TPS38 ZHCSM82A - APRIL 2022 - REVISED SEPTEMBER 2023 # TPS38 具有可编程检测和复位功能的宽 V_{IN} 65V 双通道过压或欠压(OV 或 UV) 检测器 ## 1 特性 - 宽电源电压范围: 2.7V 至 65V - 以提供功能安全为目标 - 可提供用于功能安全系统设计的文档 - SENSE 和 RESET 引脚为 65V 等级 - 低静态电流:1 µA(典型值) - 灵活而广泛的电压阈值选项 #### 表 10-1 - 2.7V 至 36V (最高精度 1.5%) - 800mV 选项(最高精度 1%) - 内置迟滞 (V_{HYS}) - 百分比选项: 2% 至 13% (阶跃 1%) - 固定选项: V_{TH} < 8V = 0.5V、1V、1.5V、 2V \ 2.5V - 可编程复位延时时间 - 10 nF = 12.8 ms, 10 μ F = 12.8 s - 可编程感测延时时间 - 10 nF = 1.28 ms, 10 μ F = 1.28 s - 手动复位 (MR) 特性 - 输出拓扑: - 通道 1: 开漏或推挽 - 通道 2: 开漏 ## 2 应用 - 网关 - PLC - I/O 模块 - 伺服/交流电机控制 - 工厂自动化 - 电动工具 3 说明 TPS38 是一款 65V 输入电压检测器, I_{DD} 为 1 μ A,精度为 1%,并具有 10 μ s 的快速检测 时间。该器件可直接连接到 12V/24V 汽车电池系统, 用于持续监测过压 (OV) 或欠压 (UV) 条件;由于使用 内部电阻分压器,它的总体解决方案尺寸非常小。由于 提供了广泛的迟滞电压选项,可以忽略冷启动、启停和 各种汽车电池电压瞬变。SENSE 引脚上的内置迟滞特 性有助于在监测电源电压轨时防止出现错误的复位信 号。 通过单独的 VDD 和 SENSE 引脚,可实现高可靠性汽 车系统所需的冗余,并且 SENSE 引脚可以监控比 VDD 更高和更低的电压。SENSE 引脚的高阻抗输入 支持使用可选的外部电阻器。通过 CTSx 和 CTRx 引 脚,可以对 RESET 信号的上升沿和下降沿进行延迟调 整。此外, CTSx 可忽略受监控电压轨上产生的电压干 扰,从而充当去抖动器;CTRx 具有手动复位(MR)的 作用,可用于强制系统复位。 TPS38 采用 WSON 或 SOT-23 封装。根据 IEC60664 中的指南,中心垫片是不导电的,以增加 VDD 和 GND 之间的爬电距离。TPS38 的工作温度范围为 -40°C 至 +125°C T_A。 #### 器件信息 | 器件型号 | 封装 ⁽¹⁾ | 封装尺寸(标称值) | |-------|-------------------|---------------| | TPS38 | WSON (10) (DSK) | 2.5mm × 2.5mm | | TPS38 | SOT-23 (14) (DYY) | 4.1mm × 1.9mm | 如需了解封装详细信息,请参阅数据表末尾的机械制图附录。 典型 IDD 与 VDD ## **Table of Contents** | 1 特性 | 1 | 8.1 Overview | 18 | |--------------------------------------|----|-------------------------------------|------------------| | 2 应用 | | 8.2 Functional Block Diagram | 18 | | - | | 8.3 Feature Description | 19 | | 4 Revision History | | 8.4 Device Functional Modes | 28 | | 5 Device Comparison | | 9 Application and Implementation | <mark>2</mark> 9 | | 6 Pin Configuration and Functions | | 9.1 Application Information | 29 | | 7 Specifications | | 9.2 Typical Application | 29 | | 7.1 Absolute Maximum Ratings | | 9.3 Power Supply Recommendations | 33 | | 7.2 ESD Ratings | | 9.4 Layout | 34 | | 7.3 Recommended Operating Conditions | | 10 Device and Documentation Support | 36 | | 7.4 Thermal Information | | 10.1 Device Nomenclature | 36 | | 7.5 Electrical Characteristics | 9 | 10.2 接收文档更新通知 | <mark>37</mark> | | 7.6 Timing Requirements | | 10.3 支持资源 | 37 | | 7.7 Timing Diagrams | 12 | 10.4 Trademarks | | | 7.8 Typical Characteristics | | 10.5 静电放电警告 | 37 | | 8 Detailed Description | | 10.6 术语表 | <mark>37</mark> | | | | | | 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 | Ch | anges from Revision * (April 2022) to Revision A (July 2023) | Page | |----|--|------| | • | 删除了闩锁要点 | | | • | Remove TPS38J and TPS38K rows | 6 | | • | Add Vit and Hyst accuracy timing diagram | 12 | | | Added CTR and CTS plots | | | • | Fixed CTR to CTS for an EQ | 25 | | • | Deleted non-relevant application design. | 29 | | | Fixed nomenclature for adjuctable version | | | | • | | Product Folder Links: TPS38 ## **5 Device Comparison** Contact TI sales representatives or consult TI's E2E forum for details and availability; minimum order quantities may apply. 图 5-1. Device Nomenclature - 1. Sense logic: OV = overvoltage; UV = undervoltage - 2. Reset topology: PP = Push-Pull; OD = Open-Drain - 3. Reset logic: L = Active-Low; H = Active-High - 4. A to I hysteresis options are only available for 2.7 V to 8 V threshold options ## 6 Pin Configuration and Functions 图 6-1. DSK Package, 10-Pin WSON, TPS38 (Top View) 图 6-2. DYY Package, 14-Pin SOT-23, TPS38 (Top View) Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## 表 6-1. Pin Functions | PIN | WSON
(DSK) | SOT23
(DYY) | 1/0 | 表 6-1. PIN FUNCTIONS | |--|--|---------------------------------|--|--| | NAME | PIN
NUM. | PIN
NUM. | I/O | DESCRIPTION | | VDD | 1 | 1 | ı | Input Supply Voltage: Bypass with a 0.1 μF capacitor to GND. | | SENSE1 | the adjustable variant. Depending on the SENSE1 sensing configuration, when the volume is SENSE1 pin detects an undervoltage (UV) or an overvoltage (OV) fault, RESET1/RES after the sense time delay, set by CTS1. When the voltage on the SENSE1 pin transit unfaulty UV or OV state, RESET1/RESET1 deasserts after the reset time delay, set be noisy applications, placing a 10 nF to 100 nF ceramic capacitor close to this pin may loptimum performance. | | This pin is connected to the voltage that will be monitored for fixed variants or to a resistor divider for the adjustable variant. Depending on the SENSE1 sensing configuration, when the voltage on SENSE1 pin detects an undervoltage (UV) or an overvoltage (OV) fault, RESET1/RESET1 asserts after the sense time delay, set by CTS1. When the voltage on the SENSE1 pin transitions back to an unfaulty UV or OV state, RESET1/RESET1 deasserts after the reset time delay, set by CTR1. For noisy applications, placing a 10 nF to 100 nF ceramic capacitor close to this pin may be needed for optimum performance. | | | SENSE2 | 3 | 4 | 1 | This pin is connected to the voltage that will be monitored for fixed variants or to a resistor divider for the adjustable variant. Depending on the SENSE2 sensing configuration, when the voltage on SENSE2 pin detects an undervoltage (UV) or an overvoltage (OV) fault, RESET2/RESET2 asserts after the sense time delay, set by CTS2. When the voltage on the SENSE2 pin transitions back to an unfaulty UV or OV state, RESET2/RESET2 deasserts after the reset time delay, set by CTR2. For noisy applications, placing a 10 nF to 100 nF ceramic capacitor close to this pin may be needed for optimum performance. | | when SENSE1 detects an undervoltage or overvoltage fault condition. RESET1/RESET asserted for the reset time delay period after SENSE1 transitions out of an UV or OV far For active low open-drain reset output, an external pullup resistor is required. Do not plate pullup resistors on push-pull outputs. Reset output signal for: SENSE1 Sensing Topology: Undervoltage (UV) or Overvoltage (OV) | | Reset output signal for: SENSE1 | | | | RESET2/
RESET2 | 5 | 7 | 0 | Output Reset Signal For Channel 2: See # 5 for output topology options. RESET2/RESET2 asserts when SENSE2 detects an undervoltage or overvoltage fault condition. RESET2/RESET2 remains asserted for the reset time delay period after SENSE2 transitions out of an UV or OV fault condition. For active low open-drain reset output, an external pullup resistor is required. Reset output signal for: SENSE2 Sensing Topology: Undervoltage (UV) or Overvoltage (OV) Output topology: Open Drain, Active Low or Active High | | CTR1/ MR | 6 | 9 | - | Channel 1 RESET Time Delay: User-programmable reset time delay for RESET1/RESET1. Connect an external capacitor for adjustable time delay or leave the pin floating for the shortest delay. Manual Reset: If this pin is driven low, the RESET1/RESET1 output will reset and become asserted. The pin can be left floating or be connected to a capacitor. This pin should not be driven high. | | CTR2/ MR 9 12 - an external cap | | - | Channel 2 RESET Time Delay: User-programmable reset time delay for RESET2/RESET2. Connect an external capacitor for adjustable time delay or leave the pin floating for the shortest delay. Manual Reset: If this pin is driven low, the RESET2/RESET2 output will reset and become asserted. The pin can be left floating or be connected to a capacitor. This pin should not be driven high. | | | GND | 10 | 8, 13 | - | Ground. All GND pins must be electrically connected to the board ground. | | NC | PAD | 2, 5, 14 | - | The PAD for the DSK package is not internally connected, the PAD can be connected to GND or be left floating. For the DYY package, NC stands for "No Connect". The pins are to be left floating. | | CTS1 | 7 | 10 | 0 | Channel 1 SENSE Time Delay: Capacitor programmable sense delay: CTS1 pin offers a user-adjustable sense delay time when asserting a reset condition. Connecting this pin to a
ground-referenced capacitor sets the RESET1/RESET1 delay time to assert. | | CTS2 | 8 | 11 | 0 | Channel 2 SENSE Time Delay: Capacitor programmable sense delay: CTS2 pin offers a user-adjustable sense delay time when asserting a reset condition. Connecting this pin to a ground-referenced capacitor sets the RESET2/RESET2 delay time to assert. | ## 表 6-2. Pin Functions Generic | PIN | 表 6-2. Pin Functions Generic | | | | | | |---|------------------------------|-----|---|--|--|--| | NAME | NO. | I/O | DESCRIPTION | | | | | VDD | 1 | ı | Input Supply Voltage. | | | | | SENSE1 | 2 | ı | Input for the monitored supply voltage rail channel 1 | | | | | SENSE2 | 3 | ı | Input for the monitored supply voltage rail channel 2 | | | | | RESET1, | 4 | 0 | Output Reset Signal For Channel 1: See 图 5-1 | | | | | RESET2, | 5 | 0 | Output Reset Signal For Channel 2: See 图 5-1 | | | | | CTR1/ MR 6 | | | Capacitor Time Delay Reset 1. The CTR1 pin offers a user-programmable reset release delay for Reset1. Connect an external capacitor on this pin to adjust time delay. When not in use leave pin floating for the fastest time delay. Manual Reset (CTR1/ MR):If this pin is driven low the RESET1 output will reset, leave pin floating or | | | | | | | | connected to a cap to release reset. This pin should not be driven high. | | | | | CTR2/ MR 9 Capacitor Time Delay Reset 2. The CTR2 pin offers a user-programmable reset release delay for Reset2. Connect an external capacitor on this pin to adjust time delay. When not in use leave pin floating for the fastest time delay. Manual Reset (CTR2/ MR): If this pin is driven low the RESET2 output will reset, leave pin floating connected to a cap to release reset. This pin should not be driven high. | | | | | | | | CND | 10 | | Ground | | | | | GND | 10 | _ | 5.5 5.15 | | | | | NC | PAD | - | Not internally connected, is recommended to leave the central pad floating for wider creepage between VDD and GND. | | | | | CTS1 | 7 | - | Capacitor Time Delay Sense 1. The CTS1 pin offers a user-programmable sense delay for Sense1 Connect an external capacitor on this pin to adjust time delay. When not in use leave pin floating for the fastest time delay. | | | | | CTS2 | 8 | _ | Capacitor Time Delay Sense 2 . The CTS2 pin offers a user-programmable sense delay for Sense2. Connect an external capacitor on this pin to adjust time delay. When not in use leave pin floating for the fastest time delay. | | | | | TPS38A | • | | | | | | | RESET1_UVOD | 4 | 0 | Reset output signal for Sense 1. Topology: Undervoltage, Open Drain, Active Low topology. | | | | | RESET2_UVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Undervoltage, Open Drain, Active Low topology. | | | | | TPS38B | | | | | | | | RESET1_UVPP | 4 | 0 | Reset output signal for Sense 1. Topology: Undervoltage, Push Pull, Active Low topology. | | | | | RESET2_UVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Undervoltage, Open Drain, Active Low topology. | | | | | TPS38D | | | | | | | | RESET1_UVPP | 4 | 0 | Reset output signal for Sense 1. Topology: Undervoltage, Push Pull, Active Low topology. | | | | | RESET2_UVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Undervoltage, Open Drain, Active High topology. | | | | | TPS38E | | | | | | | | RESET1_UVPP | 4 | 0 | Reset output signal for Sense 1. Topology: Undervoltage, Push Pull, Active High topology. | | | | | RESET2_UVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Undervoltage, Open Drain, Active High topology. | | | | | TPS38F | 1 | | | | | | | RESET1_UVPP | 4 | 0 | Reset output signal for Sense 1. Topology: Undervoltage, Push Pull, Active High topology. | | | | | RESET2_UVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Undervoltage, Open Drain, Active Low topology. | | | | | TPS38G | 1 | | | | | | | RESET1_UVOD | 4 | 0 | Reset output signal for Sense 1. Topology: Undervoltage, Open Drain, Active High topology. | | | | | RESET2_UVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Undervoltage, Open Drain, Active High topology. | | | | | TPS38H | | | | | | | | RESET1_UVOD | 4 | 0 | Reset output signal for Sense 1. Topology: Undervoltage, Open Drain, Active High topology. | | | | | RESET2_UVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Undervoltage, Open Drain, Active Low topology. | | | | ## 表 6-2. Pin Functions Generic (continued) | PIN | | 1/0 | DECORPORA | | |-------------|-----|-----|---|--| | NAME | NO. | I/O | DESCRIPTION | | | TPS38J | | | | | | RESET1_OVOD | 4 | 0 | Reset output signal for Sense 1. Topology: Overvoltage, Open Drain, Active Low topology. | | | RESET2_OVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Overvoltage, Open Drain, Active Low topology. | | | TPS38M | | | | | | RESET1_OVPP | 4 | 0 | Reset output signal for Sense 1. Topology: Overvoltage, Push Pull, Active Low topology. | | | RESET2_OVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Overvoltage, Open Drain, Active Low topology. | | | TPS38N | | | | | | RESET1_OVPP | 4 | 0 | Reset output signal for Sense 1. Topology: Overvoltage, Push Pull, Active Low topology. | | | RESET2_OVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Overvoltage, Open Drain, Active High topology. | | | TPS38O | | | | | | RESET1_OVPP | 4 | 0 | Reset output signal for Sense 1. Topology: Overvoltage, Push Pull, Active High topology. | | | RESET2_OVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Overvoltage, Open Drain, Active High topology. | | | TPS38P | | | | | | RESET1_OVPP | 4 | 0 | Reset output signal for Sense 1. Topology: Overvoltage, Push Pull, Active High topology. | | | RESET2_OVOD | 5 | 0 | Reset output signal for Sense 2. Topology: Overvoltage, Open Drain, Active Low topology. | | ## 7 Specifications ## 7.1 Absolute Maximum Ratings over operating free-air temperature range, unless otherwise noted (1) | | | MIN | MAX | UNIT | |-----------------|--|-------|-----|------| | Voltage | VDD, V _{SENSE1} , V _{SENSE2} , V _{RESET1} , V _{RESET2} , V _{RESET3} | - 0.3 | 70 | V | | Voltage | V _{CTS1} , V _{CTS2} , V _{CTR1} , V _{CTR2} | - 0.3 | 6 | V | | Current | I _{RESET1} , I _{RESET2} , I _{RESET2} | | 10 | mA | | Temperature (2) | Operating junction temperature, T _J | - 40 | 150 | °C | | Temperature (2) | Operating Ambient temperature, T _A | - 40 | 150 | °C | | Temperature (2) | Storage, T _{stg} | - 65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. (2) As a result of the low dissipated power in this device, it is assumed that $T_J = T_A$. #### 7.2 ESD Ratings | | | | VALUE | UNIT | |--------|-------------------------|---|--------|------| | V | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ± 2000 | V | | V(ESD) | Liectiostatic discharge | Charged device model (CDM), per JEDEC specification JESD22-C101 (2) | ± 750 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ## 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM MAX | UNIT | |----------------|---|------|---------|------| | Voltage | V_{DD} | 2.7 | 65 | V | | Voltage | V _{SENSE1} , V _{SENSE2} , V _{RESET1} , V _{RESET2} , V _{RESET2} | 0 | 65 | V | | Voltage | V _{CTS1} , V _{CTS2} , V _{CTR1} , V _{CTR2} | 0 | 5.5 | V | | Current | I _{RESET1} , I _{RESET2} , I _{RESET2} | 0 | ±5 | mA | | T _J | Junction temperature (free air temperature) | - 40 | 125 | °C | #### 7.4 Thermal Information | | | TP | S38 | | |------------------------|--|--------|--------|------| | | THERMAL METRIC (1) | DSK | DYY | UNIT | | | | 10-PIN | 14-PIN | | | R ₀ JA | Junction-to-ambient thermal resistance | 87.4 | 131.5 | °C/W | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 76.3 | 61.6 | °C/W | | R ₀ JB | Junction-to-board thermal resistance | 54.2 | 56.6 | °C/W | | ΨJT | Junction-to-top characterization parameter | 4.8 | 3.4 | °C/W | | ∮ ЈВ | Junction-to-board characterization parameter | 54.2 | 56.5 | °C/W | | R _{θ JC(bot)} | Junction-to-case (bottom) thermal resistance | 34.8 | N/A | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Product Folder Links: TPS38 Copyright © 2023 Texas Instruments Incorporated ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ## 7.5 Electrical
Characteristics At $V_{DD(MIN)} \leqslant V_{DD} \leqslant V_{DD~(MAX)}$, CTR1/ \overline{MR} = CTR2/ \overline{MR} = CTS1 = CTS2 = open, output reset pull-up resistor R_{PU} = 10 k $_{\Omega}$, voltage V_{PU} = 5.5 V, and load C_{LOAD} = 10 pF. The operating free-air temperature range T_A = $_{-}$ 40°C to 125°C, unless otherwise noted. Typical values are at T_A = 25°C and VDD = 16 V and V_{IT} = 6.5 V (V_{IT} refers to V_{ITN} or V_{ITP}). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--------------------------------|--|--|--------------------|-------|-------|------| | VDD | | | | | | | | V_{DD} | Supply Voltage | | 2.7 | | 65 | V | | UVLO (1) | Undervoltage Lockout | V _{DD} Falling below V _{DD (MIN)} | | | 2.7 | V | | V _{POR} | Power on Reset Voltage ⁽²⁾
RESET, Active Low
(Open-Drain, Push-Pull) | V _{OL(MAX)} = 300 mV
I _{OUT (Sink)} = 15 μA | | | 1.4 | V | | V_{POR} | Power on Reset Voltage ⁽²⁾
RESET, Active High
(Push-Pull) | V _{OH(MIN)} = 0.8 x V _{DD}
I _{OUT (Source)} = 15 μA | | | 1.4 | V | | | Complete support into VDD min | V_{IT} = 800 mV
$V_{DD (MIN)} \le V_{DD} \le V_{DD (MAX)}$ | | 1 | 2.6 | μA | | I _{DD} | Supply current into VDD pin | V_{IT} = 2.7 V to 36 V
$V_{DD (MIN)} \le V_{DD} \le V_{DD (MAX)}$ | | 1 | 2 | μΑ | | SENSE (Inp | out) | | | | I | | | I _{SENSE} | Input current
(SENSE1, SENSE2) | V _{IT} = 800 mV | | | 100 | nA | | I _{SENSE} | Input current
(SENSE1, SENSE2) | V _{IT} < 10 V | | | 0.8 | μΑ | | I _{SENSE} | Input current
(SENSE1, SENSE2) | 10 V < V _{IT} < 26 V | | | 1.2 | μΑ | | I _{SENSE} | Input current
(SENSE1, SENSE2) | V _{IT} > 26 V | | | 2 | μΑ | | V _{ITN} | Input Threshold Negative (Undervoltage) | V _{IT} = 2.7 V to 36 V | -1.5 | | 1.5 | % | | | | V _{IT} = 800 mV ⁽³⁾ | 0.792 | 0.800 | 0.808 | V | | V _{ITP} | Input Threshold Positive | V _{IT} = 2.7 V to 36 V | -1.5 | | 1.5 | % | | | (Overvoltage) | V _{IT} = 800 mV ⁽³⁾ | 0.792 | 0.800 | 0.808 | V | | | | V _{IT} = 0.8 V and 2.7 V to 36 V
V _{HYS} Range = 2% to 13%
(1% step) | -1.5 | | 1.5 | % | | V_{HYS} | Hysteresis Accuracy (4) | V_{IT} = 2.7 V to 8 V V_{HYS} = 0.5 V, 1 V, 1.5 V, 2 V, 2.5 V $(V_{ITP} - V_{HYS}) \ge 2.4$ V, OV Only | -1.5 | | 1.5 | % | | RESET (Ou | tput) | | | | | | | | Open-Drain leakage | V _{RESET} = 5.5 V
V _{ITN} < V _{SENSE} < V _{ITP} | | | 300 | nA | | I _{lkg(OD)} | (RESET1, RESET2) | V _{RESET} = 65 V
V _{ITN} < V _{SENSE} < V _{ITP} | | | 300 | nA | | V _{OL} ⁽⁵⁾ | Low level output voltage | $2.7 \text{ V} \leqslant \text{VDD} \leqslant 65 \text{ V}$ $I_{\text{RESET}} = 5 \text{ mA}$ | | | 300 | mV | | V _{он_ро} | High level output voltage dropout (V _{DD} - V _{OH} = V _{OH_DO}) (Push-Pull only) | 2.7 V ≤ VDD ≤ 65 V
I _{RESET} = 500 uA | | | 100 | mV | | V _{OH} ⁽⁵⁾ | High level output voltage (Push-Pull only) | 2.7 V ≤ VDD ≤ 65 V
I _{RESET} = 5 mA | 0.8V _{DD} | | | V | ## 7.5 Electrical Characteristics (continued) At $V_{DD(MIN)} \leqslant V_{DD} \leqslant V_{DD~(MAX)}$, CTR1/ \overline{MR} = CTR2/ \overline{MR} = CTS1 = CTS2 = open, output reset pull-up resistor R_{PU} = 10 k Ω , voltage V_{PU} = 5.5 V, and load C_{LOAD} = 10 pF. The operating free-air temperature range T_A = - 40°C to 125°C, unless otherwise noted. Typical values are at T_A = 25°C and VDD = 16 V and V_{IT} = 6.5 V (V_{IT} refers to V_{ITN} or V_{ITP}). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------|--|-----------------|------|------|------|-------| | Capacitor | Timing (CTS, CTR) | | | | ' | | | R _{CTR} | Internal resistance
(CTR1 / MR , CTR2 / MR) | | 877 | 1000 | 1147 | Kohms | | R _{CTS} | Internal resistance
(C _{TS1,} C _{TS2}) | | 88 | 100 | 122 | Kohms | | Manual Re | eset (MR) | | | | • | | | $V_{\overline{MR}_IH}$ | CTR1 / MR and
CTR2 / MR pin
logic high input | VDD = 2.7 V | 2200 | | | mV | | $V_{\overline{MR}_IH}$ | CTR1 / MR and
CTR2 / MR pin
logic high input | VDD = 65 V | 2500 | | | mV | | $V_{\overline{MR}_IL}$ | CTR1 / MR and
CTR2 / MR pin
logic low input | VDD = 2.7 V | | | 1300 | mV | | $V_{\overline{MR}_IL}$ | CTR1 / MR and
CTR2 / MR pin
logic low input | VDD = 65 V | | | 1300 | mV | - (1) When V_{DD} voltage falls below UVLO, reset is asserted for Output 1 and Output 2. V_{DD} slew rate \leq 100 mV / μ s - (2) V_{POR} is the minimum V_{DD} voltage for a controlled output state. Below VPOR, the output cannot be determined. V_{DD} dv/dt ≤ 100mV/μs - (3) For adjustable voltage guidelines and resistor selection refer to **Adjustable Voltage Thresholds** in **Application and Implementation section** - (4) Hysteresis is with respect to V_{ITP} and V_{ITN} voltage threshold. V_{ITP} has negative hysteresis and V_{ITN} has positive hysteresis. - (5) For V_{OH} and V_{OL} relation to output variants refer to **Timing Figures after the Timing Requirement Table** Submit Document Feedback ## 7.6 Timing Requirements At $V_{DD(MIN)} \le V_{DD} \le V_{DD \ (MAX)}$, CTR1/ \overline{MR} = CTR2/ \overline{MR} = CTS1 = CTS2 = open ⁽¹⁾, output reset pull-up resistor R_{PU} = 10 k Ω , voltage V_{PU} = 5.5V, and C_{LOAD} = 10 pF. VDD and SENSE slew rate = 1V / μ s. The operating free-air temperature range T_A = - 40°C to 125°C, unless otherwise noted. Typical values are at T_A = 25°C and VDD = 16 V and V_{IT} = 6.5 V (V_{IT} refers to either V_{ITN} or V_{ITP}). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|-----------------------------|---|-----|-----|-----|------| | Commo | n timing parameters | | | | | | | 4 | Reset release time delay | VIT = 2.7 V to 36 V
C _{CTR1} = C _{CTR2} = Open
20% Overdrive from Hysteresis | | | 100 | μs | | t _{CTR} | (CTR1/MR, CTR2/MR) (2) | $ \begin{aligned} &\text{VIT} = 800 \text{ mV} \\ &\text{C}_{\text{CTR1}} = \text{C}_{\text{CTR2}} = \text{Open} \\ &20\% \text{ Overdrive from Hysteresis} \end{aligned} $ | | | 40 | μs | | t _{CTS} | Sense detect time delay | VIT = 2.7 V to 36 V
$C_{CTS1} = C_{CTS2} = Open$
20% Overdrive from V_{IT} | | 34 | 90 | μs | | | (CTS1, CTS2) ⁽³⁾ | $\begin{aligned} &\text{VIT} = 800 \text{ mV} \\ &\text{C}_{\text{CTS1}} = \text{C}_{\text{CTS2}} = \text{Open} \\ &\text{20\% Overdrive from V}_{\text{IT}} \end{aligned}$ | | 8 | 17 | μs | | t _{SD} | Startup Delay (4) | C _{CTR1/MR} = C _{CTR2/MR} = Open | | | 2 | ms | - (1) C_{CTR1} = Reset delay channel 1, C_{CTR2} = Reset delay channel 2, C_{CTS1} = Sense delay channel 1, C_{CTS2} = Sense delay channel 2 - (2) CTR Reset detect time delay: Overvoltage active-LOW output is measure from V $_{ITP-HYS}$ to V $_{OH}$ Undervoltage active-LOW output is measure from V $_{ITN+HYS}$ to V $_{OH}$ Overvoltage active-HIGH output is measure from V $_{ITP-HYS}$ to V $_{OL}$ Undervoltage active-HIGH output is measure from V $_{ITN+HYS}$ to V $_{OL}$ - (3) CTS Sense detect time delay: - Active-low output is measure from V_{IT} to V_{OL} (or V_{Pullup}) Active-high output is measured from V_{IT} to V_{OH} V_{IT} refers to either V_{ITN} or V_{ITP} - (4) During the power-on sequence, VDD must be at or above V_{DD (MIN)} for at least t_{SD} before the output is in the correct state based on V_{SENSE}. t_{SD} time includes the propagation delay (C_{CTR1} = C_{CTR2} = Open). Capaicitor in C_{CTR1} or C_{CTR2} will add time to t_{SD}. 12 ## 7.7 Timing Diagrams Lowest Absolute Limit for the Monitored Voltage Rail 图 7-1. Voltage Threshold and Hysteresis Accuracy Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated - A. For open-drain output option, the timing diagram assumes the RESETx_UVOD / RESETx_UVOD pin is connected via an external pull-up resistor to VDD. - B. Be advised that 🖺 7-2 shows the VDD falling slew rate is slow or the VDD decay time is much larger than the propagation detect delay (t_{CTRX}) time. - C. RESETx_UVxx / RESETx_UVxx is asserted when VDD goes below the UVLO(MIN) threshold after the time delay, t_{CTRx}, is reached. # 图 7-2. SENSEx Undervoltage (UV) Timing Diagram - A. For open-drain output option, the timing diagram assumes the RESETx_OVOD / RESETx_OVOD pin is connected via an external pull-up resistor to VDD. - B. Be advised that 🖺 7-3 shows the VDD falling slew rate is slow or the VDD decay time is much larger than the propagation detect delay (t_{CTRX}) time. - $C. \quad \overline{RESETx}_OVxx \ / \ RESETx_OVxx \ / \ RESETx_OVxx \ is \ asserted \ when \ VDD \ goes \ below \ the \ UVLO_{(MIN)} \ threshold \ after \ the \ time \ delay, \ t_{CTRx}, \ is \ reached.$ 图 7-3. SENSEx Overvoltage (OV) Timing Diagram ## 7.8 Typical Characteristics Typical characteristics show the typical performance of the TPS38 device. Test conditions are T_A = 25°C, R_{PU} = 100 k Ω , C_{Load} = 50 pF, unless otherwise noted. Product Folder Links: TPS38 ## 7.8 Typical Characteristics (continued) Typical characteristics show the typical performance of the TPS38 device. Test conditions are T_A = 25°C, R_{PU} = 100 k Ω , C_{Load} = 50 pF, unless otherwise noted. ## 7.8 Typical Characteristics (continued) Typical characteristics show the typical performance of the TPS38 device. Test conditions are T_A = 25°C, R_{PU} = 100 k Ω , C_{Load} = 50 pF, unless otherwise noted. ## 8 Detailed Description #### 8.1 Overview The TPS38 is a family of high voltage and low quiescent current reset IC with fixed threshold voltage.
Voltage divider is integrated to eliminate the need for external resistors and eliminate leakage current that comes with resistor dividers. However, it can also support external resistor if required by application, the lowest threshold 800 mV (bypass internal resistor ladder) is recommenced for external resistors use case to take advantage of faster detection time and lower I_{SENSE} current. VDD, SENSE and RESET pins can support 65 V continuous operation; both VDD and SENSE voltage levels can be independent of each other, meaning VDD pin can be connected at 2.7 V while SENSE pins are connected to a higher voltage. One thing of note, the TPS38 does not have clamps within the device so external circuits or devices must be added to limit the voltages to the absolute max limit. Additional features include programmable sense time delay (CTS1, CTS2) and reset delay time and manual reset (CTR1 / \overline{MR} , CTR2 / \overline{MR}). ## 8.2 Functional Block Diagram 图 8-1. Functional Block Diagram Refer to #5 for complete list of topologies and output logic combinations. ## **8.3 Feature Description** #### 8.3.1 Input Voltage (VDD) VDD operating voltage ranges from 2.7 V to 65 V. An input supply capacitor is not required for this device; however, if the input supply is noisy good analog practice is to place a 0.1 μ F capacitor between the VDD and GND. VDD needs to be at or above V_{DD(MIN)} for at least the start-up time delay (t_{SD}) for the device to be fully functional. VDD voltage is independent of V_{SENSE} and V_{RESET} , meaning that VDD can be higher or lower than the other pins. ## 8.3.1.1 Undervoltage Lockout ($V_{POR} < V_{DD} < UVLO$) When the voltage on VDD is less than the UVLO voltage, but greater than the power-on reset voltage (V_{POR}), the output pins will be in reset, regardless of the voltage at SENSE pins. #### 8.3.1.2 Power-On Reset ($V_{DD} < V_{POR}$) When the voltage on VDD is lower than the power on reset voltage (V_{POR}), the output signal is undefined and is not to be relied upon for proper device function. 图 8-2. Power Cycle (SENSE Outside of Nominal Voltage) ⊗ 8-2 assumes an external pull-up resistor is connected to the reset pin via VDD. 图 8-3. Power Cycle (SENSE Within Nominal Voltage) 8-3 assumes an external pull-up resistor is connected to the reset pin via VDD. #### **8.3.2 SENSE** The TPS38 high voltage family integrates two voltage comparators, a precision reference voltage and trimmed resistor divider. This configuration optimizes device accuracy because all resistor tolerances are accounted for in the accuracy and performance specifications. Device also has built-in hysteresis that provides noise immunity and ensures stable operation. Channels are independent of each other, meaning that SENSE1 and SENSE2 and respective outputs can be connected to different voltage rails. Although not required in most cases, for noisy applications good analog design practice is to place a 1 nF to 10 nF bypass capacitor at the SENSEx inputs in order to reduce sensitivity to transient voltages on the monitored signal. SENSE1 and SENSE2 pins can be connected directly to VDD pin. #### 8.3.2.1 SENSE Hysteresis The TPS38 has built-in hysteresis to avoid erroneous output reset release. The hysteresis is opposite to the threshold voltage; for overvoltage options the hysteresis is subtracted from the positive threshold (V_{ITP}), for undervoltage options hysteresis is added to the negative threshold (V_{ITN}). 表 8-1. Common Hysteresis Lookup Table | | TARGET | | DEVICE ACTUAL HYSTERESIS OPTION | |------------------|--------------|---------------------|---------------------------------| | DETECT THRESHOLD | TOPOLOGY | RELEASE VOLTAGE (V) | DEVICE ACTUAL HTSTERESIS OF HON | | 18.0 V | Overvoltage | 17.5 V | -3% | | 18.0 V | Overvoltage | 16.0 V | -11% | | 17.0 V | Overvoltage | 16.5 V | -3% | | 16.0 V | Overvoltage | 15.0 V | -6% | | 15.0 V | Overvoltage | 14.0 V | -7% | | 6.0 V | Undervoltage | 6.5 V | 0.5 V | | 5.5 V | Undervoltage | 6 V | 0.5 V | | 8 V | Undervoltage | 9 V | 1 V | | 5 V | Undervoltage | 7.5 V | 2.5 V | 表 8-1 shows a sample of hysteresis and voltage options for the TPS38. For threshold voltages ranging from 2.7 V to 8 V, one option is to select a fixed hysteresis value ranging from 0.5 V to 2.5 V in increments of 0.5 V. Additionally, a second option can be selected where the hysteresis value is a percentage of the threshold voltage. The percentage of voltage hysteresis ranges from 2% to 13%. ## Undervoltage (UV) Channel $$V_{ITN} = 0.8 V$$ Voltage Hysteresis (V_{HYS}) = 5% = 40 mV Hysteresis Accuracy = ±1.5% = 39.4 mV or 40.6 mV Release Voltage = $V_{ITN} + V_{HYS} = 839.4 \text{ mV}$ to 840.6 mV #### Overvoltage (OV) Channel $$V_{ITP} = 8 V$$ Voltage Hysteresis (V_{HYS}) = 2 V Hysteresis Accuracy = ±1.5% = 1.97 V or 2.03 V Release Voltage = $V_{ITP} - V_{HYS} = 5.97 \text{ V}$ to 6.03V #### 8.3.3 Output Logic Configurations TPS38 has two channels with separate sense pins and reset pins that can be configured independently of each other. Channel 1 is available as Open-Drain and Push-Pull while channel 2 is only available as Open-Drain topology. The available output logic configuration combinations are shown in Table 表 8-2. 表 8-2. TPS38 Output Logic | DESCRIPTION | NOMENCLATURE | VAL | .UE | |-----------------------------------|--------------------|-----------|-----------| | GPN | TPS38 (+ topology) | CHANNEL 1 | CHANNEL 2 | | Topology (OV and UV only) | TPS38A | UV OD L | UV OD L | | both channels are either OV or UV | TPS38B | UV PP L | UV OD L | | UV = Undervoltage | TPS38D | UV PP L | UV OD H | | OV = Overvoltage | TPS38E | UV PP H | UV OD H | | • PP = Push-Pull | TPS38F | UV PP H | UV OD L | | OD = Open-Drain | TPS38G | UV OD H | UV OD H | | L = Active low | TPS38H | UV OD H | UV OD L | | H = Active high | TPS38J | OV OD L | OV OD L | | | TPS38M | OV PP L | OV OD L | | | TPS38N | OV PP L | OV OD H | | | TPS38O | OV PP H | OV OD H | | | TPS38P | OV PP H | OV OD L | ## 8.3.3.1 Open-Drain Open-drain output requires an external pull-up resistor to hold the voltage high to the required voltage logic. Connect the pull-up resistor to the proper voltage rail to enable the output to be connected to other devices at the correct interface voltage levels. To select the right pull-up resistor consider system V_{OH} and the (I_{lkg}) current provided in the electrical characteristics, high resistors values will have a higher voltage drop affecting the output voltage high. The opendrain output can be connected as a wired-AND logic with other open-drain signals such as another TPS38 opendrain output pin. #### 8.3.3.2 Push-Pull Push-Pull output does not require an external resistor since is the output is internally pulled-up to VDD during V_{OH} condition and output will be connected to GND during V_{OH} condition. #### 8.3.3.3 Active-High (RESET) RESET (active-high), denoted with no bar above the pin label. RESET remains low (V_{OL} , deasserted) as long as sense voltage is in normal operation within the threshold boundaries and VDD voltage is above UVLO. To assert a reset sense pins needs to meet the condition below: - For undervoltage variant the SENSE voltage need to cross the lower boundary (V_{ITN}). - For overvoltage variant the SENSE voltage needs to cross the upper boundary (V_{ITP}). #### 8.3.3.4 Active-Low (RESET) RESET (active low) denoted with a bar above the pin label. RESET remains high voltage (V_{OH} , deasserted) (open drain variant V_{OH} is measured against the pullup voltage) as long as sense voltage is in normal operation within the threshold boundaries and VDD voltage is above UVLO. To assert a reset sense pins needs to meet the condition below: - For undervoltage variant the SENSE voltage need to cross the lower boundary (V_{ITN}). - For overvoltage variant the SENSE voltage needs to cross the upper boundary (V_{ITP}). #### 8.3.4 User-Programmable Reset Time Delay The TPS38 has an adjustable reset release time delay with external capacitors. Channel timing is independent of each other. - A capacitor in CTR1 / MR program the reset time delay of Output 1. - A capacitor in CTR2 / MR program the reset time delay of Output 2. - No capacitor on these pins gives the fastest reset delay time indicated in the † 7.6. #### 8.3.4.1 Reset Time Delay Configuration The time delay (t_{CTR}) can be programmed by connecting a capacitor between CTR1 pin and GND, CTR2 for channel 2. In this section CTRx represent either channel 1 or channel 2. The relationship between external capacitor $C_{CTRx_EXT\ (typ)}$ and the time delay $t_{CTRx\ (typ)}$ is given by 方程式 1. $$t_{CTRx (typ)} = -\ln (0.28) x R_{CTRx (typ)} x C_{CTRx EXT (typ)} + t_{CTRx (no cap)}$$ (1) $R_{CTRx (typ)} = is in kilo ohms (kOhms)$ $C_{CTRx EXT (tvp)}$ = is given in microfarads (μ F) $t_{CTRx (typ)}$ = is the reset time delay in (ms) The reset delay varies according to three variables: the external capacitor (C_{CTRx_EXT}), CTR pin internal resistance (R_{CTRx}) provided in 节 7.5, and a constant. The minimum and maximum variance due to the constant is show in 方程式 2 and 方程式 3: $$t_{CTRx (min)} = -\ln (0.31) \times R_{CTRx (min)} \times C_{CTRx EXT (min)} + t_{CTRx (no cap (min))}$$ (2) $$t_{\text{CTRx (max)}} = -\ln(0.25) \times R_{\text{CTRx (max)}} \times C_{\text{CTRx_EXT (max)}} + t_{\text{CTRx (no cap (max))}}$$ (3) The recommended maximum reset delay capacitor for the TPS38 is limited to 10 $\,\mu$ F as this ensures enough time for the capacitor to fully discharge when a voltage fault occurs. Also, having a too large of a capacitor value can cause very slow charge up (rise times) and system noise can cause the internal circuit to trip earlier or later near the threshold. This leads to variation in time delay where it can make the delay accuracy worse in the presence of system noise. When a voltage fault occurs, the previously charged up capacitor
discharges and if the monitored voltage returns from the fault condition before the delay capacitor discharges completely, the delay will be shorter than expected. The capacitor will begin charging from a voltage above zero and resulting in shorter than expected time delay. A larger delay capacitor can be used so long as the capacitor has enough time to fully discharge during the duration of the voltage fault. To ensure the capacitor is fully discharged, the time period or duration of the voltage fault needs to be greater than 5% of the programmed reset time delay. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## 8.3.5 User-Programmable Sense Delay TPS38 has adjustable sense release time delay with external capacitors. Channel timing are independent of each other. Sense delay is used as a de-glitcher or ignoring known transients. - A capacitor in CTS1 program the excursion detection on SENSE1. - A capacitor in CTS2 program the excursion detection on SENSE2. - No capacitor on these pins gives the fastest detection time indicated in the † 7.6. #### 8.3.5.1 Sense Time Delay Configuration The time delay (t_{CTS}) can be programmed by connecting a capacitor between CTS1 pin and GND, CTS2 for channel 2. In this section CTSx represent either channel 1 or channel 2. The relationship between external capacitor C_{CTSx} EXT (typ) and the time delay t_{CTSx} (typ) is given by 方程式 4. $$t_{\text{CTSx (typ)}} = -\ln(0.28) \times R_{\text{CTSx (typ)}} \times C_{\text{CTSx_EXT (typ)}} + t_{\text{CTSx (no cap)}}$$ (4) R_{CTSx} = is in kilo ohms (kOhms) $C_{CTSX\ EXT}$ = is given in microfarads (μ F) t_{CTSx} = is the sense time delay (ms) The sense delay varies according to three variables: the external capacitor (C_{CTSx_EXT}), CTS pin internal resistance (R_{CTSx}) provided in 节 7.5, and a constant. The minimum and maximum variance due to the constant is show in 方程式 5 and 方程式 6: $$t_{\text{CTSx (min)}} = -\ln (0.31) \times R_{\text{CTSx (min)}} \times C_{\text{CTSx_EXT (min)}} + t_{\text{CTSx (no cap (min))}}$$ (5) $$t_{\text{CTSx (max)}} = -\ln(0.25) \times R_{\text{CTSx (max)}} \times C_{\text{CTSx EXT (max)}} + t_{\text{CTSx (no cap (max))}}$$ (6) The recommended maximum sense delay capacitor for the TPS38 is limited to 10 $\,\mu$ F as this ensures enough time for the capacitor to fully discharge when a voltage fault occurs. Also, having a too large of a capacitor value can cause very slow charge up (rise times) and system noise can cause the internal circuit to trip earlier or later near the threshold. This leads to variation in time delay where it can make the delay accuracy worse in the presence of system noise. When a voltage fault occurs, the previously charged up capacitor discharges and if the monitored voltage returns from the fault condition before the delay capacitor discharges completely, the delay will be shorter than expected. The capacitor will begin charging from a voltage above zero and resulting in shorter than expected time delay. A larger delay capacitor can be used so long as the capacitor has enough time between fault events to fully discharge during the duration of the voltage fault. To ensure the capacitor is fully discharged, the time period or time duration between fault events needs to be greater than 10% of the programmed sense time delay. ## 8.3.6 Manual RESET (CTR1 / MR) and (CTR2 / MR) Input The manual reset input allows a processor or other logic circuits to initiate a reset. In this section \overline{MR} is a generic reference to (CTR1 / \overline{MR}) and (CTR2 / \overline{MR}). A logic low on \overline{MR} causes $\overline{RESET1}$ to assert on reset output. After \overline{MR} is left floating, $\overline{RESET1}$ will release the reset if the voltage at SENSE1 pin is at nominal voltage. \overline{MR} should not be driven high, this pin should be left floating or connected to a capacitor to GND, this pin can be left unconnected if is not used. If the logic driving the \overline{MR} cannot tri-state (floating and GND) then a logic-level FET should be used as illustrated in $\boxed{8}$ 8-8. 图 8-8. Manual Reset Implementation 图 8-9. Manual Rest Timing Diagram 表 8-3. MR Functional Table | MR | SENSE ON NOMINAL VOLTAGE | RESET STATUS | |-----------|--------------------------|--| | Low | Yes | Reset asserted | | Floating | Yes | Fast reset release when SENSE voltage goes back to nominal voltage | | Capacitor | Yes | Programmable reset time delay | | High | Yes | NOT Recommended | Product Folder Links: TPS38 #### 8.3.7 Adjustable Voltage Thresholds 方程式 7 illustrates an example of how to adjust the voltage threshold with external resistor dividers. The resistors can be calculated depending on the desired voltage threshold and device part number. TI recommends using the 0.8 V voltage threshold device when using an adjustable voltage variant. This variant bypasses the internal resistor ladder. For example, consider a 12 V rail being monitored V_{MON} for undervoltage (UV) using channel 1 of the TPS38A010122DSKR variant. Using 方程式 7 and shown in 图 8-10, R_1 is the top resistor of the resistor divider that is between V_{MON} and V_{SENSE2} , R_2 is the bottom resistor that is between V_{SENSE2} and GND, V_{MON} is the voltage rail that is being monitored and V_{SENSE2} is the input threshold voltage. The monitored UV threshold, denoted as V_{MON} , where the device will assert a reset signal occurs when $V_{SENSE2} = V_{IT-(UV)}$ or, for this example, $V_{MON} = 10.8V$ which is 90% from 12 V. Using 5 Rail assuming $V_{MON} = 10.8V$ where $V_{R1} = 10.8V$ where $V_{R2} = 10$ Rail is represented in $V_{R3} Ra $$V_{SENSE2} = V_{MON-} \times (R_2 \div (R_1 + R_2))$$ (7) $$R_1 = (V_{MON-} - V_{SENSE2}) \div I_{R1}$$ (8) $$I_{R1} = I_{R2} = V_{SENSE2} \div R_2 \tag{9}$$ Substituting 方程式 9 into 方程式 8 and solving for R_1 in 方程式 7, R_1 = 125k Ω . The TPS38A010122DSKR is typically meant to monitor a 0.8 V rail with ±2% voltage threshold hysteresis. For the reset signal to become deasserted, V_{MON} would need to go above V_{IT-} + V_{HYS} . For this example, V_{MON} = 11.016 V when the reset signal becomes deasserted. There are inaccuracies that must be taken into consideration while adjusting voltage thresholds. Aside from the tolerance of the resistor divider, there is an internal resistance of the SENSE pin that may affect the accuracy of the resistor divider. Although expected to be very high impedance, users are recommended to calculate the values for the design specifications. The internal SENSE resistance R_{SENSE} can be calculated by the SENSE voltage V_{SENSE} divided by the SENSE current I_{SENSE} as shown in 500 5000 $$I_{SENSE} = [(V_{MON} - V_{SENSE}) \div R_1] - (V_{SENSE} \div R_2)$$ (10) $$R_{SENSE} = V_{SENSE} \div I_{SENSE} \tag{11}$$ 图 8-10. Adjustable Voltage Threshold with External Resistor Dividers ## **8.4 Device Functional Modes** 表 8-4. Undervoltage Detect Functional Mode Truth Table | | S | ENSE | | | OUTPUT (2) | | |--|------------------------------|------------------------------------|-----------------------------|------------------------------------|-------------|--| | DESCRIPTION | PREVIOUS CURRENT CONDITION | | CTR ⁽¹⁾ / MR PIN | VDD PIN | (RESET PIN) | | | Normal Operation | SENSE > V _{ITN(UV)} | SENSE > V _{ITN(UV)} | Open or capacitor connected | $V_{DD} > V_{DD(MIN)}$ | High | | | Undervoltage
Detection | SENSE > V _{ITN(UV)} | SENSE < V _{ITN(UV)} | Open or capacitor connected | $V_{DD} > V_{DD(MIN)}$ | Low | | | Undervoltage
Detection | SENSE < V _{ITN(UV)} | SENSE > V _{ITN(UV)} | Open or capacitor connected | $V_{DD} > V_{DD(MIN)}$ | Low | | | Normal Operation | SENSE < V _{ITN(UV)} | SENSE > V _{ITN(UV)} + HYS | Open or capacitor connected | $V_{DD} > V_{DD(MIN)}$ | High | | | Manual Reset | SENSE > V _{ITN(UV)} | SENSE > V _{ITN(UV)} | Low | $V_{DD} > V_{DD(MIN)}$ | Low | | | UVLO Engaged | SENSE > V _{ITN(UV)} | SENSE > V _{ITN(UV)} | Open or capacitor connected | $V_{POR} < V_{DD} < V_{DD(MIN)}$ | Low | | | Below V _{POR} ,
Undefined Output | SENSE > V _{ITN(UV)} | SENSE > V _{ITN(UV)} | Open or capacitor connected | V _{DD} < V _{POR} | Undefined | | - (1) (2) Reset time delay is ignored in the truth table Open-drain active low output. External pull-up resistor to high voltage ## 表 8-5. Overvoltage Detect Functional Mode Truth Table | | S | ENSE | | | OUTPUT (2) | |--|------------------------------|------------------------------------|-----------------------------|---|-------------| | DESCRIPTION | PREVIOUS CURRENT CONDI | | CTR ⁽¹⁾ / MR PIN | VDD PIN | (RESET PIN) | | Normal Operation | SENSE < V
_{ITN(OV)} | SENSE < V _{ITN(OV)} | Open or capacitor connected | $V_{DD} > V_{DD(MIN)}$ | High | | Overvoltage
Detection | SENSE < V _{ITN(OV)} | SENSE > V _{ITN(OV)} | Open or capacitor connected | $V_{DD} > V_{DD(MIN)}$ | Low | | Overvoltage
Detection | SENSE > V _{ITN(OV)} | SENSE < V _{ITN(OV)} | Open or capacitor connected | $V_{DD} > V_{DD(MIN)}$ | Low | | Normal Operation | SENSE > V _{ITN(OV)} | SENSE < V _{ITN(OV)} - HYS | Open or capacitor connected | $V_{DD} > V_{DD(MIN)}$ | High | | Manual Reset | SENSE < V _{ITN(OV)} | SENSE < V _{ITN(OV)} | Low | $V_{DD} > V_{DD(MIN)}$ | Low | | UVLO Engaged | SENSE < V _{ITN(OV)} | SENSE < V _{ITN(OV)} | Open or capacitor connected | V _{POR} < V _{DD} < UVLO | Low | | Below V _{POR} ,
Undefined Output | SENSE < V _{ITN(OV)} | SENSE < V _{ITN(OV)} | Open or capacitor connected | V _{DD} < V _{POR} | Undefined | - (1) Reset time delay is ignored in the truth table - Open-drain active low output. External pull-up resistor to high voltage Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## 9 Application and Implementation #### 备注 以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 ## 9.1 Application Information The following sections describe in detail how to properly use this device, depending on the requirements of the final application. ## 9.2 Typical Application #### 9.2.1 High Voltage - Fast AC Signal Monitoring For Power Fault Detection In many industrial and factory automation applications, there are multiple power rails that power various subsystems within the application. Some of these power rails include 24 / 48 VAC AC sources with a known operating frequency that requires a full-bridge rectifier and capacitors to convert its signal to a DC voltage where it can be monitored by a voltage supervisor. One drawback with the described conversion is the response time of the DC voltage when the AC power rail experiences a change of operating frequency or voltage amplitude. Due to the output filter of the full-bridge rectifier, the detection in the change of voltage or operating frequency may require several AC cycles before the voltage supervisor outputs a fault condition. The direct monitoring of the AC source by using a "Resistive-Drop" supply topology circuit provides the user a fast transient fault detection. In this design example, the TPS38 adjustable version is being highlighted with the ability to offer a unique solution by monitoring the output of the AC source for undervoltage operation. ^{*} The circuit solution is not isolated and one must take into account when planning to use in high power systems. 图 9-1. Sensing an AC Signal for Power Fault Detection #### 9.2.1.1 Design Requirements This design requires voltage supervision on an AC, with a known operating frequency, power supply rail. The undervoltage fault sensing is achieved by monitoring the DC output of a full bridge rectifier while the undervoltage fault is detected by inputting a half wave signal and its voltage frequency and magnitude are being monitored. The target output of this TPS38 application is for 5V reset logic. . | PARAMETER | DESIGN REQUIREMENT | DESIGN RESULT | |--|--|---| | Power rail voltage Supervision | Monitor 24 VAC 800 Hz power supply for undervoltage conditions. Trigger undervoltage fault at 5 V and at 25.5 V. | TPS38 provides voltage monitoring with 1.5% max accuracy with adjustable/non-adjustable variations. | | Maximum input voltage | Operate with power supply input up to 34 V. | The TPS38 can support a VDD of up to 65 V. | | Output logic voltage | Open-Drain Output Topology | An open-drain output is recommended to provide the a 5 V reset signal. | | SENSE1 delay when a fault is detected | RESET1 delay of at least 1.28 ms | C _{CTS1} = 10 nF sets 1.28 ms delay | | SENSE2 delay when a fault is detected | RESET2 delay of at least 0.625 ms which is the time between half wave cycles | C _{CTS2} = 5.6 nF sets 717 μs delay | | RESET1 delay when returning from a fault | RESET1 delay of at least 12.8 ms | C _{CTR1} = 10 nF sets 12.8 ms delay | | Voltage monitor accuracy | Maximum voltage monitor accuracy of 1.5%. | The TPS38 has 1.5% maximum voltage monitor accuracy. | ## 9.2.1.2 Detailed Design Procedure The main advantage of this unique application is being able to monitor a single AC source with a known operating frequency power rail. Because the TPS38 is a dual input undervoltage detector with delay function, detecting faults either from a change of operating frequency range or voltage amplitude of the AC source is achievable. 🗵 9-1 illustrates an example of how the TPS38 is monitoring an AC source. Input to SENSE1 of TPS38 is monitoring a full wave rectifier DC signal. The DC signal is the result from the rectification of the 24 VAC source and monitors the AC source for undervoltage events due to a change of voltage amplitude or a decrease to operating frequency. Input to SENSE2 of TPS38 will monitor the AC source by using a "resistive-drop" supply topology circuit. The unique circuit resistively divides the AC voltage signal and provides only the positive half wave 8 9-2 into SENSE2 input. The half wave signal does not go through any output filter and hence any change to the AC voltage or operating frequency can be rapidly detected. Knowing the operating frequency of the AC source and converting to the time domain, the TPS38 SENSE2 delay can be programmed, by the capacitor on CTS2 pin, to equal or be greater than one-half of the operating period (the frequency of the half wave rectification signal) or the half cycle shown in \ 9-2. When the half wave voltage amplitude falls below the SENSE2 threshold voltage, the SENSE2 time delay counter begins to increment. If the next half wave voltage amplitude exceeds the SENSE2 threshold voltage, the SENSE2 time delay counter will reset and the TPS38 RESET2 pin will indicate no fault was detected. Conversely, if the voltage amplitude of the half wave does not reach the SENSE2 threshold voltage within the programmed time delay of t_{CTS}, a fault will occur. Also, a fault can occur if the operating frequency from the AC source decreases, resulting in lower AC voltage amplitude at the programmed time delay t_{CTS}. Product Folder Links: TPS38 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 图 9-2. Design 2 Timing Diagram The TPS38, with its ability of having a wide VDD range from 2.7V to 65V and dual input undervoltage detection, offers a unique AC power rail monitoring solution. Combining SENSE delay feature with the "resistive-drop" supply circuitry, detecting an undervoltage event on the half cycle of the AC power rail provides a fast power fault response. Also, the TPS38 provides an undervoltage monitoring and SENSE delay fault detection for the same AC power rail. With undervoltage supervision of the AC power rail, applications needing a specific operating DC range to protect its subsystems is achieve through TPS38. Good design practice recommends using a 0.1-µF capacitor on the VDD pin and this capacitance may need to increase if using an adjustable version with a resistor divider. Note that this design solution is not isolated and one must take into account when planning to use in high power systems. SENSE1 is configured to monitor UV on the DC rail. The CTS1 and CTR1 capacitor can be used to set different timing thresholds for fault trigger and fault recovery. 9-3 and 9-4 show the behavior of RESET1 based on the voltage on SENSE1. ## 9.2.1.3 Application Curves 图 9-3. Undervoltage Reset Waveform 图 9-4. Undervoltage Recovery Waveform Product Folder Links: TPS38 ## 9.3 Power Supply Recommendations These devices are designed to operate from an input supply with a voltage range between 1.4 V (V_{POR}) to 65 V (maximum operation). Good analog design practice recommends placing a minimum 0.1 μ F ceramic capacitor as near as possible to the VDD pin. #### 9.3.1 Power Dissipation and Device Operation The permissible power dissipation for any package is a measure of the capability of the device to pass heat from the power source, the junctions of the IC, to the ultimate heat sink, the ambient environment. Thus, the power dissipation is dependent on the ambient temperature and the thermal resistance across the various interfaces between the die junction and ambient air. The maximum continuous allowable power dissipation for the device in a given package can be calculated using 方程式 12: $$P_{D-MAX} = ((T_{J-MAX} - T_A) / R_{\theta JA})$$ $$(12)$$ The actual power being dissipated in the device can be represented by 方程式 13: $$P_{D} = V_{DD} \times I_{DD} + p_{RESET}$$ (13) p_{RESET} is calculated by 方程式 14 or 方程式 15 $$p_{RESET (PUSHPULL)} = VDD - V_{RESET} \times I_{RESET}$$ (14) $$p_{RESET (OPEN-DRAIN)} = V_{RESET} \times I_{RESET}$$ (15) 方程式 12 and 方程式 13 establish the relationship between the maximum power dissipation allowed due to thermal consideration, the voltage drop across the device, and the continuous current capability of the device. These two equations should be used to determine the optimum operating conditions for the device in the application. In applications where lower power dissipation (P_D) and/or excellent package thermal resistance ($R_{\theta JA}$) is present, the maximum ambient temperature (T_{A-MAX}) may be increased. In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature (T_{A-MAX}) may have to be de-rated. T_{A-MAX} is dependent on the maximum operating junction temperature ($T_{J-MAX-OP}$ = 125°C), the maximum allowable power dissipation in the device package in the application (
P_{D-MAX}), and the junction-to ambient thermal resistance of the part/package in the application ($R_{\theta,JA}$), as given by \mathcal{F} 程式 16: $$T_{A-MAX} = (T_{J-MAX-OP} - (R_{\theta JA} \times P_{D-MAX}))$$ (16) #### 9.4 Layout #### 9.4.1 Layout Guidelines - Make sure that the connection to the VDD pin is low impedance. Good analog design practice is to place a greater than 0.1 μF ceramic capacitor as near as possible to the VDD pin. - To further improve the noise immunity on the SENSEx pins, placing a 1 nF to 10 nF capacitor between the SENSEx pins and GND can reduce the sensitivity to transient voltages on the monitored signal. - If a capacitor is used on CTS1, CTS2, CTR1, or CTR2, place these components as close as possible to the respective pins. If the capacitor adjustable pins are left unconnected, make sure to minimize the amount of parasitic capacitance on the pins to less than 5 pF. - For open-drain variants, place the pull-up resistors on RESET1 and RESET2 pins as close to the pins as possible. - When laying out metal traces, separate high voltage traces from low voltage traces as much as possible. If high and low voltage traces need to run close by, spacing between traces should be greater than 20 mils (0.5 mm). - Do not have high voltage metal pads or traces closer than 20 mils (0.5 mm) to the low voltage metal pads or traces. #### 9.4.2 Layout Example The DSK layout example in № 9-5 shows how the TPS38 is laid out on a printed circuit board (PCB) with user-defined delays. Vias used to connect pins for application-specific connections 图 9-5. TPS38 DSK Package Recommended Layout Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated The DYY layout example in ☒ 9-6 shows how the TPS38 is laid out on a printed circuit board (PCB) with user-defined delays. Vias used to connect pins for application-specific connections 图 9-6. TPS38 DYY Package Recommended Layout #### 9.4.3 Creepage Distance Per IEC 60664 Creepage is the shortest distance between two conductive parts or as shown in 9-7 the distance between high voltage conductive parts and grounded parts, the floating conductive part is ignored and subtracted from the total distance. 图 9-7. Creepage Distance Product Folder Links: TPS38 ## § 9-7 details: - A = Left pins (high voltage) - B = Central pad (not internally connected, can be left floating or connected to GND) - C = Right pins (low voltage) - Creepage distance = a + b # 10 Device and Documentation Support ## **10.1 Device Nomenclature** # 5 shows how to decode the function of the device based on its part number 表 10-1 shows TPS38 possible voltage options per channel. Contact TI sales representatives or on TI's E2E forum for details and availability of other options; minimum order quantities apply. 表 10-1. Voltage Options | | 100 mV | STEPS | | 400 mV | STEPS | 500 mV | STEPS | 1 V S | TEPS | |-------------------|-------------------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------| | NOMEN-
CLATURE | VOLTAGE
OPTIONS | | 01 | 800 mV
(divider
bypass) | 70 | 7.0 V | Α0 | 10.4 V | D0 | 20.5 V | F0 | 31.0 V | | 27 | 2.7 V | 71 | 7.1 V | A 1 | 10.8 V | D1 | 21.0 V | F1 | 32.0 V | | 28 | 2.8 V | 72 | 7.2 V | A2 | 11.2 V | D2 | 21.5 V | F2 | 33.0 V | | 29 | 2.9 V | 73 | 7.3 V | A3 | 11.6 V | D3 | 22.0 V | F3 | 34.0 V | | 30 | 3.0 V | 74 | 7.4 V | A4 | 12.0 V | D4 | 22.5 V | F4 | 35.0 V | | 31 | 3.1 V | 75 | 7.5 V | A5 | 12.4 V | D5 | 23.0 V | F5 | 36.0 V | | 32 | 3.2 V | 76 | 7.6 V | A6 | 12.8 V | D6 | 23.5 V | | | | 33 | 3.3 V | 77 | 7.7 V | A7 | 13.2 V | D7 | 24.0 V | | | | 34 | 3.4 V | 78 | 7.8 V | A8 | 13.6 V | D8 | 24.5 V | | | | 35 | 3.5 V | 79 | 7.9 V | A9 | 14.0 V | D9 | 25.0 V | | | | 36 | 3.6 V | 80 | 8.0 V | В0 | 14.4 V | E0 | 25.5 V | | | | 37 | 3.7 V | 81 | 8.1 V | B1 | 14.8 V | E1 | 26.0 V | | | | 38 | 3.8 V | 82 | 8.2 V | B2 | 15.2 V | E2 | 26.5 V | | | | 39 | 3.9 V | 83 | 8.3 V | В3 | 15.6 V | E3 | 27.0 V | | | | 40 | 4.0 V | 84 | 8.4 V | B4 | 16.0 V | E4 | 27.5 V | | | | 41 | 4.1 V | 85 | 8.5 V | B5 | 16.4 V | E5 | 28.0 V | | | | 42 | 4.2 V | 86 | 8.6 V | В6 | 16.8 V | E6 | 28.5 V | | | | 43 | 4.3 V | 87 | 8.7 V | B7 | 17.2 V | E7 | 29.0 V | | | | 44 | 4.4 V | 88 | 8.8 V | В8 | 17.6 V | E8 | 29.5 V | | | | 45 | 4.5 V | 89 | 8.9 V | В9 | 18.0 V | E9 | 30.0 V | | | | 46 | 4.6 V | 90 | 9.0 V | C0 | 18.4 V | | | | | | 47 | 4.7 V | 91 | 9.1 V | C1 | 18.8 V | | | | | | 48 | 4.8 V | 92 | 9.2 V | C2 | 19.2 V | | | | | | 49 | 4.9 V | 93 | 9.3 V | C3 | 19.6 V | | | | | | 50 | 5.0 V | 94 | 9.4 V | C4 | 20.0 V | | | | | | 51 | 5.1 V | 95 | 9.5 V | | | | | | | | 52 | 5.2 V | 96 | 9.6 V | | | | | | | | 53 | 5.3 V | 97 | 9.7 V | | | | | | | | 54 | 5.4 V | 98 | 9.8 V | | | | | | | | 55 | 5.5 V | 99 | 9.9 V | | | | | | | | 56 | 5.6 V | 00 | 10.0 V | | | | | | | | 57 | 5.7 V | | | | | | | | | | 58 | 5.8 V | | | | | | | | | | 59 | 5.9 V | | | | | | | | | | 60 | 6.0 V | | | | | | | | | Product Folder Links: TPS38 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## 表 10-1. Voltage Options (continued) | | 100 mV | STEPS | | 400 mV | 400 mV STEPS 500 mV STEPS | | | S 1 V STEPS | | | |-------------------|--------------------|-------------------|--------------------|-------------------|---------------------------|-------------------|--------------------|-------------------|-----------------|--| | NOMEN-
CLATURE | VOLTAGE
OPTIONS | NOMEN-
CLATURE | VOLTAGE
OPTIONS | NOMEN-
CLATURE | VOLTAGE
OPTIONS | NOMEN-
CLATURE | VOLTAGE
OPTIONS | NOMEN-
CLATURE | VOLTAGE OPTIONS | | | 61 | 6.1 V | | | | | | | | | | | 62 | 6.2 V | | | | | | | | | | | 63 | 6.3 V | | | | | | | | | | | 64 | 6.4 V | | | | | | | | | | | 65 | 6.5 V | | | | | | | | | | | 66 | 6.6 V | | | | | | | | | | | 67 | 6.7 V | | | | | | | | | | | 68 | 6.8 V | | | | | | | | | | | 69 | 6.9 V | | | | | | | | | | ## 10.2 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 #### 10.3 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 Product Folder Links: TPS38 ## 10.4 Trademarks TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 #### 10.5 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 #### 10.6 术语表 TI术语表本术语表列出并解释了术语、首字母缩略词和定义。 www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|----------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------| | | | | | | | (4) | (5) | | | | TPS38A752933DSKR | Active | Production | SON (DSK) 10 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 2Q3L | | TPS38A752933DSKR.A | Active | Production | SON (DSK) 10 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 2Q3L | | TPS38B752933DSKR | Active | Production | SON (DSK) 10 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 2Q4L | | TPS38B752933DSKR.A | Active | Production | SON (DSK) 10 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | 2Q4L | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF TPS38: ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple
moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # PACKAGE OPTION ADDENDUM www.ti.com 23-May-2025 Automotive : TPS38-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects # **PACKAGE MATERIALS INFORMATION** www.ti.com 11-Sep-2023 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS38A752933DSKR | SON | DSK | 10 | 3000 | 180.0 | 8.4 | 2.8 | 2.8 | 1.0 | 4.0 | 8.0 | Q2 | | TPS38B752933DSKR | SON | DSK | 10 | 3000 | 180.0 | 8.4 | 2.8 | 2.8 | 1.0 | 4.0 | 8.0 | Q2 | www.ti.com 11-Sep-2023 ## *All dimensions are nominal | | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---|------------------|--------------|-----------------|------|------|-------------|------------|-------------| | ı | TPS38A752933DSKR | SON | DSK | 10 | 3000 | 210.0 | 185.0 | 35.0 | | ı | TPS38B752933DSKR | SON | DSK | 10 | 3000 | 210.0 | 185.0 | 35.0 | 2.5 x 2.5 mm, 0.5 mm pitch PLASTIC SMALL OUTLINE - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4225304/A PLASTIC SMALL OUTLINE - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC SMALL OUTLINE - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown. PLASTIC SMALL OUTLINE - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ## 重要通知和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司