TPS1200-Q1

# TPS1200-Q1 具有短路保护和诊断功能的 45V、汽车类、低 IQ 智能高侧驱动器

## 1 特性

- 符合面向汽车应用的 AEC-Q100 汽车标准
  - 器件温度等级 1: -40°C 至 +125°C 环境工作 温度范围
- 功能安全型
  - 可提供用于功能安全系统设计的文档
- 3.5V 至 40V 输入范围 (绝对最大值为 45V)
- 反向输入保护低至 40V
- 集成 11V 电荷泵
- 低静态电流,运行时为 43µA
- 1.5µA 低美断电流(EN/UVLO = 低电平)
- 强大的栅极驱动器 (2A 拉电流和灌电流)
- 使用外部 Rsense 或 MOSFET VDS 检测且具有可 调延迟 (TMR) 的可调节短路保护 (ISCP)
- 高侧或低侧电流检测配置 (CS SEL)
- 短路故障、输入欠压和短路比较器诊断 (SCP\_TEST) 期间的故障指示 (FLT)
- 栅极驱动 UVLO 的故障指示 (FLT\_GD)
- 可调节输入欠压锁定 (UVLO) 和过压保护 (OV)

### 2 应用

- 汽车类 12V BMS
- 直流/直流转换器
- 电动工具

# CS+ vs FN/UVLO FLT TPS12000-Q1 ΟV FLT\_GD Test

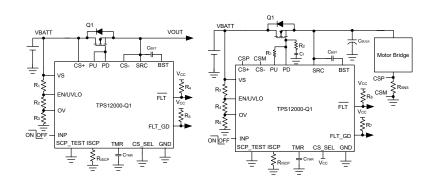
适用于直流/直流的智能高侧驱动器

### 3 说明

TPS12000-Q1 是一款具有保护和诊断功能的 45V 低 Io 智能高侧驱动器。该器件具有 3.5V 至 40V 的宽工 作电压范围,适用于 12V 系统设计。该器件可以承受 低至 -40V 的负电源电压并保护负载免受这些电压的

它具有强大的 (2A) 栅极驱动,可在大电流系统设计中 使用并联 MOSFET 实现电源开关。

该器件提供可调节的短路保护功能。可以配置自动重试 和锁存故障行为。使用 CS+ 和 CS- 引脚,可通过外部 检测电阻或 MOSFET VDS 检测完成电流检测。可通 过使用 CS SEL 引脚输入实现高侧或低侧电流检测电 阻配置。该器件还通过对 SCP TEST 输入的外部控制 来诊断内部短路比较器。


运行期间的低静态电流 43µA (典型值)可实现常开型 系统设计。在 EN/UVLO 处于低电平时,静态电流降至 1.5 µ A (典型值)。

TPS12000-Q1 可采用 19 引脚 VSSOP 封装。

#### 封装信息

| 器件型号        | 封装 <sup>(1)</sup>     | 封装尺寸 <sup>(2)</sup> |
|-------------|-----------------------|---------------------|
| TPS12000-Q1 | DGX ( VSSOP ,<br>19 ) | 5.1mm × 3.0mm       |

- 如需了解所有可用封装,请参阅数据表末尾的可订购产品附
- 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。 (2)



具有高侧 MOSFET VDS 检测和低侧电流检测功能的电 路



# 内容

| _ | 特性<br>  应用      |                |
|---|-----------------|----------------|
| 3 | 3 说明            | 1              |
| 4 | I 引脚配置和功能       | 3              |
| 5 | 5 规格            | <mark>5</mark> |
|   | 5.1 绝对最大额定值     |                |
|   | 5.2 ESD 等级      | 5              |
|   | 5.3 建议运行条件      | 5              |
|   | 5.4 热性能信息       |                |
|   | 5.5 电气特性        | 6              |
|   | 5.6 开关特性        | 7              |
|   | 5.7 典型特性        |                |
| 6 | <b>3 参数测量信息</b> |                |
|   | '详细说明           |                |
|   | 7.1 概述          |                |
|   | 7.2 功能方框图       |                |
|   |                 |                |

| 7.3 特性说明                  | 13              |
|---------------------------|-----------------|
| 7.4 器件功能模式                | 20              |
| 8 应用和实施                   |                 |
| 8.1 应用信息                  |                 |
| 8.2 典型应用:全时驱动功率 (PAAT) 负载 |                 |
| 8.3 电源相关建议                | 26              |
| 8.4 布局                    | <mark>27</mark> |
| 9 器件和文档支持                 |                 |
| 9.1 接收文档更新通知              |                 |
| 9.2 支持资源                  |                 |
| 9.3 商标                    |                 |
| 9.4 静电放电警告                |                 |
| 9.5 术语表                   |                 |
| 10 修订历史记录                 |                 |
| 11 机械、封装和可订购信息            |                 |
| 11 70.47%、 對双列甲 月 897日 85 | 23              |



# 4 引脚配置和功能

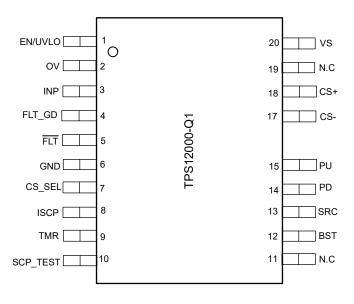



图 4-1. DGX 封装, 19 引脚 VSSOP(顶视图)

表 4-1. 引脚功能

|         | 引脚 | <del>米</del> 荊(1)                                                                                                                                                                                                                                   | 7H BH                                                                                                                                                                  |  |  |
|---------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 名称      | 编号 | <b>关型(7</b>                                                                                                                                                                                                                                         | <i>ν</i> ε να                                                                                                                                                          |  |  |
| EN/UVLO | 1  | I                                                                                                                                                                                                                                                   | EN/UVLO 输入。此引脚上的电压高于 1.24V 即可实现正常运行。强制此引脚低于 0.3V 会关断器件,从而将静态电流降低至约 1.5μA(典型值)。<br>(可选)通过电阻分压器连接到输入电源以设置欠压锁定。<br>当 EN/UVLO 保持悬空时,100nA 的内部下拉会将 EN/UVLO 拉至低电平并使器件保持关断状态。 |  |  |
| OV      | 2  | 端号  EN/UVLO 输入。此引脚上的电压高于 1.24V 即可实现正常运行。强制此引脚低于 0.3V 会关断器件,从而将静态电流降低至约 1.5μA (典型值)。 (可选)通过电阻分压器连接到输入电源以设置欠压锁定。当 EN/UVLO 保持悬空时,100nA 的内部下拉会将 EN/UVLO 拉至低电平并使器件保持关断状态。  可调节过压阈值输入。在输入电源 OV 到 GND 之间连接一个电阻梯。当 OVP 上的电压超过过压切断阈值时,PD 被拉至 SRC,从而关断外部 FET。 |                                                                                                                                                                        |  |  |
| INP     | 3  |                                                                                                                                                                                                                                                     | PU 引脚的状态。<br>INP 具有下拉至 GND 的 100nA 内部弱下拉,可在 INP 保持悬空时使 PD 保持拉                                                                                                          |  |  |
| FLT_GD  | 4  | 0                                                                                                                                                                                                                                                   |                                                                                                                                                                        |  |  |
| FLT     | 5  | 0                                                                                                                                                                                                                                                   |                                                                                                                                                                        |  |  |
| GND     | 6  | G                                                                                                                                                                                                                                                   | 将 GND 连接到系统地。                                                                                                                                                          |  |  |
| CS_SEL  | 7  | I                                                                                                                                                                                                                                                   | 激活低侧电流检测。                                                                                                                                                              |  |  |

提交文档反馈



# 表 4-1. 引脚功能 (续)

|          | 引脚 | <b>类型</b> (1) | 说明                                                                                                                                                                                                 |
|----------|----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 名称       | 编号 | <b>关型(''</b>  | <b>近</b> 朔                                                                                                                                                                                         |
| ISCP     | 8  | I             | 短路检测设置。ISCP 与 GND 之间的电阻器可以设置短路电流比较器阈值。如果不需要短路保护功能、则将 CS+、CS- 和 VS 引脚连接在一起,并将 ISCP 和 TMR 引脚连接到 GND。                                                                                                 |
| TMR      | 9  | I             | 故障计时器输入。TMR 引脚与 GND 之间的电容器可设置短路故障关断的延迟时间。<br>将它保持开路可设置最快速度。如果不需要短路保护功能、则将 CS+、CS-和<br>VS 引脚连接在一起,并将 ISCP 和 TMR 引脚连接到 GND。                                                                          |
| SCP_TEST | 10 | I             | 内部短路比较器 (SCP) 诊断输入。<br>如果在 INP 拉至高电平的情况下将 SCP_TEST 驱动为低电平至高电平,则会检查内部 SCP 比较器的运行情况。如果 SCP 比较器正常运行,则 FLT 变为低电平,而 PD 被拉至 SRC。<br>如果不需要此功能,请将 SCP_TEST 引脚连接到 GND。<br>SCP_TEST 具有下拉至 GND 的 100nA 内部弱下拉。 |
| NC       | 11 | _             | 无连接。                                                                                                                                                                                               |
| BST      | 12 | 0             | 高侧自举电源。必须在此引脚和 SRC 之间连接一个最小值超过外部 FET Q <sub>g(tot)</sub> 的外部电容器。                                                                                                                                   |
| SRC      | 13 | 0             | 外部 FET 的源极连接。                                                                                                                                                                                      |
| PD       | 14 | 0             | 高电流栅极驱动器下拉。此引脚下拉至 SRC。为了实现最快的关断,请将此引脚直接连接到外部高侧 MOSFET 的栅极。                                                                                                                                         |
| PU       | 15 | 0             | 高电流栅极驱动器上拉。此引脚上拉至 BST。将此引脚连接到 PD 可获得最大栅极驱动转换速度。在此引脚和外部 MOSFET 的栅极之间可以连接一个电阻器来控制开通期间的浪涌电流。                                                                                                          |
| CS -     | 17 | I             | 电流检测负输入。                                                                                                                                                                                           |
| CS+      | 18 | I             | 电流检测正输入。                                                                                                                                                                                           |
| NC       | 19 | _             | 无连接。                                                                                                                                                                                               |
| VS       | 20 | Р             | 控制器的电源引脚。                                                                                                                                                                                          |

(1) I = 输入, O = 输出, I/O = 输入和输出, P = 电源, G = 地

提交文

Product Folder Links: TPS1200-Q1

## 5 规格

## 5.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | 最小值                                                                         | 最大值                       | 单位 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------|---------------------------|----|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VS、CS+、CS - 至 GND                                 | -40                                                                         | 45                        |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SRC 至 GND                                         | -40                                                                         | 45                        |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PU、PD、BST 至 SRC                                   | -0.3                                                                        | 19                        | V  |  |
| SRC 至 GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ISCP、TMR、SCP_TEST 至 GND                           | -0.3                                                                        | 5.5                       | V  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EN/UVLO、OV、INP、CS_SEL、V <sub>(VS)</sub> > 0 V     | -1                                                                          | 45                        |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EN/UVLO、OV、INP、CS_SEL、 $V_{(VS)} \le 0 \text{ V}$ | V <sub>(VS)</sub>                                                           | (40 + V <sub>(VS)</sub> ) |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CS+至CS-                                           | -1                                                                          | 45                        | V  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FLT、FLT_GD 至 GND                                  | -1                                                                          | 20                        | V  |  |
| <b>海</b> 中 次                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I <sub>(FLT)</sub> , I <sub>(WAKE)</sub>          | -40 45 -40 45 -40 45 -0.3 19 -0.3 5.5  V -1 45 V V(vs) (40 + V(vs)) -1 45 V |                           |    |  |
| 推电流<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I <sub>(CS+)</sub> , I <sub>(CS-)</sub> , 1ms     | -100                                                                        | 100                       | mA |  |
| SRC 至 GND -40 44 PU、PD、BST 至 SRC -0.3 19 ISCP、TMR、SCP_TEST 至 GND -0.3 5.9 EN/UVLO、OV、INP、CS_SEL、V <sub>(VS)</sub> > 0 V -1 44 EN/UVLO、OV、INP、CS_SEL、V <sub>(VS)</sub> ≤ 0 V V <sub>(VS)</sub> (40 + V <sub>(VS)</sub> CS+至 CS1 44 EN/UVLO、OV、INP、CS_SEL、V <sub>(VS)</sub> ≤ 0 V INP、CS_SEL、V <sub>(VS)</sub> (40 + V <sub>(VS)</sub> INP、CS_SEL、V <sub>(VS)</sub> ≤ 0 V INP、CS_SEL、V <sub>(VS)</sub> (40 + V <sub>(VS)</sub> INP、CS_SEL、V <sub>(VS)</sub> ≤ 0 V INP、CS_SEL、V <sub>(VS)</sub> (40 + V <sub>(VS)</sub> INP、CS_SEL、V <sub>(VS)</sub> ≤ 0 V INP、CS_SEL、V <sub>(VS)</sub> (40 + V <sub>(VS)</sub> INP、CS_SEL、V <sub>(VS)</sub> ≤ 0 V INP、CS_SEL、V <sub>(VS)</sub> (40 + V <sub>(VS)</sub> INP、CS_SEL、V <sub>(VS)</sub> ≤ 0 V I | 60                                                | V                                                                           |                           |    |  |
| 工作结温, <b>T</b> j <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   | -40                                                                         | 150                       | °C |  |
| 贮存温度,T <sub>stg</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   | -55                                                                         | 150                       | C  |  |

<sup>(1)</sup> 超出"绝对最大额定值"运行可能会对器件造成永久损坏。绝对最大额定值并不表示器件在这些条件下或在建议运行条件以外的任何其他条件下能够正常运行。如果超出"建议运行条件"但在"绝对最大额定值"范围内使用,器件可能不会完全正常运行,这可能影响器件的可靠性、功能和性能并缩短器件寿命。

#### 5.2 ESD 等级

|                    |      |                                                |                               | 值     | 单位 |
|--------------------|------|------------------------------------------------|-------------------------------|-------|----|
|                    |      | 人体放电模型 (HBM),符合 AEC Q100-002 标准 <sup>(1)</sup> |                               | ±2000 |    |
| V <sub>(ESD)</sub> | 静电放电 | 充电器件模型 (CDM),符合 AEC<br>Q100-011 标准             | 转角引脚(EN/UVLO、VS、<br>SCP_TEST) | ±750  | V  |
|                    |      | Q100-011 标准                                    | 其他引脚                          | ±500  |    |

(1) AEC Q100-002 指示应当按照 ANSI/ESDA/JEDEC JS-001 规范执行 HBM 应力测试。

#### 5.3 建议运行条件

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

|         |                          | 最小值 | 标称值 | 最大值 | 单位 |
|---------|--------------------------|-----|-----|-----|----|
|         | VS 至 GND                 | 3.5 |     | 40  |    |
| 输入引脚    | 用于短路保护的 VS 引脚上的最小电压      | 4   |     |     | V  |
|         | EN/UVLO、INP、CS_SEL 至 GND | 0   |     | 40  |    |
| 输出引脚    | FLT、WAKE 至 GND           | 0   |     | 15  | V  |
| 外部电容器   | VS、SRC 至 GND             | 22  |     |     | nF |
| 77 印电合命 | BST 至 SRC                | 0.1 |     |     | μF |
| Tj      | 工作结温(2)                  | -40 |     | 150 | °C |

Product Folder Links: TPS1200-Q1

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

<sup>(2)</sup> 高结温会缩短工作寿命。结温高于 125°C 时,工作寿命会缩短。

<sup>(1)</sup> 建议运行条件是器件可正常运行的条件。有关规格和测试条件,请参阅"电气特性"。

<sup>(2)</sup> 高结温会缩短工作寿命。结温高于 125°C 时,工作寿命会缩短。



## 5.4 热性能信息

|                        |                           | TPS1200-Q1 |      |
|------------------------|---------------------------|------------|------|
|                        | <b>热指标</b> <sup>(1)</sup> | DGX        | 单位   |
|                        |                           | 19 引脚      |      |
| R <sub>0</sub> JA      | 结至环境热阻                    | 92.3       | °C/W |
| R <sub>θ JC(top)</sub> | 结至外壳(顶部)热阻                | 28.6       | °C/W |
| R <sub>0</sub> JB      | 结至电路板热阻                   | 47.5       | °C/W |
| $\Psi$ JT              | 结至顶部特征参数                  | 0.6        | °C/W |
| ΨЈВ                    | 结至电路板特征参数                 | 47.2       | °C/W |

(1) 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标应用报告。

# 5.5 电气特性

 $T_J = -40^{\circ}C \stackrel{\triangle}{=} +125^{\circ}C_{\circ} V_{(VS)} = 12V$ ,  $V_{(BST - SRC)} = 11V$ 

|                              | 参数                                    | 测试条件                                                                         | 最小值   | 典型值   | 最大值   | 单位 |
|------------------------------|---------------------------------------|------------------------------------------------------------------------------|-------|-------|-------|----|
| 电源电压                         |                                       |                                                                              |       |       |       |    |
| VS                           | 工作输入电压                                |                                                                              | 3.5   |       | 40    | V  |
| V <sub>(S_PORR)</sub>        | 输入电源 POR 阈值,上升                        |                                                                              | 1.78  | 2.5   | 3.27  | V  |
| V <sub>(S_PORF)</sub>        | 输入电源 POR 阈值,下降                        |                                                                              | 1.71  | 2.36  | 3.1   | V  |
|                              | 系统总静态电流,I <sub>(GND)</sub>            | V <sub>(EN/UVLO)</sub> = 2V                                                  |       | 46    | 55    | μΑ |
|                              | 系统总静态电流,I <sub>(GND)</sub>            | $V_{(EN/UVLO)}$ = 2V , $-40^{\circ}C \leqslant T_{J} \leqslant +85^{\circ}C$ |       |       | 53    | μΑ |
| I <sub>(SHDN)</sub>          | SHDN 电流,I <sub>(GND)</sub>            | $V_{(EN/UVLO)} = 0V$ , $V_{(SRC)} = 0V$                                      |       | 0.75  | 3.3   | μΑ |
| I <sub>(REV)</sub>           | 反极性期间的漏电流,I <sub>(VS)</sub>           | V <sub>(VS)</sub> = -40V                                                     | 11    | 13    | 23    | μΑ |
| 使能、欠压锁定(                     | EN/UVLO)、短路比较器测试 (SCP_TES             | T) 输入                                                                        |       |       |       |    |
| V <sub>(UVLOR)</sub>         | UVLO 阈值电压,上升                          |                                                                              | 1.176 | 1.23  | 1.287 | V  |
| V <sub>(UVLOF)</sub>         | UVLO 阈值电压,下降                          |                                                                              | 1.09  | 1.136 | 1.184 | V  |
| V <sub>(ENR)</sub>           | 低 Iq 关断使能阈值电压,上升                      |                                                                              |       |       | 1     | V  |
| V <sub>(ENF)</sub>           | 低 Iq 关断使能阈值电压,下降                      |                                                                              | 0.3   |       |       | V  |
| I <sub>(EN/UVLO)</sub>       | 使能输入漏电流                               | V <sub>(EN/UVLO)</sub> = 12V                                                 |       | 180   | 310   | nA |
| V <sub>(SCP_TEST_H)</sub>    | SCP 测试模式上升阈值                          |                                                                              |       |       | 2     | V  |
| V <sub>(SCP_TEST_L)</sub>    | SCP 测试模式下降阈值                          |                                                                              | 0.8   |       |       | V  |
| I <sub>(SCP_TEST)</sub>      | SCP_TEST 输入漏电流                        |                                                                              |       | 90    | 700   | nA |
| 过压保护 (OV) 输                  | λ                                     |                                                                              | •     |       |       |    |
| V <sub>(OVR)</sub>           | 过压阈值输入,上升                             |                                                                              | 1.171 | 1.225 | 1.278 | V  |
| V <sub>(OVF)</sub>           | 过压阈值输入,下降                             |                                                                              | 1.088 | 1.138 | 1.186 | V  |
| I <sub>(OV)</sub>            | OV 输入漏电流                              |                                                                              |       | 86    | 200   | nA |
| 电荷泵 (BST-SRC                 | <del>)</del>                          | ,                                                                            | •     |       |       |    |
| I <sub>(BST)</sub>           | 电荷泵电源电流                               | $V_{(BST - SRC)} = 10V$ , $V_{(EN/UVLO)} = 2V$                               | 190   | 345   | 466   | μΑ |
| V <sub>(BST_UVLOR)</sub>     | V <sub>(BST - SRC)</sub> UVLO 电压阈值,上升 | V <sub>(EN/UVLO)</sub> = 2V                                                  | 8.1   | 9     | 9.9   | V  |
| V <sub>(BST_UVLOF)</sub>     | V <sub>(BST - SRC)</sub> UVLO 电压阈值,下降 | V <sub>(EN/UVLO)</sub> = 2V                                                  | 7.28  | 8.2   | 8.9   | V  |
| V <sub>(BST - SRC_ON)</sub>  | 电荷泵导通电压                               | V <sub>(EN/UVLO)</sub> = 2V                                                  | 9.3   | 10.3  | 11.4  | V  |
| V <sub>(BST - SRC_OFF)</sub> | 电荷泵关断电压                               | V <sub>(EN/UVLO)</sub> = 2V                                                  | 10.4  | 11.6  | 12.8  | V  |
| V <sub>(BST - SRC)</sub>     | V <sub>(VS)</sub> = 3.5V 时的电荷泵电压      | V <sub>(EN/UVLO)</sub> = 2V                                                  | 9.1   | 10.5  | 11.62 | V  |
| 栅极驱动器输出(                     | G1PU、G1PD)                            |                                                                              |       |       |       |    |
| I <sub>(PU)</sub>            | 峰值拉电流                                 |                                                                              |       | 1.69  |       | Α  |

Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: TPS1200-Q1

提交文档反馈

# 5.5 电气特性 (续)

 $T_J$  =  $-40^{\circ}$ C  $\cong$  +125 $^{\circ}$ C  $_{\circ}$   $V_{(VS)}$  = 12V ,  $V_{(BST\ -\ SRC)}$  = 11V

|                                            | 参数                      | 测试条件                                   | 最小值  | 典型值                                                                                                                                                                                             | 最大值   | 单位 |
|--------------------------------------------|-------------------------|----------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| I <sub>(PD)</sub>                          | 峰值灌电流                   |                                        |      | 2                                                                                                                                                                                               |       | Α  |
| $V_{(G\_GOOD)}$                            | VGS 正常阈值                |                                        | 5.5  | 7                                                                                                                                                                                               | 8.3   | V  |
| 短路保护(ISCP)                                 |                         |                                        | ·    |                                                                                                                                                                                                 |       |    |
| I <sub>SCP</sub>                           | SCP 输入偏置电流              |                                        | 8.4  | 10                                                                                                                                                                                              | 12.33 | μA |
|                                            |                         | $R_{(ISCP)} = 140.5k\Omega$            |      | 300                                                                                                                                                                                             |       | mV |
|                                            |                         | $R_{(ISCP)} = 28k\Omega$               | 60   | 75                                                                                                                                                                                              | 90    | mV |
| $V_{(SCP)}$                                | SCP 阈值                  | $R_{(ISCP)} = 10.5k\Omega$             | 32   | 40                                                                                                                                                                                              | 48    | mV |
|                                            |                         | $R_{(ISCP)} = 500\Omega$               | 15   | 20                                                                                                                                                                                              | 25    | mV |
|                                            |                         | R <sub>(ISCP)</sub> = 开路               |      |                                                                                                                                                                                                 | 757   | mV |
|                                            |                         | V <sub>(ISCP)</sub> = 1.405V           | 283  | 300                                                                                                                                                                                             | 315   | mV |
| $V_{(SCP)}$                                | ISCP 引脚上具有外部偏置时的 SCP 阈值 | V <sub>(ISCP)</sub> = 280 mV           | 67.8 | 75                                                                                                                                                                                              | 81.7  | mV |
|                                            | LE.                     | V <sub>(ISCP)</sub> = 105 mV           | 33.3 | 2 5.5 7 8.3  8.4 10 12.33 300 60 75 90 32 40 48 15 20 25 757 883 300 315 7.8 75 81.7 3.3 40 46.2  67 87 104 1.4 2.73 3.8 17 2.8 3.4 93 1.1 1.2 15 0.21 0.25 32  53 85 107 410 2 0.8 89 206 35 2 | mV    |    |
| 延迟计时器(TMR)                                 |                         |                                        |      |                                                                                                                                                                                                 |       |    |
| I <sub>(TMR_SRC_CB)</sub>                  | TMR 源电流                 |                                        | 67   | 87                                                                                                                                                                                              | 104   | μA |
| I <sub>(TMR_SRC_FLT)</sub>                 | TMR 源电流                 |                                        | 1.4  | 2.73                                                                                                                                                                                            | 3.8   | μA |
| I <sub>(TMR_SNK)</sub>                     | TMR 灌电流                 |                                        | 2.17 | 2.8                                                                                                                                                                                             | 3.4   | μA |
| V <sub>(TMR_SC)</sub>                      |                         |                                        | 0.93 | 1.1                                                                                                                                                                                             | 1.2   | V  |
| V <sub>(TMR_LOW)</sub>                     |                         |                                        | 0.15 | 0.21                                                                                                                                                                                            | 0.25  | V  |
| N <sub>(A-R Count)</sub>                   |                         |                                        |      | 32                                                                                                                                                                                              |       |    |
| 输入控制 (INP)、t                               | 牧障标志(FLT、FLT_GD)        |                                        |      |                                                                                                                                                                                                 |       |    |
| $R_{(\overline{FLT})}$ , $R_{(FLT\_GD)}$   | FLT, FLT_GD 下拉电阻        |                                        | 53   | 85                                                                                                                                                                                              | 107   | Ω  |
| I <sub>(FLT)</sub> , I <sub>(FLT_GD)</sub> | FLT, FLT_GD 输入漏电流       | $0V \leqslant V_{(FLT)} \leqslant 20V$ |      |                                                                                                                                                                                                 | 410   | nA |
| $V_{(INP\_H)}$                             |                         |                                        |      |                                                                                                                                                                                                 | 2     | V  |
| $V_{(INP\_L)}$                             |                         |                                        | 0.8  |                                                                                                                                                                                                 |       | V  |
| I <sub>(INP)</sub>                         | INP 输入漏电流               |                                        |      | 89                                                                                                                                                                                              | 206   | nA |
| V <sub>(CS_SEL_H)</sub>                    | 用于低侧检测的 CS_SEL 阈值       |                                        | 1.35 |                                                                                                                                                                                                 | 2     | V  |
| V <sub>(CS_SEL_L)</sub>                    | 用于高侧检测的 CS_SEL 阈值       |                                        | 0.8  |                                                                                                                                                                                                 | 1.36  | V  |
| I <sub>(CS_SEL)</sub>                      | CS_SEL 输入漏电流            |                                        | 10   | 88.8                                                                                                                                                                                            | 200   | nA |

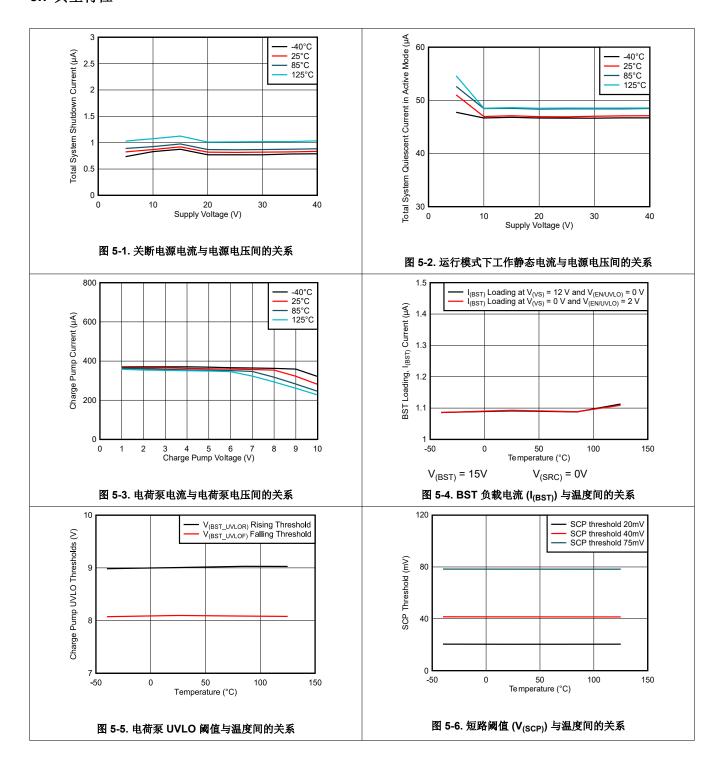
## 5.6 开关特性

 $T_J$  =  $-40^{\circ}$ C  $\Xi$  +125 $^{\circ}$ C $_{\circ}$   $V_{(VS)}$  = 12V ,  $V_{(BST - SRC)}$  = 11V

|                           | 参数                 | 测试条件                                                                                         | 最小值  | 典型值  | 最大值  | 单位 |
|---------------------------|--------------------|----------------------------------------------------------------------------------------------|------|------|------|----|
| t <sub>PU(INP_H)</sub>    | INP 导通传播延迟         | INP↑至PU↑, C <sub>L</sub> = 47nF                                                              | 0.32 |      | 1.53 | μs |
| t <sub>PD(INP_L)</sub>    | INP 关断传播延迟         | INP ↓ 至 PD ↓ , C <sub>L</sub> = 47nF                                                         |      | 0.36 | 1    | μs |
| t <sub>PD(EN_OFF)</sub>   | EN 关断传播延迟          | EN ↓ 至 PD ↓ , C <sub>L</sub> = 47nF                                                          | 2.2  | 4.6  | 6    | μs |
| t <sub>PD(UVLO_OFF)</sub> | UVLO 关断传播延迟        | UVLO ↓ 至 PD ↓ 和 FLT ↓ , C <sub>L</sub> = 47nF                                                | 2.8  | 4.8  | 6    | μs |
| t <sub>PD(OV_OFF)</sub>   | OV 关断传播延迟          | OV ↑ 至 PD ↓ 和 FLT ↓ , C <sub>L</sub> = 47nF                                                  |      | 4.5  | 5.4  | μs |
| t <sub>SC</sub>           | 硬短路保护传播延迟          | V <sub>(CS+ - CS -</sub> ) ↑ V <sub>(SCP)</sub> 至 PD ↓ , CL = 47nF , C <sub>(TMR)</sub> = 开路 |      |      | 4    | μs |
| t <sub>SC_PUS</sub>       | 上电期间输出短路时的短路保护传播延迟 | C <sub>TMR</sub> = 开路                                                                        |      |      | 10   | μs |

提交文档反馈

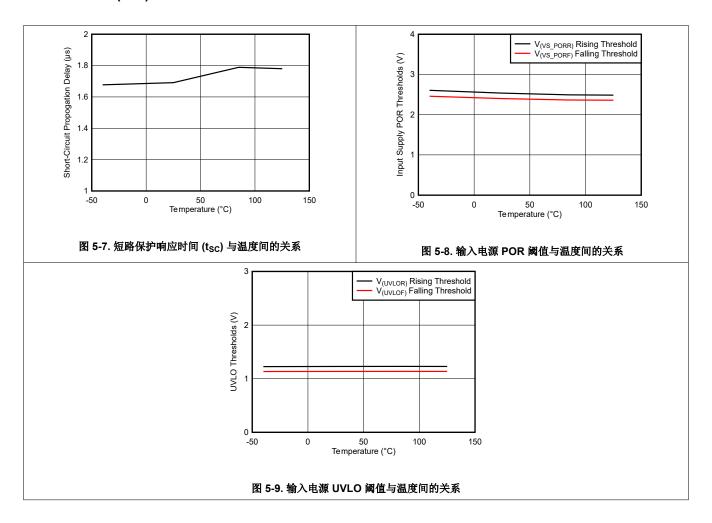



# 5.6 开关特性 (续)

 $T_J$  =  $-40^{\circ}$ C  $\cong$  +125 $^{\circ}$ C  $_{\circ}$   $V_{(VS)}$  = 12V ,  $V_{(BST\ -\ SRC)}$  = 11V

|                          | 参数                           | 测试条件                                                                                            | 最小值 | 典型值  | 最大值 | 单位  |
|--------------------------|------------------------------|-------------------------------------------------------------------------------------------------|-----|------|-----|-----|
| t <sub>PD(FLT_</sub> SC) | 短路期间的 FLT 置为有效延迟             | V <sub>(CS+ - CS - )</sub> ↑ V <sub>(SCP)</sub> 至 <del>FLT</del> ↓ ,<br>C <sub>(TMR)</sub> = 开路 |     | 10.5 | 15  | μs  |
| F <sub>ISCP</sub>        | ISCP 脉冲电流频率                  |                                                                                                 |     | 1.18 |     | kHz |
| t <sub>PD(FLT_GD)</sub>  | 栅极驱动 UVLO 期间的 FLT 置为有效<br>延迟 | V <sub>(PU - SRC)</sub> ↑ V <sub>(BSTUVLOR)</sub> 至<br>FLT_GD ↓                                 |     | 120  |     | μs  |
| t <sub>PD(FLT_GD)</sub>  | 栅极驱动 UVLO 期间的 FLT 置为无效<br>延迟 | V <sub>(PU - SRC)</sub> ↓ V <sub>(BSTUVLOR)</sub> 至<br>FLT_GD ↑                                 |     | 127  |     | μs  |




## 5.7 典型特性



Product Folder Links: TPS1200-Q1



# 5.7 典型特性 (续)





# 6 参数测量信息

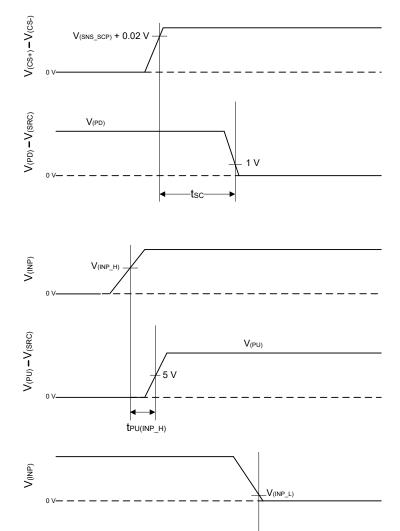



图 6-1. 时序波形

 $t_{\text{PD(INP\_L)}}$ 

 $V_{(PD)}$ 

V(PD) -V(SRC)

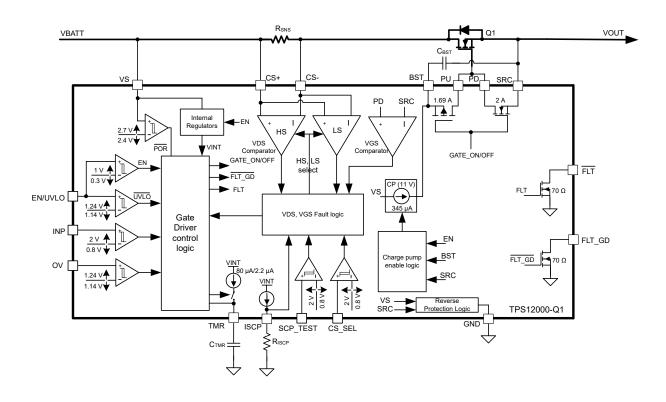


## 7详细说明

#### 7.1 概述

TPS12000-Q1 是一款具有保护和诊断功能的 45V 低 IQ 智能高侧驱动器。该器件具有 3.5V 至 40V 的宽工作电压范围,适用于 12V 系统设计。该器件可以承受低至 -40V 的负电源电压并保护负载免受这些电压的影响。

它具有强大的 1.69A 和 2A 峰值拉电流和灌电流栅极驱动器,可在大电流系统设计中使用并联 FET 进行电源开关。


该器件使用 ISCP 和 TMR 引脚提供可配置的短路保护功能,可以分别调整阈值和响应时间。可以配置自动重试和锁存故障行为。使用 TPS12000-Q1,可通过外部检测电阻或 MOSFET VDS 检测完成电流检测。可通过使用 CS\_SEL 引脚输入实现高侧或低侧电流检测电阻配置。集成短路比较器的诊断可以通过对 SCP\_TEST 输入的外部 控制来完成。

该器件具备可调节的欠压和过压保护功能。

在短路和输入欠压及过压条件下,该器件会在开漏输出中指示故障 (FLT)。它还具有专用的故障指示 (FLT\_GD),用于指示栅极驱动器 UVLO 的状况。

运行期间的低静态电流  $43\mu A$  可实现常开型系统设计。在 EN/UVLO 处于低电平时,静态电流降至  $1.5\,\mu\,A$  ( 典型值 )。

#### 7.2 功能方框图



Copyright © 2025 Texas Instruments Incorporated

#### 7.3 特性说明

#### 7.3.1 电荷泵和栅极驱动器输出(VS、PU、PD、BST、SRC)

图 7-1 显示了电荷泵和栅极驱动器电路实施方案的简化图。该器件内有强大的 1.69A/2A 峰值拉电流/灌电流栅极驱动器(PU、PD),用于驱动功率 FET。这些强大的栅极驱动器可在大功率系统设计中支持 FET 并联,从而确保在饱和区实现最短的转换时间。一个 11V、345 $\mu$ A 电荷泵源自 VS 端子,能够为放置在栅极驱动器(BST 和 SRC)上的外部自举电容器  $C_{RST}$  充电。

VS 是连接到控制器的电源引脚。在施加 VS 且 EN/UVLO 被拉至高电平的情况下,电荷泵将开启并为  $C_{BST}$  电容器充电。当  $C_{BST}$  上的电压超过  $V_{(BST\_UVLOR)}$  后,栅极驱动器部分将被激活。该器件具有 1V (典型值)的 UVLO 迟滞,可在初始栅极导通期间确保实现低振荡性能。根据外部 FET  $Q_G$  和 FET 开通期间允许的骤降,选择  $C_{BST}$ 。电荷泵保持启用状态,直到 BST 至 SRC 的电压达到 11.8V,此时电荷泵通常处于禁用状态,从而减少 VS 引脚上的电流消耗。电荷泵保持禁用状态,直到 BST 至 SRC 的电压放电至 10V,此时电荷泵通常处于启用状态。BST 与 SRC 之间的电压继续在 11.8V 和 10V 之间充电和放电,如图 7-2 所示。

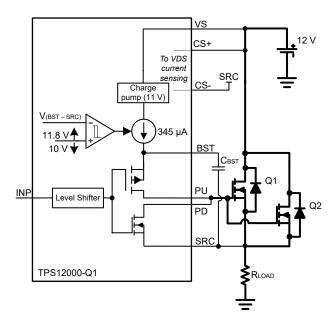



图 7-1. 栅极驱动器



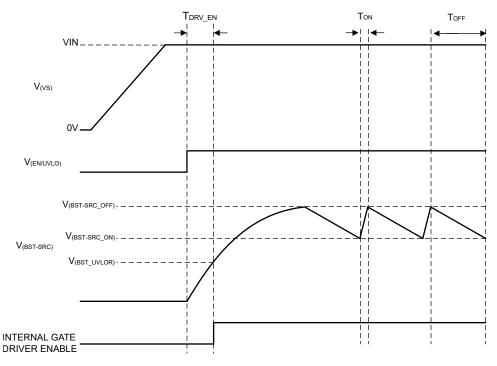



图 7-2. 电荷泵运行情况

使用以下公式可以计算初始栅极驱动器使能延迟:

$$T_{DRV\_EN} = \frac{C_{BST} \times V_{(BST\_UVLOR)}}{345 \,\mu\text{A}} \tag{1}$$

其中,

C<sub>BST</sub> 是 BST 和 SRC 引脚上的电荷泵电容。

V<sub>(BST UVLOR)</sub> = 9.5V (最大值)。

如果需要降低  $T_{DRV\_EN}$  ,则使用外部  $V_{AUX}$  电源,通过低漏电二极管  $D_1$  从外部对 BST 端子进行预偏置,如 B7-3 所示。借助此连接, T<sub>DRV EN</sub> 会降低至 400μs。采用 BST 外部供电的 TPS12000-Q1 应用电路如 图 7-3 所 示。

Product Folder Links: TPS1200-Q1



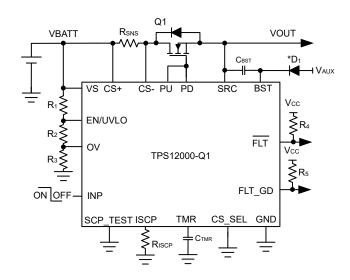



图 7-3. 采用 BST 外部供电的 TPS12000-Q1 应用电路

备注

V<sub>AUX</sub> 可通过 8V 至 18V 的外部稳压电源供电。

## 7.3.2 使用 FET 栅极 (PU、PD) 压摆率控制的容性负载驱动

诸如汽车配电单元之类的某些终端设备为包括其他 ECU 在内的不同负载供电。这些 ECU 可能具有很大的输入电 容。如果 ECU 的电源以不受控制的方式打开,则可能会产生大浪涌电流,并可能损坏功率 FET。为了限制容性负 载开关期间的浪涌电流,可对 TPS12000-Q1 使用以下系统设计技术。

为了在具有容性负载的 FET 开通期间限制浪涌电流,请使用  $R_1$ 、 $R_2$ 、 $C_1$ ,如 图 7-4 所示。 $R_1$ 和  $C_1$ 元件会减慢 FET 栅极的电压斜坡速率。FET 源极跟随栅极电压,从而在输出电容器上实现受控电压斜坡。

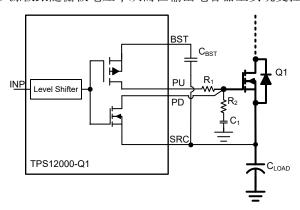



图 7-4. 浪涌电流限制

使用方程式 2 可以计算 FET 开通期间的浪涌电流。

$$I_{INRUSH} = C_{LOAD} \times \frac{V_{BATT}}{T_{charge}}$$
 (2)

Product Folder Links: TPS1200-Q1

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈



$$C_1 = \frac{0.63 \times V_{(BST - SRC)} \times C_{LOAD}}{R_1 \times I_{INRUSH}}$$
(3)

其中,

CLOAD 是负载电容,

VBATT 是输入电压, T<sub>charge</sub> 是充电时间,

V<sub>(BST-SRC)</sub> 是电荷泵电压 (11V)。

使用与  $C_1$  串联的阻尼电阻  $R_2$  (大约  $10\Omega$ )。方程式 3 可用于计算目标浪涌电流所需的  $C_1$  值。 $R_1$  的  $100k\Omega$  电阻可以作为计算的良好起点。

将 TPS12000-Q1 的 PD 引脚直接连接到外部 FET 的栅极可确保快速关断,而不会影响  $R_1$  和  $C_1$  元件。

 $C_1$  会在开通期间在  $C_{BST}$  上产生额外的充电负载。使用以下公式可计算所需的  $C_{BST}$  值:

$$C_{BST} = \frac{Q_g(total)}{\Delta V_{RST}} + 10 \times C_1$$
 (4)

其中,

Q<sub>q(total)</sub> 是 FET 的总栅极电荷。

 $\Delta V_{BST}$  (典型值为 1V)是 BST 到 SRC 引脚上的纹波电压。

#### 7.3.3 短路保护

TPS12000-Q1 具有可调节的短路保护功能。阈值和响应时间可分别用  $R_{ISCP}$  电阻器和  $C_{TMR}$  电容器来调整。该器件会检测 CS+ 和 CS - 引脚上的电压。

这些引脚可以连接在外部高侧和低侧电流感应电阻器 ( $R_{SNS}$ )上,也可以连接在 FET 漏极和源极端子上,以进行 FET  $R_{DSON}$  感应,分别如图 7-6、图 7-7、图 7-5 和 图 7-8 所示。

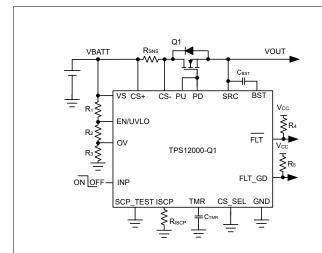



图 7-5. TPS12000-Q1 应用电路,其高侧电流检测功能基于外部检测电阻 RSNS

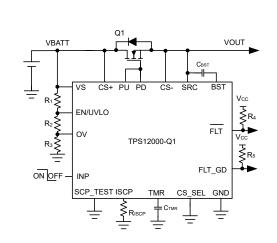



图 7-6. TPS12000-Q1 应用电路,其电流检测功能基于 MOSFET RDSON

Product Folder Links: TPS1200-Q1

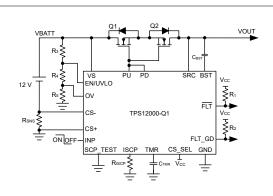



图 7-7. TPS12000-Q1 应用电路,其电池侧低侧电流检 测功能基于外部检测电阻 RSNS

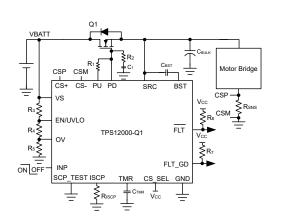



图 7-8. TPS12000-Q1 应用电路, 其负载侧低侧电流检 测功能基于外部检测电阻 RSNS

使用 ISCP 和 GND 引脚上的外部 R<sub>ISCP</sub> 电阻器设置短路检测阈值。使用 方程式 5 可计算所需的 R<sub>ISCP</sub> 值:

$$R_{ISCP}\left(\Omega\right) = \frac{(I_{SC} \times R_{SNS} - 19 \text{ mV})}{2 \mu A}$$
 (5)

其中,

R<sub>SNS</sub> 是高侧或低侧电流检测电阻值或 FET R<sub>DSON</sub> 值。

Isc 是所需的短路电流电平。

无需在 TMR 和 GND 引脚上连接 C<sub>TMR</sub> 电容器,短路保护响应最快。

器件通电且 EN/UVLO、INP 被拉至高电平时,在 Q<sub>1</sub> 开通期间,通过监控 PD 到 SRC 的电压可检测外部 FET 的 第一个 VGS。一旦 PD 到 SRC 的电压升至高于 V<sub>(G GOOD)</sub> 阈值(7.5V,典型值)(这样可确保外部 FET 增 强),便会监控 SCP 比较器输出。如果在 CS+ 和 CS- 上检测到的电压超过短路设定点 (V<sub>SCP</sub>),则 PD 会拉低至 SRC,而 FLT 将置于低电平。后续事件可以设置为自动重试或闭锁,如后续部分所述。

仅当  $CS_SEL$  被拉至低电平时,才会监测外部 FET ( $Q_1$ ) 的 VGS。在低侧电流检测中,不监测外部 FET ( $Q_1$ ) 的 VGS,如图7-7和图7-8所示。

#### 备注

此外,可以通过缓冲器而不是 RISCP 电阻器在 ISCP 引脚上连接外部偏置电压来设置短路阈值,从而实 现具有更高 SCP 阈值精度的系统设计,如电气特性表中所述。要在 ISCP 引脚上强制施加的外部偏置 电压可以通过以下公式计算得出:

V<sub>(SCP BIAS)</sub> (单位:mV) = I<sub>SC</sub> x R<sub>SNS</sub> x 5 - 95mV

#### 7.3.3.1 带自动重试的短路保护

C<sub>TMR</sub> 对短路保护延迟 (t<sub>SC</sub>) 和自动重试时间 (t<sub>RETRY</sub>) 进行编程。一旦 CS+ 和 CS - 上的电压超过设定点, C<sub>TMR</sub> 便会以80µA的上拉电流开始充电。

C<sub>TMR</sub> 充电至 V<sub>(TMR SC)</sub> 后, PD 将拉低至 SRC, FLT 将置为低电平,从而提供 FET 即将关断的警告。发布此事 件后,自动重试行为将开始。 $C_{TMR}$  电容器开始放电,下拉电流为 2.5uA。电压达到  $V_{(TMR\ LOW)}$  电平后,电容器 开始充电,上拉电流为 2.2uA。在  $C_{TMR}$  的 32 个充放电周期之后,FET 重新开通且  $\overline{FLT}$  置为无效。

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈



器件重试时间 (t<sub>RETRY</sub>) 基于 C<sub>TMR</sub> 首次重试,如 方程式 7 所示。

使用方程式 6 可计算要在 TMR 和 GND 上连接的 C<sub>TMR</sub> 电容器容值。

$$C_{\text{TMR}} = \frac{I_{\text{TMR}} \times t_{\text{SC}}}{1.1} \tag{6}$$

其中,

I<sub>TMR</sub> 是 80 µ A 的内部上拉电流。

t<sub>SC</sub> 是所需的短路响应时间。

保持 TMR 悬空,以实现最快的短路响应时间。

$$t_{RETRY} = 22.7 \times 10^6 \times C_{TMR} \tag{7}$$

如果短路脉冲持续时间低于  $t_{SC}$ ,则 FET 保持开通, $C_{TMR}$  通过内部下拉开关放电。

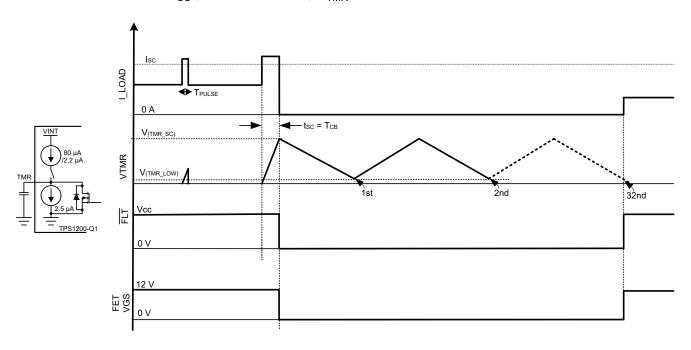



图 7-9. 带自动重试的短路保护

## 7.3.3.2 带闭锁的短路保护

在  $C_{TMR}$  上连接一个约  $100k\Omega$  的电阻,如所示。使用此电阻可以在充电周期内使  $C_{TMR}$  上的电压被钳位到低于  $V_{(TMR~SC)}$  的电平,从而产生闭锁行为,同时将  $\overline{FLT}$  置为低电平有效。

使用 方程式 8 计算当  $R_{TMR}$  = 100 $k\Omega$  时 TMR 和 GND 之间要连接的  $C_{TMR}$  电容。

$$C_{\text{TMR}} = \frac{t_{\text{SC}}}{R_{\text{TMR}} \times \ln \left(\frac{1}{1 - \frac{1.1}{R_{\text{TMR}} \times 80 \,\mu\text{A}}}\right)}$$
(8)

其中,

I<sub>TMR</sub> 是 80 µ A 的内部上拉电流。

t<sub>SC</sub> 是所需的短路响应时间。

切换 INP 或 EN/UVLO ( 低于  $V_{(ENF)}$  ) ,或将 VS 下电上电至低于  $V_{(VS\_PORF)}$  ,以复位闭锁状态。在低边沿上,计时器计数器复位且  $C_{TMR}$  放电。当 INP 上拉至高电平时,PU 上拉至 BST。

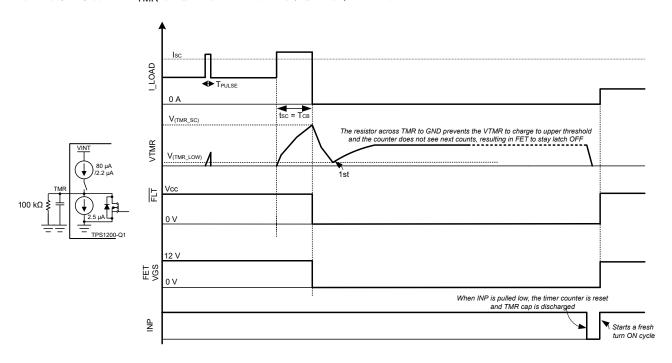



图 7-10. 带闭锁的短路保护

### 7.3.4 过压 (OV) 和欠压保护 (UVLO)

TPS12000-Q1 使用 EN/UVLO 引脚提供精确可靠的欠压保护 (< ±2%) 和精确可靠的过压保护 (< ±2%),从而提供 稳健的负载保护。当检测到输入欠压或过压故障时, FLT 将触发。如 图 7-11 中所示,连接一个电阻梯以进行欠压和过压保护阈值编程。

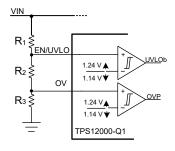



图 7-11. 过压和欠压保护阈值编程



#### 7.3.5 反极性保护

TPS12000-Q1 器件具有集成的反极性保护功能,可防止器件在输入和输出反极性故障期间失效。在终端设备的启动、安装和维护过程中会发生反极性故障。

该器件能够在输入端和输出端承受低至 -40V 的反极性电压。

在输出侧,该器件会在正常运行期间由于开关关断时的输出电缆线束电感反冲而出现瞬态负电压。在此类系统中,输出负电压电平受输出侧 TVS 或二极管限制。

#### 7.3.6 短路保护诊断 (SCP TEST)

在安全关键型设计中,短路保护(SCP)功能及其诊断非常重要。

TPS12000-Q1 具有内部短路保护诊断功能。当 SCP\_TEST 被驱动为低电平至高电平时,内部会在 SCP 比较器输入上施加电压以模拟短路事件。比较器输出将控制栅极驱动器 (PU/PD) 以及 FLT。如果栅极驱动器变为低电平 (最初为高电平)且 FLT 也变为低电平,则表明 SCP 正常,否则视为 SCP 功能不正常。

如果未使用 SCP TEST 功能,则应将 SCP TEST 引脚连接到 GND。

#### 7.3.7 TPS12000-Q1 用作简单的栅极驱动器

图 7-12 显示了 TPS12000-Q1 作为负载断开开关和背靠背 FET 驱动拓扑中的简单栅极驱动器的应用原理图。已禁用短路保护功能。

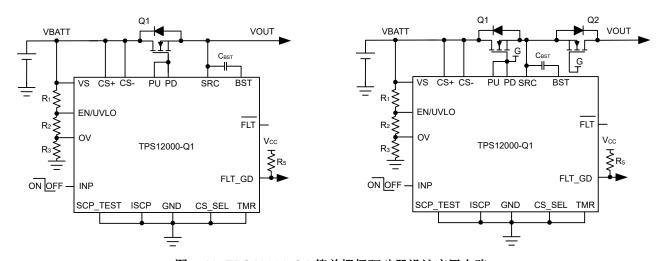



图 7-12. TPS12000-Q1 简单栅极驱动器设计应用电路

#### 7.4 器件功能模式

TPS12000-Q1 具有两种运行模式。工作模式和低 IQ 关断模式。

如果 EN/UVLO 引脚电压大于  $V_{(ENR)}$  上升阈值,则器件处于工作模式。在工作状态下,会启用内部电荷泵、栅极驱动器,以及所有保护和诊断功能。

如果 EN/UVLO 电压被拉至  $V_{(ENF)}$  下降阈值以下,该器件将进入低 IQ 关断模式。在该模式下,将禁用电荷泵、栅极驱动器和所有保护功能。栅极驱动器和外部 FET 关闭。TPS12000-Q1 在此模式下消耗 1.5  $\mu$  A(典型值)的低 IQ。

Copyright © 2025 Texas Instruments Incorporated

### 8应用和实施

#### 备注

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

#### 8.1 应用信息

TPS12000-Q1 是一款具有保护和诊断功能的 45V 低 IQ 智能高侧驱动器。该器件具有 3.5V 至 40V 的宽工作电压范围,适用于 12V 系统设计。该器件可以承受低至 - 40V 的负电源电压并保护负载免受这些电压的影响。它具有强大的 1.69A/2A 峰值拉电流/灌电流栅极驱动器,可在大电流系统设计中使用并联 FET 进行电源开关。

该器件使用 ISCP 和 TMR 引脚提供可配置的短路保护功能,可以分别调整阈值和响应时间。可以配置自动重试和锁存故障行为。使用 TPS12000-Q1,可通过外部检测电阻或 MOSFET VDS 检测完成电流检测。可通过使用 CS SEL 引脚输入实现高侧或低侧电流检测电阻配置。

集成短路比较器的诊断可以通过对 SCP\_TEST 输入的外部控制来完成。在短路和输入欠压及过压条件下,该器件会在开漏输出中指示故障 (FLT)。它还具有专用的故障指示 (FLT\_GD),用于指示栅极驱动器 UVLO 的状况。

运行期间的低静态电流  $43\mu A$  可实现常开型系统设计。在 EN/UVLO 处于低电平时,静态电流降至  $1.5 \mu A$  ( 典型值 )。

### 8.2 典型应用:全时驱动功率 (PAAT) 负载

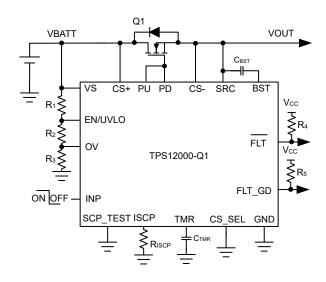



图 8-1. 驱动 PAAT 负载的 TPS12000-Q1 应用电路, 其电流检测功能基于 VDS

## 8.2.1 设计要求

表 8-1. 设计参数

| <b>収 : : 以 ! シ</b> ※        |          |  |  |  |  |  |  |  |
|-----------------------------|----------|--|--|--|--|--|--|--|
| 参数                          | 值        |  |  |  |  |  |  |  |
| 输入电压范围, V <sub>IN</sub>     | 8V 至 16V |  |  |  |  |  |  |  |
| 欠压锁定设定点,VIN <sub>UVLO</sub> | 6.5V     |  |  |  |  |  |  |  |
| 过压设定点,VIN <sub>OVP</sub>    | 36V      |  |  |  |  |  |  |  |
| 最大负载电流,I <sub>OUT</sub>     | 30A      |  |  |  |  |  |  |  |

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈



# 表 8-1. 设计参数 (续)

| 参数                      | 值          |
|-------------------------|------------|
| 短路保护阈值,l <sub>SC</sub>  | 100A       |
| 故障计时器周期,t <sub>SC</sub> | 50 μ s     |
| 故障响应                    | 自动重试       |
| 电流检测                    | MOSFET VDS |

#### 8.2.2 详细设计过程

#### 选择 MOSFET Q1

选择 MOSFET  $Q_1$  时,重要的电气参数包括最大持续漏极电流  $I_D$ 、最大漏源电压  $V_{DS(MAX)}$ 、最大栅源电压  $V_{GS(MAX)}$  以及漏源导通电阻  $R_{DSON}$ 。

最大持续漏极电流 ID 额定值必须超过最大持续负载电流。

最大漏源电压  $V_{DS(MAX)}$  必须足够高,以便承受应用中所见的最高电压。考虑负载突降导致最高应用电压为 35V,因此该应用选择  $V_{DS}$  额定电压为 40V 的 MOSFET。

TPS12000-Q1 可驱动的最大  $V_{GS}$  为 11V, 因此必须选择  $V_{GS}$  最小额定值为 15V 的 MOSFET。

为了降低 MOSFET 导通损耗,建议选择合适的 R<sub>DS(ON)</sub>。

根据设计要求,选择的是 BUK7J1R4-40H,其电压等级为:

- 40V V<sub>DS(MAX)</sub> 和 ±20V V<sub>GS(MAX)</sub>
- 在 10V V<sub>GS</sub> 时, R<sub>DS(ON)</sub> 的典型值为 1.06m Ω
- MOSFET Q<sub>q(total)</sub> 的典型值为 73nC

TI 建议确保短路条件 (例如最大  $V_{IN}$  和  $I_{SC}$  ) 处于所选 FET  $(Q_1)$  的 SOA 范围内,确保至少大于  $t_{SC}$  定时。

### 选择自举电容器 CBST

内部电荷泵以大约 345 μ A 的电流为外部自举电容器 (连接在 BST 和 SRC 引脚之间)充电。使用以下公式,计算驱动 BUK7J1R4-40H MOSFET 所需的自举电容最小值

$$C_{BST} = \frac{Q_g(total)}{1 V} = 73 \text{ nF}$$
 (9)

选择最接近的可用标准值:100nF、10%。

### 对短路保护阈值进行编程 - RISCP 选型

R<sub>ISCP</sub> 用于设置短路保护阈值,该值可使用以下公式计算:

$$R_{ISCP}\left(\Omega\right) = \frac{\left(I_{SC} \times R_{DS\_ON} - 19 \text{ mV}\right)}{2 \mu A} \tag{10}$$

若要将短路保护阈值设置为 100A,则  $R_{ISCP}$  值计算结果为  $40.5k\Omega$ 。

选择最接近的可用标准值:40.2kΩ、1%。

在涉及较大 di/dt 的情况下,系统和布局寄生电感可能会在 CS+ 和 CS- 引脚之间产生较大的差分信号电压。此操作可能会在系统中触发错误的短路保护并干扰跳闸。为了解决这种问题,TI 建议在检测电阻 (R<sub>SNS</sub>) 上添加用于表示 RC 滤波器元件的占位元件,并在实际系统的测试期间调整相应的值。在通过 MOSFET VDS 检测实现的电流检测设计中,不得使用 RC 滤波器元件,以免影响短路保护响应。

#### 对故障计时器周期进行编程 - CTMR 选型

对于本文所讨论的设计示例,允许的过流瞬态持续时间为  $50\,\mu\,s$ 。此消隐间隔  $t_{SC}$ (或断路器间隔  $T_{CB}$ )可以通过在 TMR 引脚到接地端之间选择合适的电容器  $C_{TMR}$  来设置。使用以下公式可计算  $C_{TMR}$  的值以便将  $t_{SC}$  设置为  $50\,\mu\,s$ :

$$C_{TMR} = \frac{80 \,\mu\text{A} \times \text{t}_{SC}}{1.1} \tag{11}$$

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈



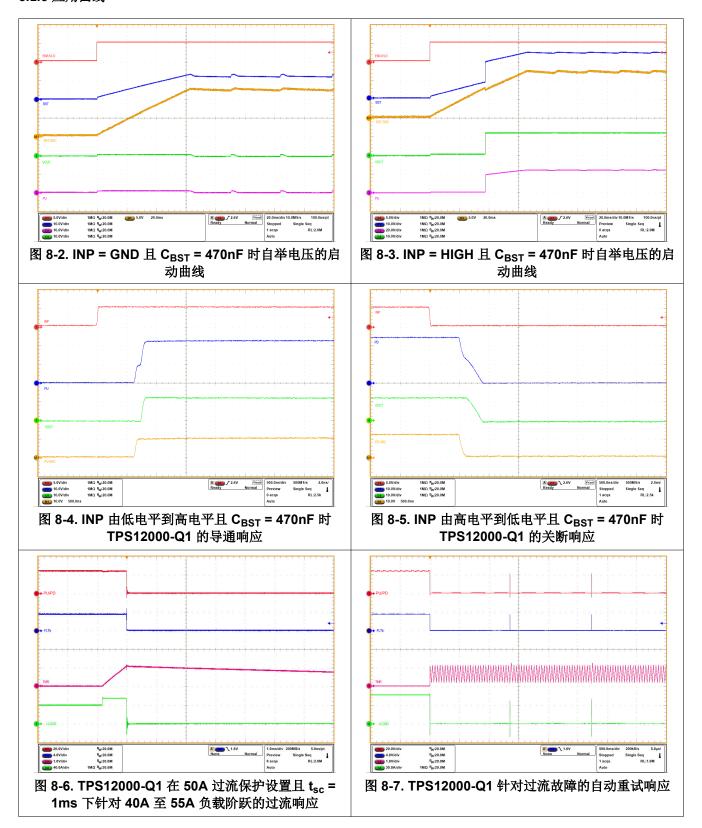
选择最接近的可用标准值:3.3nF.10%。

#### 设置欠压锁定和过压设定点

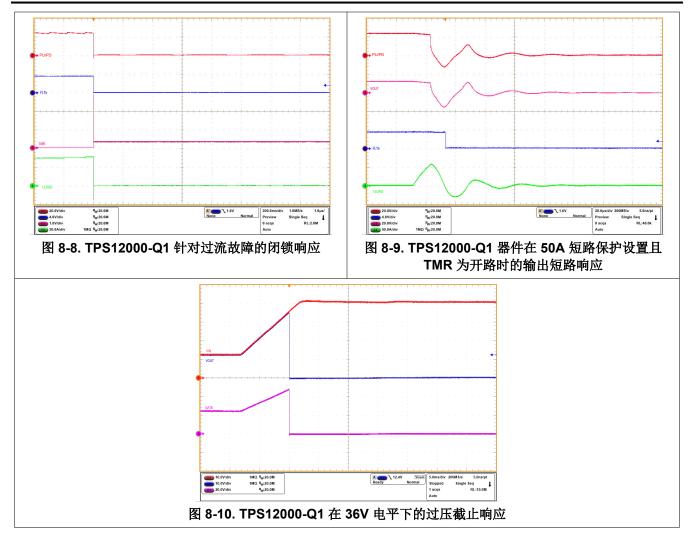
通过连接在器件 VS、EN/UVLO、OV 和 GND 引脚之间的  $R_1$ 、 $R_2$  和  $R_3$  外部分压器网络可调整欠压锁定 (UVLO) 和过压设定点。设置欠压和过压所需的值可通过求解 方程式 12 和 方程式 13 计算得出。

$$V_{(OVR)} = \frac{R_3}{(R_1 + R_2 + R_3)} \times VIN_{OVP}$$
 (12)

$$V_{(UVLOR)} = \frac{R_2 + R_3}{(R_1 + R_2 + R_3)} \times VIN_{UVLO}$$
(13)


为了尽可能降低从电源汲取的输入电流,TI 建议对 R<sub>1</sub>、R<sub>2</sub> 和 R<sub>3</sub> 使用较高的电阻值。但是,由于连接到电阻器串 的外部有源元件而产生的漏电流会增加这些计算的误差。因此,选择的电阻串电流 I (R<sub>123</sub>) 必须比 UVLO 和 OV 引脚的漏电流大 20 倍。

根据器件电气规格, V<sub>(OVR)</sub> = 1.24V 且 V<sub>(UVLOR)</sub> = 1.24V。根据设计要求, VIN<sub>OVP</sub> 为 36V 且 VIN<sub>UVLO</sub> 为 6.5V。 为了求解该公式,首先选择  $R_1$  = 470k  $\Omega$  时的值,然后使用 方程式 12 求解得出  $(R_2 + R_3)$  = 108.3k $\Omega$ 。使用 方程 式 13 (R<sub>2</sub> + R<sub>3</sub>)的和值求解 R<sub>3</sub> = 19.6k $\Omega$  , 最后求解 R<sub>2</sub> = 88.7k $\Omega$  。选择最接近的标准 1% 电阻值:R<sub>1</sub> = 470kΩ ,  $R_2$  = 88.7kΩ ,  $\coprod$   $R_3$  = 19.6kΩ.


Product Folder Links: TPS1200-Q1

Copyright © 2025 Texas Instruments Incorporated

#### 8.2.3 应用曲线







#### 8.3 电源相关建议

当外部 MOSFET 在 INP1 控制、过流保护等条件下关断时,输入寄生线路电感会在输入端产生正电压尖峰,而输出寄生电感会在输出端产生负电压尖峰。电压尖峰(瞬变)的峰值振幅取决于与器件输入或输出串联的电感值。如果未采取措施解决此问题,这些瞬变可能会超过器件的*绝对最大额定值*。解决瞬变的典型方法包括:

- 在输入端和 GND 之间使用 TVS 二极管和输入电容器滤波器组合来吸收能量并抑制正瞬态。
- 在输出端和 GND 之间使用二极管或 TVS 二极管来吸收负尖峰。

TPS12000-Q1 由 VS 引脚供电。为了确保正常运行,此引脚上的电压必须保持在  $V_{(VS\_PORR)}$  电平以上。如果输入电源有瞬态噪声,TI 建议在输入电源线路和 VS 引脚之间放置一个  $R_{VS}$  -  $C_{VS}$  滤波器以滤除电源噪声。TI 建议采用大约 100  $\Omega$  的  $R_{VS}$  值。

在涉及较大 di/dt 的情况下,系统和布局寄生电感可能会在 CS+ 和 CS- 引脚之间产生较大的差分信号电压。此操作可能会在系统中触发错误的短路保护并干扰跳闸。为了解决这种问题,TI 建议在检测电阻 (R<sub>SNS</sub>) 上添加用于表示 RC 滤波器元件的占位元件,并在实际系统的测试期间调整相应的值。在通过 MOSFET VDS 检测实现的电流检测设计中,不得使用 RC 滤波器元件,以免影响短路保护响应。

下图展示了具有可选保护元件的电路实施方案。

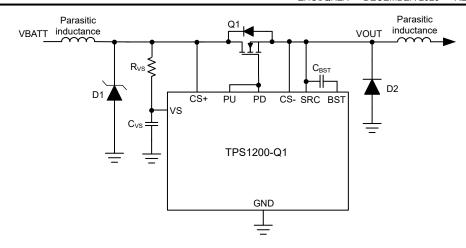



图 8-11. 采用可选保护元件的 TPS12000-Q1 电路实施方案

#### 8.4 布局

#### 8.4.1 布局指南

- 将检测电阻 (R<sub>SNS</sub>) 靠近 TPS12000-Q1 放置,然后使用开尔文技术连接 R<sub>SNS</sub>。更多有关开尔文技术的信息,请参阅选择合适的检测电阻布局。
  - 对于基于 VDS 的电流检测,请在 MOSFET 上使用相同的开尔文技术。
- 对于所有应用,在 VS 端子和 GND 之间选择一个 0.1µF 或值更高的陶瓷去耦电容器。为改善去耦以应对电源 线路干扰,可考虑在控制器的电源引脚 (VS) 处添加 RC 网络。
- 为最大限度减小环路电感,使电路板输入到负载的大电流路径以及返回路径相互平行且彼此靠近。
- 将外部 MOSFET 靠近控制器栅极驱动引脚 (PU/PD) 放置,从而使 MOSFET 的栅极靠近控制器栅极驱动引脚 并形成一个较短的栅极环路。考虑添加一个占位电阻与每个外部 MOSFET 的栅极串联,以便在需要时抑制高 频振荡。
- 在输入端放置一个 TVS 二极管以用于在热插拔和快速关断事件期间钳制电压瞬态。
- 将外部自举电容器靠近 BST 和 SRC 引脚放置以形成极短的环路。
- 将 TPS12000-Q1 周围各种元件的接地连接直接相互连接,并连接到 TPS12000-Q1 GND,然后连接到系统地的一个点上。请勿通过大电流接地线将各种元件接地相互连接。

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈



### 8.4.2 布局示例

Top Layer

Inner Layer GND plane

Inner Layer PGND plane

Via to GND plane

Via to PGND plane

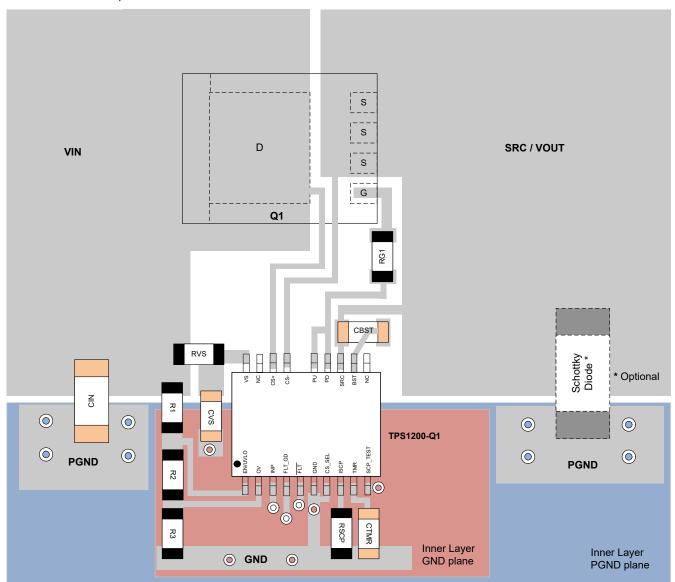



图 8-12. 带基于 VDS 的电流检测功能的 TPS12000-Q1 典型 PCB 布局示例

## 9 器件和文档支持

#### 9.1 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

#### 9.2 支持资源

TI E2E<sup>™</sup> 中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

### 9.3 商标

TI E2E<sup>™</sup> is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

#### 9.4 静电放电警告



静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

#### 9.5 术语表

TI术语表

本术语表列出并解释了术语、首字母缩略词和定义。

#### 10 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

### Changes from Revision \* (December 2023) to Revision A (December 2024)

**Page** 

## 11 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件可用的最新数据。数据如有变更, 恕不另行通知, 且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

www.ti.com 7-Nov-2025

#### PACKAGING INFORMATION

| Orderable part number | Status | Material type | Package   Pins   | Package qty   Carrier | RoHS | Lead finish/  | MSL rating/         | Op temp (°C) | Part marking |
|-----------------------|--------|---------------|------------------|-----------------------|------|---------------|---------------------|--------------|--------------|
|                       | (1)    | (2)           |                  |                       | (3)  | Ball material | Peak reflow         |              | (6)          |
|                       |        |               |                  |                       |      | (4)           | (5)                 |              |              |
| PTPS12000QDGXRQ1      | Active | Preproduction | VSSOP (DGX)   19 | 5000   LARGE T&R      | -    | Call TI       | Call TI             | -40 to 125   |              |
| PTPS12000QDGXRQ1.A    | Active | Preproduction | VSSOP (DGX)   19 | 5000   LARGE T&R      | -    | Call TI       | Call TI             | -40 to 125   |              |
| TPS12000QDGXRQ1       | Active | Production    | VSSOP (DGX)   19 | 5000   LARGE T&R      | Yes  | NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 1200         |
| TPS12000QDGXRQ1.A     | Active | Production    | VSSOP (DGX)   19 | 5000   LARGE T&R      | Yes  | NIPDAU        | Level-2-260C-1 YEAR | -40 to 125   | 1200         |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

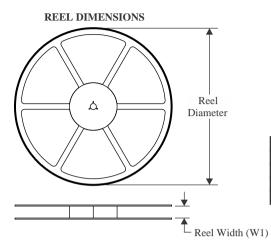
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

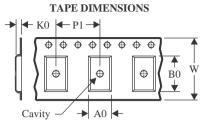
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

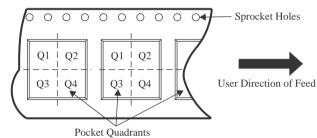
<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 31-Dec-2024

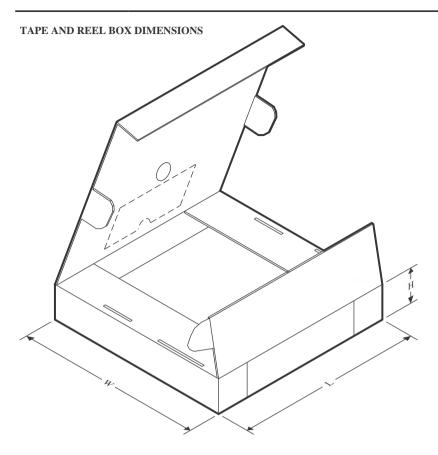

### TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

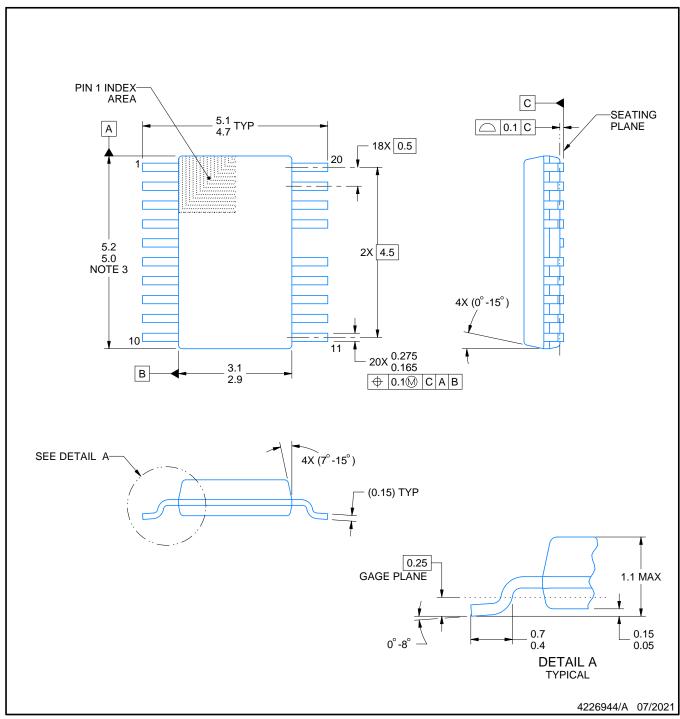



#### \*All dimensions are nominal

| Device          | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TPS12000QDGXRQ1 | VSSOP           | DGX                | 19 | 5000 | 330.0                    | 16.4                     | 5.4        | 5.4        | 1.45       | 8.0        | 16.0      | Q1               |

# PACKAGE MATERIALS INFORMATION

www.ti.com 31-Dec-2024




#### \*All dimensions are nominal

| Γ | Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| Г | TPS12000QDGXRQ1 | VSSOP        | DGX             | 19   | 5000 | 353.0       | 353.0      | 32.0        |



SMALL OUTLINE PACKAGE

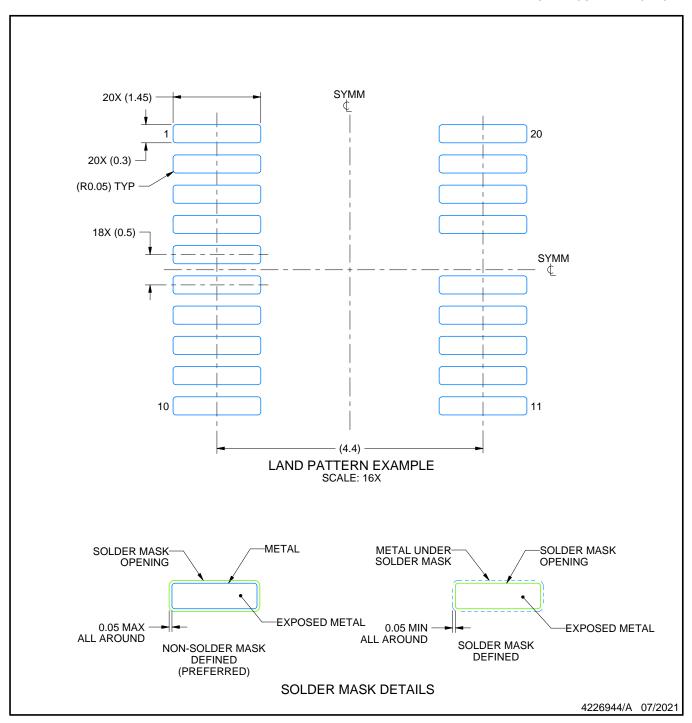


#### NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

  2. This drawing is subject to change without notice.

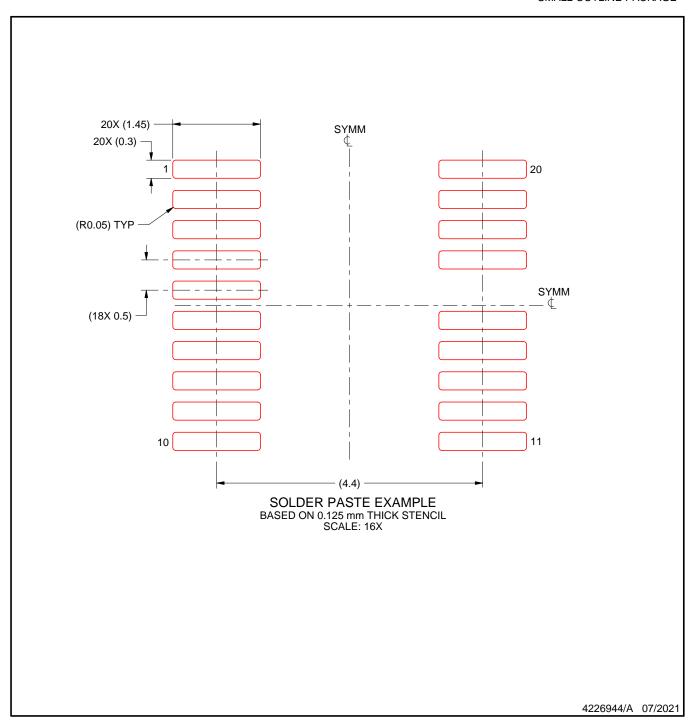

  3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.

  4. No JEDEC registration as of July 2021.

  5. Features may differ or may not be present.



SMALL OUTLINE PACKAGE




#### NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.
- 10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.



SMALL OUTLINE PACKAGE



NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.



## 重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月