**TPS2663** ## TPS2663x 60V 6A 功率限制浪涌保护工业电子保险丝 ## 1 特性 - 4.5V 至 60V 工作范围,绝对最大值为 67V - 集成式 60V、31mΩ R<sub>ON</sub> 热插拔 FET - 通过外部 N 沟道 FET 提供反极性保护和反向电流 阻断支持 - 0.6A 至 6A 可调节电流限制 (±7%) - 浪涌期间具有电气快速瞬变 (IEC61000-4-4) 抗扰性 和负载保护 (IEC 61000-4-5) 并提供 A 类系统性能 - 快速反向电流阻断 (0.17µs) - 具有可调节输出功率限制功能 (±6%) 的型号 - 可调节 UVLO、OVP 切断、输出压摆率控制,用于 浪涌电流限制 - 通过在器件加电期间进行热调节,为大型及未知电 容负载充电 - 具有 35V 和 39V 最大过压钳位的型号 - 电源正常输出 (PGOOD) - 自动重试和闭锁之前的可选过流故障响应选项 (MODE) - 提供2倍脉冲过流支持的型号 - 模拟电流监控器 (IMON) 输出 (±6%) - 通过 UL 2367 认证 - 文件编号 E169910 - RILIM $\geq$ 3k Ω - 通过 IEC 62368-1 认证 #### 2 应用 - 工厂自动化和控制 PLC、DCS、HMI、I/O 模 块、传感器集线器 - 电机驱动器 CNC、编码器电源 - 电子断路器 简化版原理图 ## 3 说明 TPS2663x 器件是易于使用的正极 60V 和 6A 电子保 险丝,其中包含一个 $31m\Omega$ 的集成式 FET。该器件具 有一个 B-FET 驱动器,用于在需要输入反极性故障和 反向电流阻断保护的系统设计中控制外部 N 沟道 FET。该器件集成了强大的保护功能,可简化在 IEC61000-4-5 工业浪涌测试等系统测试期间需要保护 的系统设计。该器件具有可调节输出功率限制 (PLIM) 功能,从而简化需要符合 IEC61010-1 和 UL1310 等标 准的系统设计。其他保护功能包括可调节过流保护、快 速短路保护、输出压摆率控制、过压保护和欠压锁定。 为实现系统状态监视和下游负载控制,器件提供故障和 精密电流监视输出。可以使用 PGOOD 来启用和禁用 下游直流/直流转换器控制。MODE 引脚可用于在两种 限流故障响应(闭锁自动重试)之间灵活地对器件进行 配置。 #### 封装信息 | 器件型号 | 封装 <sup>(1)</sup> | 封装尺寸 <sup>(2)</sup> | | | | | |----------------------------------------------------------------------|--------------------|---------------------|--|--|--|--| | TPS26630<br>TPS26631<br>TPS26632<br>TPS26633<br>TPS26635<br>TPS26637 | RGE ( VQFN , 24 ) | 4.00mm × 4.00mm | | | | | | TPS26631<br>TPS26633<br>TPS26636<br>TPS26637 | PWP(HTSSOP,<br>20) | 6.50mm × 4.40mm | | | | | - 有关所有可用封装,请参阅节12。 - 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。 24V 电源下的 IEC61000-4-5 浪涌性能 ## **Table of Contents** | 1 特性 | 1 | 9 Application and Implementation | 30 | |--------------------------------------|----------------|-----------------------------------------------------|----| | 2 应用 | | 9.1 Application Information | 30 | | | | 9.2 Typical Application: Power Path Protection in a | | | 4 Device Comparison Table | <mark>2</mark> | PLC System | | | 5 Pin Configuration and Functions | <mark>3</mark> | 9.3 System Examples | | | 6 Specifications | | 9.4 Dos and Do Nots | | | 6.1 Absolute Maximum Ratings | | 9.5 Power Supply Recommendations | 38 | | 6.2 ESD Ratings | | 9.6 Layout | 39 | | 6.3 Recommended Operating Conditions | | 10 Device and Documentation Support | 42 | | 6.4 Thermal Information | | 10.1 Documentation Support | 42 | | 6.5 Electrical Characteristics | 6 | 10.2 接收文档更新通知 | 42 | | 6.6 Timing Requirements | | 10.3 支持资源 | 42 | | 6.7 Typical Characteristics | | 10.4 Trademarks | 42 | | 7 Parameter Measurement Information | | 10.5 静电放电警告 | 42 | | 8 Detailed Description | 16 | 10.6 术语表 | 42 | | 8.1 Overview | 16 | 11 Revision History | 42 | | 8.2 Functional Block Diagram | 17 | 12 Mechanical, Packaging, and Orderable | | | 8.3 Feature Description | | Information | 43 | | 8.4 Device Functional Modes | | | | # **4 Device Comparison Table** | PART NUMBER | OVERVOLTAGE PROTECTION | OVERLOAD FAULT RESPONSE | ADJUSTABLE OUTPUT POWER LIMITING | |-------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------| | TPS26630 | Overvoltage cutoff, adjustable | Active current limiting (1x) | No | | TPS26631 | Overvoltage cutoff, adjustable | Overvoltage cutoff, adjustable Active current limiting with pulse current support (2x) | | | TPS26632 | Overvoltage clamp, fixed (35-V max) | Active current limiting (1x) | Yes | | TPS26633 | Overvoltage clamp, fixed (35-V max) | Active current limiting with pulse current support (2x) | Yes | | TPS26635 | Overvoltage clamp, fixed (39-V max) Active current limiting with pulse current support (2x) | | Yes | | TPS26636 | Overvoltage clamp, fixed (39-V max) | Active current limiting (1x) | Yes | | TPS26637 | _ | Active current limiting with pulse current support (2x) | Yes | $\label{eq:copyright @ 2025 Texas Instruments Incorporated}$ Product Folder Links: \$TP\$2663 ## 5 Pin Configuration and Functions 图 5-1. TPS26630, TPS26631 RGE Package; 24-Pin VQFN (Top View) 图 5-2. TPS26631 PWP Package, 20-Pin HTSSOP (Top View) 图 5-3. TPS26632, TPS26633, TPS26635, TPS26637 RGE Package; 24-Pin VQFN (Top View) 图 5-4. TPS26633, TPS26636, TPS26637 PWP Package; 20-Pin HTSSOP (Top View) 表 5-1. Pin Configuration and Functions | | PIN | | TYPE <sup>(1)</sup> | DESCRIPTION | | |--------|------|--------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | NAME | VQFN | HTSSOP | 111 = 7 | DECOM TION | | | | 1 | 1 | | | | | IN | 2 | 2 | Р | Power input. Connects to the DRAIN of the internal FET. | | | | _ | 3 | | | | | B_GATE | 3 | 4 | 0 | Blocking FET gate driver output. Connect B_GATE to GATE of the external NFET. If external FET is not used then leave B_GATE pin floating. See the <i>Input Reverse Polarity Protection</i> (B_GATE, DRV) section. | | | DRV | 4 | 5 | 0 | Blocking FET fast pulldown switch drive. Connect DRV to the GATE of external pulldown switch. Leave this pin floating if external N-FET is not used. | | | IN_SYS | 5 | 6 | Р | Power input and supply voltage of the device. When an external Blocking FET is used then connect IN_SYS to source of the FET. Short IN_SYS to IN in case blocking FET is not used. | | 提交文档反馈 ## 表 5-1. Pin Configuration and Functions (续) | | PIN | <b>&amp; 5</b> | - 1. FIII COI | ntiguration and Functions (狭) | | |--------------------------------------|------|----------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | NAME | VQFN | HTSSOP | TYPE <sup>(1)</sup> | DESCRIPTION | | | UVLO | 6 | 7 | I | Input for setting the programmable undervoltage lockout threshold. An undervoltage event turns off the internal FET and asserts FLT to indicate the power-failure. Connect UVLO pin to GND pin to select the internal default threshold. | | | OVP | 7 | 8 | I | Input for setting the programmable overvoltage protection threshold (For TPS26630 and TPS26631 Only). An overvoltage event turns off the internal FET and asserts FLT to indicate the overvoltage fault. Connect OVP pin to GND pin externally to select the internal default threshold. | | | PLIM | 7 | 8 | I | Input for setting the programmable output power limiting threshold (For TPS26632, TPS26633, TPS26635,TPS26636 and TPS26637 Only). Connect a resistor across PLIM to GND to set the output power limit. Connect PLIM to GND if PLIM feature is not used. See the <i>Output Power Limiting</i> , <i>PLIM (TPS26632, TPS26633, TPS26635 and TPS26636 Only)</i> section. | | | GND | 8 | 9 | _ | Connect GND to system ground. | | | dVdT | 9 | 10 | I/O | A capacitor from this pin to GND sets output voltage slew rate. See the <i>Hot Plug-In and InRush Current Control</i> section. | | | ILIM | 10 | 11 | I/O | A resistor from this pin to GND sets the overload and short-circuit current limit. See the <i>Overload and Short-Circuit Protection</i> section. | | | MODE | 11 | 12 | I | Mode selection pin for overload fault response. See the <i>Device Functional Modes</i> section. | | | SHDN | 12 | 13 | I | Shutdown pin. Pulling SHDN low makes the device to enter into low power shutdown mode. Cycling SHDN pin voltage resets the device that has latched due to a fault condition. | | | IMON | 13 | 14 | 0 | Analog current monitor output. This pin sources a scaled down ratio of current through the internal FET. A resistor from this pin to GND converts current to proportional voltage. If unused, leave this pin floating. | | | FLT | 14 | 15 | 0 | Fault event indicator. This pin is an open drain output. If unused, leave floating or connect to GND. | | | PGTH | 15 | 16 | I | PGOOD comparator input. | | | PGOOD | 16 | 17 | 0 | Active High. A high indicates PGTH has crossed the $V_{(PGTHR)}$ threshold and the internal FET is enhanced. PGOOD goes low when $V_{(PGTH)}$ hits $V_{(PGTHF)}$ threshold. If PGOOD is unused then connect to GND or leave it floating. | | | | 17 | 18 | | | | | OUT | 18 | 19 | Р | Power output of the device. | | | | _ | 20 | | | | | | 19 | | | | | | | 20 | | | | | | N. C | 21 | _ | _ | No connect. | | | | 22 | - | | | | | | 23 | - | | | | | D DA D.TM | 24 | | | | | | PowerPAD™ integrated circuit package | _ | _ | _ | Connect PowerPAD integrated circuit package to GND plane for heat sinking. Do not use PowerPAD integrated circuit package as the only electrical connection to GND. | | <sup>(1)</sup> I = input, O = output, I/O = input and output, P = power 4 Product Folder Links: TPS2663 ## 6 Specifications ## 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | Troi operating need an temperature | , | MIN | MAX | UNIT | |---------------------------------------------------------------------------------------------------|--------------------------------|-------|--------------------|------| | IN_SYS | | - 60 | 67 | V | | IN_SYS (10ms transient), T <sub>A</sub> = 25 °C | | - 60 | 75 | V | | IN, OUT, UVLO, FLT, PGOOD, PGTH | | - 0.3 | 67 | V | | IN_SYS - OUT (10ms transient), with a Blocking FET | Input Voltage | - 85 | | V | | IN (10ms transient), T <sub>A</sub> = 25 ℃ | | - 0.3 | 75 | V | | BGATE | imput voitage | - 60 | 81 | V | | BGATE - IN_SYS | | - 0.3 | 14 | V | | DRV | | - 60 | 72 | V | | DRV - IN_SYS | | - 0.3 | 20 | V | | OVP, dVdT, IMON, MODE, SHDN, ILIM, PLIM | | - 0.3 | 5.5 | V | | I <sub>FLT</sub> , I <sub>dVdT</sub> , I <sub>PGOOD</sub> | Sink current | | 10 | mA | | I <sub>dVdT</sub> , I <sub>ILIM</sub> , I <sub>PLIM</sub> , I <sub>MODE</sub> , I <sub>SHDN</sub> | Source current | | Internally limited | | | т. | Operating Junction temperature | - 40 | 150 | | | $T_J$ | Transient junction temperature | - 65 | T <sub>(TSD)</sub> | °C | | T <sub>stg</sub> | Storage temperature | - 65 | 150 | | <sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|------------------------------------------------------------------------------------------|-------|------| | V | | Human body model (HBM), per ANSI/ESDA/<br>JEDEC JS-001, all pins <sup>(1)</sup> | ±2000 | V | | V <sub>(ESD)</sub> | Electrostatic discharge | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins <sup>(2)</sup> | ±1000 | V | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. #### **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM MAX | UNIT | |-----------------------------|------------------------|------|---------|----------------------| | IN_SYS, IN | | 4.5 | 60 | | | OUT, UVLO, PGTH, PGOOD, FLT | Input Voltage | 0 | 60 | V | | OVP, dVdT, IMON, MODE | | 0 | 4 | | | SHDN | | 0 | 5 | | | ILIM | Resistance | 3 | 30 | | | IMON | Resistance | 1 | | $\mathbf{k} \Omega$ | | PLIM | Resistance | 60.4 | 150 | | | IN, IN_SYS, OUT | External Capacitance | 0.1 | | μF | | dVdT | - External Capacitance | 10 | | nF | Product Folder Links: TPS2663 提交文档反馈 5 English Data Sheet: SLVSE94 over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM | MAX | UNIT | |----------------|--------------------------------|------|-----|-----|------| | T <sub>J</sub> | Operating Junction temperature | - 40 | 25 | 125 | °C | #### **6.4 Thermal Information** | | | TPS | | | |------------------------|----------------------------------------------|------------|--------------|------| | | THERMAL METRIC <sup>(1)</sup> | RGE (VSON) | PWP (HTSSOP) | UNIT | | | | 24 PINS | 20 PINS | | | R <sub>0</sub> JA | Junction-to-ambient thermal resistance | 31.4 | 32.2 | °C/W | | R <sub>θ JC(top)</sub> | Junction-to-case (top) thermal resistance | 23.2 | 23.4 | °C/W | | R <sub>0</sub> JB | Junction-to-board thermal resistance | 10.2 | 10 | °C/W | | $\Psi_{JT}$ | Junction-to-top characterization parameter | 0.3 | 0.3 | °C/W | | $\Psi_{JB}$ | Junction-to-board characterization parameter | 10.2 | 9.9 | °C/W | | R <sub>θ JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | 2.8 | 3.6 | °C/W | <sup>(1)</sup> For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ## **6.5 Electrical Characteristics** $-40^{\circ}C\leqslant T_{A}=T_{J}\leqslant +125^{\circ}C,\, 4.5~V < V_{(IN\_SYS)}=V_{(IN)} < 60~V,\, V_{(\overline{SHDN})}=2~V,\, R_{(ILIM)}=30~k\,\Omega\,,\, IMON=PGOOD=\overline{FLT}=0$ OPEN, $C_{(OUT)}=1~\mu$ F, $C_{(dVdT)}=0$ OPEN. (All voltages referenced to GND, (unless otherwise noted)) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|-------|-------|-------------------------------------------------------------------------------------------------------------------------|------| | SUPPLY VOLTA | GE | | | | | | | V <sub>(IN_SYS)</sub> | Operating input voltage | | 4.5 | | 60 | V | | IQ <sub>(ON)</sub> | Supply current | Enabled: V <sub>(SHDN)</sub> = 2 V | | 1.38 | 1.7 | mA | | IQ <sub>(OFF)</sub> | Supply current | V <sub>(SHDN)</sub> = 0 V | | 21 | 60 | μΑ | | I <sub>(GND)</sub> | Ground current during reverse polarity | $V_{(IN\_SYS)} = -24V, V_{(IN)} = Floating,$<br>$V_{(OUT)} = 0 V$ | | 144 | 200 | μΑ | | V | Over voltage clamp | TPS26632 and TPS26633, V <sub>(IN_SYS)</sub> > 35 V, I <sub>(OUT)</sub> = 1 mA | 32 | 32.8 | 60<br>1.7<br>60 | V | | V <sub>(OVC)</sub> | Over voltage clamp | TPS26635 and TPS26636, V <sub>(IN_SYS)</sub> > 40 V, I <sub>(OUT)</sub> = 1 mA | 35.7 | 36.6 | | V | | UNDERVOLTAG | SE LOCKOUT (UVLO) INPUT | | | | | | | \/ | Factory set V <sub>(IN SYS)</sub> undervoltage trip | V <sub>(IN_SYS)</sub> rising, V <sub>(UVLO)</sub> = 0 V | 15.1 | 15.46 | 60<br>1.7<br>60<br>200<br>35<br>39<br>15.9<br>15.1<br>240<br>1.224<br>1.15<br>150<br>35.4<br>35<br>240<br>1.224<br>1.15 | V | | V <sub>(INSYS_UVLO)</sub> | level trip level | V <sub>(IN_SYS)</sub> falling, V <sub>(UVLO)</sub> = 0 V | 14 | 14.47 | | V | | V <sub>(SEL_UVLO)</sub> | Internal UVLO select threshold | | 180 | 210 | 240 | mV | | V <sub>(UVLOR)</sub> | UVLO threshold voltage, rising | | 1.176 | 1.2 | 1.224 | V | | V <sub>(UVLOF)</sub> | UVLO threshold voltage, falling | | 1.09 | 1.122 | 1.15 | V | | I <sub>(UVLO)</sub> | UVLO Input leakage current | $0 \text{ V} \leqslant V_{(UVLO)} \leqslant 60 \text{ V}$ | - 150 | 8 | 150 | nA | | OVERVOLTAGE | PROTECTION (OVP) INPUT | | | | ' | | | \ / | Factory set V <sub>(IN SYS)</sub> overvoltage trip | V <sub>(IN_SYS)</sub> rising, V <sub>(OVP)</sub> = 0 V | 33.2 | 34.33 | 35.4 | V | | $V_{(IN\_SYS\_OVP)}$ | level trip level | V <sub>(IN_SYS)</sub> falling, V <sub>(OVP)</sub> = 0 V | 32.7 | 33.89 | 35 | V | | V <sub>(SEL_OVP)</sub> | Internal OVP select threshold | | 180 | 210 | 240 | mV | | V <sub>(OVPR)</sub> | over-voltage threshold voltage, rising | | 1.176 | 1.2 | 1.224 | V | | V <sub>(OVPF)</sub> | over-voltage threshold voltage, falling | | 1.09 | 1.122 | 1.15 | V | | I <sub>(OVP)</sub> | OVP Input leakage current | $0 \text{ V} \leqslant V_{(OVP)} \leqslant 4 \text{ V}$ | - 150 | 0 | 150 | nA | | CURRENT LIMI | T PROGRAMMING (ILIM) | | | | | | Product Folder Links: TPS2663 Copyright © 2025 Texas Instruments Incorporated $-40^{\circ}C\leqslant T_{A}=T_{J}\leqslant +125^{\circ}C,\, 4.5~V < V_{(IN\_SYS)}=V_{(IN)} < 60~V,\, V_{(\overline{SHDN})}=2~V,\, R_{(ILIM)}=30~k\,\Omega\,,\, IMON=PGOOD=\overline{FLT}=OPEN,\, C_{(OUT)}=1~\mu\,F,\, C_{(dVdT)}=OPEN.\,\, (All~voltages~referenced~to~GND,~(unless~otherwise~noted))$ | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|-------|--------------------| | | | $R_{(ILIM)} = 30 \text{ k} \Omega$ , $V_{(IN)} - V_{(OUT)} = 1 \text{ V}$ | 0.54 | 0.6 | 0.66 | Α | | 1 | Over Load augreent limit | $R_{(ILIM)} = 9 k \Omega$ , $V_{(IN)} - V_{(OUT)} = 1 V$ | 1.84 | 2 | 2.16 | Α | | I <sub>(OL)</sub> | Over Load current limit | $R_{(ILIM)} = 4.02 \text{ k} \Omega$ , $V_{(IN)} - V_{(OUT)} = 1 \text{ V}$ | 4.185 | 4.5 | 4.815 | Α | | | | $R_{(ILIM)} = 3 k \Omega$ , $V_{(IN)} - V_{(OUT)} = 1 V$ | 5.58 | 6 | 6.42 | Α | | I <sub>(OL_Pulse)</sub> | Transient Pulse Over current limit | $3~\text{k}\Omega < \text{R}_{\text{(ILIM)}} < 30~\text{k}\Omega$ , TPS26631, TPS26633, TPS26635 and TPS26637 Only | | 2xI <sub>(OL)</sub> | | Α | | I <sub>(FASTRIP)</sub> | Fast-trip comparator threshold | TPS26630 and TPS26632 Only | | 2xI <sub>(OL)</sub> | | Α | | I <sub>(FASTRIP)</sub> | Fast-trip comparator threshold | TPS26631, TPS26633,TPS26635 and TPS26637 Only | | 3xI <sub>(OL)</sub> | | Α | | I <sub>(SCP)</sub> | Short Circuit Protect current | | | 45 | | Α | | OUTPUT POWE | R LIMITING CONTROL (PLIM) INPUT - | TPS26632, TPS26633, TPS26635, TPS2 | 26636 and | TPS26637 | ONLY | | | V <sub>(SEL_PLIM)</sub> | Power Limit Feature select threshold | | 160 | 217 | 240 | mV | | I <sub>(PLIM)</sub> | PLIM sourcing current | V <sub>(PLIM)</sub> = 0 V | 4.4 | 5.02 | 5.6 | μA | | D | Max Output power | R <sub>(PLIM)</sub> = 100 kΩ | 94 | 100 | 106 | W | | $P_{(PLIM)}$ | Max Output power | $R_{(PLIM)} = 150 \text{ k}\Omega^{(1)}$ | 141.9 | 151 | 160.1 | W | | P <sub>(PLIM)</sub> | Max Output power | $R_{(PLIM)} = 100 \text{ k}\Omega, V_{IN} = 54 \text{ V},$ TPS26637 only | | 100 | | W | | B_GATE (BLOC | KING FET GATE DRIVER) | | | | , | | | $V_{(B\_GATE)}$ | B_GATE clamp voltage | V <sub>(B_GATE)</sub> - V <sub>(IN_SYS)</sub> | 8.3 | 10.23 | 14 | V | | I <sub>(B_GATE)</sub> | Blocking FET Gate drive current | V <sub>(B_GATE)</sub> - V <sub>(IN_SYS)</sub> = 1 V | 16 | 19.4 | 23 | μA | | Rpd_BGATE | B_GATE Pull down resistance | | 800 | 1010 | 1200 | <b>k</b> Ω | | V <sub>(DRV_OH)</sub> | DRV logic high level | $V_{(DRV)} - V_{(IN\_SYS)}, C_{(DRV)} \le 50 \text{ pF}$ | 3 | 4.25 | 5.2 | V | | PASS FET OUT | PUT (OUT) | | | | , | | | R <sub>ON</sub> | IN to OUT total ON resistance | $0.6 \text{ A} \leqslant I_{(OUT)} \leqslant 6 \text{ A,T}_{J} = 25^{\circ}\text{C}$ | 26 | 30.44 | 34.5 | mΩ | | R <sub>ON</sub> | IN to OUT total ON resistance | $0.6~\text{A} \leqslant \text{I}_{(OUT)} \leqslant 6~\text{A,T}_{\text{J}} = 85^{\circ}\text{C}$ | 33 | | 45 | $\mathbf{m}\Omega$ | | R <sub>ON</sub> | IN to OUT total ON resistance | $0.6~\text{A} \leqslant \text{I}_{(OUT)} \leqslant 6~\text{A},~-40^{\circ}\text{C} \leqslant \text{T}_{\text{J}} \leqslant +125^{\circ}\text{C}$ | 19 | 30.44 | 53 | mΩ | | I <sub>lkg(OUT)</sub> | OUT leakage during input supply brownout | $V_{(IN\_SYS)} = 0 \text{ V}, V_{(OUT)} = 24 \text{ V}, V_{(IN)} = Floating}, V_{(SHDN)} = 2V$ , Sinking | - 100 | | | μA | | V <sub>(REVTH)</sub> | V <sub>(IN_SYS)</sub> - V <sub>(OUT)</sub> threshold for reverse protection comparator, rising | | - 20 | - 15 | - 9 | mV | | $V_{(FWDTH)}$ | $V_{(\text{IN\_SYS})}$ - $V_{(\text{OUT})}$ threshold for reverse protection comparator, falling | | 45 | 57 | 67 | mV | | OUTPUT RAMP | CONTROL (dVdT) | | | | | | | $I_{(dVdT)}$ | dVdT charging current | $V_{(dVdT)} = 0 V$ | 1.775 | 2 | 2.225 | μΑ | | GAIN <sub>(dVdT)</sub> | dVdT to OUT gain | $V_{(OUT)}/V_{(dVdT)}$ | 23.5 | 25 | 26 | V/V | | $V_{(dVdTmax)}$ | dVdT maximum capacitor voltage | | 3.8 | 4.17 | 4.75 | V | | R <sub>(dVdT)</sub> | dVdT discharging resistance | | 10 | 16.6 | 26.6 | Ω | | | OOWN (SHDN) INPUT | | | | | | | V <sub>(SHDN)</sub> | Open circuit voltage | I <sub>(SHDN)</sub> = 0.1 μA | 2.48 | 2.7 | 3.3 | V | | V <sub>(SHUTF)</sub> | SHDN threshold voltage for low IQ shutdown, falling | | 8.0 | | | V | | V <sub>(SHUTR)</sub> | SHDN threshold rising | | | | 2 | V | | I <sub>(SHDN)</sub> | Leakage current | V <sub>(SHDN)</sub> = 0 V | - 10 | | | μA | | CURRENT MON | NITOR OUTPUT (IMON) | | | | _ | | $-40^{\circ}C \leqslant T_{A} = T_{J} \leqslant +125^{\circ}C, \ 4.5 \ V < V_{(IN\_SYS)} = V_{(IN)} < 60 \ V, \ V_{(\overline{SHDN})} = 2 \ V, \ R_{(ILIM)} = 30 \ k\Omega \ , \ IMON = PGOOD = \overline{FLT} = OPEN, \ C_{(OUT)} = 1 \ \ \mu \ F, \ C_{(dVdT)} = OPEN. \ (All \ voltages \ referenced \ to \ GND, \ (unless \ otherwise \ noted))$ | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------|-----------------------------------------------------|-----------------------------------------------------------|-------|-----------------|-------|------| | GAIN <sub>(IMON)</sub> | Gain factor I <sub>(IMON)</sub> :I <sub>(OUT)</sub> | $0.6 \text{ A} \leqslant I_{(OUT)} \leqslant 2 \text{ A}$ | 25.66 | 27.9 | 30.14 | μA/A | | | | 2 A ≤ I <sub>(OUT)</sub> ≤ 6 A | 26.22 | 27.9 | 29.58 | μΑ/Α | | FAULT FLAG (F | LT): ACTIVE LOW | | | | | | | R <sub>(FLT)</sub> | FLT Pull-down resistance | | 36 | 70 | 130 | Ω | | I <sub>(FLT)</sub> | FLT Input leakage current | $0 \text{ V} \leqslant V_{(FLT)} \leqslant 60 \text{ V}$ | - 150 | 6 | 150 | nA | | POWER GOOD | (PGOOD) | | • | | | | | R <sub>(PGOOD)</sub> | PGOOD Pull-down resistance | | 36 | 70 | 130 | Ω | | I <sub>(PGOOD)</sub> | PGOOD Input leakage current | 0 V ≤ V <sub>(PGOOD)</sub> ≤ 60 V | - 150 | | 150 | nA | | POSITIVE INPU | T FOR POWER GOOD COMPARATOR ( | PGTH) | ' | | | | | V <sub>(PGTHR)</sub> | PGTH threshold voltage, rising | | 1.176 | 1.2 | 1.224 | V | | V <sub>(PGTHF)</sub> | PGTH threshold voltage, falling | | 1.09 | 1.123 | 1.15 | V | | I <sub>(PGOOD)</sub> | PGTH input leakage current | 0 V ≤ V <sub>(PGTH)</sub> ≤ 60 V | - 150 | | 150 | nA | | THERMAL PRO | TECTION | | | | ' | | | T <sub>(J_REG)</sub> | Thermal regulation set point | | 136 | 145 | 154 | °C | | T <sub>(TSD)</sub> | Thermal shutdown (TSD) threshold, rising | | | 165 | | °C | | T <sub>(TSDhyst)</sub> | TSD hysteresis | | | 11 | | °C | | MODE | | | | | ' | | | | | MODE = Open | | Latch | | | | MODE_SEL | Mode selection | MODE = Short to GND | | Auto -<br>Retry | | | <sup>(1)</sup> Parameter guaranteed by design and characterization, not tested in production ## 6.6 Timing Requirements -40°C ≤ T<sub>A</sub> = T<sub>J</sub> ≤ +125°C, 4.5 V < V<sub>(IN\_SYS)</sub> = V<sub>(IN)</sub> < 60 V, V<sub>(SHDN)</sub> = 2 V, R<sub>(ILIM)</sub> = 30 kΩ, IMON = PGOOD = $\overline{\text{FLT}}$ = OPEN, C<sub>(OUT)</sub> = 1 $\mu$ F, C<sub>(dVdT)</sub> = OPEN. (All voltages referenced to GND, (unless otherwise noted)) | | PARAMETER | TEST CONDITIONS | MIN | NOM | MAX | UNIT | |--------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------|-----|------| | UVLO INPUT (UV | LO) | | | | | | | UVLO_t <sub>on(dly)</sub> | UVLO switch turnon delay | UVLO † (100 mV above $V_{(UVLOR)}$ ) to $V_{(OUT)}$ = 100 mV with $V_{(PGTH}$ < $V_{(PGTHF)}$ , $C_{(dVdT)} \ge$ 10 nF, $[C_{(dVdT)}$ in nF] | | 742 +<br>49.5 x<br>C <sub>(dVdT)</sub> | | μs | | UVLO_t <sub>on(fast_dly)</sub> | UVLO switch turnon delay (fast) | UVLO $\uparrow$ (100 mV above V <sub>(UVLOR)</sub> ) to FET ON with V <sub>(PGTH)</sub> > V <sub>(PGTHF)</sub> | 70 | 150 | 251 | μs | | UVLO_t <sub>off(dly)</sub> | UVLO switch turnoff delay | UVLO ↓ (20 mV below V <sub>(UVLOF)</sub> ) to FLT ↓ | 9 | 11 | 16 | μs | | t <sub>UVLO_FLTdly)</sub> | UVLO to fault de-assertion delay | UVLO↑ to <del>FLT</del> ↑ delay | 500 | 617 | 700 | μs | | OVER VOLTAGE | PROTECTION INPUT (OVP) | | | | • | | | OVP_t <sub>OFF(dly)</sub> | OVP switch turnoff delay | OVP ↑ (20 mV above V <sub>(OVPR)</sub> ) to FLT | 8.5 | 11 | 14 | μs | | OVP_t <sub>on(fast_dly)</sub> | OVP switch turnon delay (fast) | OVP ↓ (100 mV below V <sub>(OVPF)</sub> ) to FET ON with V <sub>(PGTH)</sub> > V <sub>(PGTHF)</sub> | 58 | 129 | 225 | μs | | OVP_t <sub>on(dly)</sub> | OVP switch disable delay | OVP $\downarrow$ (100 mV below V <sub>(OVPF)</sub> ) to FET ON with V <sub>(PGTH)</sub> $<$ V <sub>(PGTHF)</sub> , C <sub>(dVdT)</sub> $\ge$ 10 nF, [C <sub>(dVdT)</sub> in nF] | | 150 +<br>49.5 x<br>C <sub>(dVdT)</sub> | | μs | | t <sub>OVC(dly)</sub> | Maximum duration in over voltage clamp operation | TPS26632, TPS26633,TPS26635 and TPS26636 Only | | 162 | | ms | Copyright © 2025 Texas Instruments Incorporated English Data Sheet: SLVSE94 -40°C ≤ T<sub>A</sub> = T<sub>J</sub> ≤ +125°C, 4.5 V < V<sub>(IN\_SYS)</sub> = V<sub>(IN)</sub> < 60 V, V<sub>(SHDN)</sub> = 2 V, R<sub>(ILIM)</sub> = 30 kΩ, IMON = PGOOD = $\overline{\text{FLT}}$ = OPEN, C<sub>(OUT)</sub> = 1 $\mu$ F, C<sub>(dVdT)</sub> = OPEN. (All voltages referenced to GND, (unless otherwise noted)) | | PARAMETER | TEST CONDITIONS | MIN | NOM | MAX | UNIT | |--------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------| | OVC_t <sub>FLT(dly)</sub> | FLT assertion delay in over voltage clamp operation | TPS26632, TPS26633,TPS26635 and TPS26636 Only | | 617 | | μs | | SHUTDOWN CO | NTROL INPUT (SHDN) | | | | | | | t <sub>SD(dly)</sub> | SHUTDOWN entry delay | SHDN ↓ (below V <sub>(SHUTF)</sub> ) to FET OFF | 0.8 | 1 | 1.5 | μs | | CURRENT LIMIT | Г | | | , | 1 | | | | Hot-short response time | $I_{(OUT)} > I_{(SCP)}$ | | 1 | | μs | | <sup>t</sup> FASTTRIP(dly) | Soft short response | I <sub>(FASTTRIP)</sub> < I <sub>(OUT)</sub> < I <sub>(SCP)</sub> | 2.2 | 3.2 | 4.5 | μs | | $t_{CL\_PLIM(dly)}$ | Maximum duration in current & (power limiting: TPS26632, TPS26633, TPS26635, TPS26636 and TPS26637) | | 129 | 162 | 202 | ms | | t <sub>CB(dly)</sub> | Maximum duration in 2x current limiting | $I_{(OL)} < I_{(OUT)} \le I_{(2xOL)}$ | 20 | 25.5 | 31 | ms | | t <sub>CBRetry(dly)</sub> | Retry delay in Pulse over current limiting | MODE = GND, TPS26631,<br>TPS26633,TPS26635 and TPS26636<br>Only | 550 | 670 | 800 | ms | | t <sub>CL_PLIM_</sub> FLT(dly) | FLT delay in current & (power limiting: TPS26632, TPS26633, TPS26635, TPS26636 and TPS26637) | | 1.09 | 1.3 | 1.6 | ms | | REVERSE CURF | RENT BLOCKING (RCB) COMPARATOR | | | | | | | t <sub>RCB(fast_dly)</sub> | Reverse protection comparator | $(V_{(IN\_SYS)} - V_{(OUT)}) \downarrow (1 \text{ V overdrive}$<br>below $V_{(REVTH)})$ to $V_{(DRV)} - V_{(IN\_SYS)} = V_{(DRV\_OH)}$ | | 0.17 | 0.37 | μs | | t <sub>RCB(dly)</sub> | dectection delay (reverse) | $V_{(IN\_SYS)} - V_{(OUT)} \downarrow (10 \text{ mV})$<br>overdrive below $V_{(REVTH)} \downarrow (10 \text{ mV})$<br>$V_{(IN\_SYS)} = V_{(DRV\_OH)} \downarrow (10 \text{ mV})$ | | 0.48 | 3 | μs | | t <sub>RCB(flt_dly)</sub> | Fault assertion Delay | $(V_{(IN\_SYS)} - V_{(OUT)}) \downarrow (10 \text{ mV}$<br>overdrive below $V_{(REVTH)})$ to $\overline{FLT} \downarrow$ | 500 | 617 | 800 | μs | | $t_{FWD\_FLT(dly)}$ | Reverse protection comparator dectection delay (forward) | $(V_{(IN\_SYS)} - V_{(OUT)}) \uparrow (10 \text{ mV})$<br>overdrive above $V_{(FWDTH)}$ to $V_{(BGATE)} - V_{(IN\_SYS)} = 5 \text{ V, } C_{(BFET-IN\_SYS)} = 4.7 \text{ nF}$ | | 0.87 | | ms | | | Fault de-assertion Delay | $(V_{(IN\_SYS)} - V_{(OUT)}) \uparrow (10 \text{ mV} $<br>overdrive above $V_{(FWDTH)}$ ) to $\overline{FLT} \uparrow$ | 434 | 605 | 800 | μs | | OUTPUT RAMP | CONTROL (dVdT) | | | | | | | t <sub>(FASTCHARGE)</sub> | Output ramp time in fast charging | C <sub>(dVdT)</sub> = Open, 10% to 90%<br>V <sub>(OUT)</sub> , C <sub>(OUT)</sub> = 1 μF; V <sub>(IN)</sub> = 24V | 350 | 495 | 700 | μs | | t <sub>(dVdT)</sub> | Output ramp time | C <sub>(dVdT)</sub> = 22 nF, 10% to 90%<br>V <sub>(OUT)</sub> , V <sub>(IN)</sub> = 24V | | 8.35 | | ms | | POWER GOOD | (PGOOD) | | | | ' | | | t <sub>PGOODR</sub> | PGOOD delay (deglitch) time | Rising edge | 1.07 | 1.3 | 1.6 | ms | | t <sub>PGOODF</sub> | PGOOD delay (deglitch) time | Falling edge, PGTH ↓ (10mV below V <sub>(PGTHF)</sub> ) | 1.3 | 2.12 | 4 | μs | | FAULT FLAG (FI | LT) | | | | ' | | | $t_{CB\_FLT(dly)}$ | FLT assertion delay in Pulse over current limiting | Delay from I <sub>(OUT)</sub> > I <sub>(OL)</sub> to FLT ↓ .<br>TPS26631, TPS26633, TPS26635 and<br>TPS26636 Only | 22 | 25.5 | 30 | ms | | THERMAL PRO | TECTION | , | | | ' | | | | Retry delay in TSD | MODE = GND | 500 | 648 | 800 | ms | $-40^{\circ}C \leqslant T_{A} = T_{J} \leqslant +125^{\circ}C, \ 4.5 \ V < V_{(IN\_SYS)} = V_{(IN)} < 60 \ V, \ V_{(\overline{SHDN})} = 2 \ V, \ R_{(ILIM)} = 30 \ k\Omega, \ IMON = PGOOD = \overline{FLT} = OPEN, \ C_{(OUT)} = 1 \ \ \mu \ F, \ C_{(dVdT)} = OPEN. \ (All \ voltages \ referenced \ to \ GND, \ (unless \ otherwise \ noted))$ | PARAMETER | | TEST CONDITIONS | MIN | NOM | MAX | UNIT | |-----------------------------|----------------------------|-----------------|-----|------|-----|------| | t <sub>(Treg_timeout)</sub> | Thermal Regulation Timeout | | 2.3 | 2.54 | 2.9 | s | 10 Product Folder Links: TPS2663 ## **6.7 Typical Characteristics** $-40^{\circ}C\leqslant T_{A}=T_{J}\leqslant +125^{\circ}C,\ V_{(IN\_SYS)}=V_{(IN)}=24\ V,\ V_{(\overline{SHDN})}=2\ V,\ R_{(ILIM)}=30\ k\ \Omega\ ,\ IMON=PGOOD=\ \overline{FLT}=OPEN,$ $C_{(OUT)}$ = 1 $\mu$ F, $C_{(dVdT)}$ = OPEN. (Unless stated otherwise) ## 6.7 Typical Characteristics (continued) $-40^{\circ}\text{C} \leqslant \text{T}_{\text{A}} = \text{T}_{\text{J}} \leqslant +125^{\circ}\text{C}, \ V_{(\text{IN\_SYS})} = V_{(\text{IN})} = 24 \ \text{V}, \ V_{(\overline{\text{SHDN}})} = 2 \ \text{V}, \ R_{(\text{ILIM})} = 30 \ \text{k} \ \Omega \,, \ \text{IMON} = \text{PGOOD} = \overline{\text{FLT}} = \text{OPEN}, \ C_{(\text{OUT})} = 1 \ \ \mu \, \text{F}, \ C_{(\text{dVdT})} = \text{OPEN}. \ (\text{Unless stated otherwise})$ ## **6.7 Typical Characteristics (continued)** $-40^{\circ}C\leqslant T_{A}=T_{J}\leqslant +125^{\circ}C,\ V_{(IN\_SYS)}=V_{(IN)}=24\ V,\ V_{(\overline{SHDN})}=2\ V,\ R_{(ILIM)}=30\ k\ \Omega\ ,\ IMON=PGOOD=\ \overline{FLT}=OPEN,$ $C_{(OUT)}$ = 1 $\mu$ F, $C_{(dVdT)}$ = OPEN. (Unless stated otherwise) 13 English Data Sheet: SLVSE94 ## 7 Parameter Measurement Information 图 7-1. Timing Waveforms Copyright © 2025 Texas Instruments Incorporated English Data Sheet: SLVSE94 图 7-2. Timing Waveforms Product Folder Links: TPS2663 ## 8 Detailed Description #### 8.1 Overview The TPS2663x devices are a family of 60-V industrial eFuses. The devices provides robust protection for all systems and applications powered from 4.5 V to 60 V. With an external N-channel FET the devices can be used to protect the loads from negative supply voltages down to – 60 V. For hot-pluggable boards, the devices provide hot-swap power management with inrush current control and programmable output voltage slew rate features using the dVdT pin. Load, source, and device protections are provided with many programmable features including overcurrent, overvoltage and undervoltage. The precision overcurrent limit (±7% at 6 A) helps to minimize over design of the input power supply, while the fast response short-circuit protection 1-μs (typical) immediately isolates the faulty load from the input supply when a short circuit is detected. The device features fast reverse current blocking response (0.17 μs). The internal robust protection control blocks of the TPS2663x along with its ±60-V rating, helps to simplify the system designs for the industrial surge compliance ensuring complete protection of the load and the device. The 60-V maximum DC operating and 70-V absolute maximum voltage rating enables system protection from 60-V DC input supply faults and from industrial SELV power supplies. By monitoring the output (Load) voltage through the PGTH pin, the device distinguishes between real system faults and system transients and the turn-ON delay during a fault recovery is controlled accordingly. The valid load voltage detection threshold can be adjusted using a resistor ladder network from OUT, PGTH and GND. This scheme ensures fast recovery during system tests like voltage interruption and brown-out tests, EMC testing like Electrical Fast Transients (IEC61000-4-4) and Surge (IEC61000-4-5). The TPS26632, TPS26635 TPS26636 and TPS26637 devices integrate adjustable output power limiting (PLIM) functionality that simplifies the system design requiring compliance in accordance to standards like IEC61010-1 and UL1310. The devices provides precise monitoring of voltage bus for brown-out, overvoltage conditions and asserts fault signal for the downstream system. The device overall threshold accuracy of 2% ensures tight supervision of bus, eliminating the need for a separate supply voltage supervisor chip. The devices monitors $V_{(IN\_SYS)}$ and $V_{(OUT)}$ to provide true reverse current blocking when a reverse condition or input power failure condition is detected. Additional features of the TPS2663x devices include: - ±6% current monitor output (IMON) for health monitoring of the system - A choice of latch-off or automatic restart mode response during current limit, power limit and thermal fault using MODE pin Product Folder Links: TPS2663 - PGOOD indicator output with ±2% accurate adjustable valid load voltage detection threshold (PGTH) - Overtemperature protection to safely shutdown in the event of an overcurrent event - De-glitched fault reporting for supply brown-out and overvoltage faults - Enable and disable control from an MCU using the SHDN pin Copyright © 2025 Texas Instruments Incorporated ## 8.2 Functional Block Diagram 图 8-1. TPS26630, TPS26631, Functional Block Diagram 图 8-2. TPS26632, TPS26633, TPS26635, TPS26636 and TPS26637 Functional Block Diagram ## 8.3 Feature Description ## 8.3.1 Hot Plug-In and Inrush Current Control The devices are designed to control the inrush current upon insertion of a card into a live backplane or other "hot" power source. This design limits the voltage sag on the backplane supply voltage and prevents unintended resets of the system power. The controlled start-up also helps to eliminate conductive and radiative interferences. An external capacitor connected from the dVdT pin to GND defines the slew rate of the output voltage at power on. The fastest output slew rate of 24 V/500 µs can be achieved by leaving dVdT pin floating. Use 方程式 1 to calculate the inrush current. $$I = C \times \frac{dV}{dT} \ge I(\text{INRUSH}) = C(\text{OUT}) \times \frac{V(\text{IN})}{\text{tdVdT}} \tag{1}$$ where $$t_{dVdT} = 20.8 \times 10^3 \times V_{(IN)} \times C_{(dVdT)}$$ (2) Figure 8-1 illustrates inrush current control performance of the device during hot plug-In. 图 8-3. Hot Plug-In and Inrush Current Control at 24-V Input #### 8.3.1.1 Thermal Regulation Loop Use 方程式 3 to calculate the average power dissipation within the eFuse during power up with a capacitive load. $$PD(INRUSH) = 0.5 \times V(IN) \times I(INRUSH)$$ (3) System designs requiring to charge large output capacitors rapidly can result in an operating point that exceeds the power dissipation versus time boundary limits of the device defined by 8 6-18 characteristic curve. This can result in increase in junction temperature beyond the device maximum allowed junction temperature. To keep the junction temperature within the operating range, the thermal regulation control loop regulates the junction temperature at T<sub>(I, REG)</sub>, 145°C (typical) by controlling the inrush current profile and thereby limiting the power dissipation within the device automatically. An internal 2.5 seconds (typical) timer starts from the instance the thermal regulation operation kicks in. If the output does not power up within this time then the internal FET is turned OFF. Subsequent operation of the device depends on the MODE configuration (auto-retry or latch-off) setting as shown in 表 8-1. The maximum time-out of 1.25 seconds (typical) in thermal regulation loop operation ensures that the device and the system board does not heat up during steady fault conditions such as wake up with output short circuit. This scheme ensures reliable power-up operation. Thermal regulation control loop is internally enabled during power up by V<sub>(IN)</sub>, UVLO cycling and turn-ON using SHDN control. Figure 8-2 illustrates performance of the device operating in thermal regulation loop during power up by $V_{(IN)}$ with a large output capacitor. The Thermal regulation loop gets disabled internally after the power-up sequence when the internal FET gate gets fully enhanced or when the t<sub>(Treg. timeout)</sub> of 2.5 seconds (typical) time is elapsed. Product Folder Links: TPS2663 图 8-4. Thermal Regulation Loop Response During Power Up with Large Capacitive Load #### 8.3.2 PGOOD and PGTH The devices feature an open drain Power good (PGOOD) indicator output. PGOOD can be used for enable and disable of the downstream loads like DC-DC converters. Connect a resistor ladder network from VOUT, PGTH and GND to set the PGOOD threshold level. PGOOD goes high when the internal FET gate is enhanced and $V_{(PGTH)}$ is above $V_{(PGTHR)}$ . PGOOD goes low when $V_{(PGTH)}$ goes below $V_{(PGTHF)}$ . There is a deglitch of $t_{PGOODR}$ , 1.2 ms (typical) at the rising edge and $t_{PGOODR}$ , 2.1 $\mu$ s (typical) deglitch on the falling edge of PGOOD indication. PGOOD is a rated for 60 V and can be pulled to IN\_SYS or OUT through a resistor. PGTH can be used for setting downstream supply UVLO levels and PGOOD as enable and disable control. #### 8.3.2.1 PGTH as VOUT Sensing Input The devices use PGTH as the output (Load) voltage monitor input and to set the down stream loads UVLO threshold. To set the input PGTH threshold, connect a resistor divider network from VOUT to PGTH terminal to GND as shown in 简化版原理图. During a system fault recovery (example: OVP high to low or UVLO low to high) when the internal FET gate control is enabled, the device samples the PGTH information and decides whether to turn ON the FET with fast slew rate or dVdT mode based on the sampled V<sub>(PGTH)</sub> information. $\[ \]$ 7-1 shows the turn-ON behavior based on $V_{(PGTH)}$ information. During the fault recovery instance if the $V_{(PGTH)}$ level is above $V_{(PGTH)}$ then the internal FET turns ON within a delay of $V_{(PGTH)}$ with fast slew rate (ignores the capacitance connected at dVdT pin) with thermal regulation loop enabled for a duration of $V_{(PGTH)}$ . Maximum current through the device during this operation is limited at $V_{(PGT)}$ in TPS26630 and TPS26632 devices and at $V_{(PGT)}$ in TPS26631, TPS26633, TPS26635, TPS26636 and TPS26637 devices for a maximum duration of $V_{(PGT)}$ . During the fault recovery instance, if the $V_{(PGT)}$ level is below $V_{(PGT)}$ , then the device turns ON the internal FET in dVdT mode and the slew rate depends on the dVdT capacitor value and maximum current through the devices is limited at $V_{(PG)}$ . This way the device distinguishes between real system faults and system transients and the turn-ON delay is controlled accordingly. This scheme ensures fast recovery during system tests like voltage interruption and brown-out tests, EMC testing like Electrical Fast Transients (IEC61000-4-4) and Surge (IEC61000-4-5). The fast turn-ON during transient recovery feature can be disabled by connecting PGTH to GND. In this case, PGOOD is pulled low. ## 8.3.3 Undervoltage Lockout (UVLO) The TPS2663x devices feature an accurate $\pm 2\%$ adjustable undervoltage lockout functionality. When the voltage at UVLO pin falls below $V_{(UVLOF)}$ during input undervoltage fault, the internal FET quickly turns off and $\overline{FLT}$ is asserted. The UVLO comparator has a hysteresis of 78 mV (typical). To set the input UVLO threshold, connect a resistor divider network from IN supply to UVLO terminal to GND as shown in the *Simplified Schematic*. The TPS2663x devices also features a factory set 15-V input supply undervoltage lockout $V_{(IN\_SYS\_UVLO)}$ threshold Copyright © 2025 Texas Instruments Incorporated English Data Sheet: SLVSE94 with 1-V hysteresis. This feature can be enabled by connecting the UVLO terminal directly to the GND terminal. If the undervoltage lockout function is not needed, the UVLO terminal must be connected to the IN\_SYS terminal. UVLO terminal must not be left floating. In the applications where reverse polarity protection is required connect a minimum of 300-k $\Omega$ resistor between UVLO and IN\_SYS. ▼ 7-1 shows the turn-ON behavior when UVLO pin voltage exceeds V<sub>(UVLOR)</sub> threshold. #### 8.3.4 Overvoltage Protection (OVP) The TPS2663x devices incorporate circuitry to protect the system during overvoltage conditions. The TPS26630 and TPS26631 feature an accurate $\pm 2\%$ adjustable overvoltage cutoff functionality. A voltage more than $V_{(OVPR)}$ on OVP pin turns off the internal FET and protects the downstream load. To program the OVP threshold externally, connect a resistor divider from IN\_SYS supply to OVP terminal to GND as shown in the Simplified Schematic. The TPS26630 and TPS26631 also feature a factory set 34.3-V input overvoltage cutoff $V_{(IN\_SYS\_OVP)}$ threshold with a 440-mV hysteresis. This feature can be enabled by connecting the OVP terminal directly to the GND terminal. The TPS26632, TPS26633 and TPS26636 feature an internally fixed 35-V maximum overvoltage clamp $V_{(OVC)}$ functionality. The TPS26632 and TPS26633 clamps the output voltage to $V_{(OVC)}$ when the input voltage exceeds 35 V. TPS26635 features a fixed 39-V maximum overvoltage clamp level. During the output voltage clamp operation, the power dissipation in the internal MOSFET is PD = $(V_{(IN\_SYS)} - V_{(OVC)}) \times I_{(OUT)}$ . Excess power dissipation for a prolonged period can increase the device temperature. To avoid this increase, the internal FET is operated in overvoltage clamp for a maximum duration of $I_{OVC(dly)}$ , 162 ms (typical). After this duration, the internal FET is turned OFF and the subsequent operation of the device depends on the MODE configuration (auto-retry or latch-off) setting as shown in $\frac{1}{2}$ 8-1. ▼ 7-1 shows the turn-ON behavior when OVP pin voltage falls below V<sub>(OVPF)</sub> threshold. 8-5 illustrates the overvoltage cutoff functionality and 8-6 illustrates the overvoltage clamp functionality. FLT is asserted after a delay of 617 $\mu$ s (typical) after entering in overvoltage clamp mode and remains asserted until the overvoltage fault is removed. 图 8-6. Overvoltage Clamp Response With TPS26635 提交文档反馈 #### 8.3.5 Input Reverse Polarity Protection (B GATE, DRV) The TPS2663x devices support the reverse input polarity protection feature. Connect an N-channel power FET (Q1) with the source to IN SYS, drain to IN and GATE to B-GATE as shown in 🛭 8-7. This action forms a back to back FET topology in power path that is required to protect the load from input reverse polarity faults. Connect an external signal FET (Q2) across BGATE, DRV and IN\_SYS. Q2 acts as a pulldown gate switch for Q1. In the applications where reverse polarity protection and reverse current blocking is not required then connect IN SYS and IN together. Leave BGATE and DRV open as shown in \bigseles 8-8. 8-9 illustrates the reverse input polarity protection functionality. The TPS2663x devices support a maximum differential voltage across $V_{(IN\_SYS)} - V_{(OUT)}$ up to -85 V. This high voltage transients generally appear during the IEC61000-4-5 surge testing at the V<sub>(IN SYS)</sub>. This voltage stress appears across the external N-channel FET. The TPS2663x provides a gate drive (B GATE) of 10.2 V (typical). The fast pulldown gate switch Q2 pulls down the GATE of the Q1 during reverse current and reverse polarity fault events. Q2 must be at least 15-V, VDS rated FET with a maximum VGS rating of 20 V, Ciss ≤ 50 pF and $VGTH(min) \leq 3 V.$ 图 8-7. Configuration for Input Reverse Polarity **Protection and Reverse Current Blocking** 图 8-8. Configuration for Applications Without Input Reverse Polarity Protection and Reverse **Current Blocking Requirement** 图 8-9. Input Reverse Polarity Response at - 60-V Input ## 8.3.6 Reverse Current Protection The device monitors $V_{(IN\ SYS)}$ and $V_{(OUT)}$ to provide true reverse current blocking when a reverse condition or input power failure condition is detected. The reverse comparator turns OFF the external blocking FET Q1 > Copyright © 2025 Texas Instruments Incorporated Product Folder Links: TPS2663 quickly as soon as $V_{(IN\_SYS)}$ - $V_{(OUT)}$ falls below - 1 V. The total time taken to turn OFF the FET Q1 in this condition is $t_{RCB(fast\ dly)}$ + $t_{(Driver)}$ . Use 方程式 4 to calculate the delay due to the driver stage $t_{(Driver)}$ . $$t_{(Driver)} = -RDSON_{(Q2)}xCiss_{(Q1)}xIn(\frac{VGTH_{(Q1)}}{V_{BGATE}})$$ (4) #### where - RDSON<sub>(Q2)</sub> is the on resistance of the fast pulldown switch Q2 - Ciss<sub>(Q1)</sub> is the input capacitance of the blocking FET Q1 - VGTH<sub>(Q1)</sub> is the GATE threshold voltage of the blocking FET Q1 - V<sub>BGATE</sub> = 10.2 V (typical) In a typical system design, t<sub>(Driver)</sub> is generally 10% to 20% of t<sub>RCB(fast dly)</sub> of 120 ns (typical). 8-10 and 8-11 illustrate the behavior of the system during input hot short-circuit condition. The blocking FET Q1 is turned ON within 1.6 ms (typical) after the differential forward voltage V<sub>(IN\_SYS)</sub> − V<sub>(OUT)</sub> exceeds 67 mV (typical). 8-10 and 8-11 illustrate the behavior of the system during input hot short-circuit condition. The blocking FET Q1 is turned ON within 1.6 ms (typical) after the differential forward voltage V<sub>(IN\_SYS)</sub> − V<sub>(OUT)</sub> exceeds 67 mV (typical). 8-10 and 8-11 illustrate the behavior of the system during input hot short-circuit condition. The blocking FET Q1 is turned ON within 1.6 ms (typical) after the differential forward voltage V<sub>(IN\_SYS)</sub> − V<sub>(OUT)</sub> exceeds 67 mV (typical). 8-10 and 8-11 illustrate the behavior of the system during input hot short-circuit condition. 8-12 and 8-13 and 8-14 and 9-14 and 9-15 and 9-15 and 9-16 The reverse comparator architecture has a supply line noise immunity resulting in a robust performance in noisy environments. This event is achieved by controlling the turn-OFF time of the internal FET based on the over-drive differential voltage $V_{(IN\_SYS)}$ – $V_{(OUT)}$ over $V_{(REVTH)}$ . The higher the over-drive, the faster the turn-OFF time, $t_{RCB(dIV)}$ . #### 8.3.7 Overload and Short-Circuit Protection The device monitors the load current by sensing the voltage across the internal sense resistor. The FET current is monitored during start-up and normal operation. #### 8.3.7.1 Overload Protection Use 方程式 5 to set the current limit. $$I_{OL} = \frac{18}{R_{(ILIM)}}$$ (5) Product Folder Links: TPS2663 where I<sub>(OL)</sub> is the overload current limit in Ampere Copyright © 2025 Texas Instruments Incorporated 提交文档反馈 • $R_{(ILIM)}$ is the current limit resistor in k $\Omega$ #### 8.3.7.1.1 Active Current Limiting at 1 $\times$ I<sub>OL</sub> (TPS26630 and TPS26632 Only) The TPS2663x devices feature accurate overload current limiting and fast short-circuit protection feature. With TPS26630 and TPS26632, if the load current exceeds the programmed current limit, $I_{OL}$ , the device regulates the current through it at $I_{OL}$ , eventually reducing the output voltage. The power dissipation across the device during this operation is $(V_{IN} - V_{OUT}) \times I_{OL}$ , and this can heat up the device and eventually enter into thermal shutdown. The maximum duration for the overcurrent through the FET $t_{CL\_PLIM(dly)}$ , 162 ms (typical). If the thermal shutdown occurs before this time, the internal FET turns OFF and the subsequent operation (auto-retry or latch-off) depends on the MODE pin configuration in $\frac{1}{8}$ 8-12 and $\frac{1}{8}$ 8-13 illustrate overload current limiting performance. # 8.3.7.1.2 Active Current Limiting With 2 $\times$ $I_{OL}$ Pulse Current Support (TPS26631, TPS26633, TPS26635, TPS26636, and TPS26637 Only) TPS26631, TPS26635, and TPS26637 after the start-up and with PGOOD high, if the load current exceeds $I_{OL}$ , then an internal fixed $t_{CB(dly)}$ , 25.5 ms (typical) timer starts. During this time, the device passes through the over current demanded by the load not more than 2 × $I_{OL}$ above which the device regulates at 2 × $I_{OL}$ . After $t_{CB(dly)}$ time, the device regulates the current at $I_{OL}$ . The power dissipation across the device during this operation is $(V_{IN} - V_{OUT}) \times I_{OL}$ , and this can heat up the device and eventually enter into thermal shutdown. The maximum duration for the internal FET in current regulation is $t_{CL\_PLIM(dly)}$ . The subsequent operation is based on the MODE setting (either auto-retry or latch-off) in $\frac{1}{8}$ 8-1. The 2 × $I_{(OL)}$ pulse current support is activated only after PGOOD goes high. If PGOOD is in low state such as during start-up operation or during auto-retry cycles, the 2 × $I_{(OL)}$ pulse current support is not activated and the device limits the current at $I_{(OL)}$ level. 图 8-14 and 图 8-15 illustrate overload current limiting performance. Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TPS*2663 The TPS2663x devices feature ILIM pin short and open fault detection and protection. The internal FET is turned OFF when ILIM pin is detected short or open to GND and it remains OFF till the ILIM pin fault is removed. Refer to $\boxtimes$ 7-2 for more information on $t_{CB(dly)}$ and $t_{CL\_PLIM(dly)}$ parameter measurement information. #### 8.3.7.2 Short-Circuit Protection During a transient output short-circuit event, the current through the device increases rapidly. As the current-limit amplifier cannot respond quickly to this event due to its limited bandwidth, the device incorporates a fast-trip comparator. The fast-trip comparator architecture is designed for fast turn-OFF $t_{FASTTRIP(dly)} = 1 \mu s$ (typical) with $t_{(SCP)} = 45$ A of the internal FET during an output short-circuit event. The fast-trip threshold is internally set to $t_{(FASTTRIP)}$ . The fast-trip circuit holds the internal FET off for only a few microseconds, after which the device turns back on slowly, allowing the current-limit loop to regulate the output current to $t_{(OL)}$ . Then the device functions similar to the overload condition. Figure 8-14 illustrates output hot-short performance of the device. 图 8-16. Output Hot-Short Response Product Folder Links: TPS2663 提交文档反馈 The fast-trip comparator architecture has a supply line noise immunity resulting in a robust performance in noisy environments. This event is achieved by controlling the turn-OFF time of the internal FET based on the overcurrent level, $I_{(FASTTRIP)}$ , through the device. The higher the overcurrent, the faster the turn-OFF time, $t_{FASTTRIP(dly)}$ . At overload current level in the range of $I_{FASTTRIP} < I_{OUT} < I_{SCP}$ , the fast-trip comparator response is 3.2 $\mu$ s (typical). #### 8.3.7.2.1 Start-Up With Short Circuit on Output When the device is started with short circuit on the output, the current begins to limit at $I_{(OL)}$ . Due to high power dissipation of VIN × $I_{(OL)}$ within the device the junction temperature increases. Subsequently, the thermal regulation control loop limits the load current to regulate the junction temperature at $T_{(J\_REG)}$ , 145°C (typical) for a duration of $t_{(Treg\_timeout)}$ , 2.5 seconds (typical). Subsequent operation of the device depends on the MODE configuration (auto-retry or latch-off) setting as per the $\frac{1}{8}$ 8-1. $\overline{FLT}$ gets asserted after $t_{(Treg\_timeout)}$ and remains asserted till the output short circuit is removed. $\boxed{8}$ 8-17 illustrates the behavior of the device in this condition. 图 8-17. Start-Up With Short on Output #### 8.3.8 Output Power Limiting, PLIM (TPS26632, TPS26633, TPS26635, TPS26636, and TPS26637 Only) The TPS26630 and TPS26631 devices with a fixed overcurrent limit threshold the maximum output power limit increases linearly with supply input. Electrical industrial process control equipment such as PLC CPU must comply with standards like IEC61010-1 and UL1310 for fire safety, which require limited energy and power circuits. Limiting the output power becomes a challenge in such high power applications where the operating supply voltage range is wide. The TPS26632, TPS26633, TPS26635, and TPS26636 devices integrate adjustable output power limiting functionality that simplifies the system design requiring compliance in accordance to this standard. Connect a resistor from PLIM to GND as shown in 🖺 8-18 to set the output power limiting value. If output power limiting is not required then connect PLIM to GND directly. This action disables the PLIM functionality. During an over power load event, the TPS26632 limits the output power at the programmed value set by PLIM resistor. This action indirectly results in the device operation in current limiting mode with steady state output voltage and current set by the load characteristics and $P_{LIM} = V_{OUT} \times I_{OUT}$ . 36-12 shows the output power limit and current limit characteristics of TPS26632 with 100-W power limit setting. The maximum duration for the device in power limiting mode is 162 ms (typical), $t_{CL\_PLIM(dly)}$ . After this time, the device operates either in autoretry or latch-off mode based on MODE pin configuration in $\frac{1}{8}$ 8-1. Copyright © 2025 Texas Instruments Incorporated During an over power load event, the TPS26633, TPS26635, TPS26636 and TPS26637 allows the extra power for a maximum duration of $t_{CB(dly)}$ , 25.5 ms (typical). The maximum power during this time is limited to $V_{OUT} \times 2 \times I_{OL}$ where $I_{OL}$ is the overload current limit set by the $R_{(ILIM)}$ resistor. After the $t_{CB(dly)}$ time, the output power gets limited to the value programmed by the PLIM resistor. Use 6 to set the power limit. $$P_{(PLIM)} = 1 \times R_{(PLIM)} \tag{6}$$ Here, $P_{(PLIM)}$ is output power limit in watts, $R_{(PLIM)}$ is the power limit setting resistor in $k\Omega$ . $\boxtimes$ 8-19 and $\boxtimes$ 8-20 illustrate output power limiting performance of TPS26632 and TPS26633 devices respectively. Refer to $\boxtimes$ 7-2 for more information on $t_{CB(d|v)}$ and $t_{CL}$ PLIM(d|v) parameter measurement information. 图 8-18. TPS26632, TPS26633, TPS26635, TPS26636, and TPS26637 Typical Application Schematic #### 8.3.9 Current Monitoring Output (IMON) The TPS2663x devices feature an accurate analog current monitoring output. A current source at IMON terminal is internally configured to be proportional to the current flowing from IN to OUT. This current can be converted into a voltage using a resistor $R_{(IMON)}$ from IMON terminal to GND terminal. The IMON voltage can be used as a Copyright © 2025 Texas Instruments Incorporated 提交文档反馈 27 Product Folder Links: TPS2663 means of monitoring current flow through the system. The maximum voltage ( $V_{(IMONmax)}$ ) for monitoring the current is limited to 4 V. This maximum voltage puts a limitation on maximum value of $R_{(IMON)}$ resistor and is determined by 方程式 7. $$V(IMON) = [I(OUT) \times GAIN(IMON)] \times R(IMON)$$ (7) Where, - GAIN<sub>(IMON)</sub> is the gain factor I<sub>(IMON)</sub>:I<sub>(OUT)</sub> = 27.9 μ A/A (Typical) - I<sub>(OUT)</sub> is the load current Refer to Figure 6-13 for IMON output versus load current plot. 8 8-21 illustrates IMON performance. 图 8-21. IMON Response During a Load Step The IMON pin must not have a bypass capacitor to avoid delay in the current monitoring information. ## 8.3.10 FAULT Response (FLT) The FLT open-drain output asserts (active low) under the faults events such as undervoltage, overvoltage, overload, power limiting, reverse current, ILIM pin short and thermal shutdown conditions. The device is designed to eliminate false reporting by using an internal "de-glitch" circuit for fault conditions without the need for an external circuitry. FLT can be left open or connected to GND when not used. #### 8.3.11 IN SYS, IN, OUT, and GND Pins Connect a minimum of a 0.1-uF capacitor across IN\_SYS and GND. For systems and applications where a reverse polarity protection feature, reverse current blocking feature, or both is required - Connect a N-channel FET between IN\_SYS and IN with source of the FET connected to IN\_SYS, Drain at IN and GATE to B GATE. - Connect a N-channel signal FET with GATE to DRV, Drain to B\_GATE, Source to IN\_SYS If the external N-channel FET is not used then connect IN\_SYS and IN together and leave B\_GATE and DRV pins floating as shown in Figure 8-7. Do not leave any of the IN and OUT pins un-connected. #### 8.3.12 Thermal Shutdown The device has a built-in overtemperature shutdown circuitry designed to protect the internal FET, if the junction temperature exceeds $T_{(TSD)}$ , 165°C (typical). After the thermal shutdown event, depending upon the mode of fault response configured as per the $\frac{1}{8}$ 8-1, the device either latches off or commences an auto-retry cycle of Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TPS*2663 648 ms (typical), $t_{(TSD\_retry)}$ after $T_J < [T_{(TSD)} - 11^{\circ}C]$ . During the thermal shutdown, the fault pin $\overline{FLT}$ pulls low to indicate a fault condition. #### 8.3.13 Low Current Shutdown Control (SHDN) The internal, external FET and hence the load current can be switched off by pulling the $\overline{SHDN}$ pin below 0.8-V threshold with a micro-controller GPIO pin or can be controlled remotely with an opto-isolator device. The device quiescent current reduces to 21 $\mu$ A (typical) in SHUTDOWN state. To assert $\overline{SHDN}$ low, the pulldown must have sinking capability of at least 10 $\mu$ A. To enable the device, $\overline{SHDN}$ must be pulled up to at least 2 V. After the device is enabled, the internal FET turns on with dVdT mode. 8-22 and 8-15 illustrate the performance of $\overline{SHDN}$ control. #### 8.4 Device Functional Modes The TPS2663x devices respond differently to overload with MODE pin configurations. 表 8-1 explains the operational differences. 表 8-1. Device Operational Differences Under Different MODE Configurations | MODE PIN CONFIGURATION | OVERLOAD PROTECTION OPERATION | DEVICE | |------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------| | | Active current limiting at 1x for a maximum duration of t <sub>CL_PLIM(dly)</sub> . There after Latches OFF. Latch reset by toggling SHDN low to high or UVLO low to high or power cycling IN_SYS. | TPS26630, TPS26632,<br>TPS26636 | | Open | Active current limiting at 2x for t <sub>CB(dly)</sub> duration followed with 1x current limiting for a maximum duration of t <sub>CL_PLIM(dly)</sub> . There after Latches OFF. Latch reset by toggling SHDN low to high or UVLO low to high or power cycling IN_SYS. | TPS26631, TPS26633,<br>TPS26635,TPS26637 | | | Active current limiting at 1x for a maximum duration of t <sub>CL_PLIM(dly)</sub> . There after auto-retries after a delay of t <sub>(TSD_retry)</sub> . | TPS26630, TPS26632,<br>TPS26636 | | Shorted to GND | Active current limiting at 2x for $t_{CB(dly)}$ duration followed with 1x current limiting for a maximum duration of $t_{CL\_PLIM(dly)}$ . There after auto-retries after a delay of $t_{(TSD\_retry)}$ . | TPS26631, TPS26633,<br>TPS26635,TPS26637 | Product Folder Links: TPS2663 Refer to $\boxtimes$ 7-2 for more information on $t_{CB(dly)}$ and $t_{CL}$ $p_{LIM(dly)}$ parameter measurement information. Copyright © 2025 Texas Instruments Incorporated 提交文档反馈 ## 9 Application and Implementation #### 备注 以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 ## 9.1 Application Information The TPS2663x is an industrial eFuse, typically used for hot-swap and power rail protection applications. The device operates from 4.5 V to 60 V with adjustable current limit, output power limit, overvoltage, undervoltage and reverse polarity protections. The device aids in controlling inrush current and provides robust protection against reverse current and filed miss-wiring conditions for systems such as PLCs, Industrial PCs, Control and Automation and Sensors. The device also provides robust protection for multiple faults on the system rail The *Detailed Design Procedure* section can be used to select component values for the device. Additionally, a spreadsheet design tool, *TPS2663 Design Calculator*, is available in the web product folder. ## 9.2 Typical Application: Power Path Protection in a PLC System 图 9-1. A Typical CPU (PLC Controller) System Block Diagram The PLC system is usually connected to an external 24-V DC power supply to provide power to the controller unit, backplane, and I/O modules. Input protection circuits are required to protect the PLC from faults such as overvoltage, undervoltage, and overload. Because input supply connectors are screw type, there can always be a possibility of reverse supply connections. Protection circuits must block the reverse polarity to protect the PLC from possible negative voltages. At the same time, every PLC is tested for electrostatic discharge (ESD) deed Felder Links TD00000 Copyright © 2025 Texas Instruments Incorporated according to IEC 61000-4-2, burst pulses (EFT) according to IEC 61000- 4-4, energy single pulse (surge) according to IEC 61000-4-5, voltage drops and interruptions. 9-1 shows a system block diagram of PLC controller unit along with the input protection socket. The TPS2663x devices offer a plug and play input protection solution for such applications. For more information about this end equipment, refer to the TI application site on Programmable Logic Controller (PLC), DCS & PAC: CPU (PLC Controller) . 图 9-2. 24-V, 2-A eFuse Input Protection Circuit for Industrial PLC, CNC CPU ## 9.2.1 Design Requirements 表 9-1 shows the design requirements for TPS2663x. 表 9-1. Design Requirements | | DESIGN PARAMETER | EXAMPLE VALUE | |------------------------|--------------------------------|------------------------------------------------| | V <sub>(IN)</sub> | Typical input voltage | 24 V | | V <sub>(UV)</sub> | Undervoltage lockout set point | 18 V | | V <sub>(OV)</sub> | Overvoltage cutoff set point | 33 V | | I <sub>(LIM)</sub> | Overload current limit | 2 A | | I <sub>(INRUSH)</sub> | Inrush current limit | 500 mA | | P <sub>(OUT)</sub> | Output load | 15 W (DC-DC) with 15-V VINmin <sub>DC-DC</sub> | | T <sub>(FAIL_TR)</sub> | Power interruption time | 10 ms | | P <sub>(Surge)</sub> | IEC61000-4-5 surge test level | ± 500-V, 2- Ω generator impedance | #### 9.2.2 Detailed Design Procedure ## 9.2.2.1 Programming the Current-Limit Threshold—R<sub>(ILIM)</sub> Selection The R<sub>(ILIM)</sub> resistor at the ILIM pin sets the overload current limit. Use 方程式 8 to set the overload current limit $$R_{(ILIM)} = \frac{18}{I_{OL}} = 9k\Omega \tag{8}$$ Product Folder Links: TPS2663 where I<sub>LIM</sub> = 2 A Choose the closest standard 1% resistor value: $R_{(ILIM)} = 9.09 \text{ k}\Omega$ . #### 9.2.2.2 Undervoltage Lockout and Overvoltage Set Point The undervoltage lockout (UVLO) and overvoltage trip point are adjusted using an external voltage divider network of R<sub>1</sub>, R<sub>2</sub> and R<sub>3</sub> connected between IN\_SYS, UVLO, OVP and GND pins of the device. Use 方程式 9 and 方程式 10 to calculate the values required for setting the undervoltage and overvoltage. $$V(\text{OVPR}) = \frac{R_3}{R_1 + R_2 + R_3} \times V(\text{OV})$$ (9) $$V_{(UVLOR)} = \frac{R_2 + R_3}{R_1 + R_2 + R_3} \times V_{(UV)}$$ (10) For minimizing the input current drawn from the power supply $\{I_{(R_123)} = V_{(IN)} / (R_1 + R_2 + R_3)\}$ , TI recommends to use higher value resistance for R<sub>1</sub>, R<sub>2</sub> and R<sub>3</sub>. However, the leakage current due to external active components connected at resistor string can add error to these calculations. So, the resistor string current, I(R<sub>123</sub>) must be chosen to be 20x greater than the leakage current of UVLO and OVP pins. From the device electrical specifications, $V_{(OVPR)} = 1.2 \text{ V}$ and $V_{(UVLOR)} = 1.2 \text{ V}$ . From the design requirements, $V_{(OV)}$ is 33 V and $V_{(UV)}$ is 18 V. To solve the equation, first choose the value of $R_3$ = 34 k $\Omega$ and use 方程式 9 to solve for (R<sub>1</sub> + R<sub>2</sub>) = 916 k $\Omega$ . Use 方程式 10 and value of (R<sub>1</sub> + R<sub>2</sub>) to solve for R<sub>2</sub> = 29.4 k $\Omega$ , and finally R<sub>1</sub>= 887 kΩ. Choose the closest standard 1% resistor values: $R_1 = 887 \text{ k}\Omega$ , $R_2 = 29.4 \text{ k}\Omega$ , and $R_3 = 34 \text{ k}\Omega$ . The UVLO and the OVP pins can also be connected to the GND pin to enable the internal default $V_{(OV)}$ = 34.2 V and $V_{(UV)} = 15.6 \text{ V}.$ #### 9.2.2.3 Output Buffer Capacitor - COUT During the power interruption time T<sub>FAIL</sub> TR the output capacitor C<sub>OUT</sub> of the TPS26630 provides energy to the 15 W DC-DC converter load. Use 方程式 11 to compute the required buffer capacitor COUT $$C_{OUT} = \frac{2 \times P_{(DC-DC)} \times T_{FAIL\_TR}}{V_{(IN\_SYS)}^2 - V_{(UV\_DC-DC)}^2}$$ (11) where - $P_{(DC-DC)}$ = 15 W/ $\eta$ . Assuming efficiency of 95%, $P_{(DC-DC)}$ = 15.8 W - $T_{FAII}$ $T_{R} = 10 \text{ ms}$ - V<sub>(IN SYS)</sub> = 24 V - V<sub>(UV DC-DC)</sub> = 15 V C<sub>OUT</sub> = 0.9 mF. Choose a capacitor with ±10% tolerance, C<sub>OUT</sub> = 1 mF/35 V electrolytic capacitor. Figure 9-4 and 🛚 9-5 illustrate the performance during the power interruption tests on TPS26630. Figure 9-8 illustrates the performance on TPS26631. #### 9.2.2.4 PGTH Set Point Set the V<sub>PGTHF</sub> threshold at the down-stream DC-DC converter UVLO falling threshold. VIN minimum operating voltage of the DC-DC converter is at 15 V. Assuming UVLO to be at 20% lower level, V<sub>UVLO DC-DC</sub> = 12 V. Use 方程式 12 to calculate R<sub>4</sub> and R<sub>5</sub>. $$V_{(PGTHF)} = \frac{R_5}{R_4 + R_5} \times V_{UVLO\_DC-DC}$$ (12) Product Folder Links: TPS2663 $V_{(PGTHF)}$ = 1.14 V. Assuming $R_5$ = 56 k $\Omega$ , $R_4$ comes out to be approximately 499 k $\Omega$ . ## 9.2.2.5 Setting Output Voltage Ramp Time—(t<sub>dVdT</sub>) Use 方程式 1 and 方程式 2 to calculate required $C_{(dVdT)}$ for achieving an inrush current of 500 mA. $C_{(dVdT)}$ = 0.1 $\mu$ F. Figure 9-3 illustrates the inrush current limiting performance during 24-V hot plug-in condition. ### 9.2.2.5.1 Support Component Selections—R<sub>PGOOD</sub> and C<sub>(IN)</sub> The $R_{PGOOD}$ serves as pullup for the open-drain output. The current sink by this pin must not exceed 10 mA (see the *Absolute Maximum Ratings* table). TI recommends typical resistance value in the range of 10 k $\Omega$ to 100 k $\Omega$ for $R_{PGOOD}$ . Connect PGOOD directly to the EN pin of the DC-DC converter. 9-6 and 9-8 illustrate the power-up and power-down performance of the system respectively. The $C_{IN}$ is a local bypass capacitor to suppress noise at the input. TI recommends a minimum of 1 $\mu$ F for $C_{(IN)}$ for limit the slew rates during the surge test. #### 9.2.2.6 Selecting Q1, Q2 and TVS Clamp for Surge Protection For $\pm 500$ -V, 2- $\Omega$ surge, typically a SMC sized TVS like SMCJ36CA clamps the voltage around $\pm 55$ V. During the negative surge strike, the input voltage $V_{IN\_SYS}$ spikes to -55 V. This spike results in a voltage stress of -(55 V + 24 V) = -79 V across the external blocking FET Q1. Choose at least a 80-V rated N-channel FET. B\_GATE drive is in the range of 10 V to 14 V. Select a suitable FET with the target RDSON specified at this gate drive voltage. The fast pulldown gate switch Q2 pulls down the GATE of the Q1 during the reverse current event appearing during the surge test. Q2 must be at least 15-V VDS rated FET with a maximum VGS rating of 20-V , Ciss <= 50 pF and VGTH(min) $\leq$ 3 V. CSD19537Q3 and BSS138 are selected for Q1 and Q2 respectively. Figure 9-9 and Figure 9-10 illustrate the performance of the system during the surge testing. Copyright © 2025 Texas Instruments Incorporated 提交文档反馈 ## 9.2.3 Application Curves www.ti.com.cn Product Folder Links: TPS2663 ## 9.3 System Examples #### 9.3.1 Simple 24-V Power Supply Path Protection With the TPS2663x devices, a simple 24-V power supply path protection can be realized using a minimum of five external components as shown in the schematic diagram in $\[ \]$ 9-11. The external components required are: an N - Channel Power FET $Q_1$ , an N - Channel signal FET $Q_2$ , and an $R_{(ILIM)}$ resistor to program the current limit, $C_{(IN)}$ and $C_{(OUT)}$ capacitors. 图 9-11. TPS26630 Configured for a Simple 24-V Supply Path Protection Protection features with this configuration include: - Load and device protection from reverse input polarity fault down to 60 V (with a 60-V rated Q<sub>1</sub>) - Overvoltage protection at 34 V - Inrush current control with 24-V/240-µs output voltage slew rate - · Reverse current blocking - · Accurate current limiting with auto-retry #### 9.3.2 Priority Power MUX Operation Applications having two energy sources, such as portable battery powered equipment require preference of one source to another. For example, mains power (wall-adapter) has the priority over the internal backup power or auxiliary power. These applications demand for switch over from mains power to backup power only when main input voltage falls below a user defined threshold. The TPS2663x devices provide a simple solution for priority power multiplexing needs. 图 9-12 shows a typical priority power multiplexing implementation using devices. When the MAIN power is present, the device in VIN\_MAIN path powers the OUT bus irrespective of whether auxiliary power VIN\_AUX is greater than or less than VIN\_MAIN. After the voltage on the VIN\_MAIN rail falls below the user-defined threshold, the device VIN\_MAIN issues a signal to switch over to auxiliary power VIN\_AUX. The transition happens seamlessly in touriest, with minimal voltage droop on the output. The voltage droop during transition is a function of load current and output capacitance. See 方程式 13. $$V_{(DROOP)} = \frac{I_{(LOAD)} x t_{OVP(fast\_dly)}}{C_{(OUT)}}$$ (13) where V<sub>(DROOP)</sub> is in volts, I<sub>(LOAD)</sub> is load current in Ampere, C<sub>(OUT)</sub> is output capacitance in μF, t<sub>OVP(fast\_dly)</sub> = 140 μs (typical) Figure 9-13, Figure 9-14, Figure 9-15 and figure 9-16 show typical switch-over waveforms of Priority Muxing implementation using the TPS26630 or TPS26631 for 20-V primary and 24-V auxiliary bus. 图 9-12. Priority Power Mux Implementation #### 9.3.3 Input Protection for a Compact 24-V Auxiliary Power Supply for Servo Drives TPS2663x eFuse protects the system from common faults such as reverse polarity, reverse power flow, overvoltage, undervoltage and overcurrents along with a robust EMC immunity performance. For further information, refer to Compact, efficient, 24-V input auxiliary power supply reference design for servo drives design guide. #### 9.4 Dos and Do Nots - Use external FETs Q1 and Q2. in the applications where reverse polarity protection is required. - Connect at least a 300-k Ω resistor across UVLO and IN SYS in the applications where reverse polarity protection is required. # 9.5 Power Supply Recommendations The TPS2663x eFuse is designed for the supply voltage range of 4.5 V $\leq$ V<sub>IN</sub> $\leq$ 60 V. If the input supply is located more than a few inches from the device, TI recommends an input ceramic bypass capacitor higher than 0.1 μF. Power supply must be rated higher than the current limit set to avoid voltage droops during overcurrent and short-circuit conditions. ## 9.5.1 Transient Protection In case of short-circuit and overload current limit, when the device interrupts current flow, input inductance generates a positive voltage spike on the input and output inductance generates a negative voltage spike on the output. The peak amplitude of voltage spikes (transients) depends on the value of inductance in series to the input or output of the device. These transients can exceed the Absolute Maximum Ratings of the device if steps are not taken to address the issue. Typical methods for addressing transients include: - · Minimizing lead length and inductance into and out of the device - Using large PCB GND plane - Using a Schottky diode across the output and GND to absorb negative spikes - Using a low value ceramic capacitor ( $C_{(IN)}$ to approximately 0.1 $\mu$ F) to absorb the energy and dampen the transients. The approximate value of input capacitance can be estimated with 方程式 14 $$V_{\text{spike(Absolute)}} = V_{\text{(IN)}} + I_{\text{(Load)}} \times \sqrt{\frac{L_{\text{(IN)}}}{C_{\text{(IN)}}}}$$ (14) Copyright © 2025 Texas Instruments Incorporated Product Folder Links: TPS2663 #### where - V<sub>(IN)</sub> is the nominal supply voltage - I<sub>(LOAD)</sub> is the load current - L<sub>(IN)</sub> equals the effective inductance seen looking into the source - C<sub>(IN)</sub> is the capacitance present at the input Some applications can require additional Transient Voltage Suppressor (TVS) to prevent transients from exceeding the *Absolute Maximum Ratings* of the device. These transients can occur during positive and negative surge tests on the supply lines. In such applications, TI recommends to place at least 1 $\mu$ F of input capacitor. Figure 10-1 shows the circuit implementation with optional protection components (a ceramic capacitor, TVS and, Schottky diode). <sup>\*</sup> Optional components needed for suppression of transients 图 9-17. Circuit Implementation With Optional Protection Components for TPS2663x #### 9.6 Layout #### 9.6.1 Lavout Guidelines - For all the applications, TI recommends a 0.1 $\mu$ F or higher value ceramic decoupling capacitor between IN SYS terminal and GND. - The external FET Q1 must be placed with DRAIN close to the V<sub>IN</sub> pins of the IC and connected through a plane. The fast pulldown switch Q2 DRAIN and SOURCE must be placed very close to the GATE and SOURCE terminals of Q1 with very short loop. See § 9-18 and § 9-19 for a typical PCB layout example. - The optimum placement of decoupling capacitor is closest to the IN\_SYS and GND terminals of the device. Care must be taken to minimize the loop area formed by the bypass-capacitor connection, the IN\_SYS terminal, and the GND terminal of the IC. - High-current carrying power path connections must be as short as possible and must be sized to carry at least twice the full-load current. - Locate all the TPS2663x family support components R<sub>(ILIM)</sub>, C<sub>(dVdT)</sub>, R<sub>(IMON)</sub>, UVLO, OVP and PGTH resistors close to their connection pin. Connect the other end of the component to the GND with shortest trace length. - The trace routing for the R<sub>ILIM</sub> component to the device must be as short as possible to reduce parasitic effects on the current limit and current monitoring accuracy. These traces must not have any coupling to switching signals on the board. - Protection devices such as TVS, snubbers, capacitors, or diodes must be placed physically close to the device they are intended to protect, and routed with short traces to reduce inductance. For example, TI recommends a protection Schottky diode to address negative transients due to switching of inductive loads, and it must be physically close to the OUT and GND pins. Product Folder Links: TPS2663 Copyright © 2025 Texas Instruments Incorporated 提交文档反馈 39 Thermal Considerations: When properly mounted, the PowerPAD integrated circuit package provides significantly greater cooling ability. To operate at rated power, the PowerPAD integrated circuit package must be soldered directly to the board GND plane directly under the device. Other planes, such as the bottom side of the circuit board, can be used to increase heat sinking in higher current applications. ## 9.6.2 Layout Example Top Layer Bottom layer GND plane Top Layer GND Plane Via to Bottom Layer 图 9-18. Typical PCB Layout Example with QFN Package with a 2-Layer PCB Product Folder Links: TPS2663 - Top Layer - Bottom layer GND plane - Top Layer GND Plane - Via to Bottom Layer 图 9-19. Typical PCB Layout Example with HTSSOP Package with a 2-Layer PCB 41 ## 10 Device and Documentation Support ## **10.1 Documentation Support** #### 10.1.1 Related Documentation - Texas Instruments, TPS2663 Design Calculator - Texas Instruments, CPU (PLC Controller) - Texas Instruments, Compact, efficient, 24-V input auxiliary power supply reference design for servo drives design guide #### 10.2 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 #### 10.3 支持资源 TI E2E<sup>™</sup> 中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。 #### 10.4 Trademarks PowerPAD™ and TI E2E™ are trademarks of Texas Instruments. 所有商标均为其各自所有者的财产。 #### 10.5 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 #### 10.6 术语表 TI术语表本本术语表列出并解释了术语、首字母缩略词和定义。 ## 11 Revision History 注:以前版本的页码可能与当前版本的页码不同 | С | hanges from Revision F (June 2021) to Revision G (June 2024) | Page | |---|-----------------------------------------------------------------------------------------------------------------|------| | • | 向文档添加了 TPS26637 器件 | 1 | | • | Added the TPS26637 device to the Device Comparison Table section | 2 | | • | Updated the overload fault response and OV clamp voltage for TPS26636 in the <i>Device Comparison 7</i> section | | | • | Added the TPS26637 device to the Pin Configuration and Functions section | 3 | | • | Added the TPS26637 device to the Overview section | 16 | | • | Added the TPS26637 device to the PGTH as VOUT Sensing Input section | 20 | | • | Added the TPS26637 device to 节 8.3.7.1.2 | 24 | | • | Deleted the TPS26636 device from # 8.3.7.1.2 | 24 | | • | Added the TPS26637 device to † 8.3.8 | 26 | | • | Updated the overload protection for the TPS26636 device in † 8.3.8 | | | • | Added the TPS26637 device to the <i>Device Functional Modes</i> section | | | • | Updated the overload protection for the TPS26636 device in the <i>Device Functional Modes</i> section | 29 | Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TPS*2663 ## Changes from Revision E (March 2020) to Revision F (June 2021) Page • 更新了整个文档中的表格、图和交叉参考的编号格式......1 # 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: TPS2663 Copyright © 2025 Texas Instruments Incorporated 提交文档反馈 43 www.ti.com 17-Jun-2025 # **PACKAGING INFORMATION** | Orderable part number | Status (1) | Material type | Package Pins | Package qty Carrier | <b>RoHS</b> (3) | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|------------|---------------|-------------------|-----------------------|-----------------|-------------------------------|----------------------------|--------------|------------------| | TPS26630RGER | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26630 | | TPS26630RGER.A | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26630 | | TPS26630RGERG4 | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26630 | | TPS26630RGERG4.A | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26630 | | TPS26630RGET | Active | Production | VQFN (RGE) 24 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26630 | | TPS26630RGET.A | Active | Production | VQFN (RGE) 24 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26630 | | TPS26631PWPR | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26631 | | TPS26631PWPR.A | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26631 | | TPS26631PWPRG4 | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26631 | | TPS26631PWPRG4.A | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26631 | | TPS26631PWPT | Active | Production | HTSSOP (PWP) 20 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26631 | | TPS26631PWPT.A | Active | Production | HTSSOP (PWP) 20 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26631 | | TPS26631RGER | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26631 | | TPS26631RGER.A | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26631 | | TPS26631RGERG4 | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26631 | | TPS26631RGERG4.A | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26631 | | TPS26631RGET | Active | Production | VQFN (RGE) 24 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26631 | | TPS26631RGET.A | Active | Production | VQFN (RGE) 24 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26631 | | TPS26632RGER | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26632 | 17-Jun-2025 www.ti.com | Orderable part number | Status (1) | Material type (2) | Package Pins | Package qty Carrier | (3) | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|------------|-------------------|-------------------|-----------------------|-----|-------------------------------|----------------------------|--------------|------------------| | TPS26632RGER.A | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26632 | | TPS26632RGET | Active | Production | VQFN (RGE) 24 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26632 | | TPS26632RGET.A | Active | Production | VQFN (RGE) 24 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26632 | | TPS26633PWPR | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26633 | | TPS26633PWPR.A | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26633 | | TPS26633PWPT | Active | Production | HTSSOP (PWP) 20 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26633 | | TPS26633PWPT.A | Active | Production | HTSSOP (PWP) 20 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26633 | | TPS26633PWPTG4 | Active | Production | HTSSOP (PWP) 20 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26633 | | TPS26633PWPTG4.A | Active | Production | HTSSOP (PWP) 20 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26633 | | TPS26633RGER | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26633 | | TPS26633RGER.A | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26633 | | TPS26633RGERG4 | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26633 | | TPS26633RGERG4.A | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26633 | | TPS26633RGET | Active | Production | VQFN (RGE) 24 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26633 | | TPS26633RGET.A | Active | Production | VQFN (RGE) 24 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26633 | | TPS26635RGER | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26635 | | TPS26635RGER.A | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26635 | | TPS26635RGET | Active | Production | VQFN (RGE) 24 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26635 | | TPS26635RGET.A | Active | Production | VQFN (RGE) 24 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26635 | | TPS26636PWPR | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26636 | | TPS26636PWPR.A | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26636 | 17-Jun-2025 26637 www.ti.com | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/ | MSL rating/ | Op temp (°C) | Part marking | |-----------------------|--------|---------------|-------------------|-----------------------|------|---------------|---------------------|--------------|--------------| | | (1) | (2) | | | (3) | Ball material | Peak reflow | | (6) | | | | | | | | (4) | (5) | | | | TPS26636PWPRG4 | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26636 | | TPS26636PWPRG4.A | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26636 | | TPS26636PWPT | Active | Production | HTSSOP (PWP) 20 | 250 SMALL T&R | Yes | NIPDAU | Level-2-250C-1 YEAR | -40 to 125 | TPS26636 | | TPS26636PWPT.A | Active | Production | HTSSOP (PWP) 20 | 250 SMALL T&R | Yes | NIPDAU | Level-2-250C-1 YEAR | -40 to 125 | TPS26636 | | TPS26637PWPR | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26637 | | TPS26637PWPR.A | Active | Production | HTSSOP (PWP) 20 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | TPS26637 | | TPS26637RGER | Active | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | TPS<br>26637 | | TPS26637RGFR.A | Active | Production | VOFN (RGF) 24 | 3000 LLARGE T&R | Yes | NIPDALI | Level-1-260C-UNLIM | -40 to 125 | TPS | <sup>(1)</sup> Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. <sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. <sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. <sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. <sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. <sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE OPTION ADDENDUM** www.ti.com 17-Jun-2025 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. www.ti.com 23-Jul-2025 ## TAPE AND REEL INFORMATION # TAPE DIMENSIONS KO P1 BO W Cavity A0 | A0 | Dimension designed to accommodate the component width | |----|-----------------------------------------------------------| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### \*All dimensions are nominal | Device | Package<br>Type | Package<br>Drawing | Pins | SPQ | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant | |----------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS26630RGER | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26630RGERG4 | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26630RGET | VQFN | RGE | 24 | 250 | 180.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26631PWPR | HTSSOP | PWP | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | | TPS26631PWPRG4 | HTSSOP | PWP | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | | TPS26631PWPT | HTSSOP | PWP | 20 | 250 | 180.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | | TPS26631RGER | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26631RGERG4 | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26631RGET | VQFN | RGE | 24 | 250 | 180.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26632RGER | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26632RGET | VQFN | RGE | 24 | 250 | 180.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26633PWPR | HTSSOP | PWP | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | | TPS26633PWPT | HTSSOP | PWP | 20 | 250 | 180.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | | TPS26633PWPTG4 | HTSSOP | PWP | 20 | 250 | 180.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | | TPS26633RGER | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26633RGERG4 | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 23-Jul-2025 | Device | Package<br>Type | Package<br>Drawing | | SPQ | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant | |----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS26633RGET | VQFN | RGE | 24 | 250 | 180.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26635RGER | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26635RGET | VQFN | RGE | 24 | 250 | 180.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | TPS26636PWPR | HTSSOP | PWP | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | | TPS26636PWPRG4 | HTSSOP | PWP | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | | TPS26636PWPT | HTSSOP | PWP | 20 | 250 | 180.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | | TPS26637PWPR | HTSSOP | PWP | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | | TPS26637RGER | VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | www.ti.com 23-Jul-2025 \*All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | TPS26630RGER | VQFN | RGE | 24 | 3000 | 367.0 | 367.0 | 35.0 | | TPS26630RGERG4 | VQFN | RGE | 24 | 3000 | 367.0 | 367.0 | 35.0 | | TPS26630RGET | VQFN | RGE | 24 | 250 | 210.0 | 185.0 | 35.0 | | TPS26631PWPR | HTSSOP | PWP | 20 | 2000 | 353.0 | 353.0 | 32.0 | | TPS26631PWPRG4 | HTSSOP | PWP | 20 | 2000 | 353.0 | 353.0 | 32.0 | | TPS26631PWPT | HTSSOP | PWP | 20 | 250 | 213.0 | 191.0 | 35.0 | | TPS26631RGER | VQFN | RGE | 24 | 3000 | 367.0 | 367.0 | 35.0 | | TPS26631RGERG4 | VQFN | RGE | 24 | 3000 | 367.0 | 367.0 | 35.0 | | TPS26631RGET | VQFN | RGE | 24 | 250 | 210.0 | 185.0 | 35.0 | | TPS26632RGER | VQFN | RGE | 24 | 3000 | 367.0 | 367.0 | 35.0 | | TPS26632RGET | VQFN | RGE | 24 | 250 | 210.0 | 185.0 | 35.0 | | TPS26633PWPR | HTSSOP | PWP | 20 | 2000 | 353.0 | 353.0 | 32.0 | | TPS26633PWPT | HTSSOP | PWP | 20 | 250 | 213.0 | 191.0 | 35.0 | | TPS26633PWPTG4 | HTSSOP | PWP | 20 | 250 | 213.0 | 191.0 | 35.0 | | TPS26633RGER | VQFN | RGE | 24 | 3000 | 367.0 | 367.0 | 35.0 | | TPS26633RGERG4 | VQFN | RGE | 24 | 3000 | 367.0 | 367.0 | 35.0 | | TPS26633RGET | VQFN | RGE | 24 | 250 | 210.0 | 185.0 | 35.0 | | TPS26635RGER | VQFN | RGE | 24 | 3000 | 367.0 | 367.0 | 35.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 23-Jul-2025 | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | TPS26635RGET | VQFN | RGE | 24 | 250 | 210.0 | 185.0 | 35.0 | | TPS26636PWPR | HTSSOP | PWP | 20 | 2000 | 353.0 | 353.0 | 32.0 | | TPS26636PWPRG4 | HTSSOP | PWP | 20 | 2000 | 353.0 | 353.0 | 32.0 | | TPS26636PWPT | HTSSOP | PWP | 20 | 250 | 213.0 | 191.0 | 35.0 | | TPS26637PWPR | HTSSOP | PWP | 20 | 2000 | 353.0 | 353.0 | 32.0 | | TPS26637RGER | VQFN | RGE | 24 | 3000 | 367.0 | 367.0 | 35.0 | PLASTIC QUAD FLATPACK - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4204104/H PLASTIC QUAD FLATPACK- NO LEAD NOTES: - All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK- NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - Solder mask tolerances between and around signal pads can vary based on board fabrication site. PLASTIC QUAD FLATPACK- NO LEAD NOTES: (continued) Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.. 6.5 x 4.4, 0.65 mm pitch SMALL OUTLINE PACKAGE This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. # PowerPAD<sup>™</sup> TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE #### PowerPAD is a trademark of Texas Instruments. #### NOTES: - All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. - 4. Reference JEDEC registration MO-153. - 5. Features may differ or may not be present. SMALL OUTLINE PACKAGE #### NOTES: (continued) - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004). - 9. Size of metal pad may vary due to creepage requirement. - 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented. SMALL OUTLINE PACKAGE NOTES: (continued) - 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 12. Board assembly site may have different recommendations for stencil design. # 重要通知和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司