

TPS1HTC30-Q1

ZHCSP56 SEPTEMBER 2023

TPS1HTC30-Q1 30mΩ、6A 单通道汽车类智能高侧开关

1 特性

TEXAS

- 具有全面诊断功能、适用于 24V 汽车系统的单通道 智能高侧电源开关
- 宽工作电压范围:6V至60V
 - OVP 保护:66 V

INSTRUMENTS

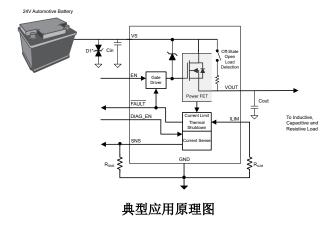
- 低 R_{ON} : 30m Ω 典型值、55m Ω 最大值
- 低待机电流:<0.5µA
- 低静态电流 (IQ): < 2mA
- 可通过可调电流限制提高系统级可靠性
 - 电流限值: 2A 至 16A
- 精确的电流检测:1A下为±4%
- 保护
 - 过载和短路保护
 - 集成型电感放电钳位
 - 欠压锁定 (UVLO) 保护
 - 接地失效保护和失电保护
 - 对外部元件提供反向电池保护
- 诊断
 - 开启和关闭状态输出的开路负载和电池短路检测
 - 过载和接地短路检测
 - 绝对和相对热关断检测
- 功能安全型
 - 可提供用于功能安全系统设计的文档
- 工作结温: 40 至 125°C
- 输入控制: 支持 1.8V、3.3V 和 5V 逻辑电压
- 通过集成式故障检测电压调节功能实现 ADC 保护
- 资格认证
 - 符合面向汽车应用的 AEC-Q100 标准
 - 温度等级 1: 40°C 至 +125°C, T_Δ
- 14 引脚热增强型 TSSOP 封装

2 应用

• 一般阻性、感性和容性负载

3 说明

TPS1HTC30-Q1 是一款单通道智能高侧开关,具有集 成的 NMOS 功率 FET 和电荷泵,专为满足 24V 汽车 类电池系统的要求而设计。低 Ron (30mΩ) 可更大程 度地降低器件功耗,驱动高达 6A 的宽输出直流负载电 流范围,并且具有 60V 的直流工作范围,可提高系统 稳健性。


该器件集成了多种保护功能,如热关断、输出钳位和电 流限制。这些功能可在发生故障(如短路)时提高系统 的稳健性。TPS1HTC30-Q1采用可调电流限制电路, 通过减小驱动大容性负载时的浪涌电流并尽可能降低过 载电流,提高了系统的可靠性。该器件还可提供精确的 负载电流检测,以提高负载诊断功能(如过载和开路负 载检测),从而更好地进行预测性维护。

TPS1HTC30-Q1 采用引脚间距为 0.65mm 的 14 引脚 4.40mm×5.0mm HTSSOP 小型引线式封装,从而更大 限度地减小 PCB 尺寸。

封進信自

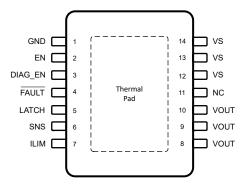
	判衣	日心	
器件型号	封装 ⁽¹⁾	封装尺寸 ⁽²⁾	封装尺寸(标 称值)
TPS1HTC30-Q1	PWP (HTSSOP, 14)	6.50 mm × 5.00 mm	4.40mm × 5.00mm

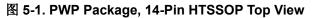
- (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。
- (2) 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。

Table of Contents

1 特性	1
2 应用	1
3 说明	1
4 Revision History	
5 Pin Configuration and Functions	3
5.1 Recommended Connections for Unused Pins	3
6 Specifications	4
6.1 Absolute Maximum Ratings	4
6.2 ESD Ratings	
6.3 Recommended Operating Conditions	
6.4 Thermal Information	5
6.5 Electrical Characteristics	
6.6 SNS Timing Characteristics	<mark>8</mark>
6.7 Switching Characteristics	
6.8 Timing Diagrams	
6.9 Typical Characteristics	11
7 Parameter Measurement Information	13
8 Detailed Description	13

8.1 Overview	13
8.2 功能方框图	14
8.3 Feature Description	
8.4 Device Functional Modes	
9 Application and Implementation	<mark>28</mark>
9.1 Application Information	<mark>28</mark>
9.2 Typical Application	
9.3 Power Supply Recommendations	<mark>32</mark>
9.4 Layout	<mark>32</mark>
10 Device and Documentation Support	
10.1 Documentation Support	<mark>35</mark>
10.2 接收文档更新通知	
10.3 支持资源	35
10.4 Trademarks	
10.5 静电放电警告	
10.6 术语表	
11 Mechanical, Packaging, and Orderable	
Information	35


4 Revision History


注:以前版本的页码可能与当前版本的页码不同

DATE	REVISION	NOTES
September 2023	*	Initial Release

5 Pin Configuration and Functions

表 5-1.	Pin	Functions
--------	-----	------------------

PWP PIN NUMBER	PIN NAME	TYPE ⁽¹⁾	DESCRIPTION
1	GND	Power	Ground of device. Connect to resistor- diode ground network to have reverse battery protection
2	EN	1	Input control for channel activation, internal pulldown
3	DIAG_EN	1	Enable-disable pin for diagnostics, internal pulldown
4	FAULT	0	Open drain global fault output. Referred to FLT, or fault pin
5	LATCH	1	Thermal shutdown behavior, latch off or auto retry, internal pull down
6	SNS	0	Output corresponding sense value based on sense ratio
7	ILIM	0	Adjustable current limit. Short to ground or leave floating if external current limit is not used
11	NC	N/A	No internal connection
8, 9, 10	VOUT	Power	Output of high side switch, connected to load
12, 13, 14	VS	Power	Power supply
Thermal Pad	Pad		Thermal Pad, internally shorted to ground

(1) I = input, O = output

5.1 Recommended Connections for Unused Pins

TPS1HTC30-Q1 is designed to provide an enhanced set of diagnostic and protection features. However, if the system design only allows for a limited number of I/O connections, some pins can be considered as optional.

PIN NAME	CONNECTION IF NOT USED	IMPACT IF NOT USED		
SNS	Ground through $1-k \Omega$ resistor	Analog sense is not available.		
LATCH	Float or ground through R _{PROT} resistor	With LATCH unused, the device performs an auto-retry after a fault. If latched behavior is desired, but the system describes limited I/O, it is possible to use one microcontroller output to control the latch function of several high-side channels.		
ILIM	Float	If the ILIM pin is left floating, the device is set to the default internal current- limit threshold. This is considered a fault state for the device.		
FAULT	Float	If the FAULT pin is unused, the system cannot read faults from the output.		
DIAG_EN	Float or ground through R _{PROT} resistor	With DIAG_EN unused, the analog sense, open-load, and short-to-battery diagnostics are not available.		

表 5-2. Connections for Optional Pins

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
Continuous supply voltage, V _S with respect to IC GND		-0.7	64	V	
Continuous output voltage, V _{OUT} with respect to IC GND		-60	64	V	
Maximum transient (< 100 us) voltage at the supply pin, V _S with respect to IC GND		-0.7	81	V	
Enable pin voltage, V _{EN}			- 1	7	V
LATCH pin voltage, V _{LATCH}			- 1	7	V
DIAG_EN pin voltage, V _{DIAG_EN}			- 1	7	V
Sense pin voltage, V _{SNS}		- 1	7	V	
FAULT pin voltage, V _{FAULT}			- 1	7	V
Reverse ground current, I _{GND}	V	/ _S < 0 V		- 50	mA
Maximum junction temperature, T _J				150	°C
Storage temperature, T _{stg}			- 65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

				VALUE	UNIT
		Human body model (HBM), per AEC Q100-002 Classification Level H2 ⁽¹⁾	All pins except VS and VOUT	±2000	V
V _{ESD}	Electrostatic discharge	Human body model (HBM), per AEC Q100-002 Classification Level H3A ⁽¹⁾	VS and VOUT with respect to GND	±4000	V
		Charged device model (CDM), per AEC Q100-011 Classification Level C5	All pins	±750	V

(1) AEC-Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
V _{S_OP_NOM}	Nominal supply voltage	6.0	60	V
V _{EN}	Enable voltage	- 1	5.5	V
V _{LATCH}	LATCH pin voltage, V _{LATCH}	- 1	5.5	V
V _{DIAG_EN}	Diagnostic Enable voltage	- 1	5.5	V
V _{FAULT}	FAULT pin voltage	- 1	5.5	V
V _{SNS}	Sense voltage	- 1	5.5	V
T _A	Operating free-air temperature	- 40	125	°C

(1) All operating voltage conditions are measured with respect to device GND

6.4 Thermal Information

		TPS1HTC30	
	THERMAL METRIC ⁽¹⁾ (2)	PWP (HTSSOP)	UNIT
		14 PINS	
R _{0 JA}	Junction-to-ambient thermal resistance	31.5	°C/W
R ₀ JC(top)	Junction-to-case (top) thermal resistance	23.8	°C/W
R _{0 JB}	Junction-to-board thermal resistance	7.4	°C/W
ΨJT	Junction-to-top characterization parameter	0.2	°C/W
ψJB	Junction-to-board characterization parameter	7.3	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	1.5	°C/W

(1) For more information about traditional and new thermal metrics, see the SPRA953 application report.

(2) The thermal parameters are based on a 4-layer PCB according to the JESD51-5 and JESD51-7 standards.

6.5 Electrical Characteristics

 V_S = 6 V to 60 V, T_A = -40°C to 125°C (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	ТҮР	MAX	UNIT
VS SUPPL	Y VOLTAGE AND CURREN	IT					
IL _{NOM}	Continuous load current	V _{EN} = HI, T _{AMB} = 85°C			6		Α
	V quieseent ourrent		V _{DIAG_EN} = LO		1	1.5	mA
I _{Q, VS}	V _S quiescent current	V _{EN} = HI, I _{OUT} = 0A	V _{DIAG_EN} = HI		1.1	1.9	mA
	Total device standby	$VS \le 60 V$, V_{EN} =	T _J = 85°C		0.25	0.7	μA
I _{STBY, VS}	current (including MOSFET) with diagnostics disabled	$V_{DIAG_{EN}} = LO, V_{OUT} = 0$ V	T _J = 150°C		0.63	6	μA
		$VS \leqslant$ 60 V, V_{EN} =	T _J = 85°C			0.4	μA
I _{OUT(OFF)}	Output leakage current	$V_{DIAG_{EN}} = 0 V, V_{OUT} = 0$ V	T _J = 150°C		0.2	12	μA
t _{STBY}	Standby mode delay time	V _{EN} = V _{DIAG_EN} = 0 V to standby			20		ms
VS UNDEI	RVOLTAGE LOCKOUT (UV	LO) INPUT					
V _{S,UVLOR}	V _S undervoltage lockout rising			5.0	5.4	5.75	V
V _{S,UVLOF}	V _S undervoltage lockout falling	Measured with respect to	the GND pin of the device	4.1	4.5	4.85	V
VS OVER	OLTAGE LOCKOUT (OVL	O) INPUT					
V _{S,OVPR}	V _S overvoltage protection rising	Measured with respect to the GND pin of the device, VEN = HI	Measured with respect to the GND pin of the device	62	65	68	V
V _{S,OVPRF}	V _S overvoltage protection recovery falling	Measured with respect to the GND pin of the device, VEN = HI	Measured with respect to the GND pin of the device	60	63	66	V
V _{S,OVPRH}	V _S overvoltage protection threshold hysteresis	Measured with respect to the GND pin of the device	Measured with respect to the GND pin of the device		2		V
		Time from triggering the OVP fault to FET turn-off			125		μs
t _{VS,OVP}	V _S overvoltage protection deglitch time	Time from triggering the C	OVP fault to FET turn-off		125		•
	deglitch time	Time from triggering the C	IVP fault to FET turn-off		125		
t _{VS,OVP} VDS CLAI	deglitch time	Time from triggering the C	VP fault to FET turn-off $V_{\rm S}$ = 24 V	65	72.5	80	V

6.5 Electrical Characteristics (续)

 V_S = 6 V to 60 V, T_A = -40°C to 125°C (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
	On-resistance		T _J = 25°C		30		mΩ
R _{ON}	(Includes MOSFET and	V_{S} = 6 V to 60 V, 0.5 A \leq $I_{OUT} \leq$ 6 A	T _J = 125°C			50	mΩ
	package)		T _J = 150°C			60	mΩ
R _{ON(REV)}	On-resistance during reverse polarity	V _S = -24 V, I _{OUT} = 2 A	$T_{\rm J} = -40^{\circ}{\rm C} \text{ to } 150^{\circ}{\rm C}$	30		60	mΩ
CURRENT	LIMIT CHARACTERISTICS	5				1	
1	ILIM Current Limitation	R _{ILIM} = Open or Out of ra	nge		8		А
I _{LIM_INT}	level internal reference	R _{ILIM} = GND			16		А
K _{CL}	Current Limit Ratio		R_{ILIM} = 10 k Ω to 50 k Ω	80	100	120	Α * k Ω
THERMAL	SHUTDOWN CHARACTER	RISTICS				1	
T _{ABS}	Thermal shutdown			154	165		°C
T _{REL}	Relative thermal shutdown				60		°C
t _{RETRY}	Retry time	Time from fault shutdown (thermal shutdown).	until switch re-enable		2		ms
Fault Response	Fault reponse to Thermal Shutdown				onfigura ble via .atch pin		
T _{HYS}	Thermal shutdown hysteresis				20		°C
FAULT PIN	CHARACTERISTICS	1					
V _{FAULT}	FAULT low output voltage	I _{FAULT} = 2.5 mA				0.5	V
t _{FAULT_FLT}	Fault indication-time	V _{DIAG_EN} = 5 V Time between fault and F			60	μs	
t _{FAULT_SNS}	Fault indication-time	V _{DIAG_EN} = 5 V Time between fault and I _S			60	μs	
CURRENT	SENSE CHARACTERISTIC	ĊS					
K _{SNS1}	Current sense ratio				1300		A/A

6.5 Electrical Characteristics (续)

 V_S = 6 V to 60 V, T_A = -40°C to 125°C (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
		I _{OUT} = 6 A			4.61		mA
				- 6		6	%
			I _{OUT} = 4 A		3.3		mA
			IOUT - 4 A	- 3		3	%
			L - 2 A		1.66		mA
			I _{OUT} = 2 A	- 4		4	%
					0.833		mA
			I _{OUT} = 1 A	- 4		4	%
			500		0.417		mA
	Current sense current		I _{OUT} = 500 mA	- 6		6	%
SNSI	and accuracy	$V_{EN} = V_{DIAG_{EN}} = 5 V$			0.15		mA
			I _{OUT} = 200 mA	- 10		10	%
					0.073		mA
			I _{OUT} = 100 mA	- 15		15	%
					0.035		mA
			I _{OUT} = 50 mA	- 25		25	%
		I _{OUT} = 20 mA			0.012		mA
			I _{OUT} = 20 mA	- 40	0.012	40	%
					0.0088		mA
			I _{OUT} = 10 mA	- 60	0.0000	60	%
SNS PIN CI				00		00	70
/ _{SNSFH}	V _{SNS} fault high-level	V _{DIAG EN} = 5 V		4.5	5	5.77	V
/ _{SNSFH}	V _{SNS} fault high-level	$V_{DIAG_{EN}} = V_{IH}$ to 3.3 V		3.0	3.3	3.82	V
SNSFLT	I _{SNS} fault high-level	V _{DIAG_EN} > V _{IH,DIAG_EN}		5.3	6.4		mA
SNSleak	I _{SNS} leakage	$V_{\text{DIAG} EN} = 5 \text{ V}, \text{ IL} = 0 \text{ m}.$	A			1.3	μA
SINGleak	$V_{\rm S}$ headroom needed for	$V_{\text{DIAG EN}} = 3.3 \text{ V}$		6			V
/ _{s_isns}	full current sense and	$V_{\text{DIAG}_{\text{EN}}} = 5 \text{ V}$	6.5			V	
	fault functionality			0.0			v
DPEN LOA	D DETECTION CHARACT						
/ _{OL_OFF}	OFF state open-load (OL) detection voltage	V _{EN} = 0 V, V _{DIAG_EN} = 5	V	1.5	2	2.5	V
R _{OL_OFF}	OFF state open-load (OL) detection internal pull-up resistor	$V_{EN} = 0 V, V_{DIAG_EN} = 5$	V	120	150	180	kΩ
OL_OFF	OFF state open-load (OL) detection deglitch time	$V_{EN} = 0 V$, $V_{DIAG_EN} = 5$ duration longer than t_{OL} .		480	700	μs	
OL_OFF_1	OL_OFF and STB indication-time from EN falling	V _{EN} = 5 V to 0 V, V _{DIAG_E} I _{OUT} = 0 mA, V _{OUT} = Vs		310	700	μs	
OL_OFF_2	OL and STB indication- time from DIA_EN rising	$V_{EN} = 0 V, V_{DIAG_EN} = 0$ $I_{OUT} = 0 mA, V_{OUT} = V_S V$			700	μs	
DIAG_EN P							
L, DIAG_EN	Input voltage low-level	No GND Network				0.8	V
	Input voltage high-level	No GND Network		1.5			V

6.5 Electrical Characteristics (续)

 V_S = 6 V to 60 V, T_A = -40°C to 125°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IHYS,} DIAG_EN	Input voltage hysteresis			280		mV
R _{DIAG_EN}	Internal pulldown resistor		200	350	500	kΩ
I _{IL, DIAG_EN}	Input current low-level	V _{DIAG_EN} = 0.8 V		2.2		μA
I _{IH, DIAG_EN}	Input current high-level	V _{DIAG_EN} = 5 V		14		μA
EN PIN CH	ARACTERISTICS					
V _{IL, EN}	Input voltage low-level	No GND Network			0.8	V
V _{IH, EN}	Input voltage high-level	No GND Network	1.5			V
V _{IH, EN}	Input voltage hysteresis			280		mV
R _{EN}	Internal pulldown resistor		200	350	500	kΩ
I _{IL, EN}	Input current low-level	V _{EN} = 0.8 V		2.2		μA
I _{IH, EN}	Input current high-level	V _{EN} = 5 V		14		μA
LATCH PIN	CHARACTERISTICS		L			
VIL, LATCH	Input voltage low-level	No GND Network			0.8	V
V _{IH, LATCH}	Input voltage high-level	No GND Network	1.5			V
V _{IHYS,} latch	Input voltage hysteresis			280		mV
R _{LATCH}	Internal pulldown resistor		0.7	1	1.4	MΩ
IIL, LATCH	Input current low-level	V _{DIA_EN} = 0.8 V		2.2		μA
I _{IH, LATCH}	Input current high-level	V _{DIA_EN} = 5 V		14		μA

6.6 SNS Timing Characteristics

 V_{BB} = 6 V to 60 V, T_A = -40°C to 125°C (unless otherwise noted), parameters not tested in production

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SNS TIMI	NG - CURRENT SENSE				ı	
t _{SNSION1}	Settling time from rising edge of DIAG_EN 50% of $V_{\text{DIA}_{EN}}$ to 90% of settled ISNS				30	μs
t _{SNSION1}	Settling time from rising edge of DIAG_EN 50% of $V_{\text{DIA}_{EN}}$ to 90% of settled ISNS	V_{EN} = 5 V, V_{DIAG_EN} = 0 V to 5 V R _{SNS} = 1 k Ω , I _L = 30 mA			60	μs
t _{SNSION2}	Settling time from rising edge of EN and DIAG_EN 50% of V _{DIA_EN} V _{EN} to 90% of settled ISNS	V _{EN} = V _{DIAG_EN} = 0 V to 5 V R _{SNS} = 1 kΩ, I _L = 1 A			200	μs
t _{SNSION3}	Settling time from rising edge of EN with DIAG_EN HI; 50% of $V_{DIA_{EN}}V_{EN}$ to 90% of settled ISNS	V_{EN} = 0 V to 5 V, V_{DIAG_EN} = 5 V R _{SNS} = 1 k Ω , I _L = 1 A			200	μs
t _{SNSIOFF}	Settling time from falling edge of DIAG_EN	V_{EN} = 5 V, V_{DIAG_EN} = 5 V to 0 V R _{SNS} = 1 k Ω , R _L = 125 Ω			20	μs
t _{SETTLEH}	Settling time from rising edge of load step	$V_{EN} = 5 \text{ V}, V_{DIAG_EN} = 5 \text{ V}$ $R_{SNS} = 1 \text{ k} \Omega, I_{OUT} = 0.5 \text{ A to } 3 \text{ A}$			20	μs
t _{SETTLEL}	Settling time from falling edge of load step	$V_{EN} = 5 \text{ V}, V_{DIAG_EN} = 5 \text{ V}$ $R_{SNS} = 1 \text{ k} \Omega$, $I_{OUT} = 3 \text{ A to } 0.5 \text{ A}$			20	μs

6.7 Switching Characteristics

	Parameter	Test Conditions	Min	Тур	Мах	Unit
t _{DR}	Turnon delay time (from standby)	50% of EN to 20% of VOUT	30	60	82.5	μs
t _{DR}	Turnon delay time (from active)	50% of EN to 20% of VOUT	30	50	72.5	μs
t _{DF}	Turnoff delay time	50% of EN to 80% of VOUT	55	95	135	μs
SR _R	VOUT rising slew rate	20% to 80% of V _{OUT}	0.2	0.45	0.8	V/µs
SR _F	VOUT falling slew rate	80% to 20% of V _{OUT}	0.2	0.55	0.9	V/µs
f _{max}	Maximum PWM frequency				750	Hz
t _{ON}	Turnon time	50% of EN to 80% of VOUT		125	200	μs
t _{OFF}	Turnoff time	50% of EN to 20% of VOUT		145	230	μs
		1ms ON time switch enable pulse	- 25		25	μs
t _{ON} - t _{OFF}	Turnon and off matching	200- μ s enable pulse F = f _{max}	- 25		25	μs
t _{OFF_pw}	Minimum VOUT ON pulse width	200-µs OFFtime switch enable pulse, VOUT @ 20% of VS, F = f _{max}	70		160	μs
$^{\Delta}\mathrm{PWM}$	PWM accuracy - average load current	300- μ s enable pulse F = f _{max}	- 15		15	%
E _{ON}	Switching energy losses during turnon	1 ms pulse, VOUT from 10% to 90% of VS voltage		0.3	0.4	mJ
E _{OFF}	Switching energy losses during turnoff	1 ms pulse, VOUT from 10% to 90% of VS voltage		0.25	0.35	mJ

V_S = 48 V, R_L = 120 Ω , T_A = -40°C to 125°C (unless otherwise noted)

6.8 Timing Diagrams

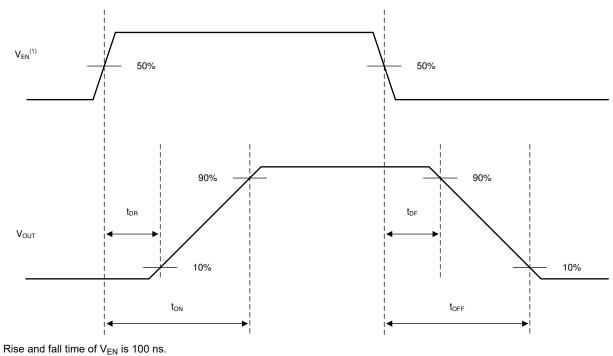
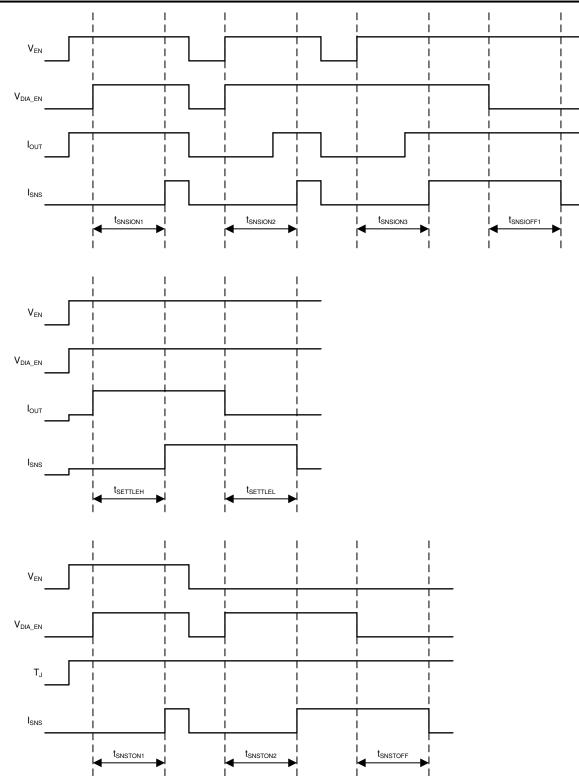
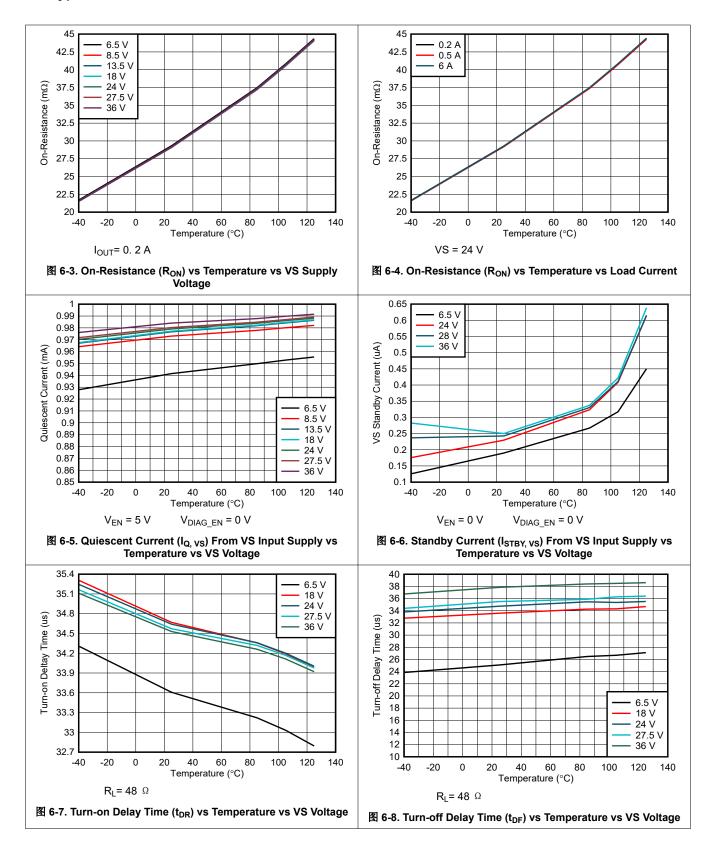
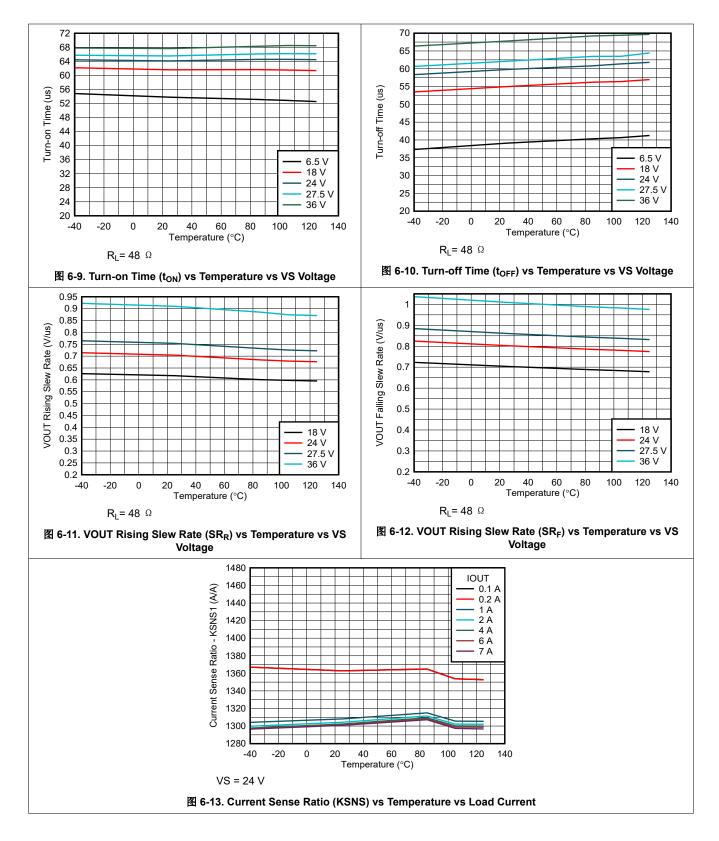



图 6-1. Switching Characteristics Definitions



Rise and fall times of control signals are 100 ns. Control signals include: EN, DIA_EN.

图 6-2. SNS Timing Characteristics Definitions



6.9 Typical Characteristics

6.9 Typical Characteristics (continued)

7 Parameter Measurement Information

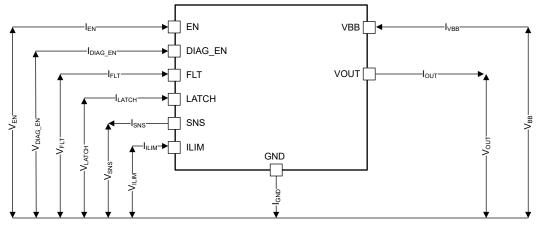


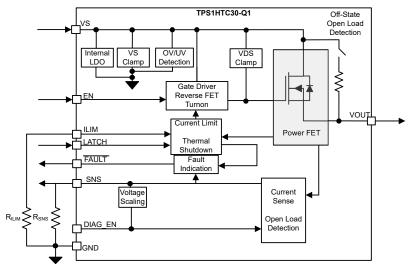
图 7-1. Parameter Definitions

8 Detailed Description

8.1 Overview

The TPS1HTC30-Q1 is a automotive, single-channel, fully-protected, high-side power switch with an integrated NMOS power FET and charge pump rated to 60-V DC tolerance. Full diagnostics and high-accuracy current-sense features enable intelligent control of the load. Low logic high threshold, V_{IH} , of 1.5 V on the input pins allow use of MCUs down to 1.8 V. A programmable current-limit function greatly improves the reliability of the whole system. The device diagnostic reporting has two pins to support both digital status and analog current-sense output, for multiplexing the MCU analog or digital interface among devices.

The digital status report is implemented with an open-drain structure on the fault pin. When a fault condition occurs, the pin is pulled down to GND. An external pullup is required to match the microcontroller supply level. High-accuracy current sensing allows a better real-time monitoring effect and more-accurate diagnostics without further calibration. A current mirror is used to source 1 / K_{SNS} of the load current, which is reflected as voltage on the SNS pin. K_{SNS} is a constant value across temperature and supply voltage. The SNS pin can also report a fault by forcing a voltage of V_{SNSFH} that scales with the diagnostic enable voltage so that the max voltage seen by the system ADC is within an acceptable value. This removes the need for an external Zener diode or resistor divider on the SNS pin.


The external high-accuracy current limit allows setting the current limit value by application. The external highaccuracy current limit highly improves the reliability of the system by clamping the inrush current effectively under start-up or short-circuit conditions. Also, the external high-accuracy current limit can save system costs by reducing PCB trace, connector size, and the preceding power-stage capacity. An internal current limit can also be implemented in this device. The lower value of the external or internal current-limit value is applied.

An active drain to source voltage clamp is built in to address switching off the energy of inductive loads, such as relays, solenoids, pumps, motors, and so forth. During the inductive switching-off cycle, both the energy of the power supply (E_{BAT}) and the load (E_{LOAD}) are dissipated on the high-side power switch itself. With the benefits of process technology and excellent IC layout, the TPS1HTC30-Q1 device can achieve excellent energy dissipation capacity, which can help save the need of using external free-wheeling circuitry in most cases.

The TPS1HTC30-Q1 device can be used as a high-side power switch for a wide variety of resistive, inductive, and capacitive loads, including the low-wattage bulbs, LEDs, relays, solenoids, and heaters.

8.2 功能方框图

8.3 Feature Description

8.3.1 Accurate Current Sense

The high-accuracy current-sense function is internally implemented, which allows real-time monitoring and moreaccurate diagnostics without further calibration. A current mirror is used to source 1 / K_{SNS} of the load current, flowing out to the external resistor between the SNS pin and GND, and reflected as voltage on the SNS pin.

 K_{SNS} is the ratio of the output current and the sense current. The accuracy values of K_{SNS} quoted in the electrical characteristics do take into consideration temperature and supply voltage. Each device was internally calibrated while in production, so post-calibration by users is not required in most cases.

The maximum voltage out on the SNS pin is clamped to V_{SNSFH}, which is the fault voltage level. To make sure that this voltage is not higher than the system can tolerate, TI has correlated the voltage coming in on the DIAG_EN pin with the maximum voltage out on the SNS pin. If DIAG_EN is between V_{IH} and 3.3 V, the maximum output on the SNS pin is approximately 3.3 V. However, if the voltage at DIAG_EN is above 3.3 V, then the fault SNS voltage, V_{SNSFH}, tracks that voltage up to 5 V. Tracking is done because the GPIO voltage output that is powering the diagnostics through DIAG EN is close to the maximum acceptable ADC voltage within the same microcontroller. Therefore, the sense resistor value, R_{SNS}, can be chosen to maximize the range of currents needed to be measured by the system. The R_{SNS} value must be chosen based on application need. The maximum usable R_{SNS} value is bounded by the ADC minimum acceptable voltage, V_{ADC,min}, for the smallest load current needed to be measured by the system, ILOAD,min. The minimum acceptable R_{SNS} value has to ensure the V_{SNS} voltage is below the V_{SNSFH} value so that the system can determine faults. This difference between the maximum readable current through the SNS pin, ILOAD,max × RSNS, and the VSNSFH is called the headroom voltage, V_{HR}. The headroom voltage is determined by the system but is important so that there is a difference between the maximum readable current and a fault condition. Therefore, the minimum R_{SNS} value has to be the V_{SNSFH} minus the V_{HR} times the sense current ratio, K_{SNS} divided by the maximum load current the system must measure, ILOAD max. Use the following equation to see the boundary equation.

$$(V_{SNSFH} - V_{HR}) \times K_{SNS} / I_{LOAD,max} \leqslant R_{SNS} \leqslant V_{ADC,min} \times K_{SNS} / I_{LOAD,min}$$
(1)

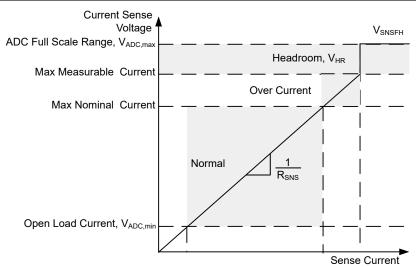


图 8-1. Voltage Indication on the Current-Sense Pin

The maximum current the system wants to read, $I_{LOAD,max}$, must be below the current-limit threshold because after the current-limit threshold is tripped the V_{SNS} value goes to V_{SNSFH} . Additionally, currents being measured can be up to the maximum ILIM value but the current sense output accuracy is not specified above the maximum rated value in the Current Sense Characteristics.

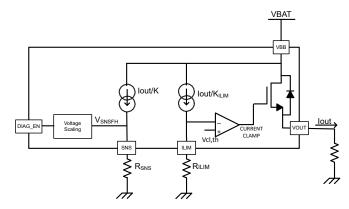


图 8-2. Current-Sense and Current-Limit Block Diagram

Because this scheme adapts based on the voltage coming in from the MCU, there is no need to have a Zener diode on the SNS pin to protect from high voltages.

8.3.2 Programmable Current Limit

A high-accuracy current limit allows higher reliability, which protects the power supply during short circuit or power up. Also, a high-accuracy current limit can save system costs by reducing PCB traces, connector size, and the capacity of the preceding power stage.

Current limit offers protection from over-stressing to the load and integrated power FET. Current limit holds the current at the set value, and pulls up the SNS pin to V_{SNSFH} and asserts the FAULT pin as diagnostic reports. The three current-limit thresholds are:

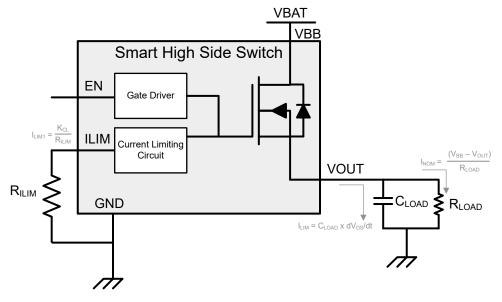
 External programmable current limit -- An external resistor, R_{ILIM} is used to set the channel current limit. When the current through the device exceeds I_{LIM_REG} (current limit threshold), a closed loop steps in immediately. V_{GS} voltage regulates accordingly, leading to the V_{DS} voltage regulation. When the closed loop is set up, the current is clamped at the set value. The external programmable current limit provides the capability to set the current-limit value by application.

Additionally this value can be dynamically changed by changing the resistance on the ILIM pin. This can be seen in the Applications Section.

- Internal current limit: I_{LIM} pin shorted to ground -- If the external current limit is out of range on the lower end or the I_{LIM} pin is shorted to ground, the internal current limit is fixed. To use the internal current limit for largecurrent applications, tie the I_{LIM} pin directly to the device GND.
- Internal current limit: I_{LIM_REG} pin open -- If the external resistor is out of range on the higher end or the ILIM pin is open, the current limit reverts to half the nominal current limit range. This level is still above the nominal operation for the device to operate in DC steady state but is low enough that if a pin fault occurs and the R_{ILIM} opens up, the current does not default to the highest rating and put additional stress on the power supply.

Both the internal current limit ($I_{\text{lim,nom}}$) and external programmable current limit are always active when V_S is powered and EN is high. The lower value one (of I_{LIM} and the external programmable current limit) is applied as the actual current limit. The typical deglitch time for the current limit to assert is 2.5 µs.

Note that if a GND network is used (which leads to the level shift between the device GND and board GND), the ILIM pin must be connected with device GND. Calculate R_{LIM} with βR_{LIM} 2.


$$R_{\text{LIM}_{\text{REG}}} = K_{\text{CL}} / I_{\text{LIM}_{\text{REG}}}$$

(2)

For better protection from a hard short-to-GND condition (when V_S and input are high and a short to GND happens suddenly), an open-loop fast-response behavior is set to turn off the channel, before the current-limit closed loop is set up. With this fast response, the device can achieve better inrush-suppression performance.

For more information about the current limiting feature, see # 8.3.5.1.

8.3.2.1 Capacitive Charging

图 8-3. Capacitive Charging Circuit

The first thing to check is that the nominal DC current, I_{NOM} , is acceptable for the TPS1HTC30-Q1 device. This can easily be done by taking the R_{0 JA} from the Thermal Information and multiplying the R_{ON} of the TPS1HTC30-Q1 and the INOM with it, add the ambient temperature and if that value is below the thermal shutdown value, then the device can operate with that load current. For an example of this calculation see the \ddagger 9.2.

The second key care about for this application is to make sure that the capacitive load can be charged up completely without the device hitting thermal shutdown. This is because if the device hits thermal shutdown during the charging, the resistive nature of the load in parallel with the capacitor starts to discharge the capacitor over the duration the TPS1HTC30-Q1 is off. Note that there are some applications with high enough load impedance that the TPS1HTC30-Q1 hitting thermal shutdown and trying again is acceptable; however, for the majority of applications the system must be designed so that the TPS1HTC30-Q1 does not hit thermal shutdown while charging the capacitor.

With the current clamping feature of the TPS1HTC30-Q1, capacitors can be charged up at a lower inrush current than other high current limit switches. This lower inrush current means that the capacitor takes a little longer to charge all the way up.

For more information about capacitive charging with high side switches, see the *How to Drive Resistive, Inductive, Capacitive, and Lighting Loads* application note. This application note has information about the thermal modeling available along with quick ways to estimate if a high side switch is able to charge a capacitor to a given voltage.

8.3.3 Inductive-Load Switching-Off Clamp

When an inductive load is switching off, the output voltage is pulled down to negative, due to the inductance characteristics. The power FET can break down if the voltage is not clamped during the current decay period. To protect the power FET in this situation, an internal drain to gate clamp, namely the $V_{DS,clamp}$ is used to clamp the voltage between the drain and source of the device.

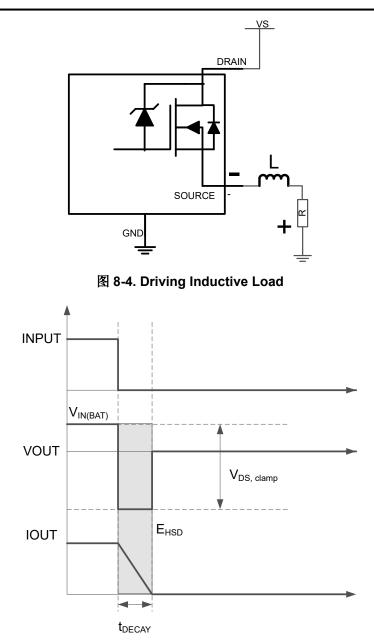
$$V_{\text{DS,clamp}} = V_{\text{BAT}} - V_{\text{OUT}}$$
(3)

During the current-decay period (T_{DECAY}), the power FET is turned on for inductive energy dissipation. Both the energy of the power supply (E_{BAT}) and the load (E_{LOAD}) are dissipated on the high-side power switch itself, which is called E_{HSD} . If resistance is in series with inductance, some of the load energy is dissipated in the resistance.

$$E_{HSD} = E_{BAT} + E_{LOAD} = E_{BAT} + E_{L} - E_{R}$$
(4)

From the high-side power switch view, E_{HSD} equals the integration value during the current decay period.

$$E_{HSD} = \int_{0}^{T_{DECAY}} V_{DS,clamp} \times I_{OUT}(t) dt$$
(5)


$$T_{\text{DECAY}} = \frac{L}{R} \times \ln \left(\frac{R \times I_{\text{OUT}(\text{MAX})} + |V_{\text{OUT}}|}{|V_{\text{OUT}}|} \right)$$
(6)

$$E_{HSD} = L \times \frac{V_{BAT} + |V_{OUT}|}{R^2} \times \left[R \times I_{OUT(MAX)} - |V_{OUT}| ln \left(\frac{R \times I_{OUT(MAX)} + |V_{OUT}|}{|V_{OUT}|} \right) \right]$$
(7)

When R approximately equals 0, E_{HSD} can be given simply as:

$$E_{HSD} = \frac{1}{2} \times L \times I_{OUT(MAX)}^2 \frac{V_{BAT} + |V_{OUT}|}{R^2}$$
(8)

As discussed previously, when switching off, battery energy and load energy are dissipated on the high-side power switch, which leads to the large thermal variation. For each high-side power switch, the upper limit of the maximum safe power dissipation depends on the device intrinsic capacity, ambient temperature, and board dissipation condition.

8.3.4 Inductive Load Demagnetization

When switching off an inductive load, the inductor can impose a negative voltage on the output of the switch. The TPS1HTC30 includes voltage clamps between VS and VOUT to limit the voltage across the FETs and demagnetize load inductance if there is any. The negative voltage applied at the OUT pin drives the discharge of inductor current. 🔀 8-6 shows the device discharging a 400-mH load.



图 8-6. TPS1HTC30 Inductive Discharge (400 mH)

The maximum acceptable load inductance is a function of the energy dissipated in the device and therefore the load current and the inductive load. The maximum energy and the load inductance the device can withstand for one pulse inductive dissipation at 125° C is shown in $\boxed{8}$ 8-7. The device can withstand 50% of this energy for one million inductive repetitive pulses with a >4-Hz repetitive pulse. If the application parameters exceed this device limit, use a protection device like a freewheeling diode to dissipate the energy stored in the inductor.

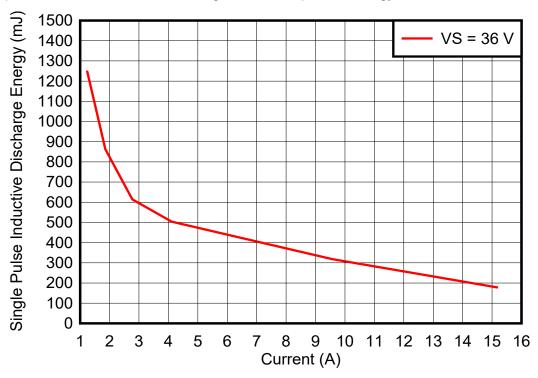


图 8-7. TPS1HTC30 Inductive Load Discharge Energy Capability at 125°C

8.3.5 Full Protections and Diagnostics

Current Sensing is active when DIAG_EN enabled. When DIAG_EN is low, current sense is disabled. The SNS output is in high-impedance mode.

表 8-1. DIAG_EN Logic Table							
DIAG_EN	EN Condition	Protections and Diagnostics					
HIGH	HIGH	See Fault Table					
TIGH	LOW						
	HIGH	Diagnostics disabled, FAULT and SNS					
LOW	LOW	output set to high impedance. Protection is normal.					

Conditions	EN	VOUT	FAULT	SNS	Behavior	Recovery
Normal	L	L	Hi-Z	0	Normal	
Norma	Н	Н	Hi-Z	I _{Load} / K _{SNS}	Normal	
Overcurrent	н	V _S - I _{LIM} *R _{LOA} D	L	V _{SNSFH}	Holds the current at the current limit until thermal shutdown	
Overvoltage	н	H→L	L	V _{SNSFH}	Channel turns off if $V_S > V_{S,OVPR}$, turns back on if $V_S < V_{S,OVPRF}$	
STG, Relative Thermal Shutdown, Absolute Thermal Shutdown	н	H→L	L	V _{SNSFH}	Shuts down when devices hits relative or absolute thermal shutdown	Auto retries when T _{HYS} is met and time has been longer than t _{RETRY} amount of time
	н	н	Hi-Z	I _{Load} / K _{SNS} = approximately 0	Normal behavior, user can judge if it is an open load or not	
Open load	L	н	L	V _{SNSFH}	Internal pullup resistor is active. If $V_S - V_{OUT} < V_{OL}$ then fault active	Clears when fault goes away
Reverse Polarity	x	x	x	x	Channel turns on to lower power dissipation. Current into ground pin is limited by external ground network	

表 8-2. DIAG_EN=HIGH Status Table

8.3.5.1 Short-Circuit and Overload Protection

TPS1HTC30-Q1 provides output short-circuit protection to make sure that the device prevents current flow in the event of a low impedance path to GND, removing the risk of damage or significant supply droop. The device is specified to protect against short-circuit events regardless of the state of the ILIM pins and with up to 60-V supply at 125°C.

🗏 8-8 shows the behavior of TPS1HTC30-Q1 when a short-circuit occurs and the device is in the on-state and already outputting current. When the internal pass FET is fully enabled, the current clamping settling time is slower so to make sure overshoot is limited, the device implements a fast trip level at a level I_{OVCR}. When this fast trip threshold is hit, the device immediately shuts off for a short period of time before quickly re-enabling and clamping the current to I_{CL} level after a brief transient overshoot to the higher peak current (I_{CL ENPS}) level. The device then keeps the current clamped at the regulation current limit until the thermal shutdown temperature is hit and the device safely shuts off.

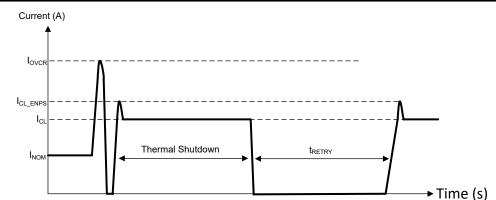


图 8-8. On-State Short-Circuit Behavior

Overload Behavior shows the behavior of the TPS1HTC30-Q1 when there is a small change in impedance that sends the load current above the I_{CL} threshold. The current rises to I_{CL_LINPK} above the regulation level. Then the current limit regulation loop kicks in and the current drops to the I_{CL} value.

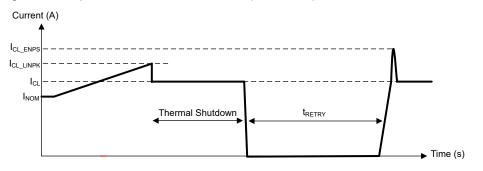


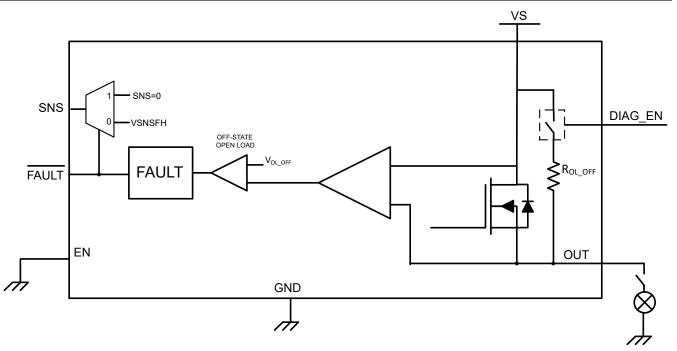
图 8-9. Overload Behavior

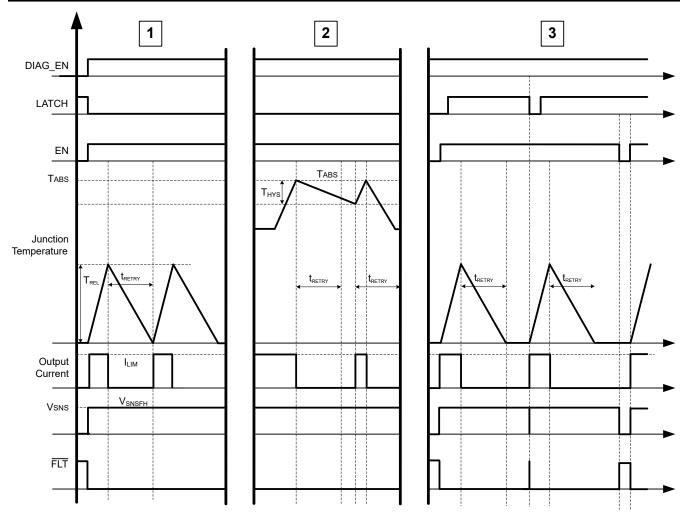
In all of these cases, the internal thermal shutdown is safe to hit repetitively. There is no device risk or lifetime reliability concerns from repeatedly hitting this thermal shutdown level.

8.3.5.2 Open-Load Detection

When the main channel is enabled faults are diagnosed by reading the voltage on the SNS pin and judged by the user.

In the off state, if a load is connected, the output voltage is pulled to 0V. In the case of an open load, the output voltage is close to the supply voltage, $V_S - V_{OUT} < V_{ol,off}$. The FLT pin goes low to indicate the fault to the MCU, and the SNS pin is pulled up to V_{SNSFH} . There is always a leakage current $I_{ol,off}$ present on the output, due to the internal logic control path or external humidity, corrosion, and so forth. Thus, TI implemented an internal pullup resistor to offset the leakage current. This pullup current must be less than the output load current to avoid false detection in the normal operation mode. To reduce the standby current, TI implemented a switch in series with the pullup resistor controlled by the DIAG_EN pin. The pull up resistor value is $R_{pu} = 150 \text{ k} \Omega$.




图 8-10. Open-Load Detection Circuit

8.3.5.3 Thermal Protection Behavior

The thermal protection behavior can be split up into three categories of events that can happen. 🛽 8-11 shows each of these categories.

- 1. **Relative thermal shutdown**: The device is enabled into an overcurrent event. The DIAG_EN pin is high so that diagnostics can be monitored on SNS and FLT (however, DIAG_EN being high is not necessary for all protection features to function). The output current rises up to the I_{ILIM} level and the FLT goes low while the SNS goes to V_{SNSFH}. With this large amount of current going through, the junction temperature of the FET increases rapidly with respect to the controller temperature. When the power FET temperature rises T_{REL} amount above the controller junction temperature $\Delta T = T_{FET} T_{CON} > T_{REL}$, the device shuts down. The faults are continually shown on SNS and FLT and the part waits for the t_{RETRY} timer to expire. When t_{RETRY} timer expires, because the LATCH pin is low and EN is still high, the device comes back on into this I_{ILIM} condition.
- Absolute thermal shutdown: The device is still enabled in an overcurrent event with DIAG_EN high and LATCH still low. However, in this case the junction temperature rises up and hits an absolute reference temperature, T_{ABS}, and then shuts down. The device does not recover until both T_J < T_{ABS} - T_{hys} and the t_{RETRY} timer has expired.
- 3. Latch-off mode: The device is enabled into an overcurrent event. The DIAG_EN pin is high so that diagnostics can be monitored on SNS and FLT. The output current rises up to the I_{ILIM} level and the FLT goes low while the SNS goes to V_{SNSFH}. If the part shuts down due to a thermal fault, either relative thermal shutdown or absolute thermal shutdown, the device does not enable the channel until either the LATCH pin OR the EN pin is toggled.

8.3.5.4 Overvoltage (OVP) Protection

The device monitors the supply voltage V_S to prevent unpredicted behaviors in the event that the supply voltage is too high. When the supply increases beyond $V_{S,OVPR}$, the output stage is shut down automatically. When the supply falls below $V_{S,OVPF}$, the device turns on. The TPS1HTC30-Q1 integrates a deglitcher to avoid immediate output shutoff from OVP due to short transient events brought about by inductive load oscillations.

8.3.5.5 UVLO Protection

The device monitors the supply voltage V_S to prevent unpredicted behaviors in the event that the supply voltage is too low. When the supply voltage falls down to V_{UVLOF} , the output stage is shut down automatically. When the supply rises up to V_{UVLOR} , the device turns on. If an overcurrent event trips the UVLO threshold, the device shuts off and comes back on into a current limit normally.

8.3.5.6 Reverse Polarity Protection

Method 1: Blocking diode connected with V_S. Both the device and load are protected when in reverse polarity.

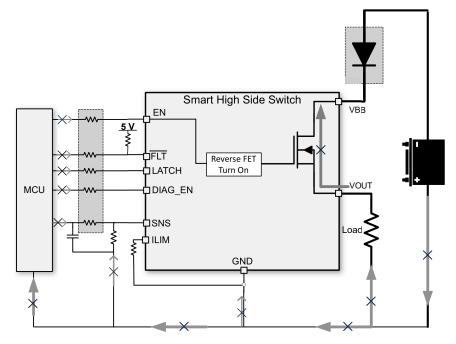
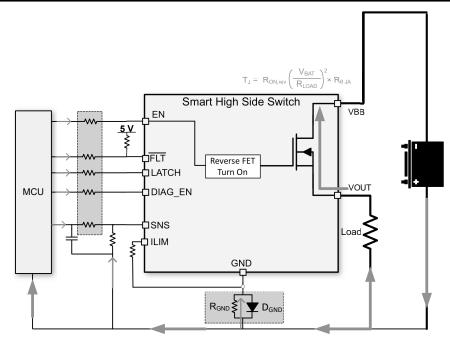



图 8-12. Reverse Protection With Blocking Diode

Method 2 (GND network protection): Only the high-side device is protected under this connection. The load reverse loop is limited by the load itself. Note when reverse polarity happens, the continuous reverse current through the power FET must be less than I_{rev} . Of the three types of ground pin networks, TI strongly recommends type 3 (the resistor and diode in parallel). No matter what types of connection are between the device GND and the board GND, if a GND voltage shift happens, make sure the following proper connections for the normal operation:

- TI recommends to leave floating.
- · Connect the current limit programmable resistor to the device GND.

图 8-13. Reverse Protection With GND Network

• **Type 1 (resistor):** The higher resistor value contributes to a better current limit effect during the reverse battery event or negative ISO pulses. However, the higher resistor leads to higher GND shift during normal operation mode. Also, consider the resistor power dissipation.

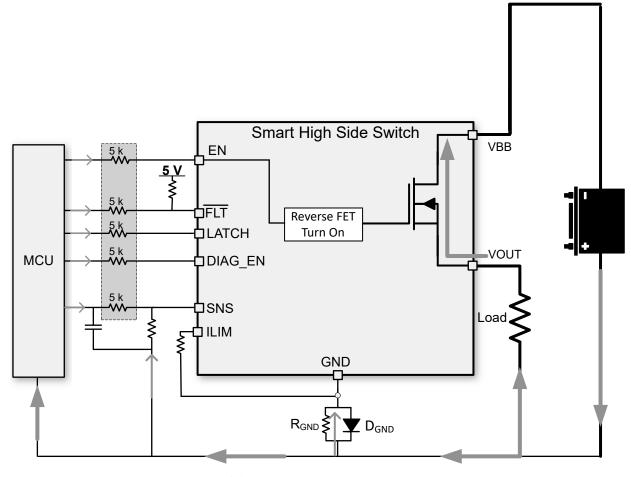
$$R_{GND} \leq \frac{V_{GNDshift}}{I_{nom}}$$

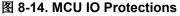
$$R_{GND} \geq \frac{(-V_{CC})}{(-I_{GND})}$$
(9)
(10)

where

- $V_{GNDshift}$ is the maximum value for the GND shift, determined by the HSS and microcontroller. TI suggests a value \leq 0.6 V.
- I_{nom} is the nominal operating current.
- - V_{CC} is the maximum reverse voltage seen on the battery line.
- I_{GND} is the maximum reverse current the ground pin can withstand, which is available in the *Absolute Maximum Ratings*.

If multiple high-side power switches are used, the resistor can be shared among devices.


- **Type 2 (diode):** A diode is needed to block the reverse voltage, which also brings a ground shift (\approx 600 mV). However, an inductive load is not acceptable to avoid an abnormal status when switching off.
- Type 3 (resistor and diode in parallel (recommended)): A peak negative spike can occur when the inductive load is switching off, which can damage the HSD or the diode. So, TI recommends a resistor in parallel with the diode when driving an inductive load. The recommended selection are 1-kΩ resistor in parallel with an I_F > 100-mA diode. If multiple high-side switches are used, the resistor and diode can be shared among devices.



8.3.5.7 Protection for MCU I/Os

In many conditions, such as the negative ISO pulse, or the loss of battery with an inductive load, a negative potential on the device GND pin can damage the MCU I/O pins [more likely, the internal circuitry connected to the pins]. Therefore, the serial resistors between MCU and HSS are required.

Also, for proper protection against loss of GND, TI recommends 5 k Ω resistance for the RPROT resistors.

8.3.6 Diagnostic Enable Function

The diagnostic enable pin, DIAG_EN, offers multiplexing of the microcontroller diagnostic input for current sense or digital status, by sharing the same sense resistor and ADC line or I/O port among multiple devices.

In addition, during the output-off period, the diagnostic disable function lowers the current consumption for the standby condition. The three working modes in the device are normal mode, standby mode, and standby mode with diagnostic. If off-state power saving is required in the system, the standby current is <500 nA with DIAG_EN low. If the off-state diagnostic is required in the system, the typical standby current is around 1 mA with DIAG_EN high.

8.4 Device Functional Modes

8.4.1 Working Mode

The three working modes in the device are normal mode, standby mode, and standby mode with diagnostic. If an off-state power saving is required in the system, the standby current is less than 500 nA with EN and DIAG_EN low. If an off-state diagnostic is required in the system, the typical standby current is around 1.2 mA with DIAG_EN high. Note that to enter standby mode requires IN low and t > t_{STBY} . t_{STBY} is the standby-mode deglitch time, which is used to avoid false triggering or interfere with PWM switching. 🕅 8-15 shows a work-mode state-machine state diagram.

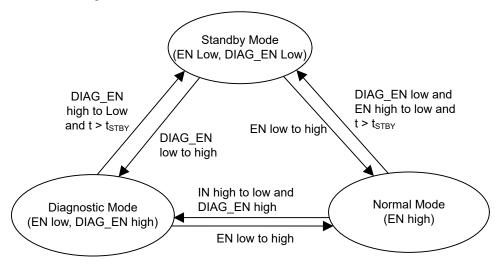


图 8-15. Work-Mode State Machine

9 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The following discussion notes how to implement the device in a typical application with recommended external components.

9.2 Typical Application

图 9-1 shows an example of how to design the external circuitry parameters.

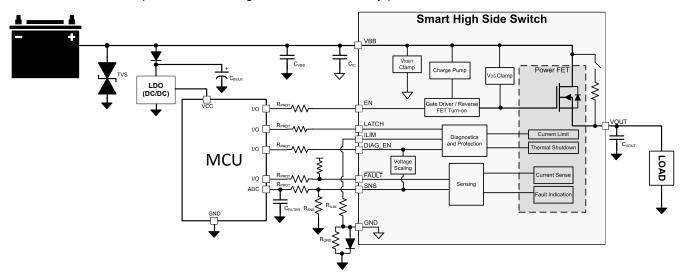


图 9-1. Typical Application Circuitry

9.2.1 Design Requirements

Component	Description	Purpose
TVS	SMBJ60CA (optional)	Filter voltage transients coming from battery (ISO7637-2)
CVS	220 nF (optional)	Better EMI performance
CIC	100 nF	Minimal amount of capacitance on input for EMI mitigation
CBULK	10 uF (optional)	There to hold the rail for the LDO; however, helps to filter voltage transients on supply rail. Not a requirement.
RPROT	10k	Protection resistor for microcontroller and device I/O pins
RILIM	7k - 70k	Set current limit threshold
RSNS	1k	Translate the sense current into sense voltage.
CFILTER	100 nF	Coupled with RPROT on the SNS line creates a low pass filter to filter out noise going into the ADC of the MCU
CVOUT	22 nF	Improves EMI performance, filtering of voltage transients
RGND	1 kΩ	Stabilize GND potential during turn-off of inductive load
DGND	MSX1PJ	Keeps GND close to system ground during normal operation

9.2.2 Detailed Design Procedure

To keep maximum voltage on the SNS pin at an acceptable range for the system, use the following equation to calculate the R_{SNS}. To achieve better current sense accuracy. A 1% accuracy or better resistor is preferred.

 $(V_{SNSFH} - V_{HR}) \times K_{SNS} / I_{LOAD,max} \leq R_{SNS} \leq V_{ADC,min} \times K_{SNS} / I_{LOAD,min}$

Parameter Value 5 V V_{DIAG_EN} 6 A ILOAD,max 20 mA I_{LOAD,min} 5 mV V_{ADC,min} V_{HR} 1 V

表 9-1. Typical Application

For this application, an RSNS value of approximately 1 k Ω can be chosen to satisfy the equation requirements.

(5 V – 1 V) × 1300 / 6 A
$$\leq$$
 \cong 1 k $\Omega \leq$ 5 mV × 1300 / 20 mA

In other applications, more emphasis can be put on the lower end measurable values which increases RSNS. Likewise, if the higher currents are of more interest the RSNS can be decreased.

Having the maximum SNS voltage scale with the DIAG EN voltage removes the need for a Zener diode on the SNS pin going to the ADC.

To set the programmable current limit value at 5 A, use the following equation to calculate the R_{I IM}.

TI recommends R_{PROT} = 10 k Ω to ensure the current going into the digital pins (EN, DIAG_EN, LATCH) is limited.

TI recommends a $1-k \Omega$ resistor and 600-V, 0.2-A diode for the GND network.

(11)

(12)

(13)

9.2.2.1 Dynamically Changing Current Limit

The current limit threshold can be changed dynamically by altering the resistance going from the current limit pin to the ground of the device on the fly. This alteration allows the system to have a different current limit for startup, when there can be significant inrush current, and during normal operation. The way this is commonly done is by putting two resistors in parallel on the ILIM pin and having a switch to enable or disable one of the resistors. This set-up can be seen in [a] 9-2. Alternatively, a digital potentiometer can be used to adjust the impedance on the ILIM pin on the fly. Care must be taken so that the capacitance on the ILIM pin is below approximately 100 pF to keep the current regulation loop stable. The most common application where this feature is useful is capacitive loads.

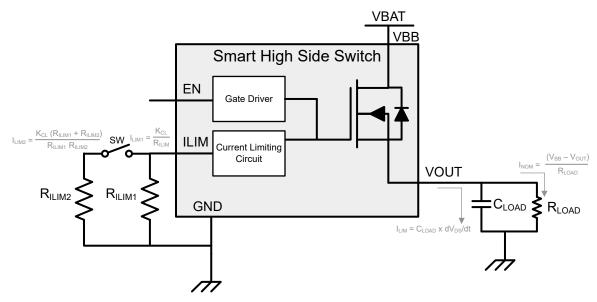


图 9-2. Dynamic Changing Current Limit Setup

In a capacitive charging case, the initial current to charge the capacitor is the inrush current. Depending on the system requirements, dynamically changing the current limit can help either charge up a capacitor faster or charge up a larger capacitor. To allow a higher inrush level of current through in the beginning, the switch can be closed making the current limit be according to the equation below.

 $I_{LIM2} = K_{CL}(R_{ILIM1} + R_{ILIM2}) / (R_{ILIM1} \times R_{ILIM2})$

(14)

When the inrush event is over and the output voltage is charged up, the switch opens and the current limit is just the R_{ILIM1} equivalent level. This timing can be seen in [8] 9-3.

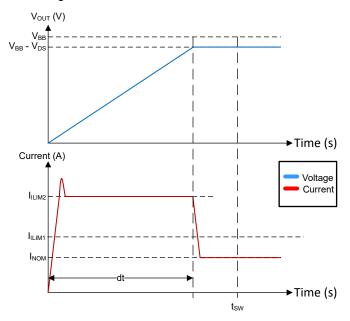
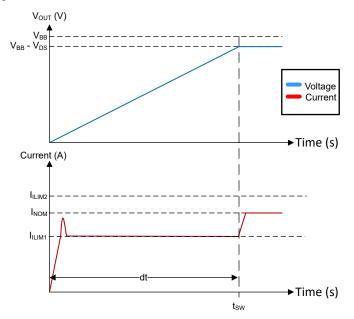
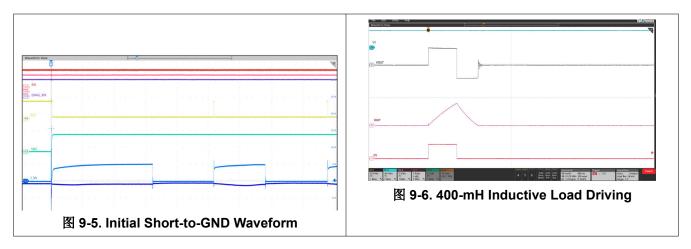


图 9-3. Capacitive Charging Changing Current Limit

Alternatively, if the switch is open, the current limit starts out at a lower value and then the switch can be closed when the capacitance gets charged up. This lower current limit level allows higher value capacitance to be charged up. The timing diagram can be seen in 89-4.




图 9-4. Large Capacitive Charging Changing Current Limit

9.2.3 Application Curves

[3] 9-5 shows a test example of initial short-circuit inrush-current limit. Test conditions: V_S = 36 V, input is from low to high, load is short-to-GND, external current limit is 5 A.

Solution Soluti Solution Solution Solution Solution Solution Solution Solu

9.3 Power Supply Recommendations

The device is qualified for both automotive and industrial applications. The normal power supply connection is a 24-V automotive system. The supply voltage must be within the range specified in the Recommended Operating Conditions.

VS Voltage Range	Note
6 V to 10 V	Extended lower 24-V automotive battery operation such as cold crank and start-stop. Device is fully functional and protected but some parametrics such as R_{ON} , current sense accuracy, current limit accuracy and timing parameters can deviate from specifications. Check the individual specifications in the Electrical Characteristics to confirm the voltage range it is applicable for.
10 V to 32 V	Nominal 24-V automotive battery voltage range. All parametric specifications apply and the device is fully functional and protected.
32 V to 60 V	Extended upper 24-V automotive battery operation such as double battery. Device is fully functional and protected but some parametrics such as timing parameters can deviate from specifications. Check the individual specifications in the Electrical Characteristics to confirm the voltage range it is applicable for.
60 V	Load dump voltage. Device is operational and lets the pulse pass through without being damaged and is fully protect against short circuits.

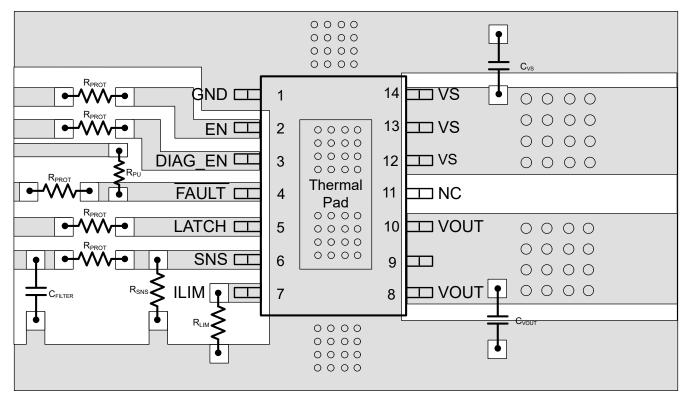
表 9-2. Voltage Operating Ranges

9.4 Layout

9.4.1 Layout Guidelines

To prevent thermal shutdown, T_J must be less than 150°C. If the output current is very high, the power dissipation can be large. The HTSSOP package has good thermal impedance. However, the PCB layout is very important. Good PCB design can optimize heat transfer, which is absolutely essential for the long-term reliability of the device.

• Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heatflow path from the package to the ambient is through the copper on the PCB. Maximum copper is extremely


important when there are not any heat sinks attached to the PCB on the other side of the board opposite the package.

- Add as many thermal vias as possible directly under the package ground pad to optimize the thermal conductivity of the board.
- Make sure all thermal vias are either be plated shut or plugged and capped on both sides of the board to prevent solder voids. To make sure of reliability and performance, the solder coverage must be at least 85%.

9.4.2 Layout Example

9.4.2.1 Without a GND Network

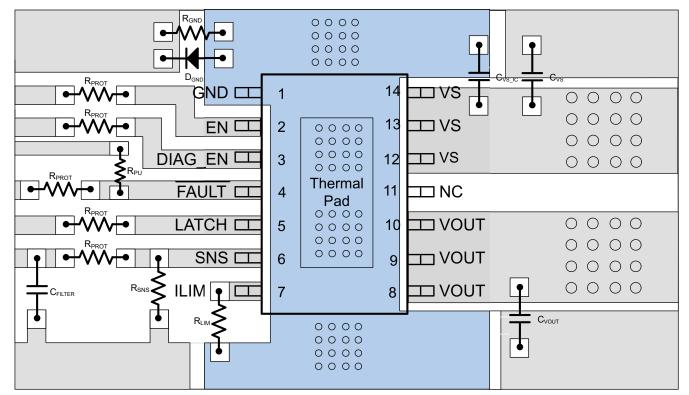

Without a GND network, tie the thermal pad directly to the board GND copper for better thermal performance.

图 9-7. Layout Without a GND Network

9.4.2.2 With a GND Network

With a GND network, tie the thermal pad with a single trace through the GND network to the board GND copper.

图 9-8. Layout With a GND Network

9.4.2.3 Thermal Considerations

This device possesses thermal shutdown (TABS) circuitry as a protection from overheating. For continuous normal operation, the junction temperature must not exceed the thermal-shutdown trip point. If the junction temperature exceeds the thermal-shutdown trip point, the output turns off. When the junction temperature falls below the thermal-shutdown trip point, the output turns on again.

Calculate the power dissipated by the device according to 方程式 15.

$$P_T = I_{OUT}^2 \times R_{DSON} + V_S \times I_{NOM}$$

where

• P_T = Total power dissipation of the device

After determining the power dissipated by the device, calculate the junction temperature from the ambient temperature and the device thermal impedance.

$$T_{J} = T_{A} + R_{\theta JA} \times P_{T}$$
(16)

For more information, please see *How to Drive Resistive, Inductive, Capacitive, and Lighting Loads* application note.

(15)

10 Device and Documentation Support

10.1 Documentation Support

10.1.1 Related Documentation

Texas Instruments, How to Drive Resistive, Inductive, Capacitive, and Lighting Loads application note

10.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新*进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

10.3 支持资源

TI E2E[™] 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

10.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。

10.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

10.6 术语表

TI术语表 本术语表列出并解释了术语、首字母缩略词和定义。

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
TPS1HTC30AQPWPRQ1	Active	Production	HTSSOP (PWP) 14	3000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	TPSHT30
TPS1HTC30AQPWPRQ1.A	Active	Production	HTSSOP (PWP) 14	3000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	TPSHT30

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

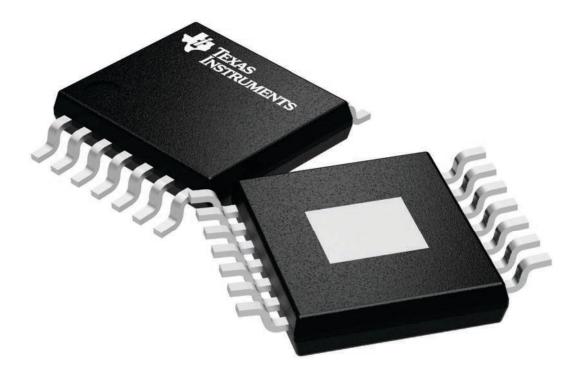
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PWP 14

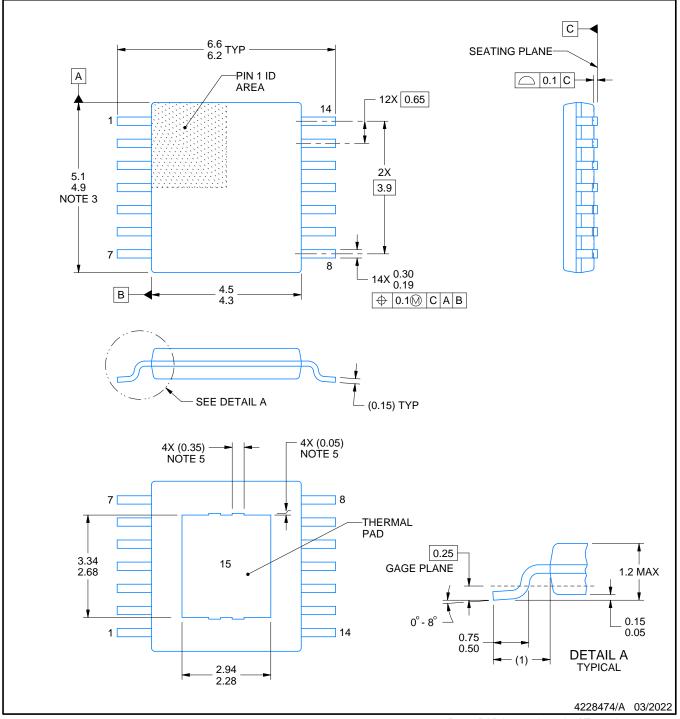

GENERIC PACKAGE VIEW

PowerPAD TSSOP - 1.2 mm max height

4.4 x 5.0, 0.65 mm pitch

PLASTIC SMALL OUTLINE

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



PWP0014J

PACKAGE OUTLINE

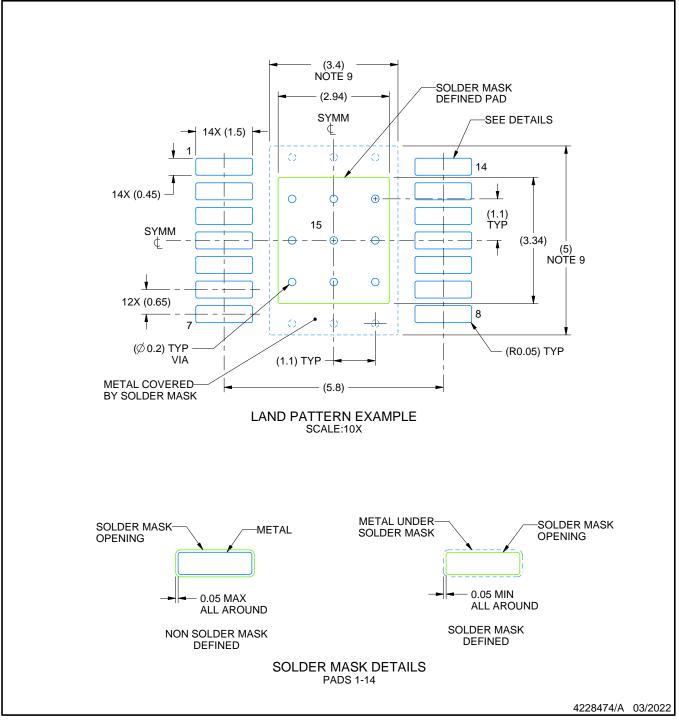
PowerPAD[™] TSSOP - 1.2 mm max height

PLASTIC SMALL OUTLINE

NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.
 5. Features may differ and may not be present.



PWP0014J

EXAMPLE BOARD LAYOUT

PowerPAD[™] TSSOP - 1.2 mm max height

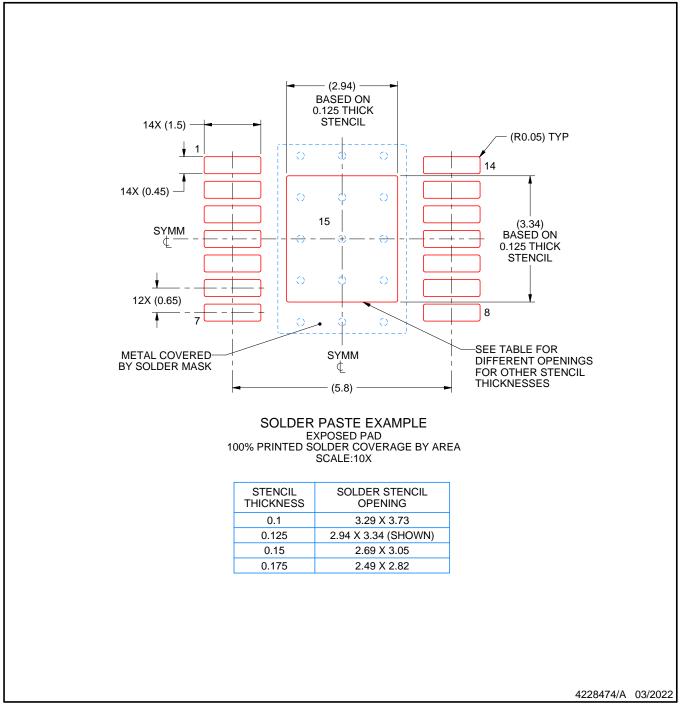
PLASTIC SMALL OUTLINE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

Solder mask tolerances between and around signal pads can vary based on board fabrication site.
 This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature

- numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.



PWP0014J

EXAMPLE STENCIL DESIGN

PowerPAD[™] TSSOP - 1.2 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

11. Board assembly site may have different recommendations for stencil design.

^{10.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行 复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索 赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司