

TMUX1072

ZHCSHZ3C - APRIL 2018 - REVISED AUGUST 2019

具有过压检测和保护功能的 TMUX1072 双通道 2:1 模拟多路复用器

1 特性

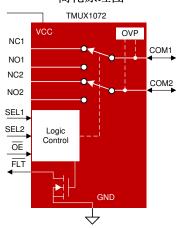
- 电源电压范围为 2.3V 至 5.5V
- 关断保护: 当
- V_{CC} = 0V 时,I/O 引脚处于高阻抗状态
- 借助故障指示引脚进行 6V 过压和过热检测
- 通用引脚上具有 18V 过压保护 (OVP)
- 支持高于 V_{CC} 且高达 5.5V 的信号
- 低至 6Ω 的 R_{ON}
- 典型带宽为 1.2GHz
- 典型 C_{ON} 为 4.5pF
- 低功耗禁用模式
- 1.8V 兼容型逻辑输入
- ESD 保护性能超出 JESD22 标准
 - 2000V 人体放电模型 (HBM)
- 提供小型 2.00mm x 1.70mm QFN 封装

2 应用

- 数据采集 (DAQ)
- 现场仪器
- 视频监控
- HVAC 系统
- 后置摄像头

3 说明

TMUX1072 是一款高速双通道 2:1 模拟开关,具有集成的高压检测和断电保护功能。该器件是一款双向器件,可用作 2:1 或 1:2 开关,同时支持高于 V_{CC}(最高可达 5.5V)的信号。


TMUX1072 的 I/O 引脚上的保护功能可承受最高 18V 的电压,并配备自动关闭电路,以防止开关后面的系统组件受损。该保护功能用于电源定序。系统中的某些电路板可能会在其他电路板准备好接收信号之前通电。该器件可检测过压和过热事件,并通过 FLT 引脚提供开漏输出信号。

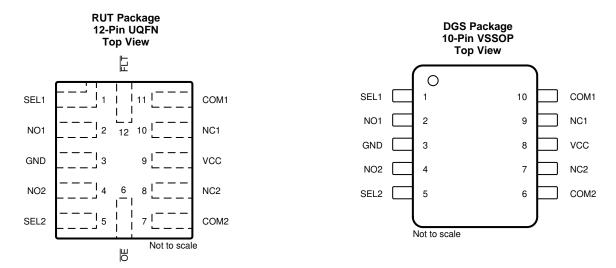
器件信息(1)

器件型号	封装	封装尺寸 (标称值)
TMUX1072	UQFN (12)	2.00mm × 1.70mm
TIVIUA 1072	VSSOP (10)	3.00mm x 5.00mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

简化原理图

		目录			
1 2	特性	,		8.3 Feature Description	16
3 4 5	说明	ç		Application and Implementation	17
6	Specifications4			Power Supply Recommendations	
	6.1 Absolute Maximum Ratings	'	-	11.1 Layout Guidelines	18
	6.3 Recommended Operating Conditions	1	12	器件和文档支持	20
	6.5 Electrical Characteristics 5 6.6 Dynamic Characteristics 8			12.1 文档支持	20
	6.7 Timing Requirements			12.3 社区资源 12.4 商标	20
7	Parameter Measurement Information 10			12.5 静电放电警告	
8	Detailed Description 14 8.1 Overview 14 8.2 Functional Block Diagram 14	1		12.6 Glossary 机械、封装和可订购信息	


4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

Changes from Revision B (June 2019) to Revision C	Page
己添加 Typical Characteristics curves for AC parameters	9
Added the Application Curves section	18
Changes from Revision A (August 2018) to Revision B	Page
• 将特性 从"通用引脚上具有 0V 至 18V 过压保护 (OVP)"更改为"通用引脚上具有 0V 至 6V 过压保护 (OVF	?)"1
Changes from Original (April 2018) to Revision A	Page
• 将器件状态从预告信息 更改为生产数据	1

5 Pin Configuration and Functions

Pin Functions

	PIN		1/0	DESCRIPTION	
NAME	RUT	DGS	1/0	DESCRIPTION	
SEL1	1	1	I	Switch select 1	
NO1	2	2	I/O	Signal path NO1	
GND	3	3	GND	Ground	
NO2	4	4	I/O	Signal path NO2	
SEL2	5	5	I	Switch select 2	
ŌĒ	6	-	I	Output enable (Active low)	
COM2	7	6	I/O	Common signal path 2	
NC2	8	7	I/O	Signal path NC2	
VCC	9	8	PWR	Supply Voltage	
NC1	10	9	I/O	Signal path NC1	
COM1	11	10	I/O	Common signal path 1	
FLT	12	-	0	Fault indicator output pin (Active low) - open drain. If feature is unused, pin may be left floating or connected to ground	

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1) (2)

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽³⁾		-0.5	6	V
	Input/Output DC voltage (COM1, COM2)	(3)	-0.5	20	V
V _{I/O}	Input/Output DC voltage (NC1, NO1, NC	2, NO2) ⁽³⁾	-0.5	6	V
VI	Digital input voltage (SEL1, SEL2, OE)		-0.5	6	V
Vo	Digital output voltage (FLT)		-0.5	6	V
I _K	Input-output port diode current (COM1, COM2,NC1, NO1, NC2, NO2)	V _{IN} < 0	-50		mA
I _{IK}	Digital <u>log</u> ic input clamp current (SEL1, SEL2, OE) (3)	V ₁ < 0	-50		mA
I _{CC}	Continuous current through VCC	•		100	mA
I _{GND}	Continuous current through GND		-100		mA
T _{stg}	Storage temperature		-65	150	°C
T_{J}	Operating Junction Temperature	·	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
.,	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	V
V _(ESD)	(ESD) discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

			MIN	MAX	UNIT
V _{CC}	Supply voltage		2.3	5.5	V
$V_{I/O}$	Analog input/output	COM1, COM2	0	18	V
$V_{I/O}$		(NC1, NO1, NC2, NO2)	0	5.5	V
I _{I/O}		COM1, COM2	-50	50	mA
I _{I/O}		(NC1, NO1, NC2, NO2)	-50	50	mA
VI	Digital input voltage	SEL1, SEL2, OE	0	5.5	V
Vo	Digital output voltage	FLT	0	5.5	V
I _{I/O}	Analog input/output port continuous current	(COM1, COM2, NC1, NO1, NC2, NO2)	-50	50	mA
I _{OL}	Digital output current			3	mA
T _A	Operating free-air temperature		-40	125	°C
TJ	Junction temperature		-40	125	°C

⁽²⁾ The algebraic convention, whereby the most negative value is a minimum and the most positive value is a maximum.

⁽³⁾ All voltages are with respect to ground, unless otherwise specified.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

			TMU		
THERMAL METRIC (1)		RUT (UQFN)	DGS (VSSOP)	UNIT	
		12 PINS	10 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance		127	175	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance		55.5	61.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance		67.7	96.9	°C/W
ΨЈТ	Junction-to-top characterization parameter		1.6	8.2	°C/W
ΨЈВ	Junction-to-board characterization parameter		67.3	95.1	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

 $T_A = -40$ °C to +125°C , $V_{CC} = 2.3$ V to 5.5 V, GND = 0V, Typical values are at $V_{CC} = 3.3$ V, $T_A = 25$ °C, (unless otherwise noted)

P.A	ARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY					*	
V _{CC}	Power supply voltage		2.3		5.5	V
	Active supply current	OE = 0 V SEL1, SEL2 = 0 V, 1.8 V or V _{CC} 0 V < V _{I/O} < 3.6 V		75	110	μΑ
Icc	Supply current during OVP condition	OE 0 V SEL1, SEL2 0 V, 1.8 V or V _{CC} V _{I/O} > V _{POS_THLD}		65	98	μΑ
I _{CC_PD} ⁽¹⁾	Standby powered down supply current	OE = 1.8 V or V _{CC} SEL1 = 0 V, 1.8 V, or VCC SEL2 = 0 V, 1.8 V, or VCC		3	10	μΑ
UVLO	Under Voltage Lock Out	V _{CC} = rising and falling	1.65			V
DC Characteristics						
R _{ON}	ON-state resistance	$V_{I/O} = 0 \text{ V to } V_{CC}$ $I_{SINK} = 8 \text{ mA}$ Refer to ON-State Resistance Figure		6	18	Ω
ΔR _{ON}	ON-state resistance match between channels	$V_{I/O}$ = 0 V to V_{CC} I_{SINK} = 8 mA Refer to ON-State Resistance Figure		0.07	0.5	Ω
R _{ON (FLAT)}	ON-state resistance flatness	$V_{I/O}$ = 0 V to V_{CC} I_{SINK} = 8 mA Refer to ON-State Resistance Figure		2.5	7	Ω

⁽¹⁾ Not tested for DGS package due to absence of FLT and OE pin.

Electrical Characteristics (continued)

 $T_A = -40$ °C to +125°C , $V_{CC} = 2.3$ V to 5.5 V, GND = 0V, Typical values are at $V_{CC} = 3.3$ V, $T_A = 25$ °C, (unless otherwise noted)

noted)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	V _C V _C V _N Re	$\begin{array}{l} V_{COM1/2}=0 \text{ V to } 5.5 \text{ V} \\ V_{CC}=2.3 \text{ V to } 5.5 \text{ V} \\ V_{NC1/2} \text{ or } V_{NO1/2}=5.5 \text{ V or } 0 \text{ V} \\ \text{Refer to Off Leakage Figure} \end{array}$		3.6	10	μΑ
		$V_{\text{COM1/2}} = 5.5 \text{ V}^{(2)}$ $V_{\text{CC}} = 5.5 \text{ V}$ $V_{\text{NC1/2}}$ or $V_{\text{NO1/2}} = 5.5 \text{ V}$ Refer to Off Leakage Figure			3	μΑ
		$\begin{array}{l} V_{COM1/2} = 3.6 \text{ V} ^{(2)} \\ V_{CC} = 3.3 \text{ V} \\ V_{NC1/2} \text{ or } V_{NO1/2} = 3.6 \text{ V} \\ \text{Refer to Off Leakage Figure} \end{array}$			2	μΑ
I _{OFF}	I/O pin OFF leakage current	$\begin{aligned} &V_{COM1/2} = 5.5 \text{ V} \\ &V_{CC} = 0 \text{ V} \\ &V_{NC1/2} \text{ or } V_{NO1/2} = 5.5 \text{ V} \\ &\text{Refer to Off Leakage Figure} \end{aligned}$			15	μA
		$\begin{split} &V_{COM1/2} = 3.6 \text{ V} \\ &V_{CC} = 0 \text{ V} \\ &V_{NC1/2} \text{ or } V_{NO1/2} = 3.6 \text{ V} \\ &\text{Refer to Off Leakage Figure} \end{split}$			10	uA
		$\begin{split} &V_{COM1/2} = 1 \text{ V} \\ &V_{CC} = 0 \text{ V} \\ &V_{NC1/2} \text{ or } V_{NO1/2} = 1 \text{ V} \\ &\text{Refer to Off Leakage Figure} \end{split}$			2	uA
		$\begin{split} &V_{COM1/2} = 18 \text{ V} \\ &V_{CC} = 0 \text{ V}, 5.5 \text{ V} \\ &V_{NC1/2} \text{ or } V_{NO1/2} = 0 \text{ V} \\ &\text{Refer to Off Leakage Figure} \end{split}$		165	185	μΑ
	ON leakage augrent	$\begin{split} &V_{COM1/2} = 5.5 \text{ V} \\ &V_{CC} = 5.5 \text{ V} \\ &V_{NC1/2} \text{ and } V_{NO1/2} = \text{high-Z} \\ &\text{Refer to On Leakage Figure} \end{split}$		1.2	3.5	μΑ
I _{ON}	ON leakage current	$\begin{split} &V_{COM1/2} = 0 \text{ V to 5.5 V} \\ &V_{CC} = 2.3\text{-}5.5 \text{ V} \\ &V_{NC1/2} \text{ and } V_{NO1/2} = \text{high-Z} \\ &\text{Refer to On Leakage Figure} \end{split}$			11.5	μΑ
Digital Characteris	itics					
V_{IH}	Input logic high	SEL1, SEL2, OE	1.45			V
V _{IL}	Input logic low	SEL1, SEL2, OE			0.5	V
V _{OL}	Output logic low	FLT I _{OL} = 3 mA			0.3	V
I _{IH}	Input high leakage current	SEL1, SEL2, $\overline{\text{OE}}$ = 1.8 V, V _{CC}	-1	2	5	μΑ
I _{IL}	Input low leakage current	SEL1, SEL2, $\overline{\text{OE}}$ = 0 V	-1	±0.2	1	μΑ
R _{PD}	Internal pull-down resistor on digital input pins	SEL1, SEL2 OE		6 3	12 6	MΩ MΩ
C _I (3)	Digital input capacitance	SEL1, SEL2 = 0 V, 1.8 V or VCC f = 1 MHz		8		pF
Protection and De	tection					
V _{OVP_TH}	OVP positive threshold		5.55	5.8	6.0	V
V _{OVP_HYST} (3)	OVP threshold hysteresis		40	100	300	mV
		1				

Not tested on COM1/2 pins for DGS package due to the absence of OE pin Specified by design, not tested in production.

⁽³⁾

Electrical Characteristics (continued)

 $T_A = -40^{\circ}\text{C}$ to +125°C , $V_{CC} = 2.3 \text{ V}$ to 5.5 V, GND = 0V, Typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$, (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{SD_HYST} ⁽³⁾	Thermal Shutdown Hysteresis		3		8	°C
T _{OTD_TH} ⁽³⁾	Overtemperature detection threshold		135		165	°C
(3)	Maximum voltage to appear on NC1/2 and NO1/2 pins during OVP scenario	$V_{COM1/2} = 0$ to 18 V t_{RISE} and $t_{FALL}(10\%$ to 90 %) = 100 ns $R_L = Open$ Switch on or off $\overline{OE} = 0$ V	0		9.6	V
V _{CLAMP_V} ⁽³⁾		$\begin{aligned} &V_{COM1/2} = 0 \text{ to } 18 \text{ V} \\ &t_{RISE} \text{ and } t_{FALL} (10\% \text{ to } 90 \text{ \%}) = 100 \text{ ns} \\ &R_L = 50\Omega \\ &\underline{\text{Switch on or off}} \\ &\overline{\text{OE}} = 0 \text{ V} \end{aligned}$	0		9.0	V
t _{EN_OVP} (3)	OVP enable time	R_{PU} = 10 k Ω to VCC (\overline{FLT}) C_L = 35 pF Refer to OVP Timing Diagram Figure		0.6	3	μS
t _{REC_OVP} (3)	OVP recovery time	R_{PU} = 10 k Ω to VCC (\overline{FLT}) C_L = 35 pF Refer to OVP Timing Diagram Figure		1.5	5	μ\$

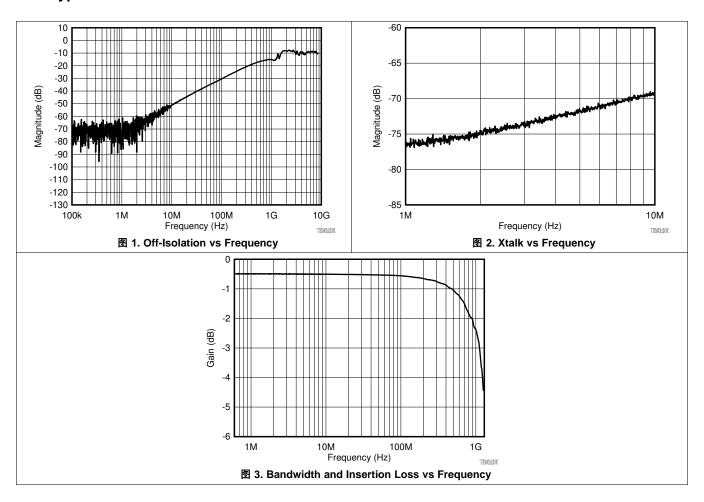
6.6 Dynamic Characteristics

 $T_A = -40$ °C to +125°C , $V_{CC} = 2.3$ V to 5.5V, GND = 0V, Typical values are at $V_{CC} = 3.3$ V, $T_A = 25$ °C, (unless otherwise noted)

PARAMETER ⁽¹⁾		TEST CONDITIONS		MIN	TYP	MAX	UNIT
	COM1, COM2 off capacitance	$\frac{V_{COM1/2}}{OE} = 0 \text{ or } 3.3 \text{ V},$ $\frac{V_{COM1/2}}{OE} = V_{CC}$ $f = 240 \text{ MHz}$	Switch OFF	1.2	4.0	6.2	pF
C _{OFF}	NC1, NO1, NC2, NO2 off capacitance	$\begin{array}{c} V_{COM1/2} = 0 \text{ or } 3.3 \text{ V}, \\ \overline{\text{OE}} = V_{CC} \text{ or } \overline{\text{OE}} = 0 \text{V with SEL1}, \\ \text{SEL2 (switch not selected)} \\ \text{f} = 240 \text{ MHz} \end{array}$	Switch OFF or not selected	1.2	4.0	6.2	pF
C _{ON}	COM1, COM2, NC1, NO1, NC2, NO2 on capacitance	$V_{COM1/2} = 0$ or 3.3 V, f = 240 MHz	Switch ON	1.4	4.0	6.2	pF
O _{ISO}	Differential off isolation	RL = 50Ω CL = $5 pF$ f = $100 kHz$ Refer to Off Isolation Figure	Switch OFF		-80		dB
		RL = 50Ω CL = $5 pF$ f = $240 MHz$ Refer to Off Isolation Figure	Switch OFF		-22		dB
X _{TALK}	Channel to Channel crosstalk	RL = 50Ω CL = $5 pF$ f = $100 kHz$ Refer to Crosstalk Figure	Switch ON		-90		dB
BW	Bandwidth	RL = 50 Ω; Refer to BW and Insertion Loss Figure	Switch ON		1.2		GHz
I _{LOSS}	Insertion loss	RL = 50 Ω f = TBD MHz; Refer to BW and Insertion Loss Figure	Switch ON		-0.8		dB

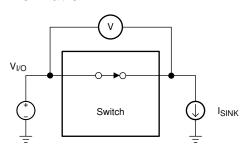
⁽¹⁾ Specified by design, not tested in production.

6.7 Timing Requirements


 $T_A = -40$ °C to +125°C , $V_{CC} = 2.3$ V to 5.5V, GND = 0V, Typical values are at $V_{CC} = 3.3$ V, $T_A = 25$ °C, (unless otherwise noted)

	PARAMETER ⁽¹⁾	TEST CONDITION	MIN	NOM	MAX	UNIT	
t _{switch}	Switching time between channels (SEL1, SEL2 to output)	V _{NC} = 0.8 V Refer to Tswitch Timing Figure			0.9	1	μs
t _{on}	Device turn on time (OE to output)	V _{NC} = 0.8 V Refer to Ton and Toff Figure	B 50.0		200	250	μs
t _{off}	Device turn off time (OE to output)	V _{NC} = 0.8 V Refer to Ton and Toff Figure	$R_L = 50 \Omega,$ $C_L = 5 pF,$ $V_{CC} = 2.3 V to 5.5 V$		1	10	μs
t _{off_Vcc}	Device turn off time V_{CC} to Switch off	V_{NC} = 0.8 V Refer to Ton and Toff Figure Ramp rate V_{CC} = 2.3 V to 0 V 250µs				250	μs
t _{SK(P)}	Skew of opposite transitions of same output (between COM1 and COM2) ⁽¹⁾	V _{COM1/2} = V _{CC} Refer to Tsk Figure	$R_L = 50 \Omega,$ $C_L = 1 pF,$ $V_{CC} = 2.3 V to 5.5 V$		9	50	ps
t _{pd}	Propagation delay ⁽¹⁾	V _{COM1/2} = V _{CC} Refer to Tpd Figure	$R_L = 50 \Omega,$ $C_L = 5 pF,$ $V_{CC} = 2.3 V to 5.5 V$		130	200	ps

⁽¹⁾ Specified by design, not tested in production.



6.8 Typical Characteristics

7 Parameter Measurement Information

Channel ON, $R_{ON} = V/I_{SINK}$

图 4. ON-State Resistance (R_{ON})

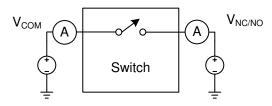


图 5. Off Leakage

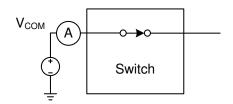
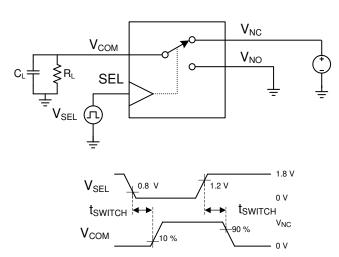



图 6. On Leakage

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_r < 500~ps$, $t_f < 500~ps$.
- (2) C_L includes probe and jig capacitance.

图 7. t_{SWITCH} Timing

Parameter Measurement Information (接下页)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r < 500$ ps, $t_f < 500$ ps.
- (2) C_L includes probe and jig capacitance.

图 8. t_{ON} , t_{OFF} for \overline{OE}

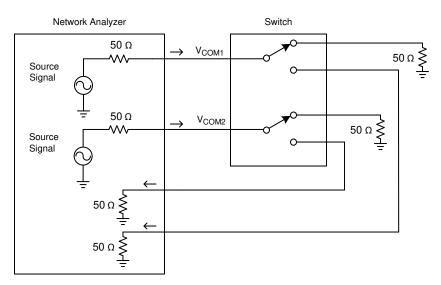


图 9. Off Isolation

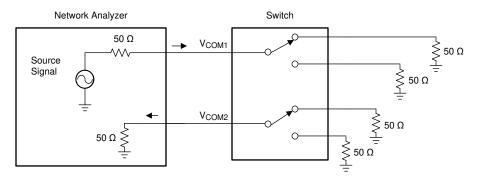


图 10. Cross Talk

Parameter Measurement Information (接下页)

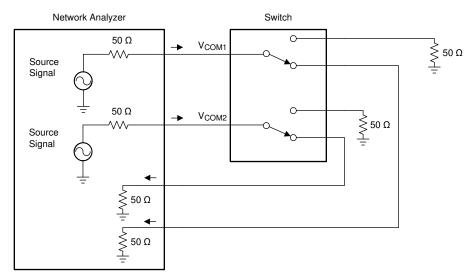


图 11. BW and Insertion Loss

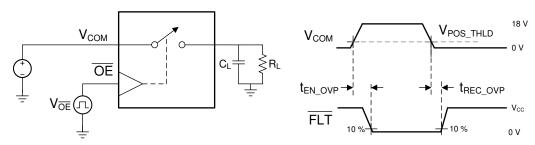
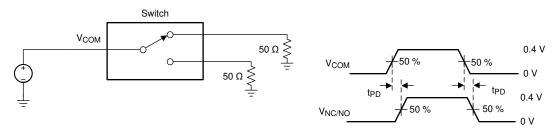
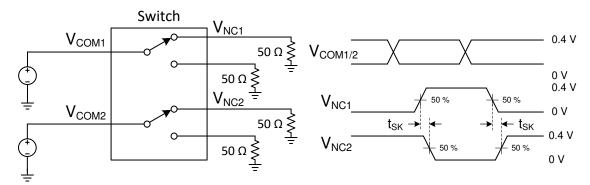



图 12. $t_{\text{EN_OVP}}$ and $t_{\text{DIS_OVP}}$ Timing Diagram



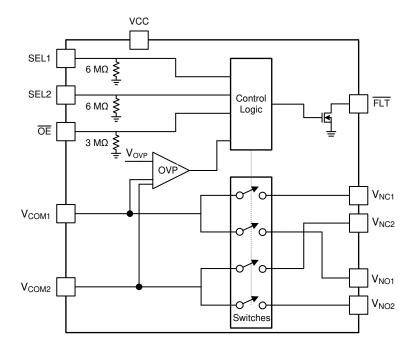
- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f < 500~ps$, $t_f < 500~ps$.
- (2) C_L includes probe and jig capacitance.

图 13. t_{PD}

Parameter Measurement Information (接下页)

- (1) All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_r < 500~ps$, $t_f < 500~ps$.
- (2) C_L includes probe and jig capacitance.

图 14. t_{SK}


8 Detailed Description

8.1 Overview

The TMUX1072 is a high speed, 2-channel 2:1 analog switch with overvoltage protection. The device is bidirectional and can be used as a dual 2:1 or 1:2 switch, but OVP only applies to the COM pins. The device also contains a fault indicator pin which can signal to the system of either an over voltage or over temperature event.

The device maintains excellent signal integrity through the optimization of both R_{ON} and BW while protecting the system with up to 18 V OVP protection. The OVP implementation is designed to protect sensitive system components behind the switch that cannot survive fault conditions.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Powered-off Protection

When the TMUX1072 is powered off the I/Os of the device remain in a high-Z state. The crosstalk, off-isolation, and leakage remain within the *Electrical Specifications*

This prevents errant voltages from reaching the rest of the system and maintains isolation when the system is powering up.

8.3.2 Overvoltage Detection

When a voltage on the COM pin exceeds the V_{OVP_TH} , the open drain output \overline{FLTpin} pulls the pin low to indicate an overvoltage event has been detected. The open drain output will release the \overline{FLT} pin when the voltage on the COM pin returns below the V_{OVP_TH} .

8.3.3 Overtemperature Detection

When the junction temperature of the device exceeds the overtemperature detection threshold T_{OTD_TH} , the open drain output \overline{FLT} pin pulls the pin low to indicate an overtemperature event has been detected. The open drain output releases the \overline{FLT} pin when the junction temperature returns below the T_{OTD_TH} .

8.3.4 Overvoltage Protection

The OVP of the TMUX1072 is designed to protect the system from overvoltage conditions up to 18 V on the COM1 and COM2 pins. This protection is valid even if Vcc = 0V. ₹ 15 depicts an event where up to 18 V could appear on COM1 and COM2 that could pass through the device and damage components behind the device.

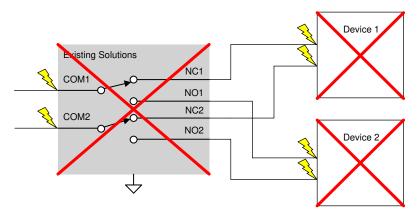


图 15. Existing Solution Being Damaged by a Short, 18 V

The TMUX1072 opens the switches and protect the rest of the system by blocking the 18 V as depicted in 图 16.

Feature Description (接下页)

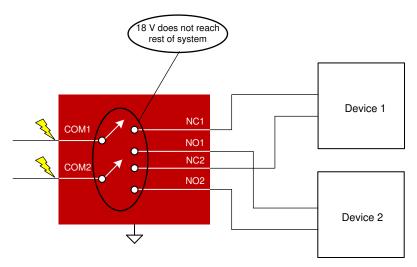


图 16. Protecting During a 18-V Short

17 is a waveform showing the voltage on the pins during an overvoltage scenario.

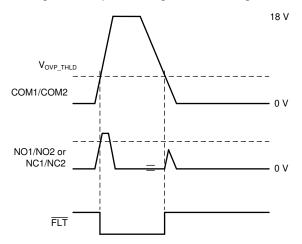


图 17. Overvoltage Protection Waveform, 18 V

8.4 Device Functional Modes

8.4.1 Pin Functions

表 1. Function Table

ŌĒ	SEL1	SEL2	COM1 Connection	COM2 Connection
Н	X	X	High-Z	High-Z
L	L	L	COM1 to NC1	COM2 to NC2
L	L	Н	COM1 to NC1	COM2 to NO2
L	Н	L	COM1 to NO1	COM2 to NC2
L	Н	Н	COM1 to NO1	COM2 to NO2

9 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

There are many applications in which processors and microcontrollers have a limited number of I/Os. This IC can effectively expand the limited number of I/Os by switching between multiple signal paths in order to interface them to a single processor or microcontroller. The device can also be used to connect a single microcontroller to two signal paths. With independent control of the two switches using SEL1 and SEL2, TMUX1072 can be used to cross switch single ended signals.

9.2 Typical Application

The TMUX1072 is used to switch signals between the high speed signal paths that may be exposed to a connector or near a bus which could experience an overvoltage condition. The TMUX1072 has internal pull-down resistors on SEL1, SEL2, and OE. The pull-down on SEL1 and SEL2 pins ensure the NC1/NC2 channel is selected by default. The pull-down on OE enables the switch when power is applied.

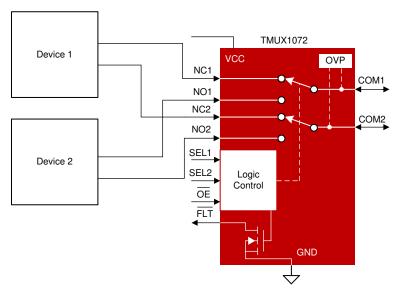


图 18. Typical TMUX1072 Application

9.2.1 Design Requirements

The TMUX1072 has internal pull-down resistors on SEL1, SEL2, and $\overline{\text{OE}}$, so no external resistors are required on the logic pins. The internal pull-down resistor on SEL1 and SEL2 pins ensures the NC1 and NC2 channels are selected by default. The internal pull-down resistor on $\overline{\text{OE}}$ enables the switch when power is applied to VCC.

The $\overline{\text{FLT}}$ indicator output pin is an open drain output that will require an external pull-up resistor for the overvoltage and overtemperature condition to be detected. If feature is unused, $\overline{\text{FLT}}$ pin may be left floating or connected to ground

9.2.2 Detailed Design Procedure

The TMUX1072 can be properly operated without any external components. However, TI recommends that unused signal pins must be connected to ground through a $50-\Omega$ resistor to prevent signal reflections back into the device. TI does recommend a 100-nF bypass capacitor placed close to TMUX1072 VCC pin.

Typical Application (接下页)

9.2.3 Application Curves

Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied to the source pin of an on-channel, and the output is measured at the drain pin of the TMUX1072.

19 shows the bandwidth of TMUX1072.

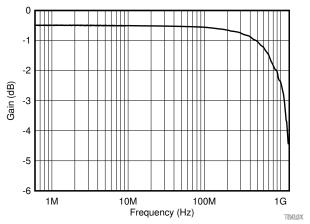
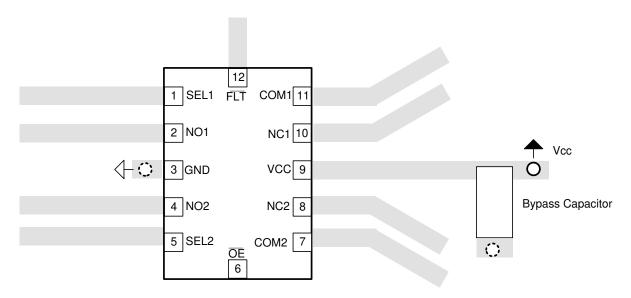


图 19. Bandwidth and Insertion Loss vs Frequency

10 Power Supply Recommendations

Power to the device is supplied through the VCC pin. TI recommends placing a 100-nF bypass capacitor as close to the supply pin VCC as possible to help smooth out lower frequency noise to provide better load regulation across the frequency spectrum.

11 Layout


11.1 Layout Guidelines

- 1. Place supply bypass capacitors as close to VCC pin as possible and avoid placing the bypass caps near the signal traces.
- 2. The high-speed traces should always be of equal length and must be no more than 4 inches; otherwise, the eye diagram performance may be degraded.
- 3. Route the high-speed signals using a minimum of vias and corners which will reduce signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the transmission line of the signal and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points on twisted pair lines; through-hole pins are not recommended.
- 4. When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This reduces reflections on the signal traces by minimizing impedance discontinuities.
- 5. Do not route signal traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices, or IC's that use or duplicate clock signals.
- 6. Avoid stubs on the high-speed signals because they cause signal reflections.
- 7. Route all high-speed signal traces over continuous planes (VCC or GND), with no interruptions.
- 8. Avoid crossing over anti-etch, commonly found with plane splits.
- 9. For high frequency systems, a printed circuit board with at least four layers is recommended: two signal layers separated by a ground layer and a power layer. The majority of signal traces should run on a single layer, preferably Signal 1. Immediately next to this layer should be the GND plane, which is solid with no cuts. Avoid running signal traces across a split in the ground or power plane. When running across split planes is unavoidable, sufficient decoupling must be used. Minimizing the number of signal vias reduces EMI by reducing inductance at high frequencies. For more information on layout guidelines, see High Speed Layout Guidelines (SCAA082)

11.2 Layout Example

Not to scale

图 20. Layout Example

12 器件和文档支持

12.1 文档支持

12.1.1 相关文档

请参阅如下相关文档:

- 应用报告《高速布局指南》
- 《高速接口布局指南》

12.2 接收文档更新通知

要接收文档更新通知,请导航至 Tl.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.3 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 商标

E2E is a trademark of Texas Instruments.

12.5 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。 www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
	(1)	(2)			(0)	(4)	(5)		(0)
TMUX1072DGSR	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	NIPDAUAG SN	Level-1-260C-UNLIM	-40 to 125	1A9
TMUX1072DGSR.A	Active	Production	VSSOP (DGS) 10	2500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	1A9
TMUX1072RUTR	Active	Production	UQFN (RUT) 12	3000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	1BU
TMUX1072RUTR.A	Active	Production	UQFN (RUT) 12	3000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	1BU

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

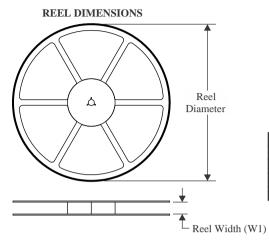
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

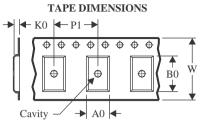
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

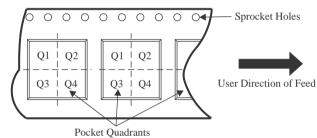
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

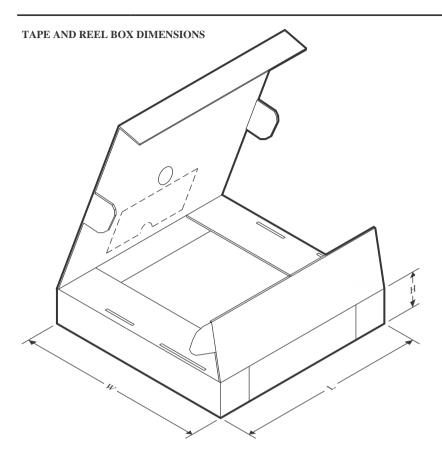

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Nov-2024


TAPE AND REEL INFORMATION

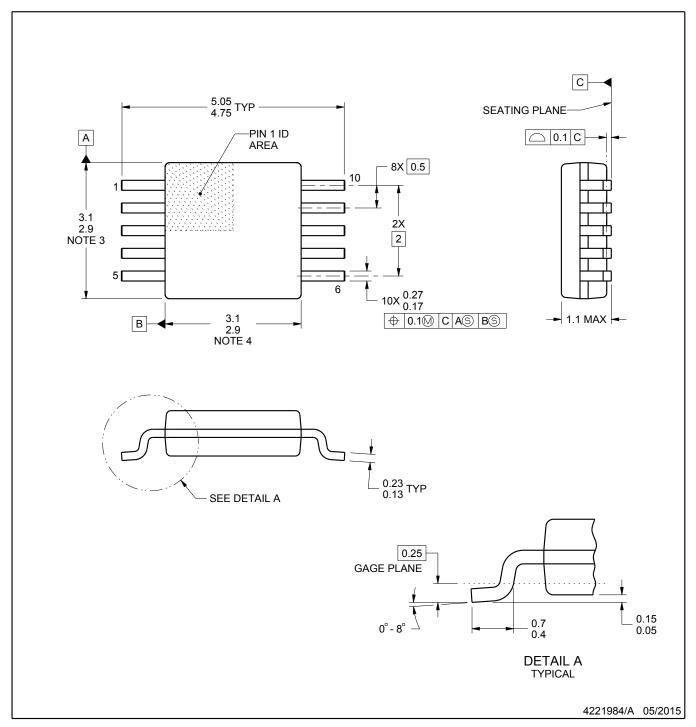
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMUX1072DGSR	VSSOP	DGS	10	2500	330.0	12.4	5.25	3.35	1.25	8.0	12.0	Q1
TMUX1072RUTR	UQFN	RUT	12	3000	180.0	9.5	1.9	2.2	0.7	4.0	8.0	Q1

www.ti.com 5-Nov-2024

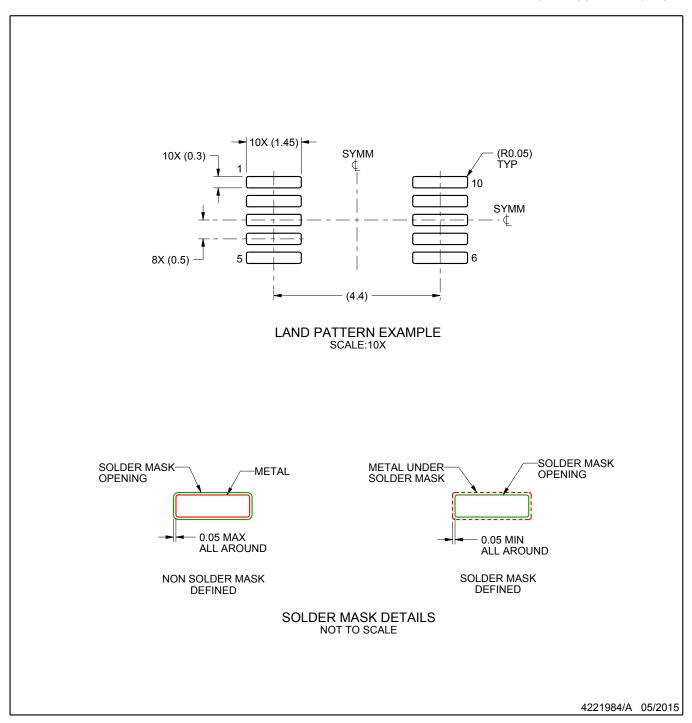


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMUX1072DGSR	VSSOP	DGS	10	2500	366.0	364.0	50.0
TMUX1072RUTR	UQFN	RUT	12	3000	189.0	185.0	36.0

SMALL OUTLINE PACKAGE

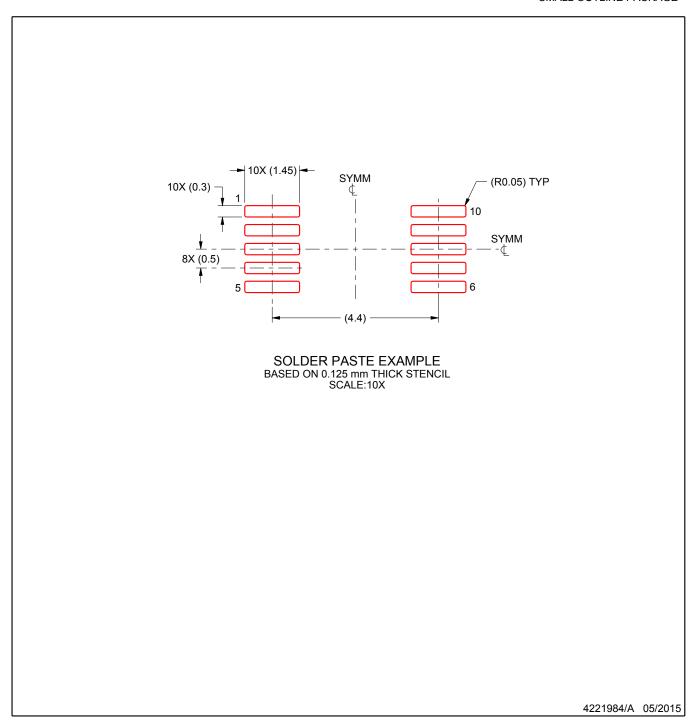
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187, variation BA.

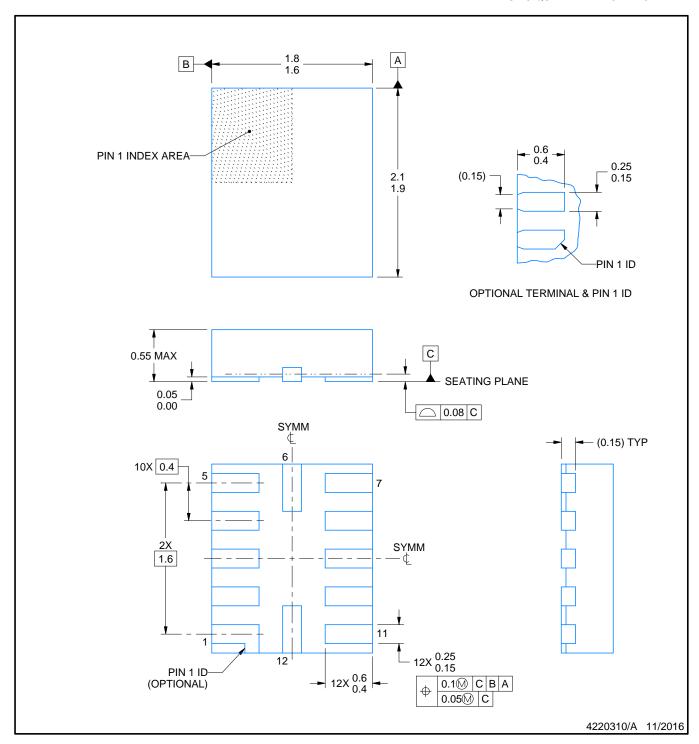
SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

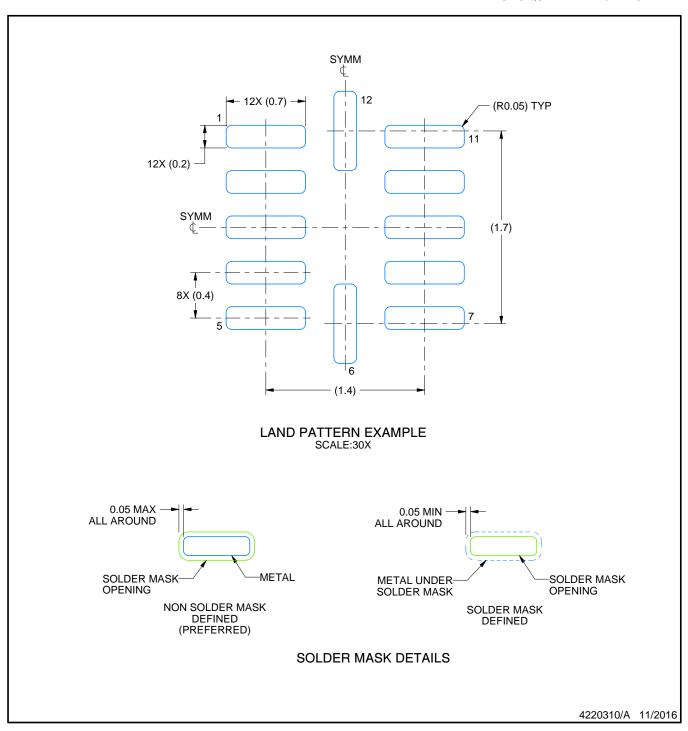
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

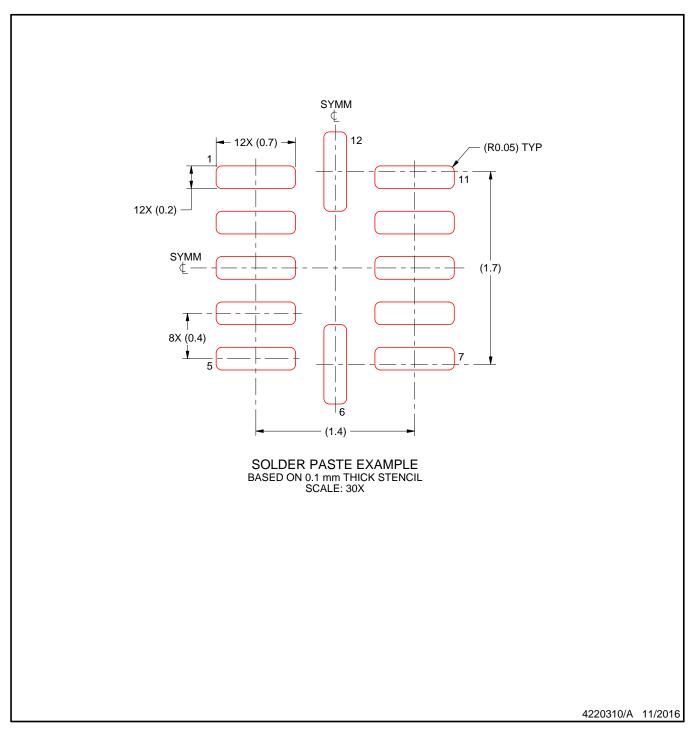
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月