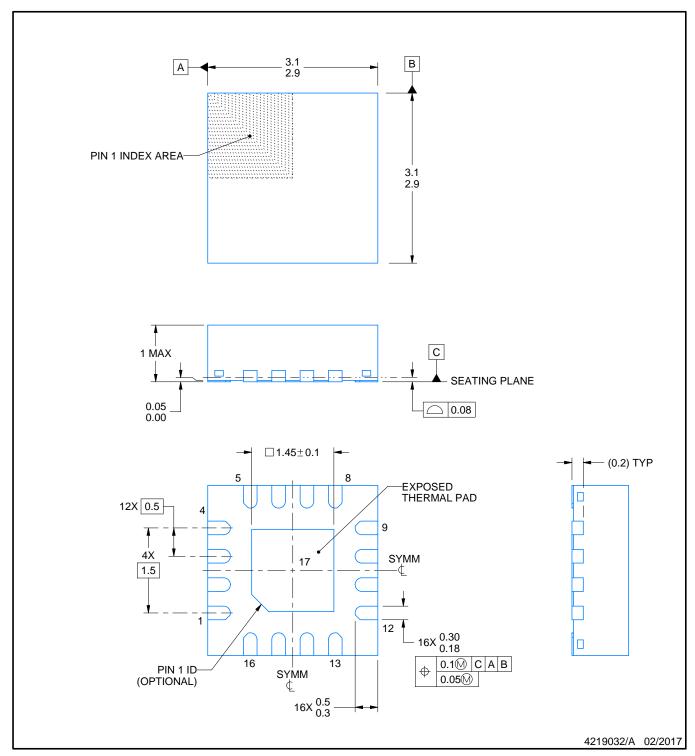
*All dimensions are nominal


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS53219ARGTR	VQFN	RGT	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS53219ARGTRG4	VQFN	RGT	16	3000	330.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2
TPS53219ARGTT	VQFN	RGT	16	250	180.0	12.4	3.3	3.3	1.1	8.0	12.0	Q2

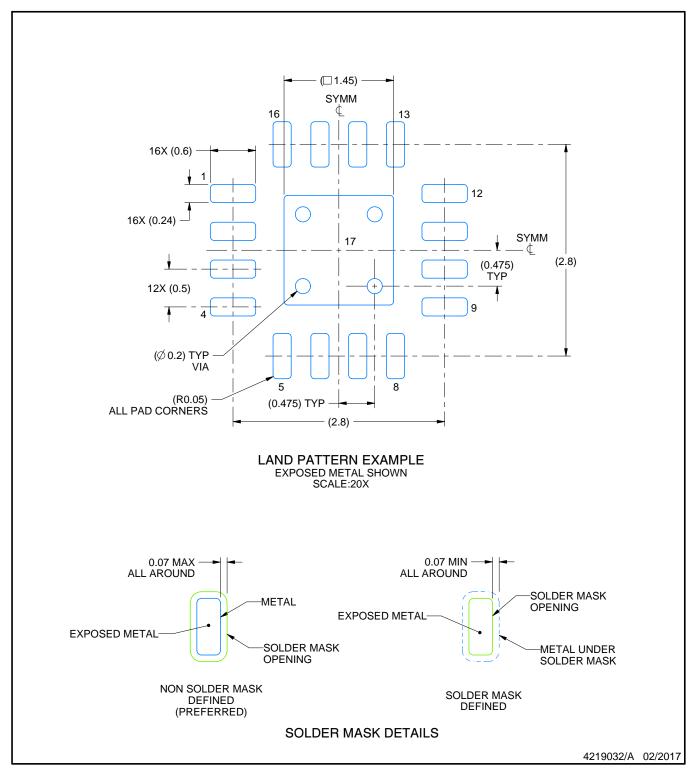
www.ti.com 18-Jun-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS53219ARGTR	VQFN	RGT	16	3000	346.0	346.0	33.0
TPS53219ARGTRG4	VQFN	RGT	16	3000	346.0	346.0	33.0
TPS53219ARGTT	VQFN	RGT	16	250	182.0	182.0	20.0


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

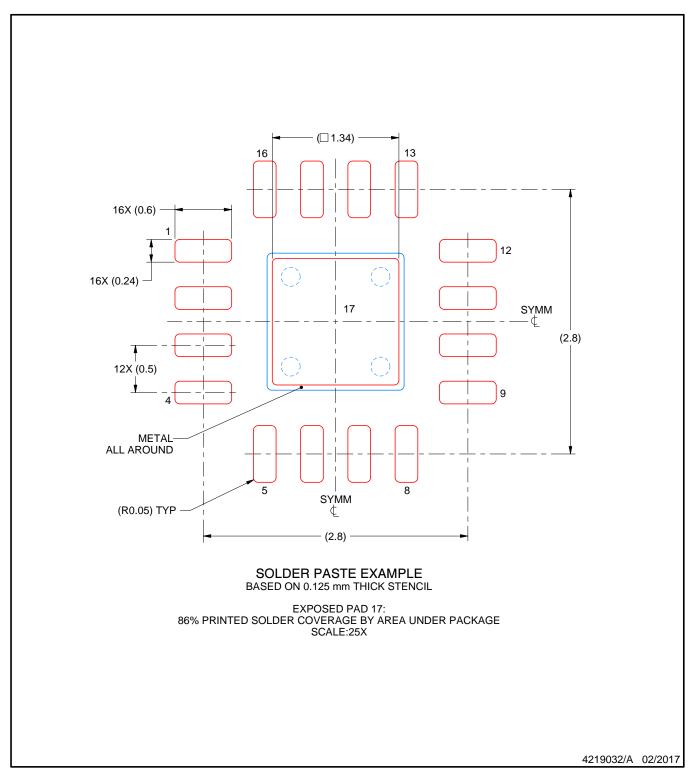
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
 Reference JEDEC registration MO-220

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 6. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司