

TMCS1143

ZHCSSP9 - APRIL 2025

TMCS1143 精度 275kHz 霍尔效应电流传感器 增强隔离、过流检测和环境磁场 抑制

1 特性

高持续电流能力:125ARMS

可靠的增强型隔离

高精度

- 灵敏度误差:±0.2%

- 灵敏度热漂移: ±20ppm/°C - 灵敏度寿命漂移:±0.2% - 失调电压误差:±0.2mV - 偏移热漂移:±4μV/°C

- 偏移寿命漂移:±0.2mV

- 非线性:±0.1%

对外部磁场具有高抗扰度

精密零电流基准输出

• 快速响应

- 信号带宽:275kHz - 响应时间:1µs - 传播延迟:110ns - 过流检测响应:100ns

工作电源电压范围: 3V 至 5.5V

双向和单向电流检测

多个灵敏度选项:

- 范围为 12mV/A 至 100mV/A

• 安全相关认证(计划)

- UL 1577 组件认证计划

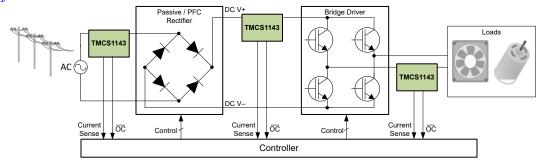
- IEC/CB 62368-1

2 应用

- 太阳能
- 电机控制
- 电动汽车充电
- 电源
- 工业交流/直流电源
- 过流保护

3 说明

TMCS1143 是一款电隔离霍尔效应电流传感器,具有 业界出色的隔离功能和精度。该器件还提供与输入电流 成正比的输出电压,且在所有灵敏度选项下均具有出色 的线性度和低漂移。具有内置漂移补偿功能的精密信号 调节电路能够在没有系统级校准的情况下,在温度和寿 命范围内实现小于 1.5% 的最大灵敏度误差,或在一次 性室温校准的情况下,实现小于1%的最大灵敏度误差 (包括寿命和温度漂移)。


交流或直流输入电流流经内部导体, 所产生的磁场可由 集成式片上霍尔效应传感器进行测量。无磁芯结构消除 了对磁集中器的需求。差分霍尔传感器可抑制外部杂散 磁场产生的干扰。低导体电阻将可测量电流范围提高至 ±160A,同时更大程度地降低功率损耗并降低散热要 求。绝缘能够承受 5kV_{RMS},加上最小 8.8mm 的爬电 距离和间隙,可提供高电平的可靠寿命增强型工作电 压。集成式屏蔽可提供出色的共模抑制和瞬态抗扰度。

固定的灵敏度允许器件使用单个 3V 至 5.5V 的电源运 行,因此消除了比例式误差并提高了电源噪声抑制能 力。

封装信息

器件型号	封装 ⁽¹⁾	封装尺寸 ⁽²⁾		
TMCS1143	DVF (SOIC, 10)	10.9mm × 12.7mm		

- (1) 有关所有可用封装,请参阅节13。
- (2) 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。

典型应用

内容

1 !	特性1	9.2 功能方框图	20
2 ,	应用1	9.3 特性说明	20
3 ·	说明1	9.4 器件功能模式	25
4 :	器件比较3	10 应用和实施	25
5	引脚配置和功能4	10.1 应用信息	25
6	规格5	10.2 典型应用	28
	6.1 绝对最大额定值5	10.3 电源相关建议	30
	6.2 ESD 等级5	10.4 布局	31
	6.3 建议运行条件5	11 器件和文档支持	31
	6.4 热性能信息5	11.1 器件命名规则	31
	6.5 功率等级6	11.2 器件支持	31
	6.6 绝缘规格6	11.3 文档支持	32
	6.7 安全限值7	11.4 接收文档更新通知	32
	6.8 电气特性7	11.5 支持资源	32
7	典型特性10	11.6 商标	32
	7.1 绝缘特性曲线 12	11.7 静电放电警告	32
8	参数测量信息13	11.8 术语表	32
	8.1 精度参数13	12 修订历史记录	32
	8.2 瞬态响应参数16	13 机械、封装和可订购信息	32
	8.3 安全工作区17	13.1 机械数据	33
9 .	详细说明19	封装信息	36
	9.1 概述19	13.2 卷带包装信息	38

4 器件比较

表 4-1. 器件比较

产品(3)	灵敏度	零电流输出电压	I _{IN} 线性测	量范围 (1)
∫—nn (♥)	火墩及	令电机制出电压	V _S = 5V	V _S = 3.3V
TMCS1143A3A	15mV/A		±160A ⁽²⁾	-160A 至 46.6A ⁽²⁾
TMCS1143A5A	25mV/A		±96A ⁽²⁾	-96A 至 28A ⁽²⁾
TMCS1143A8A	43A8A 40mV/A 2.5V		±60A	-60A 至 17.5A
TMCS1143AAA	TMCS1143AAA 60mV/A		±40A	-40A 至 11.6A
TMCS1143ACA	100mV/A		±24A	-24A 至 7A
TMCS1143B2A	12mV/A		-129A 至 270A ⁽²⁾	±129A ⁽²⁾
TMCS1143B3A	15mV/A		-103A 至 216A ⁽²⁾	±103A ⁽²⁾
TMCS1143B5A	25mV/A	1.65V	-62A 至 130A ⁽²⁾	±62A
TMCS1143B8A	40mV/A		-38.7A 至 81.2A	±38.7A
TMCS1143BAA	60mV/A		-25.8A 至 54.1A	±25.8A
TMCS1143C5A	25mV/A		-9.2A 至 182A ⁽²⁾	-9.2A 至 114A ⁽²⁾
TMCS1143C8A	40mV/A	0.221/	-5.7A 至 114A ⁽²⁾	-5.7A 至 71.7A
TMCS1143CAA	60mV/A	0.33V	-3.8A 至 76.1A	-3.8A 至 47.8A
TMCS1143CCA	100mV/A		-2.3A 至 45.7A	-2.3A 至 28.7A

- (1) 线性范围受电源(3V至5.5V)和接地的最大输出摆幅限制,而不受热限制。
- (2) 电流电平必须一直低于允许的持续直流/RMS 和瞬态峰值电流安全工作区,以便不会超过器件热限值。请参阅*安全工作区*部分。
- (3) 更多有关器件名称和器件选项的信息,请参阅器件命名规则一节。

5 引脚配置和功能

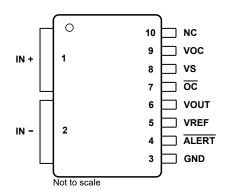


图 5-1. DVG 封装 10 引脚 SOIC 顶视图

表 5-1. 引脚功能

	引脚	神华	No Di		
编号	名称	类型			
1	IN+	模拟输入	输入电流正引脚		
2	IN -	模拟输入	输入电流负引脚		
3	GND	模拟	接地		
4	ALERT	数字输出	传感器诊断 PWM 输出,开漏低电平有效。将引脚连接到 GND,或如果不使用,则保持悬空。		
5	VREF	模拟输出	零电流输出电压基准。此引脚不使用时应保持悬空状态。		
6	VOUT	模拟输出	输出电压		
7	OC	数字输出	过流输出,开漏低电平有效。将引脚连接到 GND,或如果不使用,则保持悬空。		
8	VS	模拟	电源		
9	VOC	模拟输入	过流阈值。设置过流阈值。将引脚连接到 VS,或如果不使用,则保持悬空。		
10	NC	-	保留。引脚可连接至 GND、VS,或保持悬空。		

6 规格

6.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

			最小值	最大值	单位
Vs	电源电压	1E		6	V
	模拟输入	VOC			
	模拟输出	VOUT、VREF	GND - 0.3	$(V_S) + 0.3$	V
	数字输出	ALERT, OC	GND - 0.3	(V _S) + 0.3	V
	无连接	NC			
TJ	结温	- · · · · · · · · · · · · · · · · · · ·		165	°C
T _{stg}	贮存温度		-65	165	°C

⁽¹⁾ 超出"绝对最大额定值"运行可能会对器件造成永久损坏。绝对最大额定值并不表示器件在这些条件下或在建议运行条件以外的任何其他条件下能够正常运行。如果超出"建议运行条件"但在"绝对最大额定值"范围内使用,器件可能不会完全正常运行,这可能影响器件的可靠性、功能和性能并缩短器件寿命。

6.2 ESD 等级

			值	单位
V	静电放电	人体放电模型 (HBM),符合 ANSI/ESDA/JEDEC JS-001 标准 ⁽¹⁾	±4000	· · ·
V _(ESD)		充电器件模型 (CDM),符合 ANSI/ESDA/JEDEC JS-002 标准 ⁽²⁾	±1000	\ \ \

- (1) JEDEC 文档 JEP155 指出: 500V HBM 时能够在标准 ESD 控制流程下安全生产。
- (2) JEDEC 文档 JEP157 指出: 250V CDM 时能够在标准 ESD 控制流程下安全生产。

6.3 建议运行条件

在自然通风条件下的工作温度范围内测得(除非另有说明)

			最小值	标称值	最大值	单位
Vs	3	运行电源电压	3	5	5.5	V
TA	₁ (1)	自然通风条件下的工作温度范围	-40		125	°C

(1) 输入电流安全工作区受结温的限制。使用 TMCS1143xEVM 时的建议条件。输入电流额定值会因环境温度升高而降低。

6.4 热性能信息

		TMCS1143 ⁽²⁾	
	热指标 ⁽¹⁾	DVF (SOIC-W-10)	単位
		10 引脚	
R ₀ JA	结至环境热阻	39.7	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻	36.9	°C/W
R ₀ JB	结至电路板热阻	6.3	°C/W
ΨЈТ	结至项部特征参数	9.0	°C/W
Ψ_{JB}	结至电路板特征参数	4.8	°C/W

- (1) 有关新旧热指标的更多信息,请参阅半导体和IC 封装热指标应用手册。
- (2) 当器件安装在 TMCS1143xEVM 上时适用。更多详细信息,请参阅 安全工作区 部分。

6.5 功率等级

V_S = 5.5V,T_A = 125℃,T_J = 165℃,器件焊接在 *TMCS1143xEVM* 上。

参数		测试条件	最小值	典型值	最大值	单位
P _D	最大功耗(两侧)				3.5	W
P _{D1}	最大功耗(电流输入,侧1)	I _{IN} = 92A			3.4	W
P _{D2}	最大功耗(侧2)	V _S = 5.5V,I _Q = 14.5mA,无负载			0.1	W

6.6 绝缘规格

	参数	测试条件	值	单位
通用				
CLR	外部间隙(1)	端子间的最短空间距离	8.8	mm
CPG	外部爬电距离(1)	端子间的最短封装表面距离	8.8	mm
СТІ	相对漏电起痕指数	DIN EN 60112 ; IEC 60112	≥ 600	V
	材料组	符合 IEC 60664-1	I	
	过压类别 (符合 IEC 60664-1)	额定市电电压 ≤ 600V _{RMS}	I-IV	
V _{IORM}	最大重复峰值隔离电压	交流电压(双极)	1344	V _{PK}
	最大增强型隔离工作电压	交流电压(正弦波)	600	V _{RMS}
V _{IOWM}	取入增强至隔离工作电压	文师电压(正弦仪)	849	V _{DC}
	最大基本隔离工作电压 交流电压(正弦波)		950	V _{RMS}
	双八至平面内工作七出 人間七出 (正石以)	又抓屯压(正弦板)	1344	V _{DC}
V_{IOTM}	最大瞬态隔离电压	V _{TEST} = √2 x V _{ISO} , t = 60s(鉴定测试); V _{TEST} = 1.2 × V _{IOTM} , t = 1s(100% 生产测试)	7071	V _{PK}
V _{IOSM}	最大浪涌隔离电压(2)	测试方法符合 IEC 62368-1,1.2/50μs 波形, V _{TEST} = 1.3 × V _{IOSM} (鉴定测试)	10000	V _{PK}
I _{SURGE}	耐受浪涌电流	测试方法符合 IEC 61000-4-5,8/20μs 波形	17000	А
q _{pd}	视在电荷(3)	方法 b1:常规测试(100% 生产测试)和预处理(类型测试),V _{ini} = 1.2 × V _{IOTM} ,t _{ini} = 1s,V _{pd(m)} = 1.875 × V _{IORM} ,t _m = 1s	≤5	pC
C _{IO}	势垒电容,输入至输出(4)	$V_{IO} = 0.4 \sin (2 \pi ft)$, f = 1MHz	0.6	pF
		V _{IO} = 500V , T _A = 25°C	>10 ¹²	Ω
R _{IO}	隔离电阻,输入至输出(4)	V_{IO} = 500V , 100°C \leqslant $T_A \leqslant$ 125°C	>10 ¹¹	Ω
		V _{IO} = 500V , T _S = 150°C	>10 ⁹	Ω
	污染等级		2	
UL 1577	•			
V _{ISO}	可承受的隔离电压	V _{TEST} = V _{ISO} , t = 60s(鉴定测试); V _{TEST} = 1.2 × V _{ISO} , t = 1s(100% 生产测试)	5000	V _{RMS}

- (1) 根据应用特定的设备隔离标准应用爬电距离和电气间隙要求。请注意保持电路板设计的爬电距离和间隙,从而确保印刷电路板上隔离器的安装焊盘不会导致此距离缩短。在特定的情况下,印刷电路板上的爬电距离和间隙变得相等。在印刷电路板上插入坡口或肋或同时应用这两项技术可帮助提高这些规格。
- (2) 在空气或油中执行测试,以确定隔离栅的固有浪涌抗扰度。
- (3) 视在电荷是局部放电 (pd) 引起的电气放电。
- (4) 将隔离栅每一侧的所有引脚都连在一起,构成一个双端子器件。

提交文档反馈

6.7 安全限值

安全限制旨在最大限度地减小在发生输入或输出电路故障时对隔离栅的潜在损害。

参数		测试条件	最小值	典型值	最大值	单位
Is	安全输入电流(1侧)(1)	R _{0 JA} = 39.7°C/W,T _J = 165°C,T _A = 25°C,请参阅 <i>热降额曲</i> 线,1 侧。			125	A
Is	安全输入、输出或电源电流(2侧)(1)	R _{0 JA} = 39.7°C/W , V _I = 5V , T _J = 165°C , T _A = 25°C , 请参阅 <i>热降额曲线,2 侧。</i>			0.7	A _{RMS}
P _S	安全输入、输出或总功率(1)	R _{0 JA} = 39.7°C/W,T _J = 165°C,T _A = 25°C,请参阅 <i>热降额曲</i> 线,两侧。			3.5	W
T _S	安全温度(1)				165	$^{\circ}\! \mathbb{C}$

最高安全温度 T_S 与器件指定的最大结温 T_J 的值相同。 I_S 和 P_S 参数分别表示安全电流和安全功率。请勿超出 I_S 和 P_S 的最大限值。这 些限值随着环境温度 TA 而变化。

热性能信息 表中的结至空气热阻 $R_{\theta,JA}$ 是安装在 TMCS1143xEVM 上的器件热阻。可使用以下公式计算各参数值:

 $T_J = T_A + R_{\theta JA} \times P$, 其中, P 为器件所耗功率。

 $T_{J(max)}$ = T_S = T_A + R_{θ} J_A × P_S ,其中, $T_{J(max)}$ 为允许的最大结温。 P_S = I_S × V_I ,其中, V_I 为最大输入电压。

6.8 电气特性

T_A = 25°C, TMCS1143Axx 上的 V_S = 5V, TMCS1143Bxx 和 TMCS1143Cxx 上的 V_S = 3.3V (除非另有说明)

	参数	测试条件	最小值 典型值	最大值	单位
输入					
R _{IN}	输入导体电阻	IN+ 至 IN-	0.27		m Ω
R _{IN}	输入导体电阻温度漂移	T _A = -40°C 至 125°C	0.95		μΩ/°C
	最大连续输入电流 ⁽¹⁾	T _A = 25°C	125		A _{RMS}
I _{IN,MAX}	取入廷续捌入电流	T _A = 125°C	92		A _{RMS}
输出					
		TMCS1143x2A	12		
		TMCS1143x3A	15		
S	灵敏度	TMCS1143x5A	25		mV/A
3	火蚁及	TMCS1143x8A	40		IIIV/A
		TMCS1143xAA	60		
		TMCS1143xCA	100		
e _S	灵敏度误差	$0.05 V \leqslant V_{OUT} \leqslant V_{S}$ – $0.2 V$	±0.2	±0.5	%
S _{drift,therm}	灵敏度热漂移	$0.05 V \leqslant V_{OUT} \leqslant V_{S}$ – $0.2 V$, T_{A} = –40°C 至 125°C	±20	±50	ppm/°C
S _{drift, life}	灵敏度寿命漂移(2)	$0.05 V \leqslant V_{OUT} \leqslant V_{S} - 0.2 V$	±0.2	±0.5	%
e _{NL}	非线性误差	V _{OUT} = 0.1V 至 V _S - 0.1V	±0.1		%
		TMCS1143AxA , I _{IN} = 0A	2.5		
$V_{\text{OUT,0A}}$	零电流输出电压	TMCS1143BxA , I _{IN} = 0A	1.65		V
		TMCS1143CxA , I _{IN} = 0A	0.33		
		TMCS1143x2A , V _{OUT,0A} - V _{REF} , I _{IN} = 0A	±0.2	±1	
		TMCS1143x3A , $V_{OUT,0A} - V_{REF}$, $I_{IN} = 0A$	±0.2	±1	
V	松山土 压止 四 2 2/3	TMCS1143x5A , $V_{OUT,0A} - V_{REF}$, $I_{IN} = 0A$	±0.3	±1.5	mV
V _{OE}	输出电压失调误差 ⁽³⁾	TMCS1143x8A , $V_{OUT,0A}$ - V_{REF} , I_{IN} = 0A	±0.4	±2	
		TMCS1143xAA , $V_{OUT,0A}$ - V_{REF} , I_{IN} = 0A	±0.5	±2.5	
		TMCS1143xCA , V _{OUT,0A} - V _{REF} , I _{IN} = 0A	±0.6	±3	

Copyright © 2025 Texas Instruments Incorporated

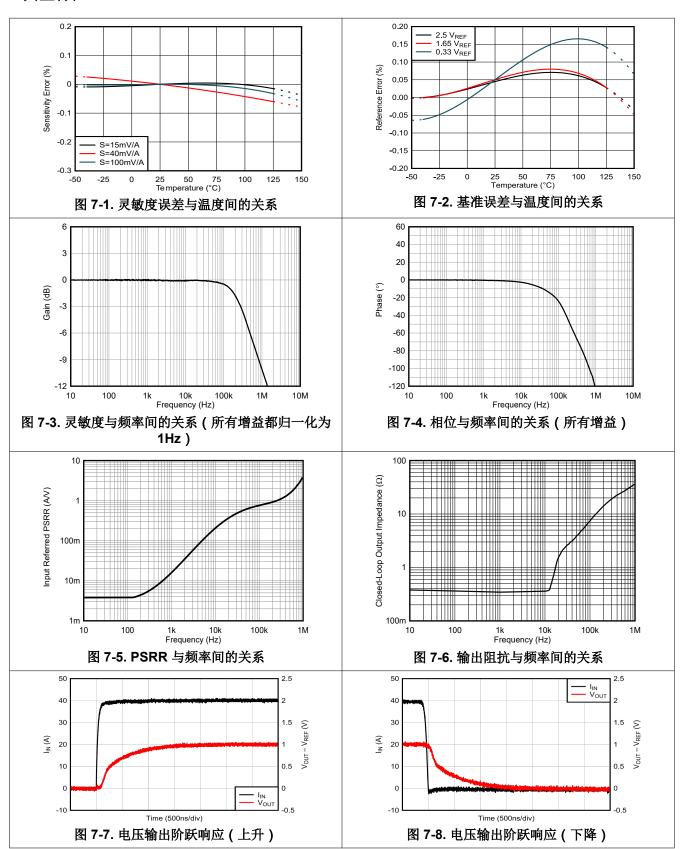
提交文档反馈

 T_A = 25°C,TMCS1143Axx 上的 V_S = 5V,TMCS1143Bxx 和 TMCS1143Cxx 上的 V_S = 3.3V(除非另有说明)

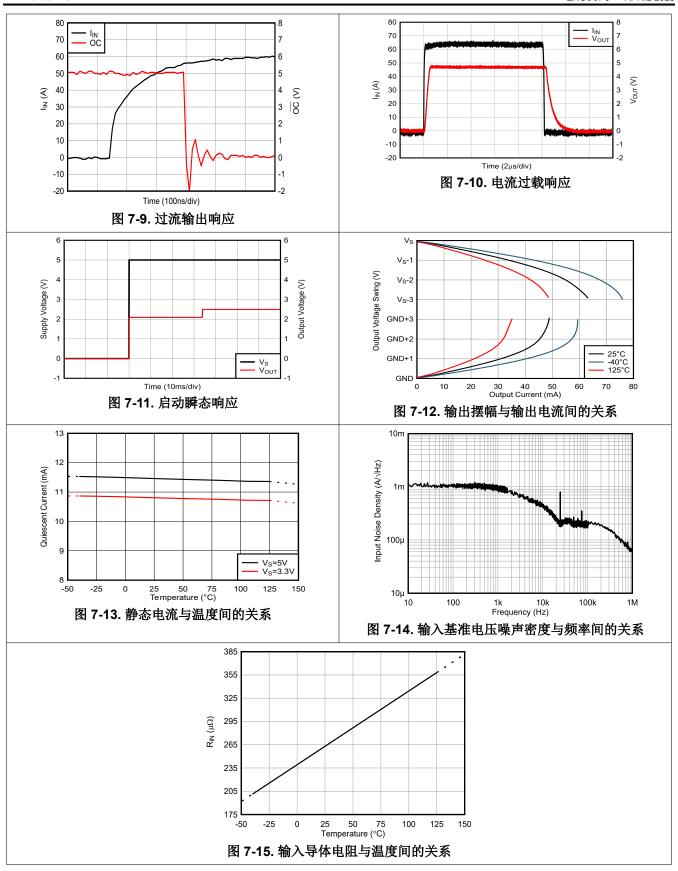
	参数	测试条件	最小值	典型值	最大值	单位
		TMCS1143x2A , $V_{OUT,OA}$ - V_{REF} , I_{IN} = 0A , T_A = -40°C Ξ 125°C		±4	±10	
		TMCS1143x3A , $V_{OUT,OA}$ - V_{REF} , I_{IN} = 0A , T_A = -40°C Ξ 125°C		±4	±10	
V _{OE, drift,}	松山市厅沟	TMCS1143x5A , $V_{OUT,0A}$ - V_{REF} , I_{IN} = 0A , T_A = -40°C Ξ 125°C		±5	±15	μV/°C
therm	输出电压温漂	TMCS1143x8A , $V_{OUT,0A}$ – V_{REF} , I_{IN} = 0A , T_A = -40°C Ξ 125°C		±10	±30	μν/ С
		TMCS1143xAA , $V_{OUT,0A}$ - V_{REF} , I_{IN} = 0A , T_A = -40°C \cong 125°C		±15	±35	
		TMCS1143xCA , $V_{OUT,0A}$ – V_{REF} , I_{IN} = 0A , T_A = -40°C \cong 125°C		±20	±40	
I _{OS, drift, life}	偏移寿命漂移(2)	以输入为基准,(V _{OUT,0A} - V _{REF})/S,I _{IN} = 0A		±12	±25	mA
PSRR	电源抑制比	以输入为基准,V _S = 3V 至 5.5V,T _A = - 40°C 至 125°C		±15	±75	mA/V
CMTI	共模瞬态抗扰度 ⁽⁴⁾	V_{CM} = 1000V , $\triangle V_{OUT}$ < 200mV , 1 μ s		150		kV/μs
CMRR	共模抑制比	以输入为基准,直流至 60Hz		10		μA/V
CMFR	共模场抑制	外部磁场,直流至 1kHz			14	mA/mT
	输入噪声密度	以输入为基准,全带宽		235		μ A/ √ Hz
C _{L,MAX}	最大容性负载	VOUT 至 GND		4.7		nF
	短路输出电流	VOUT 接地短路,对 V _S 短路	50			mA
摆幅 vs	相对于 V _S 电源轨的摆幅	D 401.0 % OND T 4000 % 40500	V _S - 0.02 V _S - 0.		V _S - 0.05	V
摆幅 GND	到 GND 的摆幅	$R_L = 10$ k Ω Ξ GND , $T_A = -40$ °C Ξ 125°C		5	10	mV
带宽和响应						
BW	模拟带宽	- 3dB 增益		275		kHz
SR	压摆率(5)	达到最终值的 10% 和 90% 之间的输出变化率,输入阶跃为 100ns	3			V/µs
t _r	响应时间(5)	输入和输出达到最终值的 90% 的时间,输入阶 跃为 100ns, 1V 输出转换		1		μs
t _{pd}	传播延迟 ⁽⁵⁾	输入和输出达到最终值的 10% 的时间,输入阶 跃为 100ns, 1V 输出转换		110		ns
	电流过载恢复时间			300		ns
集成基准						
		TMCS1143AxA	2.496	2.5	2.504	
V_{REF}	基准输出电压	TMCS1143BxA	1.647	1.65	1.653	V
		TMCS1143CxA	0.329	0.33	0.331	
		TMCS1143AxA,T _A = -40°C 至 125°C		±20	±50	
	基准输出热漂移	TMCS1143BxA,T _A = -40°C 至 125°C		±16	±38	μV/°C
		TMCS1143CxA,T _A = -40°C 至 125°C		±5	±11	
		TMCS1143AxA		±1.3	±2.5	
	基准输出寿命漂移	TMCS1143BxA		±0.9	±1.7	mV
		TMCS1143CxA		±0.3	±0.5	
	基准输出电压 PSRR	V _S = 3V 至 5.5V		80	150	μV/V
	最大基准输出容性负载			20		nF
	基准输出电压负载调节	V _{REF} 负载 = -5mA、0mA、5mA		0.27		mV/mA
过流检测	1					
V _{OC}	过流检测阈值电压	$V_{OC} = S \times I_{OC}/2.5$	0.3		Vs	V
R _{OC}	过流阈值输入阻抗		120			$k\Omega$

提交文档反馈

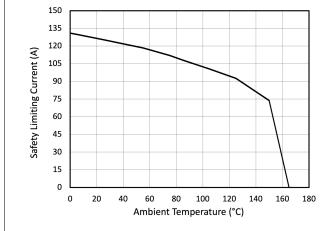
T_A = 25°C , TMCS1143Axx 上的 V_S = 5V , TMCS1143Bxx 和 TMCS1143Cxx 上的 V_S = 3.3V (除非另有说明)


参数		测试条件	最小值 典型	植 最大值	单位
		TMCS1143x2A		12	
		TMCS1143x3A		7.5	
	过流迟滞	TMCS1143x5A		4.5	А
	过 机达带	TMCS1143x8A		4.5	A
		TMCS1143xAA		2.5	
		TMCS1143xCA		1	
	过流阈值误差	T _A = -40°C 至 125°C		±7 ±15	%
	过流检测响应时间	I _{IN} 步进 = 120% 的 I _{OC}		00 250	ns
OC ,OL	OC 引脚下拉电压	I _{OL} = 3mA,T _A = -40°C 至 125°C	GND 0	.07 0.2	V
诊断					
	输出频率			8	kHz
		热警报		80	
ALERT	输出占空比,低电平有效	传感器警报		50	%
		热警报和传感器警报		20	
	ALERT 引脚下拉电压	I _{OL} = 3mA,T _A = -40°C 至 125°C	GND 0	.07 0.2	V
电源					
Vs	电源电压	T _A = -40°C 至 125°C	3.0	5.5	V
	# + + 17	T _A = 25°C		11 14	mA
IQ	静态电流	T _A = -40°C 至 125°C		14.5	mA
	上电时间	从 V _S > 3V 到有效输出的时间		34	ms

- (1) 受结温热限制,请参阅*绝对最大额定值*。当器件安装在 TMCS1143xEVM 上时适用。更多详细信息,请参阅*安全工作区* 部分。
- (2) 基于三批 AEC-Q100 认证应力测试结果的寿命和环境漂移规格。典型值是来自最坏情况应力测试条件的总体平均值 +1σ。最大值是测试器件总体平均值 ±6σ。在所有应力条件下,通过 AEC-Q100 认证测试的器件均保持在最大限制范围内。有关更多详细信息,请参阅*寿命和环境稳定性* 部分。


- (3) 排除外部磁场的影响。有关计算均匀外部磁场引起的误差的详细信息,请参阅*外部磁场误差*和*总误差计算示例*部分。
- (4) 有关共模瞬态响应的详细信息,请参阅共模瞬态抗扰度部分。
- (5) 有关器件的瞬态响应的详细信息,请参阅*瞬态响应参数*部分。

7 典型特性



7.1 绝缘特性曲线

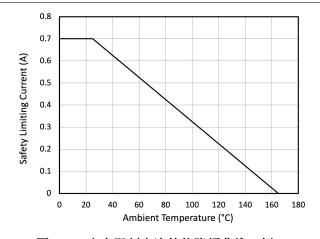


图 7-16. 安全限制电流的热降额曲线,侧 1

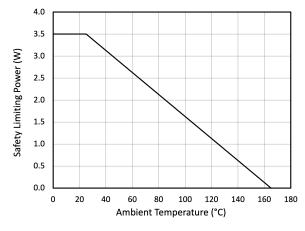


图 7-18. 安全限制功率的热降额曲线

提交文档反馈

8参数测量信息

8.1 精度参数

方程式 1 给出了 TMCS1143 的理想一阶传递函数,其中输出电压是输入电流的线性函数。器件的精度通过传递函数参数中的误差项以及引入简化线性模型中未包含的额外误差项的非理想性来量化。有关总误差的示例计算(包括所有器件误差项),请参阅总误差计算示例。

$$V_{OUT} = (I_{IN} \times S) + V_{REF} \tag{1}$$

其中

- Vout 为模拟输出电压。
- I_{IN} 为隔离的输入电流。
- S 为器件的灵敏度。
- V_{REF} 为器件型号的零电流基准输出电压。

8.1.1 灵敏度误差

灵敏度是输入导体电流的变化引起的传感器输出电压的成比例变化。该灵敏度是传感器一阶传递函数的斜率(请参阅图 8-1)。TMCS1143的灵敏度在出厂时经过测试和校准,确保达到高精度。

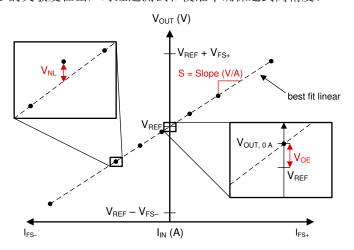


图 8-1. 灵敏度、失调电压和非线性误差

灵敏度误差 es 是相对于理想灵敏度的偏差,在方程式2中定义为最佳拟合测量灵敏度相对于理想灵敏度的变化。

$$e_{S} = \frac{(S_{fit} - S_{ideal})}{S_{ideal}}$$
 (2)

其中

- es 是灵敏度误差。
- S_{fit} 是最佳拟合灵敏度。
- S_{Ideal} 是理想灵敏度。

灵敏度热漂移 S_{drift,therm} 是灵敏度随温度而发生的变化,以 ppm/°C 为单位。要计算任何给定温度 T 下的灵敏度误差,请使用方程式 3 将灵敏度热漂移乘以相对于 25°C 的温度变化,并将该值与 25°C 时的灵敏度误差相加。

$$e_{S, \Delta T} = e_{S, 25^{\circ}C} + (S_{drift, therm} \times \Delta T)$$
(3)

其中

- S_{drift.therm} 是以 ppm/°C 为单位的灵敏度温漂。
- △T是相对于 25°C 的器件温度变化。

灵敏度寿命漂移 $S_{drift,life}$ 是指在器件的整个寿命内,由于运行和环境应力而导致的灵敏度变化,报告为 25° C 下灵敏度在寿命内的最坏情况百分比变化。

8.1.2 偏移量误差和偏移量误差漂移

偏移量误差是指零输入电流与理想输出的偏差,并且通常会限制低输入电流水平下的测量精度。偏移量误差既可以输出为基准(作为失调电压误差),也可以输入为基准(作为失调电流误差)。当除以器件灵敏度 S 时,输出电压偏移量误差 V_{OE} 以输入为基准,作为输入电流偏移量误差 I_{OS} (请参阅方程式 4)。以输入为基准 (RTI)的偏移量误差 (RTI)允许与输入电流进行更直接的比较,或使输入电流产生偏移量误差。无论偏移量误差是以输入为基准(作为电流偏移量误差 I_{OS}),还是以输出为基准(作为电压偏移量误差 V_{OE}),偏移量误差都是单个误差源,并且在以输入为基准或以输出为基准的误差计算中只能包括一次。

$$I_{OS} = \frac{V_{OE}}{S} \tag{4}$$

如图 8-1 所示, TMCS1143 的输出电压偏移量误差 V_{OE} 是零电流输出电压 $V_{OUT,0A}$ 和零电流输出基准电压 V_{REF} 之间的差 (请参阅方程式 5)。

$$V_{OE} = V_{OUT, OA} - V_{REF}$$
 (5)

输出偏移量误差 V_{OE} 包括霍尔传感器中的磁性偏移量误差和信号链中的失调电压误差。内部零电流输出基准电压被引出至引脚 VREF,以消除内部基准电压中的误差,并消除在系统级引入的误差。

温漂是偏移量随温度 T 而发生的变化。输出温漂以 μV/°C 为单位。要计算任何给定温度下的偏移量误差,请将温漂乘以温度变化,并将该值与 25°C 时的偏移量误差相加(请参阅方程式 6)。

$$V_{OE, \Delta T} = V_{OE, 25^{\circ}C} + (V_{OE, drift} \times \Delta T)$$
(6)

其中

- V_{OF drift} 是以 μV/°C 为单位的输出电压温漂。
- △T是相对于 25°C 的器件温度变化。

8.1.3 非线性误差

非线性是指输出电压相对于与输入电流的线性关系的偏差。如图 8-1 所示,非线性电压是指基于测量参数的相对于最佳拟合线的最大电压偏差(请参阅方程式 7)。

$$V_{NL} = V_{OUT, meas} - \left[(I_{meas} \times S_{fit}) + V_{OUT, OA} \right]$$
(7)

其中

- V_{OUT.meas} 为相对于最佳拟合的最大偏差处的电压输出。
- I_{meas} 为相对于最佳拟合的最大偏差处的输入电流。
- Sfit 为器件的最佳拟合灵敏度。
- VOLTOA 为器件的零电流输出电压。

TMCS1143 的非线性误差指定为满量程输出范围 V_{ES} 的百分比(请参阅方程式 8)。

$$e_{NL} = \frac{V_{NL}}{V_{FS}} \tag{8}$$

8.1.4 电源抑制比

电源抑制比 (PSRR) 是电源电压变化导致的器件偏移量变化。使用以下公式计算由 TMCS1143Axx 型号上的电源 变化引起的输入参考失调电压误差。使用以下公式计算由 TMCS1143Bxx 和 TMCS1143Cxx 型号上的电源变化引起的以输入为基准的失调电压误差。

$$e_{PSRR,A} = PSRR \times (V_S - 5V)$$
 (9)

$$e_{PSRR, B} = e_{PSRR, C} = PSRR \times (V_S - 3.3V)$$
(10)

其中

- PSRR 是以输入为基准的电源抑制比,单位为 mA/V。
- Vs 是工作电源电压。

8.1.5 共模抑制比

共模抑制比 (CMRR) 量化了器件隔离输入电压变化导致的有效输入电流误差。由于电流信号存在磁耦合和电隔离,TMCS1143 对输入共模电压具有非常高的抑制能力。使用方程式 11 计算输入共模电压 V_{CM} 产生的误差。

$$e_{CMRR} = CMRR \times V_{CM} \tag{11}$$

其中

- · CMRR 是以输入为基准的共模抑制,单位为 µA/V。
- V_{CM} 是器件输入端的交流或直流工作电压。

8.1.6 外部磁场误差

TMCS1143 可抑制由相邻大电流承载导体、附近电机、磁体或任何其他杂散磁场源产生的外部磁场的干扰。共模场抑制 (CMFR) 可以量化杂散均匀磁场引起的以输入为基准的有效误差。使用方程式 12 可计算杂散均匀外部磁场 B_{EXT} 产生的误差。

$$e_{Rext} = B_{EXT} \times CMFR$$
 (12)

其中

- B_{EXT} 是以 mT 为单位的均匀外部磁场强度。
- CMRF 是以 mA/mT 为单位的共模磁场抑制。

English Data Sheet: SBOSAG7

15

8.2 瞬态响应参数

图 8-2 展示了关键的 TMCS1143 瞬态阶跃响应参数。传播延迟 t_{pd} 是输入电流波形达到最终值的 10% 与输出电压 V_{OUT} 达到最终值的 10% 之间的时长。响应时间 t_r 是输入电流达到最终值的 90% 与输出电压达到最终值的 90% 之间的时长,这使输入电流阶跃足以让输出电压引起 1V 变化。压摆率 SR 定义为足够快的输入电流阶跃期间输出电压达到最终值的 10% 至 90% 之间的变化率。

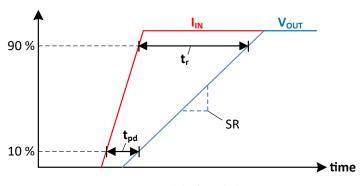


图 8-2. 瞬态阶跃响应

8.2.1 CMTI, 共模瞬态抗扰度

CMTI 是指器件在不对输出信号产生明显耦合干扰的情况下承受输入电压上升或下降阶跃的能力。该器件规定了最大共模转换速率,在该速率下,输出信号不会受到持续时间超过 1µs 的大于 200mV 电压的干扰,如图 8-3 所示,共模输入阶跃为 150kV/µs。在共模转换之后,通过足够的滤波或消隐时间,可以支持比指定 CMTI 更高的边沿速率。

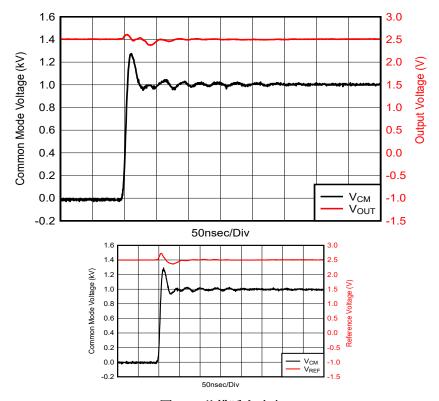


图 8-3. 共模瞬态响应

8.3 安全工作区

TMCS1143 的隔离式输入电流安全工作区 (SOA) 受到输入导体中功率耗散导致的自发热的限制。根据使用案例,SOA 受到诸多条件的限制,包括超过最大结温、引线框中的焦耳加热或在极高电流下的引线框熔断。这些机制在很大程度上取决于输入电流幅度和持续时间以及环境热条件。

当前的 SOA 在很大程度上取决于系统级印刷电路板 (PCB) 的热环境和设计。多个热变量控制着热量从器件到周围环境的传递,包括气流、环境温度以及 PCB 结构和设计。所有额定值均适用于 *TMCS1143xEVM*、 或等效 PCB 设计上安装的单个 TMCS1143 器件,在指定的环境温度条件下没有气流。器件使用配置文件必须满足针对系统运行而计划的热环境的连续电流传导 SOA 能力。

8.3.1 持续直流或正弦交流电流

器件封装和 PCB 的最大热时间常数为秒级;因此,对于任何频率高于 1Hz 的持续直流或正弦交流周期波形,都可以根据 RMS 持续电流电平进行评估。连续电流能力强烈依赖于运行时的预期工作环境温度范围。图 8-4 展示了该器件安装在 *TMCS1143xEVM*. 上时的最大持续电流处理能力。由于从结到环境的热传递减少以及引线框中的功率耗散增加,在较高的环境温度下电流能力会下降。通过改进应用的热设计,SOA 可以在更高的温度下支持更大的电流。使用更大更重的铜电源平面、在电路板上提供气流或在器件区域添加散热结构都有助于提高热性能。

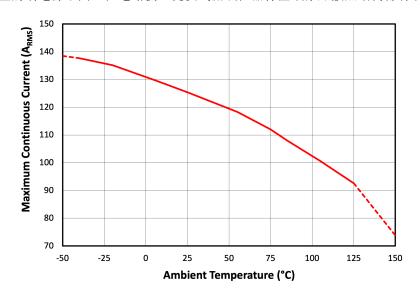


图 8-4. 最大连续 RMS 电流与环境温度间的关系

8.3.2 重复脉冲电流 SOA

对于在高电流和无电流之间传输脉冲电流的应用,允许的能力受到引线框中短时间发热的限制。 TMCS1143 在某些条件下可以承受更高的电流范围,但是,对于重复的脉冲事件,电流电平必须同时满足脉冲电流 SOA 和 RMS 持续电流约束条件。脉冲持续时间、占空比和环境温度都会影响重复脉冲事件的 SOA。 图 8-5、 根据 TMCS1143xEVM 测试结果计算的重复应力水平,在这些测试结果中,在室温下,参数性能和隔离完整性在多个环境温度下被施加应力后不受影响。在高占空比或长脉冲持续时间下,对于由方程式 13 定义的 RMS 值,该限值接近持续电流 SOA。

$$I_{IN, RMS} = I_{IN, P} \times \sqrt{D}$$
 (13)

其中

- I_{IN.RMS} 为 RMS 输入电流电平
- I_{IN.P} 为脉冲峰值输入电流
- D 为脉冲占空比

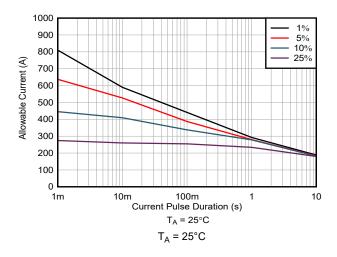


图 8-5. 最大重复脉冲电流与脉冲持续时间间的关系

8.3.3 单粒子电流能力

TMCS1143 可以容忍持续时间较短的单个较高电流事件,因为结温不会在脉冲持续时间内达到热平衡。图 8-6 展示了器件在单电流脉冲事件中的短路持续时间曲线,其中引线框电阻在承受应力后发生变化。可在引线框熔断事件之前达到该电平,但该电平必须被视为短期 SOA 的上限。对于持续时间较长的脉冲,电流能力接近给定环境温度下的连续 RMS 限值。

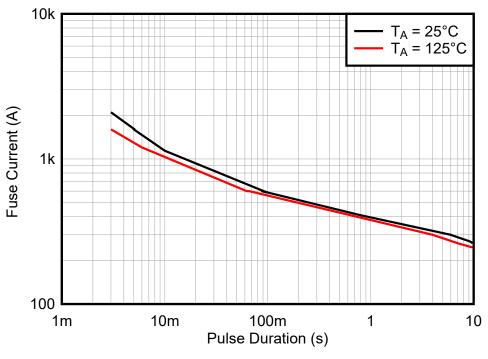


图 8-6. 单脉冲引线框能力

9 详细说明

9.1 概述

TMCS1143 是一款精密霍尔效应电流传感器,提供高电平的可靠增强型隔离工作电压、环境磁场抑制和高载流能力。无需系统级校准即可实现小于 1.4% 的最大总寿命误差,在一次性室温校准(包括温度和寿命漂移)的情况下,可实现小于 1% 的最大总误差。该器件提供了多种器件选项,可用于单向和双向电流测量。输入电流流过隔离式输入电流引脚之间的导体。该导体在室温下的电阻为 0.26m Ω ,当与 TMCS1143xEVM. 热设计类似的印刷电路板一起使用时,在 125°C 的环境温度下可容纳高达 92A_{RMS} 的持续电流。与其他可行的电流测量方法相比,低欧姆值引线框路径降低了功耗,并且在高压侧不需要任何外部无源器件、隔离式电源或控制信号。输入电流产生的磁场由霍尔传感器检测到并由精密信号链放大。该器件可用于交流和直流电流测量,其带宽为 275kHz。有多种固定灵敏度器件可供选择,他们具有各种双向线性电流检测范围:±24A 至 ±160A ,以及各种单向线性电流检测范围:±28A 至 ±183A 。 TMCS1143 可以在 3V 至 5.5V 的低压电源下运行,并针对高精度和温度稳定性进行了优化,在整个工作温度范围内对偏移量和灵敏度进行了补偿。

9.2 功能方框图

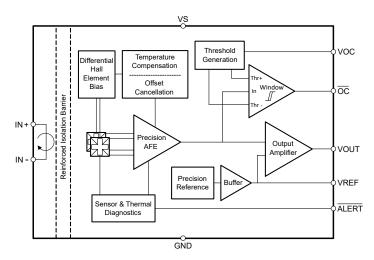


图 9-1. 功能方框图

9.3 特性说明

9.3.1 申流输入

TMCS1143 的输入电流通过封装引线框的隔离高压侧流入和流出 IN+和 IN-引脚。流经封装的电流会产生与输入电流成正比的磁场,该磁场可由集成式片上电隔离的精密霍尔传感器进行测量。由于霍尔传感器芯片上的静电屏蔽,仅测量由输入电流产生的磁场,从而限制输入电压开关直通至电路。该配置支持直接测量具有高压瞬变的电流,而不会在电流传感器输出上产生信号失真。引线框导体具有 电气特性 中定义的低电阻和正温度系数。

9.3.2 环境磁场抑制

TMCS1143 设计用于在恶劣环境中提供高水平的电流测量精度。由于不受杂散磁场干扰,因此可以在高载流布线、电机绕组、电感器或任何其他错误的杂散磁场源附近使用。 TMCS1143 包含差分霍尔传感器,这些传感器的位置很重要,且配置为可抑制来自外部杂散磁场的干扰。仅受霍尔元件匹配和封装引线框耦合限制的环境磁场抑制 (AFR) 功能可减少杂散磁场产生的误差。

9.3.3 高精度信号链

TMCS1143 使用具有专有传感器线性化技术的精密、低漂移信号链,可在器件的整个温度范围和寿命内提供高度精确和稳定的电流测量。该器件在工厂经过全面测试和校准,解决了器件的硅制程、组装或封装中的任何偏差。 完整的信号链可提供固定灵敏度电压输出,该输出与流经隔离输入引线框的电流成正比。

9.3.3.1 温度稳定性

TMCS1143 包含专有的温度补偿技术,可显著改善整个温度范围内的参数漂移。该补偿技术考虑了环境温度、自发热和封装应力的变化。零漂移信号链架构以及霍尔传感器温度补偿方法可实现稳定的灵敏度,同时更大限度地减小整个温度范围内的偏移量误差。在所需的运行条件下,系统级性能得到了显著提高。

9.3.3.2 寿命和环境稳定性

除了较大的热漂移之外,典型的磁性电流传感器由于在器件的寿命内老化,其灵敏度还会出现 2% 到 3% 的额外漂移。 TMCS1143 中用于降低温度漂移的相同专有补偿技术也用于大大降低由于应力和环境条件(尤其是在较高的运行温度下)引起的老化而导致的寿命漂移。如 电气特性 所示, TMCS1143 具有行业出色的寿命灵敏度漂移,这是在标准三批 AEC-Q100 认证期间,在 130°C 和 85% 相对湿度 (RH) 下进行高加速应力测试 (HAST) 后实现的。在按照 AEC-Q100 认证规定进行 1000 小时、125°C 高温工作寿命应力测试后,还观察到电气特性中规定的界限内的低灵敏度和温漂。这些测试模拟了典型的器件寿命操作,表明与典型的磁性电流传感器相比,老化导致的器件性能变化得到了极大改善。

9.3.4 内部基准电压

TMCS1143 具有精确的内部基准,此基准可确定零电流输出电压 V_{OUT.0A}。通过选择*器件比较* 表中列出的零电流 输出电压选项,可以优化总体电流检测动态范围。这些极低漂移精密零电流基准选项列于 方程式 14、方程式 15 和 方程式 16. 这些公式适用于精确双向

$$TMCS1143Axx \rightarrow V_{OUT,0A} = V_{REF} = 2.5V \tag{14}$$

$$TMCS1143Bxx \rightarrow V_{OUT,0A} = V_{REF} = 1.65V \tag{15}$$

$$TMCS1143Cxx \rightarrow V_{OUT0A} = V_{RFF} = 0.33V \tag{16}$$

9.3.5 电流检测可测量范围

零电流基准电压 V_{RFF} 以及器件灵敏度 S 和电源电压 V_{S} 决定了 TMCS1143 线性输入电流测量范围,如*器件比较* 表中所列。最大线性输出电压 Vour.max 限制为比电源电压低 100mV,如方程式 17 所示。最小线性输出电压 V_{OUT,min} 限制为地电平以上 100mV,如方程式 18 所示。

$$V_{OUT, max} = V_S - 100 \text{mV} \tag{17}$$

$$V_{OUT, min} = 100 \text{mV} \tag{18}$$

在适当地选择器件之后,通过将输出电压除以灵敏度 S(请参阅方程式 19 和方程式 20),将最小和最大线性输 出电压摆幅以最小和最大的线性输入电流范围为基准,可以优化总体最大动态范围。

$$I_{IN, max +} = \frac{(V_{OUT, max} - V_{OUT, 0A})}{S}$$
 (19)

$$I_{IN, max -} = \frac{\left(V_{OUT, 0A} - V_{OUT, min}\right)}{S}$$
 (20)

其中

- I_{IN.max+} 是最大线性可测量正输入电流。
- IIN max- 是最大线性可测量负输入电流。
- S是器件型号的灵敏度。
- V_{OUT.0A} 是相应的零电流输出电压。

作为确定线性输入电流测量范围的示例,考虑 TMCS1143A8A、TMCS1143B8A 和 TMCS1143C8A 器件,它们的 灵敏度均为 40mV/A,如 *器件比较* 表中所示。与 5V 电源一起使用时,TMCS1143A8A 具有平衡的 ±60A 双向线 性电流测量范围,零电流输出基准电压 V_{RFF} 大约为 2.5V,如 图 9-2 所示。与 3.3V 电源一起使用时, TMCS1143B8A 具有平衡的 ±38.7A 双向线性电流测量范围,零电流输出基准电压约为 1.65V。与 5V 电源一起使 用时,TMCS1143B8A的线性电流测量范围可以扩展为 -38.7A 至 81.2A,如 图 9-2 所示。TMCS1143C8A 具有 0.33V 零电流基准电压,可用于测量单向电流。与 3.3V 电源一起使用时, TMCS1143C8A 的单向线性电流测量范 围是 -5.7A 至 71.7A, 在与 5V 电源一起使用时, 此范围可以扩展为 -5.7A 至 114A, 如 图 9-2 所示。

English Data Sheet: SBOSAG7

21

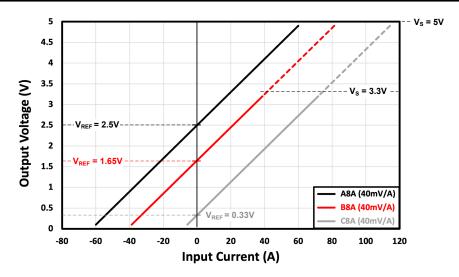


图 9-2. TMCS1143x8A 的输出电压和输入电流间关系。

9.3.6 过流检测

除了精密模拟信号之外, TMCS1143 还提供快速数字过流响应。过流检测 (OCD) 电路提供一个开漏比较器输出,可用于触发警告或发起系统关断,以防止由短路、电机停转或其他意外系统状况引起的电流过大而造成的损坏。该快速数字响应可在双向和单向器件上配置为根据满量程模拟测量范围的一半至两倍以上内的任意信号进行置位。

使用这种快速数字输出 \overline{OC} (而不是精密模拟输出 VOUT)来检测标称工作电流范围之外的过流事件,可实现更高的动态范围,并为标称工作电流范围优化更高的灵敏度。与使用模拟信号链检测快速过流事件相比,使用这种快速数字输出 \overline{OC} 还支持降低来自低模拟信号带宽的总体信号噪声。

9.3.6.1 设置用户可配置过流阈值

根据方程式 21 将外部电压 V_{OC} 施加到 VOC 引脚,可设置所需过流阈值 I_{OC} 。

$$V_{OC} = \frac{S \times I_{OC}}{2.5} \tag{21}$$

其中

- S 是以 V/A 为单位的器件灵敏度。
- Ioc 是所需的过流阈值(以A为单位)。
- V_{OC} 是为设置过流阈值而施加的电压(以 V 为单位)。

节 9.3.6.1.3 展示了如何设置所需过流阈值 I_{OC} 的示例。无论选择哪个 TMCS1143 灵敏度型号或选择哪个零电流输出电压选项,方程式 21 在计算过流阈值电压 V_{OC} 时均适用。可以使用数模转换器 (DAC) 设置所需过流阈值 I_{OC} ,也可以使用简单的外部电阻分压器电路(如 节 9.3.6.1.1 或 节 9.3.6.1.2 所示)进行此设置。

9.3.6.1.1 使用电源电压设置过流阈值

如 图 9-3 所示,由电源驱动的简单外部电阻分压器可用于生成施加到 VOC 引脚的外部过流电压 V_{OC} ,以根据方程式 21 设置所需过流阈值 I_{OC} 。

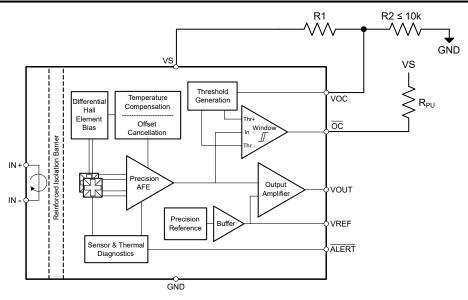


图 9-3. 使用电源电压的用户可配置过流阈值

使用如图 9-3 所示的电阻分压器时, R2 必须小于 10kΩ, 以减轻 VOC 输入阻抗对过流阈值精度的影响。

9.3.6.1.2 使用内部基准电压设置过流阈值

通过使用图 9-4 中所示的零电流输出基准电压 VREF 来生成所需的外部过电压 V_{OC} 以根据方程式 21 设置所需过电流阈值 I_{OC} ,可实现更高的过流阈值精度。

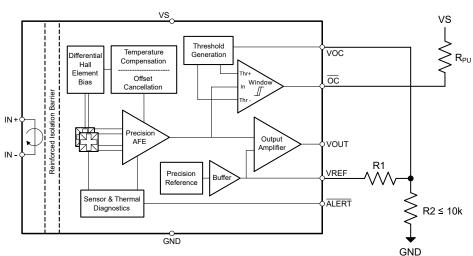


图 9-4. 使用零电流输出基准电压的用户可配置过流阈值

使用如图 9-4 所示的电阻分压器时,R2 必须小于 $10k\Omega$,以减轻 VOC 输入阻抗对过流阈值精度的影响。

9.3.6.1.3 设置过流阈值示例

例如,将双向 TMCS1143A5A 和 TMCS1143B5A 器件以及单向 TMCS1143C5A 器件上的所需过流阈值设置为 I_{OC} = ±120A,电流为 ±96A、±62A 和 -9.2A 至 114A 满量程线性输入测量如 *器件比较* 表所示,请根据 方程式 21 调整电阻器 R1 和 R2 的大小以施加电压 V_{OC} = 1.2V 到 VOC 引脚。

Product Folder Links: TMCS1143

甘山

TMCS1143A5A、TMCS1143B5A 和 TMCS1143C5A 器件灵敏度 S = 0.025V/A。

- 所需过流阈值 I_{OC} = ±120A。
- 施加的过流阈值电压 V_{OC} = 1.2V。

9.3.6.2 过流输出响应

图 9-5 展示了低电平有效过流数字输出 \overline{OC} 对双向过流事件的响应。当双向器件上的输入电流超过 $|\pm I_{OC}|$ 时,快速 \overline{OC} 引脚会下拉至低电平。在 \overline{OC} 引脚复位回到正常高电平状态之前,输入电流必须返回到 $\pm I_{OC}$ 范围内且超过滞后电流 I_{Hvs} 。

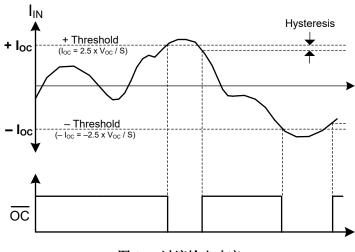


图 9-5. 过流输出响应

9.3.7 传感器诊断

TMCS1143 中加入了内置自诊断功能,以便在运行条件使电流传感器测量无效时发出警告。受监控的两个关键条件是传感器温度和灵敏度。

9.3.7.1 热警报

如*安全工作区*一节所述,高水平的输入电流会在 TMCS1143 内部产生过多的热量。高输入电流,加上环境温度和印刷电路板热设计的升高,会导致 TMCS1143 过热,并因超过允许的最大结温而损坏。当内部温度接近允许的最高结温时,会发生热警报。

9.3.7.2 传感器警报

除了温度之外,还会在 TMCS1143 内部不断地监控传感器灵敏度和偏移量。如果霍尔传感器灵敏度或偏移量超出工厂设置的限制范围(这种情况不太可能发生),则会出现传感器警报。

低电平有效 ALERT 输出信号可用于辨别 TMCS1143 处于四个诊断状态中的哪一个状态。如图 9-6 所示,8kHz PWM 输出信号的占空比指示过热运行条件警告和传感器运行条件警告哪一个存在、两者都不存在或者两者都存在。

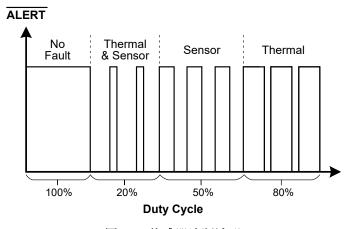


图 9-6. 传感器诊断波形

9.4 器件功能模式

9.4.1 断电行为

由于器件固有的电隔离,只要任何引脚都不超过 **节 6.1** 表中的限值,几乎就不必考虑将器件断电。隔离电流输入和低压信号链可以在操作行为中解耦,因为只要不超过隔离栅能力,其中的任何一者都可以在另一者关闭的情况下通电。可以在隔离式输入仍连接到有源高压信号或系统时关闭低压电源。

10 应用和实施

备注

以下应用部分中的信息不属于 TI 元件规格,TI 不担保其准确性和完整性。TI 的客户负责确定元件是否适合其用途,以及验证和测试其设计实现以确认系统功能。

10.1 应用信息

TMCS1143 的主要特性集可在仟何需要隔离式电流测量的应用中提供显著的优势。

- 电隔离提供高隔离工作电压和出色的输入电压瞬变抗扰度。
- 基于霍尔效应的测量简化了系统级设计,无需高压 (HV) 侧电源。
- 通过低阻抗导体的输入电流路径将功耗降至最低。
- 出色的精度以及低温度漂移和使用寿命内的低漂移不再需要多点和定期校准,并且不会影响系统性能。
- 宽工作电源电压范围使单个器件能够在很宽的电压电平范围内工作。

这些优势提高了系统级性能,同时更大限度地降低了任何必须对隔离电流进行精密电流测量的应用的复杂性。以下部分详细说明了具体示例和设计要求。

10.1.1 总误差计算示例

用户可以计算任意器件条件和电流电平的总误差。考虑诸如以输入为基准的失调电流 (I_{OS})、共模抑制比 (CMRR)、电源抑制比 (PSRR)、灵敏度误差、非线性以及任何外部磁场 (B_{EXT}) 引起的误差。有些误差源是误差的重要驱动因素,而有些则对当前测量误差的影响不大,因此应以百分比形式比较每一个误差源。失调(方程式22)、CMRR(方程式23)、PSRR 和外部磁场误差(方程式25)均以输入为基准,因此将其除以实际输入电流 I_{IN} 即可计算出百分比误差。对于灵敏度误差和非线性误差的计算,可以使用 *电气特性* 表中明确指定的百分比限值。

$$e_{IoS} = \frac{I_{OS}}{I_{IN}} \times 100\% = \frac{V_{OE}}{S \times I_{IN}} \times 100\%$$
 (22)

$$e_{CMRR} = \frac{CMRR \times V_{CM}}{I_{IN}} \times 100\%$$
 (23)

$$e_{PSRR, A} = \frac{PSRR \times (V_S - 5V)}{I_{IN}} \times 100\%; e_{PSRR, B} = e_{PSRR, C} = \frac{PSRR \times (V_S - 3.3V)}{I_{IN}} \times 100\%$$
 (24)

$$e_{\text{Bext}} = \frac{B_{\text{EXT}} \times \text{CMFR}}{I_{\text{IN}}} \times 100\%$$
 (25)

其中

- VOE 是以输出为基准的失调电压误差。
- V_{CM} 是输入共模电压。
- **e**_{PSRR A} 是 TMCS1143Axx 器件的电源抑制误差。
- **e**_{PSRR.B} 是 TMCS1143Bxx 器件的电源抑制误差。
- e_{PSRR,C} 是 TMCS1143Cxx 器件的电源抑制误差。
- V_S 是电源电压。
- CMFR 是共模磁场抑制。

在计算整个温度范围内的误差贡献时,只有偏移量误差和灵敏度误差贡献显著变化。要确定整个温度范围内的偏移量误差,可以使用方程式 26 来计算任何环境温度 T_A 下以输入为基准的总偏移量误差电流 I_{OS} 。

$$e_{Ios,\Delta T} = \frac{v_{OE, 25^{\circ}C} + \left(v_{OE, drift} \times |\Delta T|\right)}{S \times I_{IN}} \times 100\%$$
(26)

其中

- V_{OE.25°C} 是 25°C 时以输出为基准的偏移量误差。
- V_{OE,drift} 是以输出为基准的温漂,以 μV/°C 为单位。
- △T 是相对于 25°C 的温度变化。
- S 是器件型号的灵敏度。

电气特性 表中规定了 25° C 时的灵敏度误差 $(e_{S,25^{\circ}C})$,以及灵敏度随温度变化的灵敏度热漂移 $(S_{drift,therm})$,单位为 $ppm/^{\circ}$ C。为了确定整个温度范围的灵敏度误差,可使用方程式 27 来计算在 -40° C 和 125° C 之间的给定应用工作环境温度范围内任何环境温度 (T_A) 下的灵敏度误差。

$$e_{S,\Delta T} = e_{S,25^{\circ}C} + (S_{drift,therm} \times |\Delta T| \times 100\%)$$
(27)

为了准确计算器件的总预期误差,必须参考工作条件来理解上述每个单独分量的贡献。为了考虑统计上不相关的各个误差源,请使用平方和根 (RSS) 误差计算公式来计算总误差。对于 TMCS1143 ,只有以输入为基准的失调电流 (los)、CMRR 和 PSRR 具有统计相关性。这些相关误差项结合在 RSS 计算公式中以反映该性质,如方程式28 (对于室温)和方程式29 (对于给定的温度范围)所示。通过使用适当的误差项规范,可以应用相同的方法来计算总误差的典型值。

$$e_{RSS} = \sqrt{(e_{los} + e_{PSRR} + e_{CMRR})^2 + (e_{Bext})^2 + (e_S)^2 + (e_{NL})^2}$$
(28)

$$e_{RSS,\Delta T} = \sqrt{(e_{Ios,\Delta T} + e_{PSRR} + e_{CMRR})^2 + (e_{Bext})^2 + (e_{S,\Delta T})^2 + (e_{NL})^2}$$
(29)

总误差计算公式对实际输入电流有很强的依赖性;因此,应始终计算所需动态范围内的总误差。这些曲线在高电流电平下逐渐接近灵敏度和非线性误差,而在低电流电平下由于失调误差项与分母中的输入电流而接近无穷大。任何电流测量系统的关键品质因数都包括满量程电流下的总误差百分比,以及误差保持在某个关键水平以下的输入电流动态范围。图 10-1 显示了 TMCS1143A5A 在室温下和全温度范围内,电源电压为 5.25V 时的输入电流函数的 RSS 最大总误差。

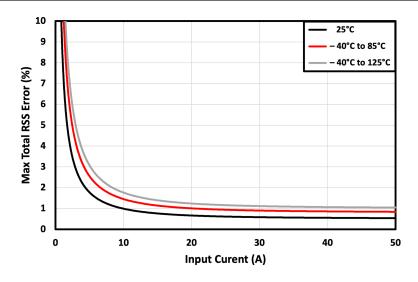


图 10-1. RSS 误差与输入电流间的关系

10.1.1.1 室温误差计算

对于室温总误差计算,应忽略温度和漂移规格。例如,假设 TMCS1143B5A 的电源电压 (V_S) 为 5.25V,最坏情况 共模偏移为 600V,计算特定于工作点的参数。考虑由于 $20A_{DC}$ 电流流经 10mm 外的相邻布线或导体而产生的外部 $400\mu T$ 磁场导致的测量误差。如*器件比较* 表所示,该器件的满量程线性电流测量范围大于 $\pm 50A$ 。在这种情况下,计算 50A 和 25A 时的误差会突出误差对输入电流电平的依赖性。表 10-1 展示了在指定的条件以及室温下的各个误差分量和 RSS 最大总误差计算。相对于其他误差,来自 CMRR、外部环境磁场 B_{EXT} 和非线性的额外误差可以忽略不计,通常可以从总误差计算中排除。

误差分量	符号	等式	误差, I _{IN} = 50A	误差, I _{IN} = 25A
输入失调电压误差	e _{los}	$e_{IOS} = \frac{I_{OS}}{I_{IN}} \times 100\% = \frac{V_{OE}}{S \times I_{IN}} \times 100\% = \frac{\pm 1.5 \text{mV}}{25 \text{mV/A} \times I_{IN}} \times 100\%$	±0.12%	±0.24%
PSRR 误差	e _{PSRR}	$e_{PSRR} = \frac{PSRR \times (V_S - 5)}{I_{IN}} \times 100\%$	±0.04%	±0.08%
CMRR 误差	e _{CMRR}	$e_{CMRR} = \frac{CMRR \times V_{CM}}{I_{IN}} \times 100\%$		±0.02%
外部磁场误差	e _{Bext}	$e_{\text{Bext}} = \frac{B_{\text{EXT}} \times \text{CMFR}}{I_{\text{IN}}} \times 100\%$	±0.01%	±0.02%
灵敏度误差	e _S	在 <i>电气特性</i> 中指定	±0.5%	±0.5%
非线性误差	e _{NL}	在 <i>电气特性</i> 中指定	±0.1%	±0.1%
RSS 总误差	e _{RSS}	$e_{RSS} = \sqrt{(e_{IoS} + e_{PSRR} + e_{CMRR})^2 + (e_{Bext})^2 + (e_S)^2 + (e_{NL})^2}$	0.54%	0.61%

表 10-1. 总误差计算: 室温示例

10.1.1.2 整个温度范围内的误差计算

要计算任何特定温度范围内的总误差,请使用方程式 28 和方程式 29 来计算 RSS 最大总误差,这与室温示例类似。*室温误差计算* 中示例的条件已替换为下面的表 10-2 中 - 40°C 至 85°C 温度范围的相应公式和误差分量。

表 10-2. 总误差计算: - 40°C 至 85°C 示例

误差分量	符号	等式		误差, I _{IN} = 25A
输入失调电压误差	e _{los, ∆ T}	$e_{IOS,\Delta T} = \frac{V_{OE, 25^{\circ}C} + (V_{OE, drift} \times \Delta T)}{S \times I_{IN}} \times 100\%$	±0.19%	±0.38%

Product Folder Links: TMCS1143

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

表 10-2.	总误差计算:	- 40°C 至	₹ 85°C 示例	(续)
7C IV =:	10 M/E /1 7F :	70 0 1	7 00 0 11 N	1 ~~ /

误差分量	符号	等式	误差, I _{IN} = 50A	误差, I _{IN} = 25A
PSRR 误差	e _{PSRR}	$e_{PSRR} = \frac{PSRR \times (V_S - 5)}{I_{IN}} \times 100\%$	±0.04%	±0.08%
CMRR 误差	e _{CMRR}	$e_{CMRR} = \frac{CMRR \times V_{CM}}{I_{IN}} \times 100\%$		±0.02%
外部磁场误差	e _{Bext}	$e_{\text{Bext}} = \frac{B_{\text{EXT}} \times \text{CMFR}}{I_{\text{IN}}} \times 100\%$		±0.02%
灵敏度误差	e _{S,∆T}	$e_{S,\Delta T} = e_{S,25^{\circ}C} + (S_{drift,therm} \times \Delta T \times 100\%)$		±0.8%
非线性误差	e _{NL}	在 <i>电气特性</i> 中指定	±0.1%	±0.1%
RSS 总误差	e _{RSS, ∆ T}	$e_{RSS,\Delta T} = \sqrt{\left(e_{Ios,\Delta T} + e_{PSRR} + e_{CMRR}\right)^2 + \left(e_{Bext}\right)^2 + \left(e_{S,\Delta T}\right)^2 + \left(e_{NL}\right)^2}$	0.84%	0.94%

10.2 典型应用

电感负载电流(例如电机相位)的内嵌式检测为控制系统带来了显著的性能优势,能够以极少的后处理实现先进的控制算法和诊断。内嵌式检测面临的主要挑战是电流传感器受到驱动负载的全高压电源电平 PWM 瞬态的影响。封装内霍尔效应电流传感器拓扑的固有隔离有助于应对该挑战,能够提供高共模抗扰度以及高压电机驱动电平和低压控制电路之间的隔离。图 10-2 说明了 TMCS1143 在此类应用中的使用情况,驱动由三相电机提供的电感负载。

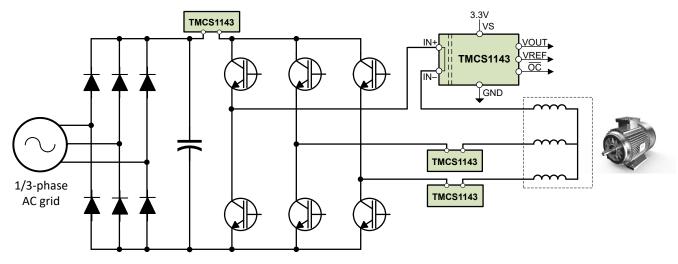


图 10-2. 内嵌式电机相电流检测

10.2.1 设计要求

对于三相电流检测应用,要确保在预期电流范围内提供线性检测,并确保器件处于工作热约束范围内。如有必要,可以使用单个 TMCS1143 来测量每个相位的电流。对于该示例,考虑 5V 的标称电源,但对于某些电源变化,至少要包含 4.9V。此外、对于本示例,考虑要测量的所需 ±50A 输入电流范围。

表 10-3. 示例应用设计要求

设计参数	示例值
$V_{S,nom}$	5V
$V_{S,min}$	4.9V
I _{IN,FS}	±50A

10.2.2 详细设计过程

根据所需的测量电流电平和所选电源电压,使用 TMCS1143 的主要设计参数可实现出色的灵敏度。由于此内嵌式相电流应用示例中测量了正电流和负电流,因此请选择双向型号。 TMCS1143 具有精密的内部基准电压,此电压可确定零电流输出电压 $V_{OUT.0A}$ 。

TMCS1143Axx 型号的内部基准电压(零电流输出电压 $V_{OUT,OA} = 2.5V$)用于与 5V 电源一起使用时进行双向电流测量。 TMCS1143Bxx 型号的内部基准电压(零电流输出电压 $V_{OUT,OA} = 1.65V$)用于与 3.3V 电源一起使用时进行双向电流测量。可以进一步考虑噪声和与 ADC 的集成,但这超出了本应用设计示例的范围。 TMCS1143 输出电压 V_{OUT} 与输入电流 I_{IN} 成正比,如方程式 30 所定义,输出失调电压由 $V_{OUT,OA}$ 设置。

$$V_{OUT} = (I_{IN} \times S) + V_{OUT, 0A}$$
(30)

最优检测解决方案的设计侧重于更大限度地提高器件的灵敏度,同时在所需输入电流范围内保持线性测量。 TMCS1143 具有线性可测量电流范围,该范围受到相对于电源的正摆幅或相对于接地的负摆幅的限制。若要弄清工作裕度,请考虑之前定义的可能的最小电源电压 $V_{S,min}$ = 4.9 $V_{S,min}$ = 4.

$$V_{OUT, max} = V_{S, min} - 100 \text{mV}$$

$$(31)$$

$$V_{OUT, min} = 100 \text{mV} \tag{32}$$

表 10-4 展示了该示例应用的设计参数以及计算得出的输出范围。

表 10-4. 示例应用设计参数

设计参数	示例值
V _{OUT,max}	4.8V
V _{OUT,0A}	2.5V
V _{OUT,max} - V _{OUT,0A}	2.3V

这些设计参数可产生 ±2.3V (V_{OUT,0A} = 2.5V.) 的最大正线性输出电压摆幅。要确定 TMCS1143 的哪个灵敏度型号能够更充分地利用该线性范围,请通过方程式 33 计算双向电流 (±I_{IN.max}) 的最大电流范围。

$$I_{IN, max} = \frac{\left(V_{OUT, max} - V_{OUT, 0A}\right)}{S} \tag{33}$$

其中

• S 是相关型号的灵敏度。

表 10-5 展示了具有相应灵敏度的 TMCS1143 的每个增益型号的计算。

表 10-5. 具有 2.3V 正输出摆幅的最大满量程电流范围

型号	灵敏度	I _{IN,max}
TMCS1143A3A	15mV/A	±153A
TMCS1143A5A	25mV/A	±92A
TMCS1143A8A	40mV/A	±57.5A
TMCS1143AAA	60mV/A	±38.3A
TMCS1143ACA	100mV/A	±23A

通常,选择灵敏度最高的型号以提供大于所需满量程电流范围的最低最大输入电流范围。对于本示例中的设计参数,TMCS1143A8A(灵敏度为 40mV/A)是恰当的选择,因为最大 ±57.5A 线性可测量范围大于要求的 ±50A 满量程电流范围。

10.2.3 应用曲线

为了说明噪声高电压电流检测节点与低压精密电流测量和控制电路之间可实现的高级别隔离,图 10-3 展示了噪声同相 PWM 电机控制示例中来自 TMCS1143 的输出信号。在这个采用无负载大型感应电机的示例中,当在电流传感器输入上进行高压 PWM 切换时,电流传感器输出上不会出现 PWM 边沿干扰,这在许多电流传感器上通常很明显。

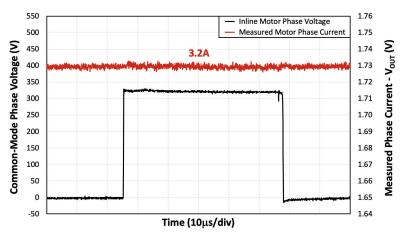


图 10-3. 内联电机电流检测输入和输出信号

10.3 电源相关建议

TMCS1143 仅在低压隔离侧需要一个电源 (V_S) ,该电源独立于隔离式电流输入来为模拟电路供电。 V_S 决定了模拟输出 V_{OUT} 的满量程输出范围,可提供在 3V 到 5.5V 之间的任何电压。为了滤除电源路径中的噪声,应在 V_S 和 GND 引脚之间放置一个容值为 0.1μ F 的低 ESR 去耦电容器,其位置应尽可能靠近器件的电源和接地引脚。可以添加更多去耦电容以补偿噪声或高阻抗电源。用在噪声非常大的环境中时,可以在靠近电源引脚的位置添加铁氧体磁珠,如图 10-4 所示,以达到目标并抑制耦合到系统电源的高频噪声。

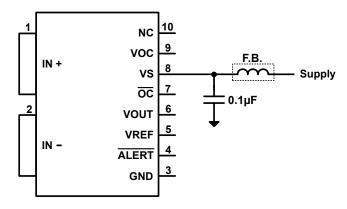


图 10-4. 电源噪声滤波

TMCS1143 电源 V_S 可以独立于流过输入的电流进行定序。然而,在 V_S 达到建议的工作电压与模拟输出验证之间存在加电延迟。在此开通时间内,当输出从高阻抗复位状态转换至主动驱动状态时,输出电压 V_{OUT} 可以在 GND和 V_S 之间转换。如果必须避免这种行为,则在施加输入电流之前为 V_S 提供超过开通时间的稳定电源电压。

10.4 布局

10.4.1 布局指南

TMCS1143 可在使用 4oz 铜平面的 上提供持续电流处理能力。这种电流能力从根本上受到最大器件结温和热环境的限制,主要是 PCB 布局和设计。为了更大限度地提高器件的电流处理能力和热稳定性,请注意 PCB 布局和结构以优化热性能。除了 的设计和构造之外,努力提升热性能,实现到周围环境的较高热传递,也可以提高持续电流处理能力。提高 PCB 热性能的要点包括:

- 针对输入电流路径以及隔离的电源平面和信号使用大型铜平面。
- 使用较重的铜 PCB 结构。
- 通过分布在隔开的电流输入周围的散热过孔进行散热。
- 在 PCB 表面提供气流。

10.4.2 布局示例

图 10-5 中显示的示例布局来自 *TMCS1143xEVM*。器件性能针对该布局的热和磁特性,提供从终端连接器到器件输入引脚的最佳电流,同时大型铜平面增强了热性能。

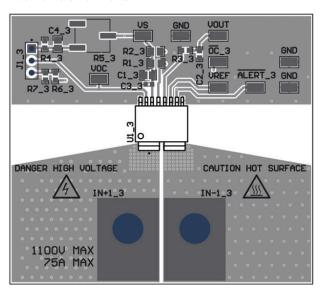


图 10-5. 建议的电路板布局布线

11 器件和文档支持

11.1 器件命名规则

如需 SOIC 封装类型的 TMCS1143 器件的可订购器件型号,请参阅本文档的封装选项附录、访问 ti.com 或联系您的 TI 销售代表。

有关芯片上器件命名规则标记的其他说明,请参阅器件勘误表。

11.2 器件支持

11.2.1 开发支持

要获得开发工具支持,请参阅以下文档:

• 德州仪器 (TI), TMCS1123xEVM

11.3 文档支持

11.3.1 相关文档

请参阅以下相关文档:

- 德州仪器 (TI),
- 德州仪器 (TI), 隔离相关术语 应用手册

11.4 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.5 支持资源

TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

11.6 商标

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

11.7 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

11.8 术语表

TI 术语表

本术语表列出并解释了术语、首字母缩略词和定义。

12 修订历史记录

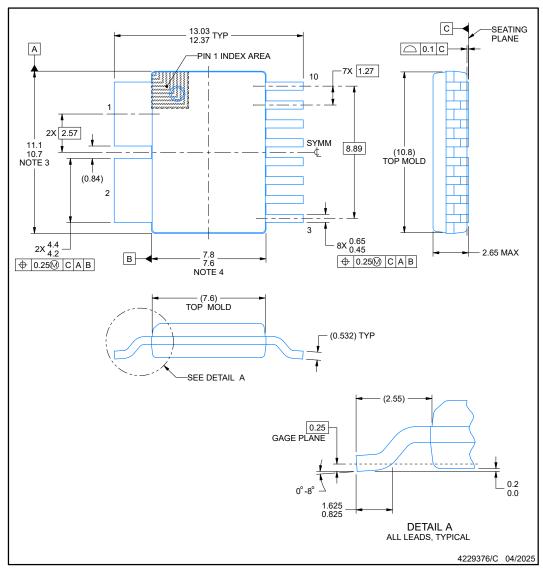
注:以前版本的页码可能与当前版本的页码不同

日期	修订版本	注释
April 2025	*	初始发行版

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMCS1143*


DVF0010A

13.1 机械数据

PACKAGE OUTLINE

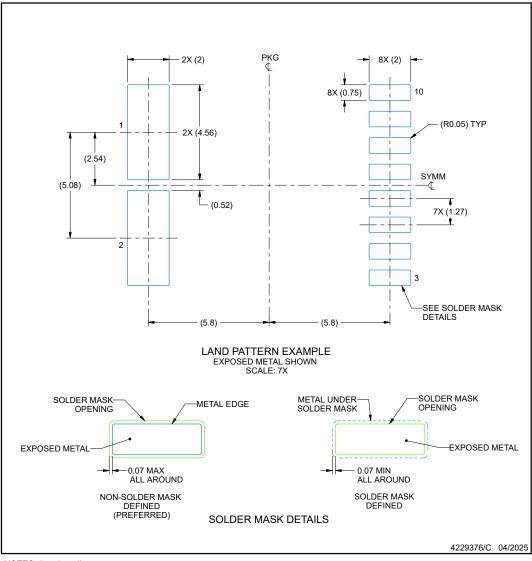
SOIC - 2.65 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not avoid 0.45 mp. are raide.
- exceed 0.15 mm per side.

 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MS-013.



EXAMPLE BOARD LAYOUT

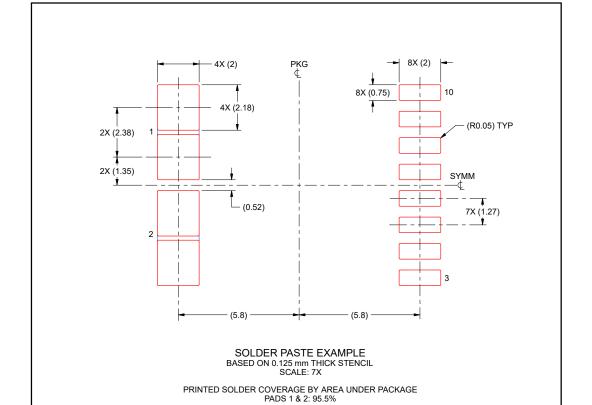
DVF0010A

SOIC - 2.65 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



EXAMPLE STENCIL DESIGN

DVF0010A

SOIC - 2.65 mm max height

SMALL OUTLINE PACKAGE

4229376/C 04/2025

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

 9. Board assembly site may have different recommendations for stencil design.

封装信息

可订购器件	状态 ⁽¹⁾	封装类型	封装图	引脚	包装数量	环保计划(2)	引脚镀层/焊球 材料 ⁽⁶⁾	MSL 峰值温度	工作温度 (°C)	器件标识(4)(5)
TMCS1143A3A QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143A3A
TMCS1143A5A QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143A5A
TMCS1143A8A QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143A8A
TMCS1143AAA QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143AAA
TMCS1143ACA QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143ACA
TMCS1143B2A QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143B2A
TMCS1143B3A QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143B3A
TMCS1143B5A QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143B5A
TMCS1143B8A QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143B8A
TMCS1143BAA QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143BAA
TMCS1143C5A QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143C5A
TMCS1143C8A QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143C8A
TMCS1143CAA QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143CAA
TMCS1143CCA QDVFR	运行	SOIC	DVF	10	1000	RoHS 和绿色环 保	SN	Level-3-260C-1 68 HR	-40 至 125	1143CCA

(1) 销售状态值定义如下:

正在供货:建议用于新设计的产品器件。

限期购买:TI 已宣布器件即将停产,但仍在购买期限内。

NRND:不推荐用于新设计。为支持现有客户,器件仍在生产,但 TI 不建议在新设计中使用此器件。**预发布:**器件已发布,但未量产。可能提供样片,也可能无法提供样片。

已停产: TI 已停止生产该器件。

(2) RoHS: TI 定义的"RoHS"是指半导体产品符合针对所有 10 种 RoHS 物质的现行 EU RoHS 要求,包括要求 RoHS 物质不超过均质材料总重量的 0.1%。因在设计时就考虑到了高温焊接要求,因此"RoHS"产品适用于指定的无铅作业。TI 可将这类产品标记为"无铅"。

English Data Sheet: SBOSAG7

VINSTRUMENTS

www.ti.com.cn

TMCS1143

ZHCSSP9 - APRIL 2025

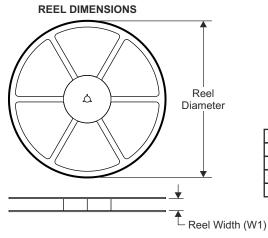
RoHS 豁免: TI 定义的"RoHS 豁免"是指含铅、但根据特定 EU RoHS 豁免规定符合 EU RoHS 标准的产品。

绿色:TI 定义的"绿色"是指氯 (CL) 和溴 (Br) 阻燃剂的含量符合 JS709B 中 <=1000ppm 阈值的低卤要求。基于三氧化二锑的阻燃剂也必须符合 <=1000ppm 的阈值要求。

- (3) MSL,峰值温度-湿敏等级额定值(符合 JEDEC 工业标准分级)和峰值焊接温度。
- (4) 器件上可能还有与标识、批次跟踪代码信息或环境分类相关的其他标志。
- (5) 如有多个器件标识,将用括号括起来。不过,器件上仅显示括号中以"~"隔开的其中一个器件标识。如果某一行缩进,说明该行续接上一行,这两行合在一起表示该器件的完整器件标 识。
- (6) 引脚镀层/焊球材料-可订购器件可能有多种镀层材料选项。各镀层选项用垂直线隔开。如果铅镀层/焊球值超出最大列宽,则会折为两行。

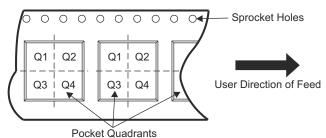
重要信息和免责声明:本页面上提供的信息代表 TI 在提供该信息之日的认知和观点。TI 的认知和观点基于第三方提供的信息,TI 不对此类信息的正确性做任何声明或保证。TI 正在致力于更好 地整合第三方信息。TI 已经并将继续采取合理的措施来提供有代表性且准确的信息,但是可能尚未对引入的原料和化学制品进行破坏性测试或化学分析。TI 和 TI 供应商认为某些信息属于专有信息,因此可能不会公布其 CAS 编号及其他受限制的信息。

在任何情况下,TI 因此类信息产生的责任决不超过TI 每年向客户销售的本文档所述TI 器件的总购买价。


Copyright © 2025 Texas Instruments Incorporated

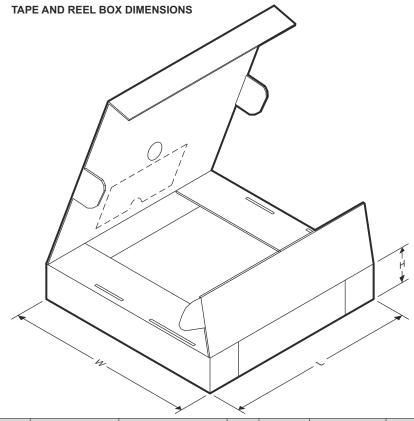
提交文档反馈

37


13.2 卷带包装信息

TAPE DIMENSIONS Ф Ф B₀

	Cavity → A0 ←
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

器件	封装 类型	封装图	引脚	SPQ	卷带 直径 (mm)	卷带 宽度 W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 象限
TMCS1143A3AQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143A5AQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143A8AQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143AAAQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143ACAQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143B2AQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143B3AQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143B5AQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143B8AQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143BAAQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143C5AQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143C8AQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143CAAQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1
TMCS1143CCAQDVFR	SOIC	DVF	10	1000	330	24.4	13.1	11.3	3.05	16	24	Q1

38 提交文档反馈

器件	封装类型	封装图	引脚	SPQ	长度 (mm)	宽度 (mm)	高度 (mm)
TMCS1143A3AQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143A5AQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143A8AQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143AAAQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143ACAQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143B2AQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143B3AQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143B5AQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143B8AQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143BAAQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143C5AQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143C8AQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143CAAQDVFR	SOIC	DVF	10	1000	350	350	43
TMCS1143CCAQDVFR	SOIC	DVF	10	1000	350	350	43

www.ti.com 3-May-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
PMCS1143A3QDVFR	Active	Preproduction	SOIC (DVF) 10	1000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
PMCS1143A5QDVFR	Active	Preproduction	SOIC (DVF) 10	1000 LARGE T&R	-	Call TI	Call TI	-40 to 125	
PMCS1143B3QDVFR	Active	Preproduction	SOIC (DVF) 10	1000 LARGE T&R	-	Call TI	Call TI	-40 to 125	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司