TPS4811-Q1 ZHCSMA7D - JANUARY 2022 - REVISED APRIL 2024 # TPS4811-Q1 具有保护和诊断功能的 100V 汽车智能高侧驱动器 ## 1 特性 - 具有符合 AEC-Q100 标准的下列特性 - 器件温度等级 1: - 40°C 至 +125°C 环境工作温度范围 - 功能安全型 - 可提供用于功能安全系统设计的文档 - 3.5V 至 80V 输入范围 (绝对最大值为 100V) - 输出反极性保护低至 30V - 具有 100µA 容量的集成 12V 电荷泵 - 1.6µA 低美断电流(EN/UVLO = 低电平) - 强大的上拉 (3.7A) 和下拉 (4A) 栅极驱动器 - 驱动外部背对背 N 沟道 MOSFET - 具有集成预充电开关驱动器 (TPS48111-Q1) 以驱动 容性负载的型号 - 具有可调断路器计时器 (TMR) 和故障标志输出 (FLT I)的两级可调过流保护(IWRN、ISCP) - 快速短路保护: 1.2μs (TPS48111-Q1)、4μs (TPS48110-Q1) - 精确的模拟电流监测输出 (IMON): 30mV 时为 ±2% (V_{SNS}) - 精确的可调节欠压锁定 (UVLO) 和过压保护 (OV): - 具有故障标志输出 (FLT_T) 的远程过热检测 (DIODE) ## 2 应用 - 配电盒 - 车身控制模块 - 直流/直流转换器 - 电池管理系统 适用于加热器负载的智能高侧驱动器 ## 3 说明 TPS4811x-Q1 系列是一款具有保护和诊断功能的 100V 智能高侧驱动器。该器件具有 3.5V 至 80V 的宽 工作电压范围,适用于 12V、24V 和 48V 系统设计。 它具有强大的 3.7A 峰值拉电流 (PU) 和 4A 峰值灌电流 (PD) 栅极驱动器,可在大电流系统设计中使用并联 FET 进行电源开关。将 INP 用作栅极驱动器控制输 入。 该器件具有精确的电流检测 (±2%) 输出 (IMON) 支持 系统设计,可用于能源管理。该器件集成了具有 FLT I 输出的两级过流保护,具有完全可调的阈值和响应时 间。可以配置自动重试和锁存故障行为。该器件具有远 程过热保护,具有 FLT_T 输出。 TPS48111-Q1 将预充电驱动器 (G) 与控制输入 (INP G) 集成。此功能支持必须驱动大容性负载的设 计。在关断模式下,控制器在 48V 电源输入下的总关 断电流为 1.6µA。 TPS4811x-Q1 采用 19 引脚 VSSOP 封装, 在相邻的 高压和低压引脚之间移除了一个引脚,提供 0.8mm 的 间隙。 #### 封装信息 | | 71 1/2 III 1/2 | | |-----------------------------|-------------------|---------------------------| | 器件型号 | 封装 ⁽¹⁾ | 封装尺寸⁽²⁾ | | TPS48110-Q1、
TPS48111-Q1 | DGX (VSSOP、 | 5.10mm x 3.00mm | - (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 - 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。 (2) 用于直流/直流转换器的断路器 # **Table of Contents** | . 41.14 | |--------------------------------------| | 1 特性 | | 2 应用 | | 3 说明 | | 4 Device Comparison Table | | 5 Pin Configuration and Functions | | 6 Specifications | | 6.1 Absolute Maximum Ratings | | 6.2 ESD Ratings | | 6.3 Recommended Operating Conditions | | 6.4 Thermal Information | | 6.5 Electrical Characteristics | | 6.6 Switching Characteristics | | 6.7 Typical Characteristics | | 7 Parameter Measurement Information1 | | 8 Detailed Description14 | | 8.1 Overview14 | | 8.2 Functional Block Diagram1 | | 8.3 Feature Description1 | | 9 Application and implementation | ∠0 | |---|----| | 9.1 Application Information | 26 | | 9.2 Typical Application: Driving HVAC PTC Heater | | | Load on KL40 Line in Power Distribution Unit | 26 | | 9.3 Typical Application: Driving B2B FETs With Pre- | | | charging the Output Capacitance | 33 | | 9.4 Power Supply Recommendations | 35 | | 9.5 Layout | 36 | | 10 Device and Documentation Support | 38 | | 10.1 接收文档更新通知 | 38 | | 10.2 支持资源 | 38 | | 10.3 Trademarks | | | 10.4 静电放电警告 | 38 | | 10.5 术语表 | | | 11 Revision History | | | 12 Mechanical, Packaging, and Orderable | | | Information | 38 | | | | # **4 Device Comparison Table** | | TPS48110-Q1 | TPS48111-Q1 | |--|------------------------------------|-------------| | Overvoltage protection | Yes | No | | Pre-charge driver | No | Yes | | Short-circuit protection response time | 4 μs | 1.2 µs | | Overtemperature fault response | Auto-retry with fixed 512-ms timer | Latch-off | # **5 Pin Configuration and Functions** 图 5-1. DGX Package, 19-Pin VSSOP (Top View) #### 表 5-1. Pin Functions | | PIN | • | | | |---------|-------------|-------------|------|--| | NAME | TPS48110-Q1 | TPS48111-Q1 | TYPE | DESCRIPTION | | INAIVIE | DGX-19 | (VSSOP) | | | | EN/UVLO | 1 | 1 | ı | EN/UVLO input. A voltage on this pin above 1 V enables normal operation. Forcing this pin below 0.3 V shuts down the TPS4811x-Q1, reducing quiescent current to approximately 1.6 μA (typical). Optionally connect to the input supply through a resistive divider to set the undervoltage lockout. When EN/UVLO is left floating an internal pull down of 60 nA pulls EN/UVLO low and keeps the device in OFF state. | | ov | 2 | _ | ı | Adjustable overvoltage threshold input. Connect a resistor ladder from input supply, OV to GND. When the voltage at OV exceeds the overvoltage cut-off threshold then the PD is pulled down to SRC turning OFF the external FET. When the voltage at OV goes below OV falling threshold then PU gets pulled up to BST, turning ON the external FET. OV must be connected to GND when not used. When OV is left floating an internal pull down of 60 nA pulls OV low and keeps PU pulled up to BST. | | INP_G | _ | 2 | I | Input Signal. CMOS compatible input reference to GND that sets the state of G pin. INP_G has an internal pull-down to GND to keep G pulled to SRC when INP_G is left floating. Connect INP_G to GND if the G drive functionality is unused. | | INP | 3 | 3 | 1 | Input Signal. CMOS compatible input reference to GND that sets the state of PD and PU pins. INP has an internal pull-down to GND to keep PD pulled to SRC when INP is left floating. | Product Folder Links: TPS4811-Q1 Copyright © 2024 Texas Instruments Incorporated 提交文档反馈 # 表 5-1. Pin Functions (续) | PIN | | | | | |---------|-------------------------|---------|-------|---| | NAME | TPS48110-Q1 TPS48111-Q1 | | TYPE | DESCRIPTION | | INAIVIE | DGX-19 | (VSSOP) | | | | FLT_T | 4 | 4 | 0 | Open Drain Fault Output. This pin asserts low when overtemperature fault is detected. | | FLT_I | 5 | 5 | 0 | Open Drain Fault Output. This pin asserts low after the voltage on the TMR pin has reached the fault threshold of 1.1 V. This pin indicates the pass transistor is about to turn off due to an overcurrent condition. The FLT_I pin does not go to a high-impedance state until the overcurrent condition and the auto-retry time expire. | | GND | 6 | 6 | G | Connect GND to system ground. | | IMON | 7 | 7 | 0 | Analog current monitor output. This pin sources a scaled down ratio of current through the external current sense resistor R _{SNS} . A resistor from this pin to GND converts current proportional to voltage. If unused, connect the pin to GND. | | IWRN | 8 | 8 | I | Overcurrent detection setting. A resistor across IWRN to GND sets the over current comparator threshold. Connect IWRN to GND if overcurrent protection feature is not desired. | | TMR | 9 | 9 | I | Fault Timer Input. A capacitor across TMR pin to GND sets the time for fault warning, fault turn-off (FLT_I) and retry periods. Leave it open for fastest setting. Connect TMR to GND to disable overcurrent protection. | | DIODE | 10 | 10 | I | Diode connection for temperature sensing. Connect this pin to base and collector of an MMBT3904 NPN BJT. Connect DIODE to GND, if remote overtemperature protection feature is not desired. | | G | _ | 11 | 0 | GATE of external pre-charge FET. Connect to the GATE of the external FET. Leave the G pin floating if the G drive functionality is unused. | | N.C | 11 | _ | _ | No connect. | | BST | 12 | 12 | 0 | High Side Bootstrapped Supply. An external capacitor with a minimum value of > $Q_{g(tot)}$ of the external FET must be connected between this pin and SRC. | | SRC | 13 | 13 | 0 | Source connection of the external FET. | | PD | 14 | 14 | 0 | High Current Gate Driver Pull-Down. This pin pulls down to SRC. For the fastest turn-off, tie this pin directly to the gate of the external high side MOSFET. | | PU | 15 | 15 | 0 | High Current Gate Driver Pull-Up. This pin pulls up to BST. Connect this pin to PD for maximum gate drive transition speed. A resistor can be connected between this pin and the gate of the external MOSFET to control the in-rush current during turn-on. | | CS- | 17 | 17 | I | Current sense negative input. | | CS+ | 18 | 18 | I | Current sense positive input. Connect a 50 - 100- Ω resistor across CS+ to the external current sense resistor. | | ISCP | 19 | 19 | I | Short-circuit detection threshold setting. Connect ISCP to CS - if short-circuit protection is not desired. | | VS | 20 | 20 | Power | Supply pin of the controller. | ## **6 Specifications** ## **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | | |---|--|-------|-----|------|--| | | VS, CS+, CS - , ISCP to GND | - 1 | 100 | | | | | VS, CS+, CS - to SRC | - 60 | 100 | | | | | SRC to GND | - 30 | 100 | | | | | PU, PD, G, BST to SRC | - 0.3 | 16 | V | | | Input Pins | TMR, IWRN, DIODE to GND | - 0.3 | 5.5 | | | | | OV, EN/UVLO, INP, INP_G, FLT_I, FLT_T to GND | - 1 | 20 | | | | | CS+ to CS - | - 0.3 | 0.3 | mA | | | | I _(FLT_1) , I _(FLT_T) | | 10 | | | | | I _(CS+) to I _(CS-) , 1msec | - 100 | 100 | | | | Output Ding | PU, PD, G, BST to GND | - 30 | 112 | V | | | Output Pins
Operating junction tempera | IMON to GND | - 1 | 7.5 | V | | | Operating junction tem | perature, T _j ⁽²⁾ | - 40 | 150 | °C | | | Storage temperature, 1 | -
stg | - 40 | 150 | C | | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. # 6.2 ESD Ratings | | | | | VALUE | UNIT | |--------------------|--------------------------------
--|---|-------|------| | | Electrostatic discharge Charge | Human body model (HBM), per AEC | Human body model (HBM), per AEC Q100-002 ⁽¹⁾ | | | | V _(ESD) | | Charged device model (CDM), per AEC Q100-011 | Corner pins (EN/UVLO, DIODE, G, VS) | ±750 | V | | | | ALC Q100-011 | Other pins | ±500 | | ⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. #### **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | NOM MAX | UNIT | |--------------|---|------|---------|------| | Input Pins | VS, CS+, CS - to GND | 0 | 80 | | | iliput Filis | EN/UVLO, OV to GND | 0 | 15 | V | | Output | FLT_I, FLT_T to GND | 0 | 15 | V | | Pins | IMON to GND | 0 | 5 | | | External | VS to GND | 22 | | nF | | Capacitor | BST to SRC | 0.1 | | μF | | Tj | Operating Junction temperature ⁽²⁾ | - 40 | 150 | °C | ⁽¹⁾ Recommended Operating Conditions are conditions under which the device is intended to be functional. For specifications and test conditions, see Electrical Characteristics. Product Folder Links: TPS4811-Q1 ⁽²⁾ High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C. ⁽²⁾ High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C. ## **6.4 Thermal Information** | | | TPS4811x-Q1 | | |------------------------|--|-------------|------| | | THERMAL METRIC ⁽¹⁾ | DGX | UNIT | | | | 19 PINS | | | R ₀ JA | Junction-to-ambient thermal resistance | 87 | °C/W | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 26.5 | °C/W | | R ₀ JB | Junction-to-board thermal resistance | 43.7 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 0.5 | °C/W | | Ψ_{JB} | Junction-to-board characterization parameter | 43.3 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ## **6.5 Electrical Characteristics** T_J = -40° C to +125 $^{\circ}$ C; typical values at T_J = 25 $^{\circ}$ C, $V_{(VS)}$ = $V_{(CS^+)}$ = $V_{(CS^-)}$ = 48 V, $V_{(BST^--SRC)}$ = 12 V, $V_{(SRC)}$ = 0 V, V_{SNS} = Voltage across R_{SNS} | Voltage across | R _{SNS} | | | | | | |--------------------------|--|---|------|------|----------|------| | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | SUPPLY VOLTA | AGE | | | | • | | | V _(VS) | Operating input voltage | | 3.5 | | 80 | V | | V _(VS_PORR) | VS POR threshold, rising | | 2.75 | 3 | 3.2 | V | | V _(VS_PORF) | VS POR threshold, falling | | 2.65 | 2.9 | 3.1 | V | | $I_{(Q)}$ | Total System Quiescent current, I _(GND) | V _(EN/UVLO) = 2 V | | 613 | 700 | μΑ | | | | V _(EN/UVLO) = 0 V, V _(SRC) = 0 V | | 1.6 | 5.36 | μA | | I _(SHDN) | SHDN current, I _(GND) | $V_{(EN/UVLO)} = 0 \text{ V, } V_{(SRC)} = 0 \text{ V, } -40^{\circ}\text{C}$
< $T_j < 85^{\circ}\text{C}$ | | 1.6 | 2.65 | μA | | ENABLE AND U | JNDERVOLTAGE LOCKOUT (EN/UVLO) | INPUT | | | | | | V _(UVLOR) | UVLO threshold voltage, rising | | 1.16 | 1.18 | 1.2 | V | | V _(UVLOF) | UVLO threshold voltage, falling | | 1.1 | 1.11 | 1.13 | V | | V _(ENF) | Enable threshold voltage for low IQ shutdown, falling | | 0.3 | 0.7 | 0.9 | V | | | Enable Hysteresis | | | 43 | 60 | mV | | I _(EN/UVLO) | Enable input leakage current | V _(EN/UVLO) = 12 V | | 61 | 320 | nA | | OVER VOLTAG | E PROTECTION (OV) INPUT - TPS48110- | Q1 Only | | | ' | | | V _(OVR) | Overvoltage threshold input, risIng | TPS48110-Q1 Only | 1.16 | 1.18 | 1.2 | V | | V _(OVF) | Overvoltage threshold input, falling | TF346110-Q1 Offiny | 1.1 | 1.11 | 1.13 | V | | I _(OV) | OV Input leakage current | 0 V < V _(OV) < 5 V | | 60 | 300 | nA | | CHARGE PUMP | P (BST - SRC) | | | | | | | I _(BST) | Charge Pump Supply current | V _(BST - SRC) = 10 V | 80 | 100 | 126 | μΑ | | \ / | Charge Pump Turn ON voltage | | 11 | 11.7 | 12.3 | V | | V _(BST - SRC) | Charge Pump Turn OFF voltage | | 11.6 | 12.3 | 13 | V | | V _(BST_UVLOR) | V _(BST - SRC) UVLO voltage threshold, rising | | 7 | 7.6 | 8.1 | V | | V _(BST_UVLOF) | V _(BST - SRC) UVLO voltage threshold, falling | | 6 | 6.5 | 6.9 | V | | V _(BST - SRC) | Charge Pump Voltage at V _(VS) = 3.5 V | | 8.6 | | | V | | GATE DRIVER | OUTPUTS (PU, PD, G) | | | | <u> </u> | | | R _(PD) | Pull-Down Resistance | | | 0.69 | 1.34 | Ω | | I _(PU) | Peak Source Current | | | 3.75 | | Α | | | | | | | | | Product Folder Links: TPS4811-Q1 Copyright © 2024 Texas Instruments Incorporated 提交文档反馈 # 6.5 Electrical Characteristics (续) T_J = -40° C to +125 $^{\circ}$ C; typical values at T_J = 25 $^{\circ}$ C, $V_{(VS)}$ = $V_{(CS+)}$ = $V_{(CS+)}$ = 48 V, $V_{(BST-SRC)}$ = 12 V, $V_{(SRC)}$ = 0 V, V_{SNS} = Voltage across R_{SNS} | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------------------|---|--|--------|------|------|------------| | I _(PD) | Peak Sink Current | | | 4 | | Α | | L | Gate charge (sourcing) current, on state | -TPS48111-Q1 Only | 72 | 100 | 140 | μΑ | | I _(G) | Gate discharge (sinking) current, off state | | 92 | 131 | 190 | mA | | CURRENT SENSI | E AND OVER CURRENT PROTECTION | (CS+, CS - , IMON, ISCP, IWRN) | | | | | | V _(OS_SET) | Input referred offset (V _{SNS} to V _(IMON) scaling) | R_{SET} = 100 Ω, R_{IMON} = 5 kΩ, 10 kΩ (corresponds to V_{SNS} = 6 mV to 30 | - 200 | | 200 | μV | | V _(GE_SET) | Gain error (V _{SNS} to V _(IMON) scaling) | mV) Gain of 45 and 90 respectively. | - 1.27 | | 1.27 | % | | V | IMON accuracy | V_{SNS} = 30 mV, R_{SET} = 100 Ω , R_{IMON} = 10 k Ω | - 2 | | 2 | % | | V _(IMON_Acc) | INION accuracy | V_{SNS} = 6 mV, R_{SET} = 100 Ω , R_{IMON} = 5 k Ω | - 5 | | 5 | % | | V | Overcurrent protection (OCP) voltage | R_{SET} = 100 Ω, R_{IWRN} = 39.7 kΩ | 29.2 | 30.6 | 31.5 | mV | | $V_{(SNS_WRN)}$ | threshold | R _{SET} = 100 Ω, R _{IWRN} = 120 kΩ | 8 | 10 | 12 | mV | | I _(ISCP) | SCP Input Bias current | | 13.7 | 15.6 | 17.6 | μA | | ., | Short-circuit protection (SCP) voltage | $R_{ISCP} = 2.1 \text{ k}\Omega$ | 35 | 40 | 45 | mV | | $V_{(SNS_SCP)}$ | threshold | R _{ISCP} = 750 Ω | | 19 | | mV | | DELAY TIMER (T | MR) | | | | | | | I _(TMR_SRC_CB) | TMR source current | | 73 | 82 | 91 | μA | | I _(TMR_SRC_FLT) | TMR source current | | 2.1 | 2.5 | 3.3 | μA | | I _(TMR_SNK) | TMR sink current | | 2.1 | 2.5 | 3 | μA | | V _(TMR_OC) | TMR voltage threshold for over current shutdown | | 1.112 | 1.2 | 1.3 | V | | $V_{(TMR_FLT)}$ | TMR voltage threshold for FLT_T assertion | | 1.03 | 1.1 | 1.2 | V | | $V_{(TMR_LOW)}$ | Voltage at TMR pin for AR counter falling threshold | | 0.15 | 0.2 | 0.22 | V | | INPUT CONTROL | .S (INP, INP_G), FAULT FLAGS (FLT_I, I | FLT_T) | | | | | | R _(FLT_I) | FLT_I Pull-down resistance | | 54 | 70 | 90 | Ω | | R _(FLT_T) | FLT_T Pull-down resistance | | | 70 | | Ω | | I _(FLT_T) | FLT Input leakage current | | | | 400 | nA | | V _(INP_H) | | | | 1.6 | 2 | V | | $V_{(INP_L)}$ | | | 8.0 | 1.2 | | V | | $V_{(INP_Hys)}$ | | | | 400 | | mV | | $V_{(INP_G_H)}$ | | | | 1.6 | 2 | V | | $V_{(INP_G_L)}$ | | TPS48111 - Q1 Only | 8.0 | 1.2 | | V | | $V_{(INP_G_Hys)}$ | | | | 400 | | mV | | TEMPERATURE | SENSING AND PROTECTION (DIODE) | | | | | | | | External diode current source | High level | | 160 | | μΑ | | I _(DIODE) | External diode current source | Low level | | 10 | | μΑ | | | Diode current ratio | | 15.4 | 16 | 16.6 | A/A | | T _(DIODE_TSD_rising) | DIODE sense TSD rising threshold | With MMBT3904 BJT for sensing | 140 | 150 | 160 | $^{\circ}$ | 提交文档反馈 # **6.6 Switching Characteristics** T_J = $-40\,^{\circ}$ C to +125 $^{\circ}$ C; typical values at T_J = 25 $^{\circ}$ C, $V_{(VS)}$ = $V_{(CS+)}$ = $V_{(CS+)}$ = 48 V, $V_{(BST-SRC)}$ = 12 V, $V_{(SRC)}$ = 0 V, V_{SNS} = $V_{(CS+)}$ $V_{(CS+$ | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------|---|--|-----|------|-----|------| | t _{PU(INP_H)} | INP Turn ON propogation Delay | INP ↑ to PU ↑, C _L = 47 nF | | 1 | 2 | μs | | t _{PD(INP_L)} | INP Turn OFF propogation Delay | INP ↓ to PD ↓, C _L = 47 nF | | | 1 | μs | | t _{G(INP_G_H)} | INP_G Turn ON propogation Delay | INP_G ↑ to G ↑, C _L = 1 nF | | 21 | | μs | | t _{G(INP_G_L)} | INP_G Turn OFF propogation Delay | INP_G \downarrow to G \downarrow , C _L = 1 nF | | 0.55 | 0.8 | μs | | t _{PD(EN_OFF)} | EN Turn OFF Propogation Delay | EN ↓ to PD ↓, C _L = 47 nF | | 3.2 | 5 | μs | | t _{PD(UVLO_OFF)} | UVLO Turn OFF Propogation Delay | UVLO ↓ to PD ↓, C _L = 47 nF | | 3.5 | 6 | μs | | t _{PD(VS_OFF)} | PD Turn OFF delay during input supply (VS) interruption | VS \downarrow V _(VS_PORF) to PD \downarrow , C _L = 47 nF, INP = EN/UVLO = 2 V | | 54 | | μs | | t _{PU(VS_ON)} | PU Turn ON delay during input supply (VS) recovery | VS \uparrow V _(VS_PORR) to PU \uparrow , C _L = 47
nF, INP = EN/UVLO = 2 V, V _(BST - SRC)
> V _(BST_UVLOR) | | 328 | 465 | μs | | t _{PD(OV_OFF)} | OV Turn Off progopation Delay | OV \uparrow to PD \downarrow , C _L = 47 nF | | 2.6 | 4 | μs | | + | Short-circuit protection propogation Delay | $(V_{CS+} - V_{CS-}) \uparrow
V_{(SNS_SCP)}$ to PD
\downarrow , $C_L = 47$ nF, TPS48111-Q1 Only | | 1.16 | 1.6 | μs | | t _{sc} | Short-circuit protection propogation Delay | $(V_{CS+} - V_{CS-}) \uparrow V_{(SNS_SCP)}$ to PD
\downarrow , $C_L = 47$ nF, TPS48110 - Q1 Only | | 4 | 5 | μs | | | Over current protection delay | $(V_{CS+} - V_{CS-}) \uparrow V_{(SNS_WRN)}$ to PD
\downarrow , $C_L = 47$ nF, $C_{TMR} = 0$ nF | | 25 | 30 | μs | | toc | Over current protection delay | $(V_{CS+} - V_{CS-}) \uparrow V_{(SNS_WRN)}$ to PD
\downarrow , $C_L = 47$ nF, $C_{TMR} = 22$ nF | | 370 | | μs | | t _(FLT_I_ASSERT) | FLT_I assertion delay | C _{TMR} = 22 nF | | 340 | | μs | | t _(FLT_I_DEASSERT) | FLT_I de-assertion delay | | | 260 | | μs | | t _{(FLT_T)AR} | TSD Auto-retry | TPS48110-Q1 Only | | 512 | | msec | Product Folder Links: *TPS4811-Q1*English Data Sheet: SLUSEE5 ## **6.7 Typical Characteristics** 9 English Data Sheet: SLUSEE5 ## 6.7 Typical Characteristics (continued) Product Folder Links: TPS4811-Q1 ## 6.7 Typical Characteristics (continued) 11 English Data Sheet: SLUSEE5 Product Folder Links: TPS4811-Q1 ## 7 Parameter Measurement Information 图 7-1. Timing Waveforms 图 7-2. Timing Waveforms 13 English Data Sheet: SLUSEE5 ## **8 Detailed Description** #### 8.1 Overview The TPS4811x-Q1 family is a 100-V smart high side driver with protection and diagnostics. With wide operating voltage range of 3.5 V - 80 V, the device is suitable for 12-V, 24-V, and 48-V system designs. The device has a strong 3.7-A peak source (PU) and 4-A peak sink (PD) GATE driver that enables power switching using parallel FETs in high current system designs. Use INP as the gate driver control input. MOSFET slew rate control (ON and OFF) is possible by placing external R-C components. The device has accurate current sensing (±2 % at 30-mV V_{SNS}) output (IMON) enabling systems for energy management. The device has integrated two-level overcurrent protection with FLT_I output with complete adjustability of thresholds and response time. Auto-retry and latch-off fault behavior can be configured. The device features remote overtemperature protection with FLT T output enabling robust system protection. TPS48110-Q1 has an accurate overvoltage protection (< ±2 %), providing robust load protection. The TPS48111-Q1 integrates a pre-charge driver (G) with control input (INP_G). This feature enables system designs that need to drive large capacitive loads by pre-charging first and then turning ON the main power FETs. TPS4811x-Q1 has an accurate undervoltage protection (< ± 2 %) using EN/UVLO pin. Pull EN/UVLO low (< 0.3 V) to turn OFF the device and enter into shutdown state. In shutdown mode, the controller draws a total shutdown current of 1.6 μ A at 48-V supply input. ## 8.2 Functional Block Diagram 图 8-1. TPS48110-Q1 Functional Block Diagram Copyright © 2024 Texas Instruments Incorporated 图 8-2. TPS48111-Q1 Functional Block Diagram #### 8.3 Feature Description ## 8.3.1 Charge Pump and Gate Driver output (VS, PU, PD, BST, SRC) 🛮 8-3 shows simplified diagram of the charge pump and gate driver circuit implementation. The device houses a strong 3.7-A peak source and 4-A peak sink gate drivers. The strong gate drivers enable paralleling of FETs in high power system designs ensuring minimum transition time in saturation region. A 12-V, 100-μA charge pump is derived from VS terminal and charges the external boot-strap capacitor, C_{BST} that is placed across the GATE driver (BST and SRC). In switching applications, if the charge pump supply demand is higher than 100 μA, then supply BST externally using a low leakage diode and V_{AUX} supply as shown in the \boxtimes 8-3. VS is the supply pin to the controller. With VS applied and EN/UVLO pulled high, the charge pump turns ON and charges the C_{BST} capacitor. After the voltage across C_{BST} crosses V_(BST UVLOR), the GATE driver section gets activated. The device has a 1-V (typical) UVLO hysteresis to ensure chattering less performance during initial GATE turn ON. Choose CBST based on the external FET's QG and allowed dip during FET turn ON. The charge pump remains enabled until the BST to SRC voltage reaches 12.3 V, typically, at which point the charge pump is disabled decreasing the current draw on the VS pin. The charge pump remains disabled until the BST to SRC voltage discharges to 11.7 V typically at which point the charge pump is enabled. The voltage between BST and SRC continue to charge and discharge between 12.3 V and 11.7 V as shown in the 88.3. Product Folder Links: TPS4811-Q1 图 8-3. Gate Driver 图 8-4. Charge Pump Operation Use the following equation to calculate the initial gate driver enable delay. $$T_{DRV_EN} = \frac{C_{BST} \times V_{(BST_UVLOR)}}{100 \ \mu A}$$ (1) Where, C_{BST} is the charge pump capacitance connected across BST and SRC pins, $V_{(BST\ UVLOR)} = 7.6\ V\ (typical).$ If T_{DRV} EN needs to be reduced then pre-bias BST terminal externally using an external V_{AUX} supply through a low leakage diode D1 as shown in 🛭 8-3. With this connection, T_{DRV} EN reduces to 350 μs. TPS4811x-Q1 application circuit with external sypply to BST is shown in \u2208 8-5. 图 8-5. TPS48111-Q1 Application Circuit with external supply to BST 备注 V_{ALIX} can be supplied by external supply ranging between 8.1 V and 15 V. ### 8.3.2 Capacitive Load Driving Certain end equipments like automotive power distribution unit power different loads including other ECUs. These ECUs can have large input capacitances. If power to the ECUs is switched on in uncontrolled way, large inrush currents can occur potentially damaging the power FETs. To limit the inrush current during capacitive load switching, the following system design techniques can be used with TPS4811x-Q1 devices. ## 8.3.2.1 FET Gate Slew Rate Control For limiting inrush current during turn ON of the FET with capacitive loads, use R₁, R₂, C₁ as shown in \(\begin{align*} \begin{align*} 8-6. \end{align*} \] The R₁ and C₁ components slow down the voltage ramp rate at the gate of the FET. The FET source follows the gate voltage resulting in a controlled voltage ramp across the output capacitors. Product Folder Links: TPS4811-Q1 Copyright © 2024 Texas Instruments Incorporated 提交文档反馈 17 English Data Sheet: SLUSEE5 图 8-6. Inrush Current limiting Use the 方程式 2 to calculate the inrush current during turn-ON of the FET. $$I_{INRUSH} = C_{LOAD} \times \frac{V_{BATT}}{T_{charge}}$$ (2) $$I_{\text{INRUSH}} = \frac{0.63 \times V_{\text{(BST-SRC)}} \times C_{\text{LOAD}}}{R_1 \times C_1}$$ (3) Where, C_{LOAD} is the load capacitance, VBATT is the input voltage and T_{charge} is the charge time, $V_{(BST-SRC)}$ is the charge pump voltage (11 V), Use a damping resistor R_2 (~ 10 Ω) in series with C_1 . 方程式 3 can be used to compute required C_1 value for a target inrush current. A 100 k Ω resistor for R_1 can be a good starting point for calculations. Connecting PD pin of TPS12000-Q1 directly to the gate of the external FET ensures fast turn OFF without any impact of R_1 and C_1 components. C_1 results in an additional loading on C_{BST} to charge during turn ON. Use 方程式 4 to calculate the required C_{BST} value. $$C_{BST} > Q_{g(total)} + 10 \times C_1 \tag{4}$$ Where, Q_{q(total)} is the total gate charge of the FET. ## 8.3.2.2 Using Precharge FET - (with TPS48111-Q1 Only) In high-current applications where several FETs are connected in parallel, the gate slew rate control for the main FETs is not recommended due to unequal distribution of inrush currents among the FETs. This action makes FET selection complex and results in over sizing of the FETs. The TPS48111-Q1 integrates precharge gate driver (G) with a dedicated control input (INP_G). This feature can be used to drive a separate FET that can be used to precharge the capacitive load. 8-7 shows the precharge FET implementation for capacitive load charging using TPS48111-Q1. An external capacitor Cg reduces the gate turn-ON slew rate and controls the inrush current. 图 8-7. Capacitor Charging Using Gate Slew Rate Control of Precharge FET During power up with EN/UVLO high and C_{BST} voltage above $V_{(BST_UVLOR)}$ threshold, INP and INP_G controls are active. For the precharge functionality, drive INP low to keep the main FETs OFF and drive INP_G high. G output gets pulled up to BST with I_G. Use 方程式 5 to calculate the required C_q value. $$C_{g} = \frac{C_{LOAD} \times I_{(G)}}{I_{INRUSH}}$$ (5) Where, $I_{(G)}$ is 100 μA (typical) and C_{LOAD} is total load capacitance. Use 方程式 2 to calculate the I_{INRUSH} . A series resistor R_g must be used in conjunction with C_g to limit the discharge current from C_g during turn-off . The recommended value for R_g is between 220 Ω to 470 Ω . After the output capacitor is charged, turn OFF the precharge FET by driving INP_G low. G gets pulled low to SRC with an internal 135-mA pulldown switch. The main FETs can be turned ON by driving INP high. ⊗ 8-8 shows other system design approaches to charge large output capacitors in high current applications. The designs involve an additional power resistor in series in series with precharge FET. The back-to-back FET topology shown is typically used in bi-directional power control applications like battery management systems. 图 8-8. TPS48111-Q1 application Circuits for Capacitive Load Driving Using Precharge FET and a Series **Power Resistor** #### 8.3.3 Short-Circuit Protection The TPS12000-Q1 feature adjustable short circuit protection. The threshold and the response time can be adjusted using ISCP resistor and TMR capacitor respectively. The device senses the voltage across the CS+ and CS - pins. These pins can be connected across an external current sense resistor or across the FET drain and source terminals for FET RDSON sensing. Set the circuit breaker detection threshold using an external resistor R_{ISCP} across ISCP and
GND. Use 方程式 6 to calculate the required R_{ISCP} value. $$R_{ISCP}(\Omega) = \frac{I_{SC} \times R_{SNS} - 10mV}{2 \mu}$$ (6) Where, R_{SNS} is the current sense resistor value or the FET RDSON value, I_{SC} is the short circuit current level. The short circuit protection response is fastest < 6 μ s with no C_{TMR} cap connected across TMR and GND pins. In the configurations of high side current sense with CS SEL connected to GND, during Q1 turn ON, first the FET's VGS is sensed by monitoring the voltage across PD to SRC. Once VGS raises above G1 GOOD threshold to ensure that the external FET gate is enhanced, then the SCP comparator output is monitored. If the sensed voltage across CS+ and CS - exceeds the ISCP set point, PD pulls low to SRC and FLT asserts low within 6 µs (with TMR open). Subsequent events can be set either to be auto-retry or latch off as described in following sections With CS SEL connected to >2V i.e low side current sense configurations, the device does not wait for the FETs to enhance (doesnot wait for G1 GOOD threshold to reach) and directly looks at the SCP comparator output to pull PD to SRC in the case of a short circuit event. ## 8.3.3.1 Overcurrent Protection With Auto-Retry The C_{TMR} programs the over current protection delay (t_{OC}) and auto-retry time (t_{RETRY}). Once the voltage across CS+ and CS - exceeds the set point, the C_{TMR} starts charging with 80-µA pull-up current. After the C_{TMR} charges up to V_(TMR FLT), FLT asserts low providing warning on impending FET turn OFF. After C_{TMR} charges to Copyright © 2024 Texas Instruments Incorporated $V_{(TMR_OC)}$, PD pulls low to SRC turning OFF the FET. Post this event, the auto-retry behavior starts. The C_{TMR} capacitor starts discharging with 2.5-uA pulldown current. After the voltage reaches $V_{(TMR_LOW)}$ level, the capacitor starts charging with 2.5-uA pullup. After 32 charging-discharging cycles of C_{TMR} the FET turns ON back and \overline{FLT} de-asserts Use 方程式 7 to calculate the C_{TMR} capacitor to be connected across TMR and GND. $$C_{\text{TMR}} = \frac{I_{\text{TMR}} \times t_{\text{OC}}}{1.2} \tag{7}$$ Where, I_{TMR} is internal pull-up current of 80- μ A, t_{OC} is desired overcurrent response time. The fastest t_{OC} is < 6 µs with no C_{TMR} cap connected. $$t_{RETRY} = 22.7 \times 10^6 \times C_{TMR}$$ If the overcurrent pulse duration is below t_{OC} then the FET remains ON and C_{TMR} gets discharged using internal pull down switch. 图 8-9. Overcurrent Protection With Auto-Retry #### 8.3.3.2 Overcurrent Protection With Latch-Off Connect an approximately 100-k Ω resistor across C_{TMR} as shown in \boxtimes 8-10. With this resistor, during the charging cycle, the voltage across C_{TMR} gets clamped to a level below $V_{(TMR\ OC)}$ resulting in a latch-off behavior. Use 方程式 8 to calculate C_{TMR} capacitor to be connected between TMR and GND for R_{TMR} = 100-k Ω . $$C_{TMR} = \frac{t_{OC}}{R_{TMR} \times \ln\left(\frac{1}{1 - \frac{1.2}{R_{TMR} \times I_{TMR}}}\right)}$$ (8) Where, I_{TMR} is internal pull-up current of 80-μA, t_{OC} is desired overcurrent response time. Toggle INP or EN/UVLO (below $V_{(ENF)}$) or power cycle VS below $V_{(VS_PORF)}$ to reset the latch. At low edge, the timer counter is reset and C_{TMR} is discharged. PU pulls up to BST when INP is pulled high. Copyright © 2024 Texas Instruments Incorporated 提交文档反馈 图 8-10. Overcurrent Protection With Latch-Off #### 8.3.4 Short-Circuit Protection Connect a resistor, R_{ISCP} as shown in \(\bigsig 8-11. Use 方程式 9 to calculate the required R_{ISCP} value. $$R_{ISCP}\left(\Omega\right) = \frac{I_{SC} \times R_{SNS}}{15.6 \,\mu} - 600 \tag{9}$$ Where, R_{SNS} is the current sense resistor, and I_{SC} is the desired short-circuit protection level. After the current exceeds the I_{SC} threshold then, PD pulls low to SRC within 1.2 µs in TPS48111-Q1 and 4 µs in TPS48110-Q1, protecting the FET. FLT I asserts low at the same time. Subsequent to this event, the charge and discharge cycles of C_{TMR} starts similar to the behavior post FET OFF event in the over current protection scheme. Latch-off can also achieved in the similar way as explained in the overcurrent protection scheme. Connect IWRN pin to GND if only short-circuit protection is required. RISCP resistor can be selected as per 节 8.3.4. #### 8.3.5 Analog Current Monitor Output (IMON) TPS4811x-Q1 features an accurate analog load current monitor output (IMON) with adjustable gain. The current source at IMON terminal is configured to be proportional to the current flowing through the R_{SNS} current sense resistor. This current can be converted to a voltage using a resistor R_{IMON} from IMON terminal to GND terminal. This voltage, computed using 方程式 10, can be used as a means of monitoring current flow through the system. Use 方程式 10 to calculate the V_(IMON). $$V_{(IMON)} = (V_{SNS} + V_{(OS_SET)}) \times Gain$$ (10) Where $V_{SNS} = I_LOAD \times R_{SNS}$ and $V_{(OS\ SET)}$ is the input referred offset (± 200 μ V) of the current sense amplifier $(V_{SNS}$ to $V_{(IMON)}$ scaling). Use the following equation to calculate gain. Copyright © 2024 Texas Instruments Incorporated English Data Sheet: SLUSEE5 $$Gain = \frac{0.9 \times R_{\text{IMON}}}{R_{\text{SET}}}$$ (11) Where 0.9 is the current mirror factor between the current sense amplifier and the IMON pass FET. The maximum voltage range for monitoring the current ($V_{(IMONmax)}$) is limited to minimum([$V_{(VS)} - 0.5V$], 5.5V) to ensure linear output. This puts limitation on maximum value of R_{IMON} resistor. The IMON pin has an internal clamp of 6.5 V (typical). Accuracy of the current mirror factor is < ± 1%. Use the following equation to calculate the overall accuracy of $V_{(IMON)}$. $$\% V_{\text{(IMON)}} = \frac{V_{\text{(OS_SET)}}}{V_{\text{SNS}}} \times 100$$ (12) 🛚 8-11 shows external connections and simplified block diagram of current sensing and overcurrent protection implementation. 图 8-11. Current sensing and Overcurrent protection #### 8.3.6 Overvoltage (OV) and Undervoltage Protection (UVLO) TPS4811x-Q1 has an accurate undervoltage protection (< ±2 %) using EN/UVLO pin. TPS48110-Q1 has an accurate overvoltage protection (< ±2 %), providing robust load protection. Connect a resistor ladder as shown in \alpha 8-12 for undervoltage and overvoltage protection threshold programming. Product Folder Links: TPS4811-Q1 图 8-12. Programming Overvoltage and Undervoltage Protection Threshold #### 8.3.7 Device Functional Mode (Shutdown Mode) The TPS4811x-Q1 has two modes of operation. Active mode and low IQ shutdown mode. If the EN/UVLO pin voltage is greater than the rising threshold, then the device is in active mode. In active state the internal charge pump is enabled, gate drivers and all the protection and diagnostic features are enabled. If the EN/UVLO voltage is pulled < $V_{(ENF)}$, the device enters into low IQ shutdown mode. In this mode, the charge pump, gate drivers and all the protection features are disabled. The external FETs turn OFF. The TPS4811x-Q1 consumes low IQ of 1.6 μ A (typical) in this mode. #### 8.3.8 Remote Temperature sensing and Protection (DIODE) The device features an integrated remote temperature sensing, protection and dedicated fault output. In TPS4811x-Q1, remote temperature measurement is done by using external transistor in diode configuration. Connect the DIODE pin of TPS4811x-Q1 to the collector and base of an MMBT3904 BJT. The temperature is calculated internally based on difference of measured diode voltages at two test currents. In TPS48110-Q1, after the sensed temperature reaches 150°C, the device pulls PD low to SRC, turning off the external FET and asserts FLT_T low. After the temperature reduces to 130°C, an internally fixed auto-retry cycle of 512 ms commences. FLT_T de-asserts and the external FET turns ON after the retry duration of 512 ms is lapsed. In TPS48111-Q1, after the sensed temperature crosses 150°C, PD and G get pulled low to SRC. After the TSD hysteresis, PU and G stays latched OFF. Latch gets reset by toggling EN/UVLO below $V_{(ENF)}$ or by power cycling VS below $V_{(VS\ PORF)}$. ⊗ 8-13 shows simplified block diagram of TPS4811x-Q1 DIODE based remote temperature sensing. 图 8-13. DIODE based Remote Temperature Sensing Block Diagram Product Folder Links: TPS4811-Q1 Copyright © 2024 Texas Instruments Incorporated #### 8.3.9 Output Reverse Polarity Protection The TPS4811x-Q1 withstands output reverse voltages down to -30 V. With INP low, PD is pulled low to SRC and keeps the external FET OFF even with output (SRC) voltage at negative levels preventing high current flow and protecting the main FET. Refer to 88 8-14 and 88 8-15 for test waveforms. ### 8.3.10 TPS4811x-Q1 as a Simple Gate Driver 🛚 8-16 shows application schematics of TPS4811x-Q1 as a simple gate driver in load disconnect switch as well as back-to-back FETs driving topologies. The protection features like two- level overcurrent protection, overvoltage protection, and overtemperature protection are disabled. 图 8-16. Connection Diagram of TPS48110-Q1 for Simple Gate Driver Design Product Folder Links: TPS4811-Q1 ## 9 Application and Implementation #### 备注 以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 ## 9.1 Application Information The TPS4811x-Q1 family is a 100-V smart high side driver with protection and diagnostics. The TPS4811x-Q1 device controls external N-channel MOSFETs and its drive architecture is suitable to drive back-to-back N-Channel MOSFETs. The strong gate 3.7-A peak source and 4-A peak sink capabilities enable switching parallel MOSFETs in high current applications such as circuit breaker in Powertrain (DC/DC converter), Battery Management System, Electric Power Steering, and driving PTC heater loads etc. The TPS4811x-Q1 device provides two-level adjustable overcurrent
protection with adjustable circuit breaker timer, fast short-circuit protection, accurate analog current monitor output, and remote overtemperature protection. The variant TPS48111-Q1 features a separate pre-charge driver (G) with independent control input (INP_G). This feature enables system designs that need to pre-charge the large output capacitance before turning ON the main power path. The following design procedure can be used to select the supporting component values based on the application requirement. Additionally, a spreadsheet design tool *TPS4811-Q1 Design Calculator* is available in the web product folder. ## 9.2 Typical Application: Driving HVAC PTC Heater Load on KL40 Line in Power Distribution Unit 图 9-1. Typical Application Schematic: Driving HVAC PTC Heater Product Folder Links: TPS4811-Q1 Copyright © 2024 Texas Instruments Incorporated #### 9.2.1 Design Requirements 表 9-1 shows the design parameters for this application example. 表 9-1. Design Parameters | PARAMETER | VALUE | | | | |---|------------|--|--|--| | Typical input voltage, V _{IN} | 48 V | | | | | Undervoltage lockout set point, VIN _{UVLO} | 24 V | | | | | OV set point, VIN _{OVP} | 58 V | | | | | Maximum load current, I _{OUT} | 12 A | | | | | Overcurrent protection threshold, I _{OC} | 15 A | | | | | Short-circuit protection threshold, I _{SC} | 20 A | | | | | Fault timer period (t _{OC}) | 1 ms | | | | | Fault response | Auto-retry | | | | | Load resistance, R _{LOAD} | 4 ± 0.2 Ω | | | | | Load switching frequency, F _{SW} | 100 Hz | | | | #### 9.2.2 Detailed Design Procedure #### Selection of Current Sense Resistor, R_{SNS} $$R_{SNS} = \frac{V_{(SNS-WRN)}}{I_{OC}} = \frac{25 \text{ mV}}{15 \text{ A}} = 1.66 \text{ m}\Omega$$ (13) The next smaller available sense resistor 1.5 m Ω , 1% is chosen. #### Selection of Scaling Resistor, R_{SET} R_{SET} is the resistor connected between VS and CS+ pins. This resistor scales the overcurrent protection threshold voltage and coordinates with R_{IWRN} and R_{IMON} to determine the overcurrent protection threshold and current monitoring output. The recommended range of R_{SET} is 50 Ω - 100 Ω . R_{SET} is selected as 100 Ω , 1% for this design example. #### Programming the Overcurrent Protection Threshold - R_{IWRN} Selection The R_{IWRN} sets the overcurrent protection (circuit breaker detection) threshold, whose value can be calculated using 方程式 14. $$R_{IWRN} (\Omega) = \frac{11.9 \times R_{SET}}{R_{SNS} \times I_{OC}}$$ (14) Product Folder Links: TPS4811-Q1 To set 15 A as overcurrent protection threshold, R_{IWRN} value is calculated to be 52.88 k Ω . Copyright © 2024 Texas Instruments Incorporated 提交文档反馈 Choose the closest available standard value: 54 k Ω , 1% . ## Programming the Short-Circuit Protection Threshold - R_{ISCP} Selection The R_{ISCP} sets the short-circuit protection threshold, whose value can be calculated using 方程式 15. $$R_{\rm ISCP}\left(\Omega\right) = \frac{I_{\rm SC} \times R_{\rm SNS}}{15.6\,\mu} - 600\tag{15}$$ To set 20 A as short-circuit protection threshold, R_{ISCP} value is calculated to be 1.32 k Ω . Choose the closest available standard value: 1.3 k Ω , 1%. In case where large di/dt is involved, the system and layout parasitic inductances can generate large differential signal voltages between ISCP and CS- pins. This action can trigger false short-circuit protection and nuisance trips in the system. To overcome such scenario, TI recommends to add filter capacitor of 1 nF across ISCP and CS- pins close to the device. Because nuisance trips are dependent on the system and layout parasitics, TI recommends to test the design in a real system and tweaked as necessary. ## Programming the Fault timer Period - C_{TMR} Selection For the design example under discussion, overcurrent transients are allowed for 1-ms duration. This blanking interval, t_{OC} (or circuit breaker interval, T_{CB}) can be set by selecting appropriate capacitor C_{TMR} from TMR pin to ground. The value of C_{TMR} to set 1 ms for t_{OC} can be calculated using 方程式 16. $$C_{\text{TMR}} = \frac{82 \,\mu \times t_{\text{OC}}}{1.2} = 68.33 \,\text{nF} \tag{16}$$ Choose closest available standard value: 68 nF, 10%. #### Selection of MOSFET, Q₁ For selecting the MOSFET Q_1 , important electrical parameters are the maximum continuous drain current I_D , the maximum drain-to-source voltage $V_{DS(MAX)}$, the maximum drain-to-source voltage $V_{GS(MAX)}$, and the drain-to-source ON resistance R_{DSON} . The maximum continuous drain current, I_D, rating must exceed the maximum continuous load current. The maximum drain-to-source voltage, $V_{DS(MAX)}$, must be high enough to withstand the highest voltage seen in the application. Considering 60 V as the maximum application voltage, MOSFETs with V_{DS} voltage rating of 80 V is suitable for this application. The maximum V_{GS} TPS4811-Q1 can drive is 13 V, so a MOSFET with 15-V minimum V_{GS} rating must be selected. To reduce the MOSFET conduction losses, lowest possible R_{DS(ON)} is preferred. Based on the design requirements, IPB160N08S4-03ATMA1 is selected and its ratings are: - 80-V V_{DS(MAX)} and ±20-V V_{GS(MAX)} - R_{DS(ON)} is 2.6-m Ω typical at 10-V V_{GS} - MOSFET Q_{a(total)} is 86 nC ## Selection of Bootstrap Capacitor, CBST The internal charge pump charges the external bootstrap capacitor (connected between BST and SRC pins) with approximately 100 $\,\mu$ A. In case of switching applications, the BST must be powered externally from V_{AUX} supply Product Folder Links: TPS4811-Q1 Copyright © 2024 Texas Instruments Incorporated (ranging between 8.1 V to 15 V) through a low-leakage silicon diode such as CMHD3595 or BAT46WH,115 to avoid collapsing the BST-SRC supply. This need is determined by the value of the switching frequency and MOSFET gate charge. The maximum possible frequency without external supply is given by 方程式 17. $$F_{SW,max} = \frac{I_{(BST)}}{2 \times Q_{g(total)}} = 581 \text{ Hz}$$ (17) As the present application is switched at 100 Hz, external supply is not required. Use the following equation to calculate the minimum required value of the bootstrap capacitor for driving two parallel BUK7S0R5-40HJ MOSFETs. $$C_{BST} = \frac{Q_g(\text{total})}{1 \text{ V}} = 380 \text{ nF}$$ (18) Choose closest available standard value: 470 nF, 10 %. ## Setting the Undervoltage Lockout and Overvoltage Set Point $$V_{(OVR)} = \frac{R_3}{(R_1 + R_2 + R_3)} \times VIN_{OVP}$$ (19) $$V_{(UVLOR)} = \frac{R_2 + R_3}{(R_1 + R_2 + R_3)} \times VIN_{UVLO}$$ (20) For minimizing the input current drawn from the power supply, TI recommends to use higher values of resistance for R_1 , R_2 and R_3 . However, leakage currents due to external active components connected to the resistor string can add error to these calculations. So, the resistor string current, $I(R_{123})$ must be chosen to be 20 times greater than the leakage current of UVLO and OVP pins. From the device electrical specifications, $V_{(OVR)}$ = 1.18 V and $V_{(UVLOR)}$ = 1.18 V. From the design requirements, VIN_{OVP} is 58 V and VIN_{UVLO} is 24 V. To solve the equation, first choose the value of R_1 = 470 k Ω and use 方程式 20 to solve for $(R_2 + R_3)$ = 24.3 k Ω . Use 方程式 19 and value of $(R_2 + R_3)$ to solve for R_3 = 10.1 k Ω and finally R_2 = 14.2 k Ω . Choose the closest standard 1 % resistor values: R_1 = 470 k Ω , R_2 = 14.3 k Ω , and R_3 = 10.2 k Ω . #### Choosing the Current Monitoring Resistor, R_{IMON} Voltage at IMON pin $V_{(IMON)}$ is proportional to the output load current. This can be connected to an ADC of the downstream system for monitoring the operating condition and health of the system. The R_{IMON} must be selected based on the maximum load current and the input voltage range of the ADC used. R_{IMON} is set using 方程式 21. $$V_{(IMON)} = \left(V_{SNS} + V_{(OS_SET)}\right) \times \frac{0.9 \times R_{IMON}}{R_{SET}}$$ (21) Where V_{SNS} = I_{OC} × R_{SNS} and $V_{(OS_SET)}$ is the input referred offset (± 200 μ V) of the current sense amplifier. For I_{OC} = 15 A and considering the operating range of ADC to be 0 V to 3.3 V (for example, $V_{(IMON)}$ = 3.3 V), R_{IMON} can be calculated as Product Folder Links: TPS4811-Q1 Copyright © 2024 Texas Instruments Incorporated 提交文档反馈 $$R_{\text{IMON}} = \frac{V_{\text{(IMON)}} \times R_{\text{SET}}}{\left(V_{\text{SNS}} + V_{\text{(OS_SET)}}\right) \times 0.9} = 16.52 \text{ k}\Omega$$ (22) Selecting R_{IMON} value less than shown in $\bar{\jmath}$ 程式 22 ensures that ADC limits are not exceeded for maximum value of load current. Choose the closest available standard value: 16.5 k Ω , 1%. ## 9.2.3 Application Curves English Data Sheet: SLUSEE5 ## 9.3 Typical Application: Driving B2B FETs With Pre-charging the Output Capacitance 图 9-14. Typical Application Schematic: Driving DC-DC Converter Loads in Powertrain #### 9.3.1 Design Requirements 表 9-2 shows the design parameters for this application example. 表 9-2. Design Parameters | PARAMETER | VALUE | | | | |---|-----------------|--|--|--| | Typical input voltage, V _{IN} | 48 V | | | | | Undervoltage lockout set point, VIN _{UVLO} | 24 V | | | | | Maximum load current, I _{OUT} | 40 A | | | | | Overcurrent protection threshold, I _{OC} | 50 A | | | | | Short-circuit protection threshold, I _{SC} | 60 A | | | | | Fault timer period (t _{OC}) | 1 ms | | | | | Fault response | Latch-off | | | | | Load capacitance, C _{OUT} | 4 00 μ F | | | | | Inrush current limit, I _{inrush} | 500 mA | | | | ### 9.3.2 External Component Selection By following similar design procedure as outlined in *Detailed Design Procedure*, the external component values are calculated as below: - R_{SNS} = 500 μ
Ω - R_{SFT} = 100 Ω - R_{IWRN} = 47 k Ω to set 50 A as overcurrent protection threshold - R_{ISCP} = 1.4 k Ω to set 60 A as short-circuit protection threshold - C_{TMR} = 68 nF to set 1 ms circuit breaker time - R_1 and R_2 are selected as 470 k Ω and 24.9 k Ω respectively to set VIN undervoltage lockout threshold at 24 - R_{IMON} = 15 k Ω to limit maximum $V_{(IMON)}$ voltage to 3.3 V at full-load current of 50 A - To reduce conduction losses, IAUS300N08S5N012 MOSFET is selected. Two FETs are used in parallel for control and another two FETs are used in parallel for reverse current blocking - 80-V V_{DS(MAX)} and ±20-V V_{GS(MAX)} - $R_{DS(ON)}$ is 1-m Ω typical at 10-V V_{GS} - Q_q of each MOSFET is 231 nC - $C_{BST} = (4 \times Q_q) / 1 V = 1 \mu F$ #### Selection of Pre-Charge Resistor The value of pre-charge resistor must be selected to limit the inrush current to I_{inrush} as per 方程式 23. $$R_{\text{pre-ch}} = \frac{V_{\text{IN}}}{I_{\text{inrush}}} = 96 \Omega \tag{23}$$ The power rating of the pre-charge resistor is decided by the average power dissipation given by 方程式 24. $$P_{\text{avg}} = \frac{E_{\text{pre-ch}}}{T_{\text{pre-ch}}} = \frac{0.5 \times C_{\text{OUT}} \times V_{\text{IN}}^2}{5 \times R_{\text{pre-ch}} \times C_{\text{OUT}}} = 2.4 \text{ W}$$ (24) The peak power dissipation in the pre-charge resistor is given by 方程式 25. $$P_{\text{peak}} = \frac{V_{\text{IN}}^2}{R_{\text{pre-ch}}} = 24 \text{ W}$$ (25) Two 220-Ω, 1.5-W, 5% CRCW2512220RJNEGHP resistors are used in parallel to support both average and peak power dissipation. TI suggests the designer to share the entire power dissipation profile of pre-charge resistor with the resistor manufacturer and get their recommendation. 提交文档反馈 Copyright © 2024 Texas Instruments Incorporated #### 9.3.3 Application Curves #### 9.4 Power Supply Recommendations When the external MOSFETs turn OFF during the conditions such as INP control, overvoltage cutoff, overcurrent protection causing an interruption of the current flow, the input parasitic line inductance generates a positive voltage spike on the input and output parasitic inductance generates a negative voltage spike on the output. The peak amplitude of voltage spikes (transients) depends on the value of inductance in series to the input or output of the device. These transients can exceed the *Absolute Maximum Ratings* of the device if steps are not taken to address the issue. Typical methods for addressing transients include: - Use of a TVS diode and input capacitor filter combination across input to and GND to absorb the energy and dampen the positive transients. - Use of a diode or a TVS diode across the output and GND to absorb negative spikes. The TPS4811-Q1 gets powered from the VS pin. Voltage at this pin must be maintained above $V_{(VS_PORR)}$ level to ensure proper operation. If the input power supply source is noisy with transients, then TI recommends to place a R_{VS} - C_{VS} filter between the input supply line and VS pin to filter out the supply noise. TI recommends R_{VS} value around 100 Ω . Product Folder Links: TPS4811-Q1 In case where large di/dt is involved, the system and layout parasitic inductances can generate large differential signal voltages between ISCP and CS- pins. This action can trigger false short-circuit protection and nuisance trips in the system. To overcome such scenario, TI recommends to add filter capacitor of 1 nF (C_{SCP}) across ISCP and CS- pins close to the device. Because nuisance trips are dependent on the system and layout parasitics, TI recommends to test the design in a real system and tweaked as necessary. The following figure shows the circuit implementation with optional protection components. 图 9-18. Circuit Implementation With Optional Protection Components for TPS4811-Q1 #### 9.5 Layout #### 9.5.1 Layout Guidelines - The sense resistor (R_{SNS}) must be placed close to the TPS4811x-Q1 and then connect R_{SNS} using the Kelvin techniques. Refer to Choosing the Right Sense Resistor Layout for more information on the Kelvin techniques. - For all the applications, TI recommends a 0.1 μF or higher value ceramic decoupling capacitor between VS terminal and GND. Consider adding RC network at the supply pin (VS) of the controller to improve decoupling against the power line disturbances. - The high current path from the board's input to the load, and the return path, must be parallel and close to each other to minimize loop inductance. - The external MOSFETs must be placed close to the controller such that the GATE of the MOSFETs are close to PU/PD pins to form short GATE loop. Consider adding a place holder for a resistor in series with the Gate of each external MOSFET to damp high frequency oscillations if need arises. - Place a TVS diode at the input to clamp the voltage transients during hot-plug and fast turn-off events. - The external boot-strap capacitor must be placed close to BST and SRC pins to form very short loop. - The ground connections for the various components around the TPS4811x-Q1 must be connected directly to each other, and to the TPS4811x-Q1's GND, and then connected to the system ground at one point. Do not connect the various component grounds to each other through the high current ground line. - The DIODE pin sources current to measure the temperature. TI recommends BJT MMBT3904 to use as a remote temperature sense element. Take care in the PCB layout to keep the parasitic resistance between the DIODE pin and the MMBT3904 low so as not to degrade the measurement. In addition, TI recommends to make a Kelvin connection from the emitter of the MMBT3904 to the GND of the part to ensure an accurate measurement. Additionally, a small 1000 pF bypass capacitor must be placed in parallel with the MMBT3904 to reduce the effects of noise. Product Folder Links: TPS4811-Q1 Copyright © 2024 Texas Instruments Incorporated ## 9.5.2 Layout Example 图 9-19. Typical PCB Layout Example With TPS48110-Q1 With B2B MOSFETs English Data Sheet: SLUSEE5 ## 10 Device and Documentation Support ## 10.1 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 ## 10.2 支持资源 TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。 #### 10.3 Trademarks TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 #### 10.4 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 #### 10.5 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 ## 11 Revision History 注:以前版本的页码可能与当前版本的页码不同 # ## 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TPS4811-Q1* www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|------------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------| | | . , | () | | | , , | (4) | (5) | | , , | | TPS48110AQDGXRQ1 | Active | Production | VSSOP (DGX) 19 | 5000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 2UZS | | TPS48110AQDGXRQ1.A | Active | Production | VSSOP (DGX) 19 | 5000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 2UZS | | TPS48111LQDGXRQ1 | Active | Production | VSSOP (DGX) 19 | 5000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 2XXS | | TPS48111LQDGXRQ1.A | Active | Production | VSSOP (DGX) 19 | 5000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | 2XXS | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early
internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE MATERIALS INFORMATION** www.ti.com 19-Jul-2025 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS48110AQDGXRQ1 | VSSOP | DGX | 19 | 5000 | 330.0 | 16.4 | 5.4 | 5.4 | 1.45 | 8.0 | 16.0 | Q1 | | TPS48111LQDGXRQ1 | VSSOP | DGX | 19 | 5000 | 330.0 | 16.4 | 5.4 | 5.4 | 1.45 | 8.0 | 16.0 | Q1 | **PACKAGE MATERIALS INFORMATION** www.ti.com 19-Jul-2025 ## *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |------------------|--------------|-----------------|------|------|-------------|------------|-------------| | TPS48110AQDGXRQ1 | VSSOP | DGX | 19 | 5000 | 353.0 | 353.0 | 32.0 | | TPS48111LQDGXRQ1 | VSSOP | DGX | 19 | 5000 | 353.0 | 353.0 | 32.0 | SMALL OUTLINE PACKAGE #### NOTES: PowerPAD is a trademark of Texas Instruments. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. 4. No JEDEC registration as of July 2021. 5. Features may differ or may not be present. SMALL OUTLINE PACKAGE #### NOTES: (continued) - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004). - 9. Size of metal pad may vary due to creepage requirement. - Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented. SMALL OUTLINE PACKAGE NOTES: (continued) - 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 12. Board assembly site may have different recommendations for stencil design. ## 重要通知和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司