

ZHCSSO7C - FEBRUARY 2008 - REVISED JULY 2023

TPD6E004 适用于高速数据接口的 低电容、6通道、±15kV ESD 保护阵列

1 特性

- ESD 保护性能超过 JESD 规范要求:
 - ±15kV 人体放电模型 (HBM)
 - ±8kV IEC 61000-4-2 接触放电
 - ±12kV IEC 61000-4-2 空气间隙放电
- 1.6pF 低 I/O 电容

Texas

Instruments

- 电源电压范围为 0.9V 至 5.5V
- 6 通道器件
- 节省空间的 UQFN (RSE) 封装

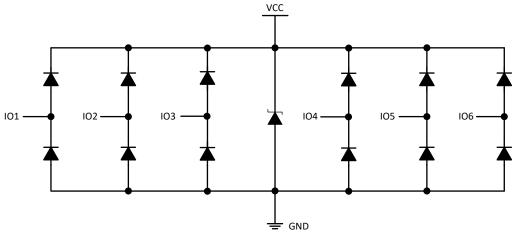
2 应用

- USB
- 以太网™
- FireWire™
- 视频
- 手机
- SVGA 视频连接
- 血糖仪

3 说明

TPD6E004 器件是一款低电容、±15kV ESD 保护二极 管阵列,设计用于保护连接到通信线路的敏感电子元 件。每个通道包含一对二极管,用于将 ESD 电流脉冲 引导至 V_{CC} 或 GND。TPD6E004 可针对高达 ±15kV 的人体放电模型 (HBM) ESD 脉冲、

±8kV 接触 ESD 和 ±12kV 空气间隙 ESD (如 IEC 61000-4-2 中所规定)提供保护。该器件每通道具有 1.6pF 的电容典型值,因此非常适用于高速数据 I/O 接 口。


TPD6E004 器件采用 RSE 封装,额定工作温度范围为 -40°C 至 +85°C。

TPD6E004 器件采用 6 通道 ESD 结构, 专为 USB、 以太网和 FireWire 应用而设计。

封装信息

器件型号	封装 ⁽¹⁾	封装尺寸 ⁽²⁾		
TPD6E004	RSE (UQFN , 8)	1.5mm x 1.5mm		

- 如需了解所有可用封装,请参阅数据表末尾的可订购产品附
- (2) 封装尺寸(长x宽)为标称值,并包括引脚(如适用)。

Copyright © 2016, Texas Instruments Incorporated

功能方框图

Page

Table of Contents

1 特性	1 7.3 Feature Description	6
2 应用		6
3 说明		7
4 Revision History		7
5 Pin Configuration and Functions		7
6 Specifications	0.00 0.10 1.0	
6.1 Absolute Maximum Ratings ⁽¹⁾	4 8.4 Layout	9
6.2 ESD Ratings		
6.3 ESD Ratings - Surge Protection		
6.4 Recommended Operating Conditions		
6.5 Thermal Information	····	
6.6 Electrical Characteristics	a data to No. 1 white att.	
6.7 Typical Characteristics		
7 Detailed Description		11
7.1 Overview	···· •	11
7.2 Functional Block Diagram	0	
4 Revision History		
注:以前版本的页码可能与当前版本的页码不同		
Changes from Revision B (February 2016) to Re	vision C (July 2023)	Page
• 更新了整个文档中的表格、图和交叉参考的编号	格式	1
• 更新了封装信息表以包含封装引线尺寸		1

Changes from Revision A (February 2008) to Revision B (February 2016)

布局 部分、*器件和文档支持* 部分以及*机械、封装和可订购信息* 部分。.......1

Product Folder Links: TPD6E004

Copyright © 2023 Texas Instruments Incorporated

5 Pin Configuration and Functions

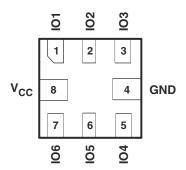


图 5-1. RSE Package, 8-Pin UQFN (Bottom View)

表 5-1. Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION			
NAME	NO.	ITPE(")	DESCRIPTION			
IO1	1	I/O	ESD-protected channel			
IO2	2	I/O	ESD-protected channel			
IO3	3	I/O	ESD-protected channel			
GND	4	GND	Ground			
104	5	I/O	ESD-protected channel			
IO5	6	I/O	ESD-protected channel			
106	7	I/O	ESD-protected channel			
V _{CC}	8	PWR	Power-supply input. Bypass V _{CC} to GND with a 0.1- μ F ceramic capacitor.			

⁽¹⁾ I = input, O = output, GND = ground, PWR = power

6 Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Operating voltage for pin VCC		- 0.3	5.5	V
V _{I/O}	Operating voltage for pins IO1, IO2, IO3,	IO4, IO5 and IO6	- 0.3	V _{CC} + 0.3	V
Bump temperature (soldering)		Infrared (15 s)		220	°C
		Vapor phase (60 s)		215	
	Lead temperature (soldering, 10 s)	·		300	°C
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature		- 65	150	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±15000	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 ESD Ratings - Surge Protection

			VALUE	UNIT
V	/ Flactrostatic discharge	IEC 61000-4-2 contact discharge	±8000	V
V _{(ESI}	D) Electrostatic discharge	IEC 61000-4-2 air-gap discharge	±12000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

6.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
T _A	Operating free-air temperature	- 40	85	°C
V _{CC}	Operating voltage for pin VCC	0.9	5.5	V
V _{I/O}	Operating voltage for pins IO1, IO2, IO3, IO4, IO5 and IO6	0	Minimum of: (5.8, V _{CC})	٧

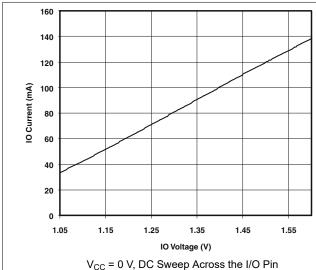
6.5 Thermal Information

Submit Document Feedback

		TPD6E004	
	THERMAL METRIC ⁽¹⁾	RSE (UQFN)	UNIT
		8 PINS	
R ₀ JA	Junction-to-ambient thermal resistance	138.6	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	74.7	°C/W
R ₀ JB	Junction-to-board thermal resistance	43.9	°C/W
ψJT	Junction-to-top characterization parameter	3.6	°C/W
∮ ЈВ	Junction-to-board characterization parameter	43.6	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Product Folder Links: TPD6E004


6.6 Electrical Characteristics

 V_{CC} = 5 V ± 10%, T_A = T_{MIN} to T_{MAX} (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{CC}	Supply voltage		0.9		5.5	V
I _{CC}	Supply current				500	nA
V _F	Diode forward voltage	I _F = 1 mA		0.8		V
I _I	Channel leakage current			±1		nA
V_{BR}	Break-down voltage	I _I = 10 μA	6		8	V
C _{I/O}	Channel input capacitance	V_{CC} = 5 V, bias of $V_{CC}/2$, f = 10 MHz		1.6	2	pF

⁽¹⁾ Typical values are at V_{CC} = 5 V and T_A = 25°C.

6.7 Typical Characteristics

图 6-1. Forward Diode Voltage (Upper Clamp Diode)

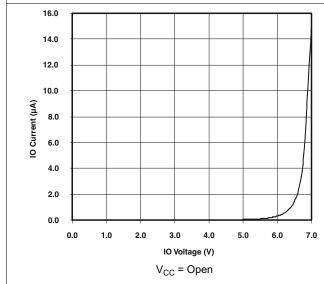


图 6-3. Reverse Diode Curve Current I/O to GND

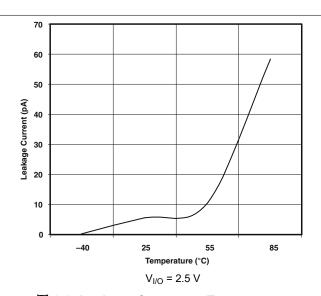
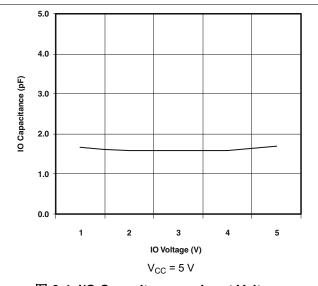
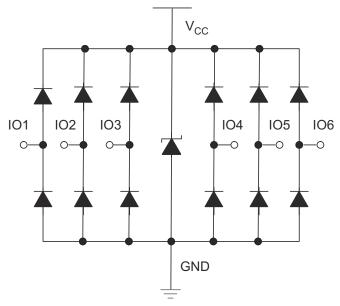


图 6-2. Leakage Current vs Temperature




图 6-4. I/O Capacitance vs Input Voltage

7 Detailed Description

7.1 Overview

The TPD6E004 device is a six-channel TVS protection diode array. The TPD6E004 is rated to dissipate ESD strikes of ±8-kV contact and ±12-kV air-gap, as specified in the IEC 61000-4-2 international standard. This device has 1.6-pF capacitance per I/O channel, making it an excellent choice for use in high-speed data I/O interfaces.

7.2 Functional Block Diagram

Copyright © 2016, Texas Instruments Incorporated

图 7-1. Logic Block Diagram

7.3 Feature Description

The TPD6E004 is a TVS that provides ESD protection for up to six channels, withstanding up to ±8-kV contact and ±12-kV air-gap ESD per IEC 61000-4-2. The monolithic technology yields exceptionally small variations in capacitance between any I/O pin of the TPD6E004. The small footprint is an excellent choice for applications where space-saving designs are important.

7.4 Device Functional Modes

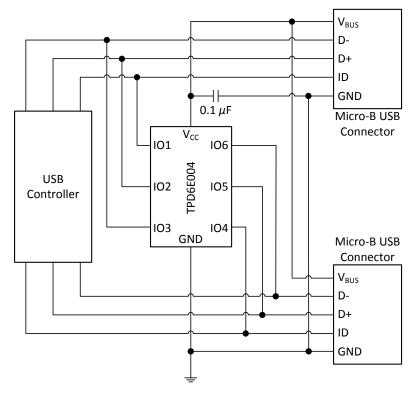
The TPD6E004 device is a passive integrated circuit that triggers when voltages are above V_{BR} or below the diodes V_{F} of approximately – 0.8 V. During ESD events, voltages as high as ±8-kV contact and ±12-kV air-gap ESD can be directed to ground through the internal diodes. When the voltages on the protected line fall below the trigger levels of TPD6E004 (usually within 10s of nano-seconds) the device reverts back to its high-impedance state.

Product Folder Links: TPD6E004

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

8 Application and Implementation


备注

以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

8.1 Application Information

The TPD6E004 device is a TVS diode array typically used to provide a path to ground for dissipating ESD events on high-speed signal lines between a human interface connector and a system. As the current from ESD passes through the TVS, only a small voltage drop is present across the diode. This is the voltage presented to the protected integrated circuit (IC). The triggered TVS holds this voltage, V_{CLAMP} , to a safe level for the protected IC.

8.2 Typical Application

Copyright © 2016, Texas Instruments Incorporated

图 8-1. Two-Port Micro-B USB 2.0 Application

English Data Sheet: SLLS799

8.2.1 Design Requirements

For this design example, a single TPD6E004 is used to protect all the pins of two USB 2.0 Micro-B connectors. 表 8-1 lists the design parameters for the USB application.

表 8-1. Design Parameters

DESIGN PARAMETER	VALUE
Signal range on IO1, IO2, IO3, IO4, IO5 and IO6	0 V to 3.6 V
Signal voltage range on V _{CC}	0 V to 5.5 V
Operating Frequency	240 MHz

8.2.2 Detailed Design Procedure

When placed near the USB connectors, the TPD6E004 ESD solution offers little or no signal distortion during normal operation due to low I/O capacitance and ultra-low leakage current specifications. The TPD6E004 is designed to protect the core circuitry and allow the system to function properly in the event of an ESD strike. For proper operation, the *Layout Guidelines* and following design guidelines must be followed:

- 1. Place the TPD6E004 solution close to the connectors. This allows the TPD6E004 to take away the energy associated with ESD strike before it reaches the internal circuitry of the system board.
- 2. Place a 0.1- μ F capacitor very close to the V_{CC} pin. This limits any momentary voltage surge at the I/O pin during the ESD strike event.
- 3. Ensure that there is enough metallization for the V_{CC} and GND loop. During normal operation, the TPD6E004 consumes only μ A of leakage current, but during an ESD event, V_{CC} and GND may see 15-A to 30-A of current, depending on the ESD level. A sufficient current path enables the safe discharge of all the energy associated with the ESD strike.
- 4. Leave any unused I/O pins floating. In this example of protecting two Micro-B USB ports, none of the I/O pins are left unused.
- 5. The V_{CC} pin can be connected in two different ways:
 - a. If the V_{CC} pin is connected to the system power supply, then the TPD6E004 works as a transient suppressor for any signal swing above V_{CC} + V_F . TI recommends a 0.1- μ F capacitor on the device V_{CC} pin for ESD bypass.
 - b. If the V_{CC} pin is not connected to the system power supply, then the TPD6E004 can tolerate a higher signal swing in the range of up to 5.8 V.

备注

A 0.1- μ F capacitor is still recommended at the V_{CC} pin for ESD bypass.

8.2.3 Application Curve

8-2 is a capture of the voltage clamping waveform of the TPD6E004 during a +8-kV contact IEC 61000-4-2
 ESD strike.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

English Data Sheet: SLLS799

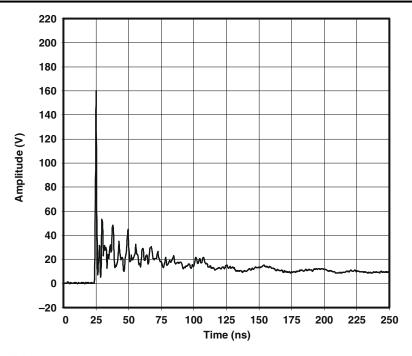
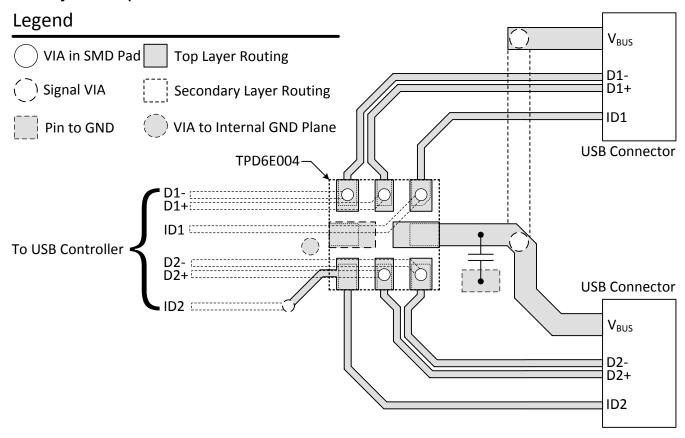


图 8-2. IEC 61000-4-2 +8-kV Contact ESD Clamping Waveform

8.3 Power Supply Recommendations

The TPD6E004 device is a passive ESD protection device, so there is no need to power it. Do not violate the maximum voltage specifications for each pin.


8.4 Layout

8.4.1 Layout Guidelines

- The optimum placement is as close to the connector as possible.
 - EMI during an ESD event can couple from the trace being struck to other nearby unprotected traces, resulting in early system failures.
 - The PCB designer must minimize the possibility of EMI coupling by keeping any unprotected traces away from the protected traces which are between the TVS and the connector.
- · Route the protected traces as straight as possible.
- Eliminate any corners less than 135° on the protected traces between the TVS and the connector. Best practice is using rounded corners with the largest radii possible.
 - Electric fields tend to build up on corners, increasing EMI coupling.
- Connect the ground pin to a same layer ground pour which is connected to an internal ground plane with a via. Place the via very near the ground pin.

8.4.2 Layout Example

Copyright © 2016, Texas Instruments Incorporated

图 8-3. TPD6E004 Layout Example for Two USB 2.0 Micro-B Connectors

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, Reading and Understanding an ESD Protection Data Sheet
- Texas Instrument, ESD Protection Layout Guide

9.2 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

9.3 Trademarks

以太网[™] is a trademark of Xerox Corporation.

FireWire[™] is a trademark of Apple Inc.

TI E2E™ is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

9.4 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

9.5 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

11

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TPD6E004RSER	Active	Production	UQFN (RSE) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2V
TPD6E004RSER.A	Active	Production	UQFN (RSE) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2V
TPD6E004RSER.B	Active	Production	UQFN (RSE) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	2V

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

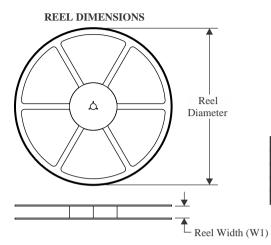
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

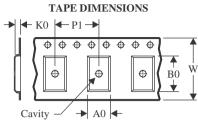
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

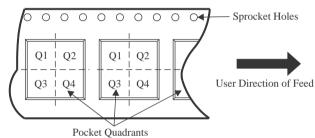
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

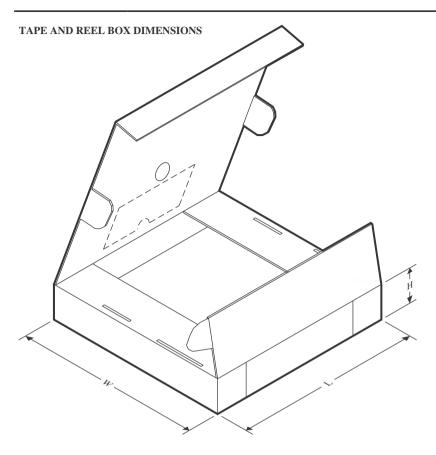
PACKAGE MATERIALS INFORMATION

www.ti.com 3-Jan-2024


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

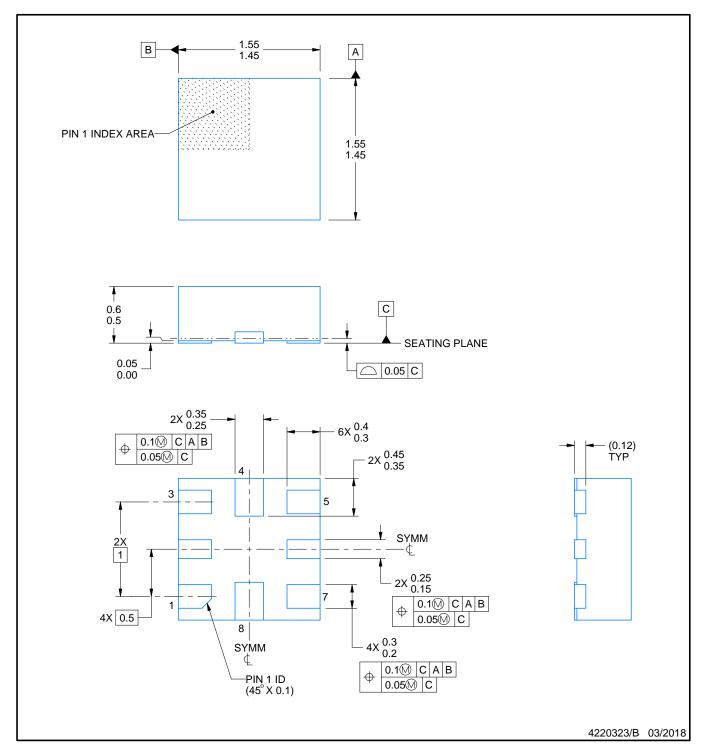


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPD6E004RSER	UQFN	RSE	8	3000	180.0	9.5	1.7	1.7	0.75	4.0	8.0	Q2

PACKAGE MATERIALS INFORMATION

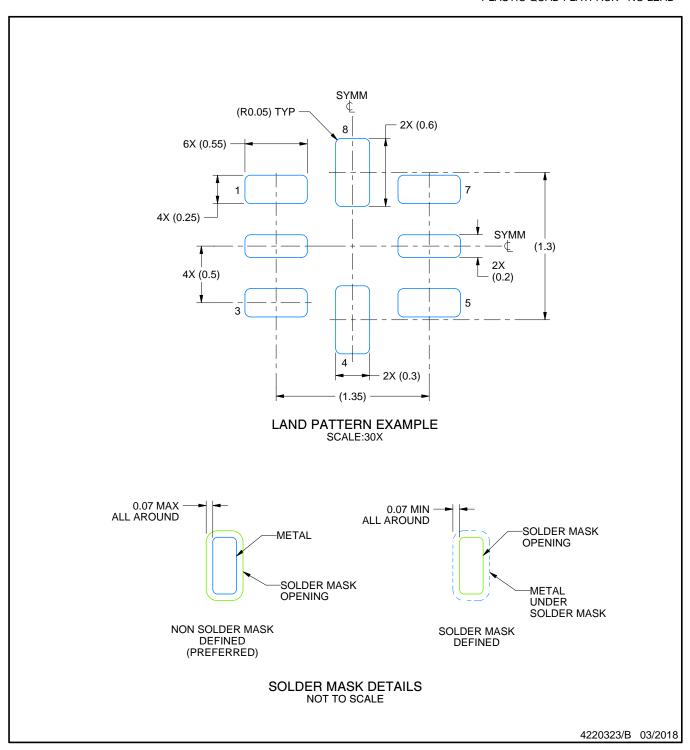
www.ti.com 3-Jan-2024



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TPD6E004RSER	UQFN	RSE	8	3000	184.0	184.0	19.0	

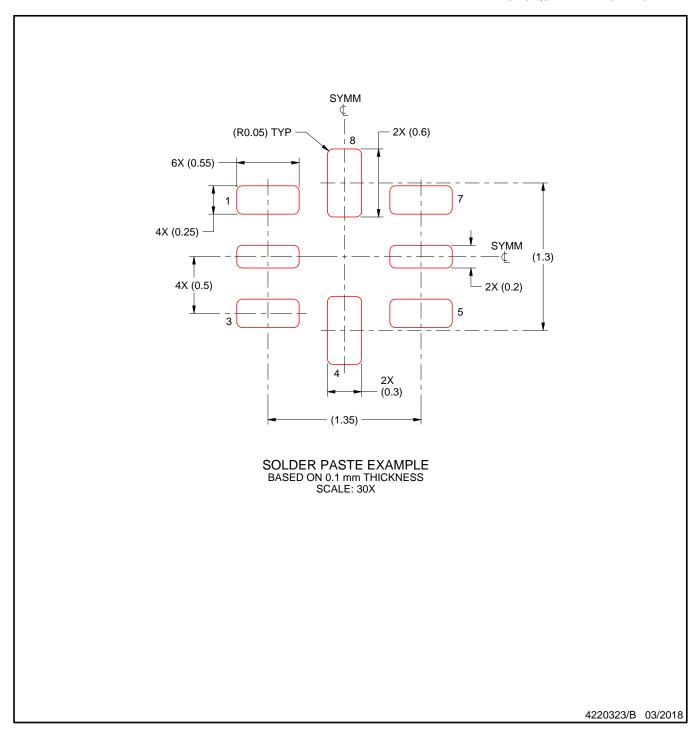
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司