

TAS5431-Q1

ZHCSL71A - APRIL 2020 - REVISED JULY 2020

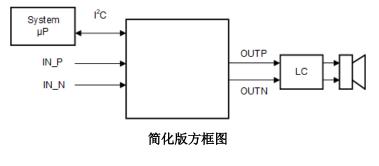
TAS5431-Q1 8W 具有负载突降和 I2C 诊断功能的单声道汽车数字音频放大器

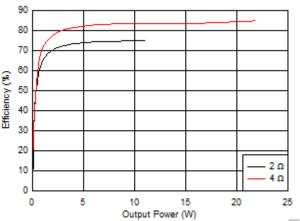
1 特性

- 符合汽车应用要求的 AEC-Q100 标准
 - 温度等级 1: 40°C 至 125°C 、 T_A
- 单声道 BTL 数字功率放大器
- 8 负载为 4Ω 且 THD+N 为 10% 时的输出功率为
- 4.5V 至 18V 运行电压范围
- 负载为 4Ω 时的效率为 83%
- 差分模拟输入
- 采用可调功率限制器的 Speaker Guard™ 扬声器保
- 75dB 电源抑制比 (PSRR)
- 负载诊断功能:
 - 开路和短路输出负载
 - 输出到电源和输出到接地短接
- 保护和监控功能:
 - 短路保护
 - 40V 负载突降保护符合 ISO-7637-2 标准
 - 在音乐播放的同时进行输出直流电平检测
 - 过热保护
 - 欠压和过压保护
- 采用 PowerPAD™ 封装 (焊盘朝下) 的耐热增强型 16 引脚 HTSSOP (PWP) 封装
- 旨在满足汽车电磁兼容性 (EMC) 要求
- ISO9000: 已通过 2002 TS16949 认证
- 待机时 40V 负载突降保护
- 待机时无阻塞 I²C

2 应用

- 汽车类紧急呼叫 (eCall) 放大器
- 车载通讯系统
- 仪表板系统
- 信息娱乐音频


3 说明


TAS5431-Q1 是一款单声道 D 类音频放大器,非常适 用于汽车类紧急呼叫 (eCall)、远程信息处理、仪表组 和信息娱乐系统应用。该器件采用 14.4 VDC 汽车电池 供电,可在负载为 4Ω 且 THD+N 不超过 10% 的情况 下提供高达 8W 的功率。该器件具有较高的工作电压 差并且效率高,是需要起停支持或使用备用电池运行时 的理想选择。集成的负载突降保护能够缩减外部电压钳 位电路的成本与尺寸,板载负载诊断功能能够通过 I2C 报告扬声器状态。

器件信息

器件型号	封装 ⁽¹⁾	封装尺寸 (标称值)
TAS5431-Q1	HTSSOP (16)	5.00mm × 4.40mm

如需了解所有可用封装,请参阅数据表末尾的可订购产品附

输出功率效率

Table of Contents

1 特性 1	7.5 Register Maps	18
2 应用	8 Application and Implementation	
3 说明1	8.1 Application Information	
4 Revision History2	8.2 Typical Application	20
5 Pin Configuration and Functions	9 Power Supply Recommendations	<mark>23</mark>
Pin Functions3	10 Layout	25
6 Specifications4	10.1 Layout Guidelines	25
6.1 Absolute Maximum Ratings4	10.2 Layout Examples	25
6.2 ESD Ratings4	11 Device and Documentation Support	<mark>2</mark> 9
6.3 Recommended Operating Conditions4	11.1 Device Support	
6.4 Thermal Information5	11.2 Documentation Support	29
6.5 Electrical Characteristics5	11.3 接收文档更新通知	29
6.6 Timing Requirements for I2C Interface Signals7	11.4 支持资源	29
6.7 Typical Characteristics8	11.5 Trademarks	29
7 Detailed Description10	11.6 静电放电警告	29
7.1 Overview10	11.7 术语表	
7.2 Functional Block Diagram10	12 Mechanical, Packaging, and Orderable	
7.3 Feature Description11	Information	29
7.4 Device Functional Modes17		

4 Revision History

注:以前版本的页码可能与当前版本的页码不同

C	Changes from Revision * (March 2019) to Revision A (July 2020)	Page
•	将数据表状态从 <i>预告信息</i> 更改为 <i>生产数据</i>	······

5 Pin Configuration and Functions

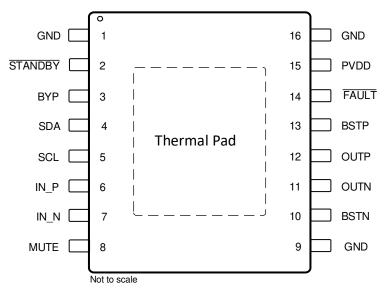


图 5-1. PWP Package, 16-Pin, TSSOP With Exposed Thermal Pad (Top View)

Pin Functions

PI	IN	TYPE ⁽¹⁾	DESCRIPTION
NAME	NO.	I I I PEV	DESCRIPTION
BSTN	10	Al	Bootstrap for negative-output high-side FET
BSTP	13	Al	Bootstrap for positive-output high-side FET
BYP	3	PBY	Voltage-regulator bypass-capacitor pin
FAULT	14	DO	Active-low open-drain output used to report faults
GND	1, 9, 16	GND	Ground
IN_N	7	Al	Inverting analog input
IN_P	6	Al	Non-inverting analog input
MUTE	8	DI	Mute input, active-high (no internal pullup or pulldown)
OUTN	11	PO	Output (-)
OUTP	12	PO	Output (+)
PVDD	15	PWR	Power supply
SCL	5	DI	I ² C clock
SDA	4	DI/DO	I ² C data
STANDBY	2	DI	Active-low STANDBY pin (no internal pullup or pulldown)
Thermal pad	_	_	Must be soldered to ground

⁽¹⁾ DI = digital input, DO = digital output, AI = analog input, PWR = power supply, PBY = power bypass, PO = power output, GND = ground

Product Folder Links: TAS5431-Q1

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

			MIN	MAX	UNIT
	DC supply voltage range, V _(PVDD)	Relative to GND	- 0.3	30	V
	Pulsed supply voltage range, V _(PVDD_MAX)	t ≤ 400 ms exposure	- 1	40	V
	Supply voltage ramp rate, $\Delta V_{(PVDD_RAMP)}$			15	V/ms
	For SCL, SDA, and STANDBY, FAULT pins	Relative to GND	- 0.3	5	
Input voltage	For IN_N, IN_P, , and MUTE pins	Relative to GND	- 0.3	6.5	
	ВҮР	Relative to GND	- 0.3	7	V
	BSTN, BSTP	Relative to BYP	- 0.3	30	V
	BSTN, BSTP	Relative to GND	- 0.3	36.3	
	OUTN, OUTP	Relative to GND	- 0.3	30	
	DC current on PVDD, GND and OUTx pins, I _{(PVDI}	_{D)} , I _O		±4	Α
Current	Maximum current, on all input pins, I _(IN_MAX) (2)			±1	mA
	Maximum sink current for open-drain pin, I _(IN_ODMAX)			7	ША
Storage tempera	ture, T _{stg}		- 55	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability

6.2 ESD Ratings

			VALUE	UNIT
V		Human-body model (HBM), per AEC Q100-002 ⁽¹⁾ HBM ESD Classification Level H2	±3500	V
V _(ESD)	Lieurostatic discriarge	Charged-device model (CDM), per AEC Q100-011 CDM ESD Classification Level C5	±1000	V

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT	
	Supply voltage range relative to GND.	4- Ω ±20% load (or higher)	4.5	14.4	18	V	
$V_{(PVDD_OP)}$	Includes ac transients, requires proper decoupling. (3)	2- Ω ±20% load	5	14.4	18	V	
V _(PVDD_RIPPLE)	Maximum ripple on PVDD	V _(PVDD) < 8 V			1	V_{pp}	
V _(MUTE)	MUTE pin voltage range relative to GND		-0.3	3.3	5.5	V	
V _(AIN) (1)	Analog audio input-signal level	AC-coupled input voltage	0		0.25 - 1 ⁽²⁾	Vrms	
V _(IH_STANDBY)	MUTE and STANDBY pins input voltage for logic-level high		2			V	
V _(IL_STANDBY)	MUTE and STANDBY pins input voltage for logic-level low				0.7	V	
V _(IH_SCL)	SCL pin input voltage for logic-level high	$R_{(PU_12C)} = 4.7-k \Omega$ pullup, supply voltage = 3.3 V or 5 V	2.1			V	
V _(IH_SDA)	SDA pin input voltage for logic-level high	$R_{(PU_12C)} = 4.7-k \Omega$ pullup, supply voltage = 3.3 V or 5 V	2.1			V	
V _(IL_SCL)	SCL pin input voltage for logic-level low	$R_{(PU_12C)} = 4.7-k \Omega$ pullup, supply voltage = 3.3 V or 5 V			1.1	V	

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAS5431-Q1*

⁽²⁾ See the section for information on analog input voltage and ac coupling.

			MIN	NOM	MAX	UNIT
V _(IL_SDA)	SDA pin input voltage for logic-level low	$R_{(PU_I2C)} = 4.7-k \Omega$ pullup, supply voltage = 3.3 V or 5 V			1.1	V
T _A	Ambient temperature		- 40		125	°C
R _(L)	Nominal speaker load impedance	When using low-impedance loads, do not exceed overcurrent limit.	2	4	16	Ω
V _(PU)	Pullup voltage supply (for open-drain logic outputs)	V _(PU) must be less than (V _(PVDD) - 1V) during normal operation.	3	3.3	5.5	V
R _(PU_EXT)	External pullup resistor on open-drain logic outputs	Resistor connected between open-drain logic output and $V_{(PU)}$ supply.	10		50	kΩ
R _(PU_I2C)	I ² C pullup resistance on SDA and SCL pins		1	4.7	10	kΩ
C _(PVDD)	External capacitor on the PVDD pin, typical value ± 20% ⁽³⁾			10		μF
C _(BYP)	External capacitor on the BYP pin, typical value ± 10%			1		μF
C _(OUT)	External capacitance to GND on OUT_X pins				4	μF
C _(IN)	External capacitance to analog input pin in series with input signal			1		μF
C _(BSTN) , C _(BSTP)	External boostrap capacitor, typical value ± 20%			220		nF

- (1) Signal input for full unclipped output with gains of 36 dB, 32 dB, 26 dB, and 20 dB
- (2) Maximum recommended input voltage is determined by the gain setting.
- (3) See the section.

6.4 Thermal Information

		TAS5431	
	THERMAL METRIC(1)	PWP (HTSSOP)	UNIT
		16 PINS	
R ₀ JA	Junction-to-ambient thermal resistance	39.4	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	24.9	°C/W
R _{θ JB}	Junction-to-board thermal resistance	20	°C/W
ψJT	Junction-to-top characterization parameter	0.6	°C/W
ψ ЈВ	Junction-to-board characterization parameter	19.8	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	2	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the application report.

6.5 Electrical Characteristics

 $T_C = 25^{\circ}C$, PVDD = 14.4 V, $R_L = 4 \Omega$, $P_{(O)} = 1$ W/ch, AES17 filter, default I²C settings (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OPERATING CURRENT					
PVDD idle current	In PLAY mode, no audio present		16		mA
PVDD standby current	STANDBY mode, MUTE = 0 V		5	20	μA
OUTPUT POWER	,	1			
Output a suran a sa sharrad	4 Ω , THD+N \leqslant 1%, 1 kHz, T $_{\rm C}$ = 75°C		6		W
Output power per channel	4 Ω , THD+N = 10%, 1 kHz, T _C = 75°C		8		VV
Power efficiency	4 Ω, P _(O) = 8 W (10% THD)		83%		
AUDIO PERFORMANCE	1				
Noise voltage at output	G = 20 dB, zero input, and A-weighting		65		μV

提交文档反馈

5

English Data Sheet: SLOSE43

 $T_C = 25^{\circ}C$, PVDD = 14.4 V, $R_L = 4 \Omega$, $P_{(O)} = 1$ W/ch, AES17 filter, default I²C settings (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Common-mode rejection ratio	f = 1 kHz, 100 mVrms referenced to GND, G = 20 dB		63		dB
Power-supply rejection ratio	PVDD = 14.4 Vdc + 1 Vrms, f = 1 kHz		75		
Total harmonic distortion + noise	P _(O) = 1 W, f = 1 kHz		0.05%		
Switching frequency	Switching frequency selectable for AM interference avoidance		400 500		kHz
Internal common-mode input bias voltage	Internal bias applied to IN_N, IN_P pins		3		V
	Source impedance = 0 Ω , register 0x03 bits 7 - 6 = 00	19	20	21	
	Source impedance = 0 Ω , register 0x03 bits 7 - 6 = 01	25	26	27	
Voltage gain (V _O / V _{IN})	Source impedance = 0 Ω , register 0x03 bits 7 - 6 = 10	31	32	33	dB
	Source impedance = 0 Ω , register 0x03 bits 7 - 6 = 11	35	36	37	
PWM OUTPUT STAGE					
FET drain-to-source resistance	T _J = 25°C		180		mΩ
Output offset voltage	Zero input signal, G = 20 dB			±25	mV
PVDD OVERVOLTAGE (OV) PROTECTION					
PVDD overvoltage-shutdown set		19.5	21	22.5	V
PVDD overvoltage-shutdown hysteresis			0.6		V
PVDD UNDERVOLTAGE (UV) PROTECTION				ı	
PVDD undervoltage-shutdown set		3.6	4	4.4	V
PVDD undervoltage-shutdown hysteresis			0.25		V
BYP					
BYP pin voltage		6.4	6.9	7.4	V
POWER-ON RESET (POR)					
PVDD voltage for POR				4.1	V
PVDD recovery hysteresis voltage for POR			0.3		V
OVERTEMPERATURE (OT) PROTECTION					
Junction temperature for overtemperature		155	170		°C
shutdown					
Junction temperature overtemperature shutdown hystersis			15		°C
OVERCURRENT (OC) SHUTDOWN PROTECTION	N				
Maximum current (peak output current)			2.4		Α
STANDBY PIN					
STANDBY pin current			0.1	0.2	μA
DC DETECT					
DC detect threshold			2.9		V
DC detect step response time				700	ms
FAULT REPORT	,				
FAULT pin output voltage for logic-level high (open-drain logic output)	External 47-k Ω pullup resistor to 3.3 V	2.4			V
FAULT pin output voltage for logic-level low (open-drain logic output)	External 47-k Ω pullup resistor to 3.3 V			0.5	V
LOAD DIAGNOSTICS					

Product Folder Links: TAS5431-Q1

$T_C = 25^{\circ}C$, PVDD = 14.4 V, $R_L = 4 \Omega$, $P_{(O)} = 1$ W/ch, AES17 filter, default I²C settings (unless otherwise noted)

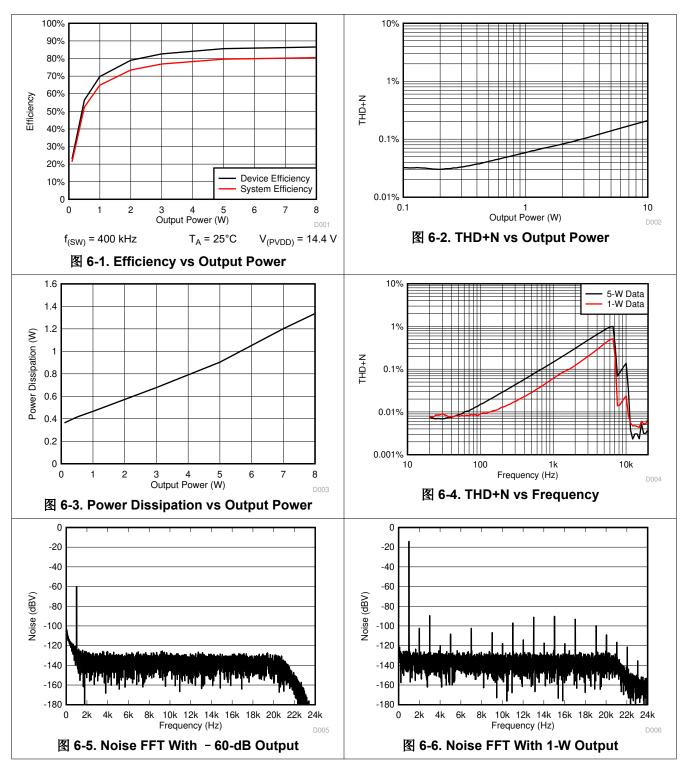
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Resistance to detect a short from OUT pin(s) to PVDD or ground				200	Ω
Open-circuit detection threshold	Including speaker wires	70	95	120	Ω
Short-circuit detection threshold	Including speaker wires	0.9	1.2	1.5	Ω
I ² C				'	
SDA pin output voltage for logic-level high	$R_{(PU_12C)}$ = 4.7-k Ω pullup, supply voltage = 3.3 V or 5 \overline{V}	2.4			V
SDA pin output voltage for logic-level low	3-mA sink current			0.4	V
Capacitance for SCL and SDA pins				10	pF
Capacitance for SDA pin	STANDBY mode		30		pF

6.6 Timing Requirements for I2C Interface Signals

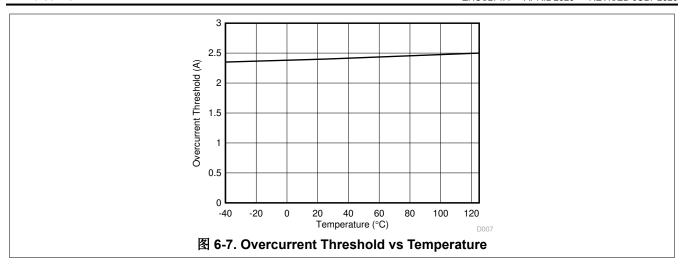
over recommended operating conditions (unless otherwise noted)

		MIN	NOM M	AX	UNIT
f _(SCL)	SCL clock frequency		4	00	kHz
t _r	Rise time for both SDA and SCL signals		3	00	ns
t _f	Fall time for both SDA and SCL signals		3	00	ns
t _{w(H)}	SCL pulse duration, high	0.6			μs
t _{w(L)}	SCL pulse duration, low	1.3			μs
t _{su(2)}	Setup time for START condition	0.6			μs
t _{h(2)}	START condition hold time before generation of first clock pulse	0.6			μs
t _{su(1)}	Data setup time	100			ns
t _{h(1)}	Data hold time	0(1)			ns
t _{su(3)}	Setup time for STOP condition	0.6			μs
C _(B)	Load capacitance for each bus line		4	00	pF

⁽¹⁾ A device must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of SCI


提交文档反馈

1

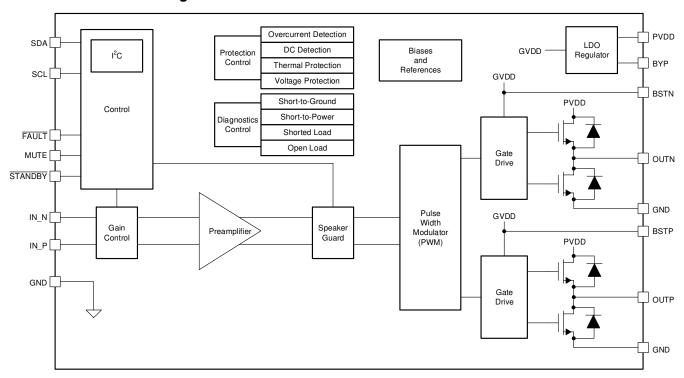


6.7 Typical Characteristics

 T_C = 25°C, PVDD = 14.4 V, R_L = 4 Ω , $P_{(O)}$ = 1 W per channel, AES17 filter, 1-kHz input, default I²C settings (unless otherwise noted)

9

7 Detailed Description


7.1 Overview

The TAS5431-Q1 is a mono analog-input class-D audio amplifier for use in an automotive environment. The design uses an ultra-efficient class-D technology developed by Texas Instruments with additional features specific to the automotive industry. The class-D technology allows for reduced power consumption, reduced heat, and reduced peak currents in the electrical system. The device realizes an audio sound system design with smaller size and lower weight than traditional class-AB solutions.

The TAS5431-Q1 device has seven core design blocks:

- PWM
- · Gate drive
- Power FETs
- Diagnostics
- Protection
- · Power supply
- I²C serial communication bus

7.2 Functional Block Diagram

Product Folder Links: TAS5431-Q1

7.3 Feature Description

7.3.1 Analog Audio Input and Preamplifier

The differential input stage of the amplifier cancels common-mode noise that appears on the inputs. For a differential audio source, connect the positive lead to IN_P and the negative lead to IN_N. The inputs must be ac-coupled to minimize the output dc-offset and ensure correct ramping of the output voltages. For good transient performance, the impedance seen at each of the two differential inputs should be the same.

The gain setting impacts the analog input impedance of the amplifier. See Input Impedance and Gain for typical values.

₹ 1-1. Iliput iliipedance and Gain								
Gain	Input Impedance							
20 dB	60 kΩ ± 20%							
26 dB	30 kΩ ± 20%							
32 dB	15 kΩ ± 20%							
36 dB	9 k Ω ± 20%							

7.3.2 Pulse-Width Modulator (PWM)

The PWM converts the analog signal from the preamplifier into a switched signal of varying duty cycle. This is the critical stage that defines the class-D architecture. In the TAS5431-Q1, the modulator is an advanced design with high bandwidth, low noise, low distortion, and excellent stability.

The pulse-width modulation scheme allows increased efficiency at low power. Each output is switching from 0 V to PVDD. The OUTP and OUTN pins are in phase with each other with no input so that there is little or no current in the speaker. The duty cycle of OUTP is greater than 50% and the duty cycle OUTN is less than 50% for positive output voltages. The duty cycle of OUTN is greater than 50% and the duty cycle of OUTP is less than 50% for negative output voltages. The voltage across the load is at 0 V through most of the switching period, reducing power loss.

Product Folder Links: TAS5431-Q1

提交文档反馈

11

English Data Sheet: SLOSE43

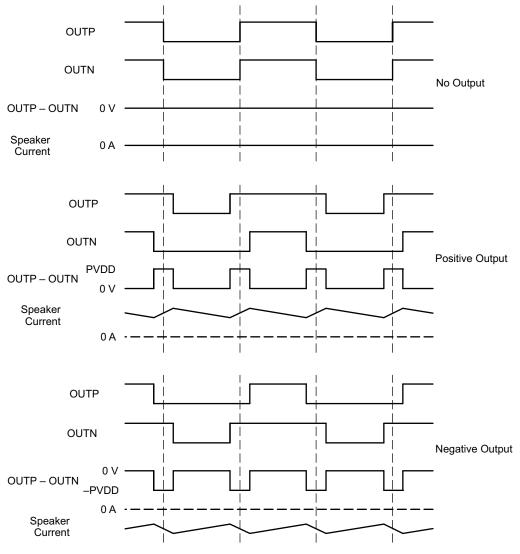


图 7-1. BD Mode Modulation

English Data Sheet: SLOSE43

7.3.3 Gate Drive

The gate driver accepts the low-voltage PWM signal and level-shifts the signal to drive a high-current, full-bridge, power FET stage. The device uses proprietary techniques to optimize EMI and audio performance.

7.3.4 Power FETs

The BTL output comprises four matched N-channel FETs for high efficiency and maximum power transfer to the load. By design, the FETs withstand large voltage transients during a load-dump event.

7.3.5 Load Diagnostics

The device incorporates load diagnostic circuitry designed for detecting and determining the status of output connections. The device supports the following diagnostics:

- Short to GND
- Short to PVDD
- Short across load
- Open load

The device reports the presence of any of the short or open conditions to the system via I²C register read.

7.3.5.1 Load Diagnostics Sequence

The load diagnostic function runs on de-assertion of STANDBY or when the device is in a fault state (dc detect, overcurrent, overvoltage, undervoltage, and overtemperature). During this test, the outputs are in a Hi-Z state. The device determines whether the output is a short to GND, short to PVDD, open load, or shorted load. The load diagnostic biases the output, which therefore requires limiting the capacitance value for proper functioning; see the Recommended Operating Conditions. The load diagnostic test takes approximately 229 ms to run. Note that the check phase repeats up to five times if a fault is present or a large capacitor to GND is present on the output. On detection of an open load, the output still operates. On detection of any other fault condition, the output goes into a Hi-Z state, and the device checks the load continuously until removal of the fault condition. After detection of a normal output condition, the audio output starts. The load diagnostics run after every other overvoltage (OV) event. The load diagnostic for open load only has I²C reporting. All other faults have I²C and FAULT pin assertion.

The device performs load diagnostic tests as shown in <a>8 7-2.

7-3 illustrates how the diagnostics determine the load based on output conditions.

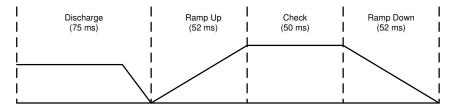


图 7-2. Load Diagnostics Sequence of Events

Product Folder Links: TAS5431-Q1

13

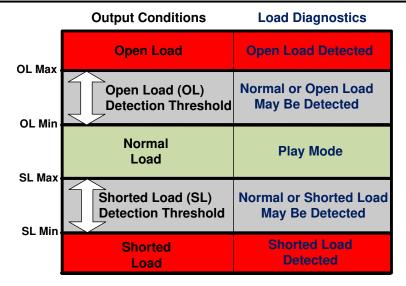


图 7-3. Load Diagnostic Reporting Thresholds

7.3.5.2 Faults During Load Diagnostics

If the device detects a fault (such as overtemperature, overvoltage, or undervoltage) during the load diagnostics test, the device exits the load diagnostics, which can result in a pop or click on the output.

7.3.6 Protection and Monitoring

- Overcurrent Shutdown (OCSD)—The overcurrent shutdown forces the output into Hi-Z. The device asserts the FAULT pin and updates the I²C register.
- **DC Detect**—This circuit checks for a dc offset continuously during normal operation at the output of the amplifier. If a dc offset occurs, the device asserts the FAULT pin and updates the I²C register. Note that the dc detection threshold follows PVDD changes.
- Overtemperature Shutdown (OTSD)—The device shuts down when the die junction temperature reaches the overtemperature threshold. The device asserts the FAULT pin asserts and updates I²C register. Recovery is automatic when the temperature returns to a safe level.
- **Undervoltage (UV)**—The undervoltage (UV) protection detects low voltages on PVDD. In the event of an undervoltage condition, the device asserts the FAULT pin and resets the I²C register.
- Power-On Reset (POR)—Power-on reset (POR) occurs when PVDD drops below the POR threshold. A
 POR event causes the I²C bus to go into a high-impedance state. After recovery from the POR event, the
 device restarts automatically with default I²C register settings.
- Overvoltage (OV) and Load Dump—OV protection detects high voltages on PVDD. If PVDD reaches the overvoltage threshold, the device asserts the FAULT pin and updates the I²C register. The device can withstand 40-V load-dump voltage spikes. The device supports load-dump in both standby and active modes.
- SpeakerGuard—This protection circuitry limits the output voltage to the value selected in I²C register 0x03.
 This value determines both the positive and negative limits. The user can use the SpeakerGuard feature to improve battery life or protect the speaker from exceeding its excursion limits.
- Adjacent-Pin Shorts—The device design is such that shorts between adjacent pins do not cause damage.

7.3.7 I²C Serial Communication Bus

The device communicates with the system processor via the I²C serial communication bus as an I²C slave-only device. The processor can poll the device via I²C to determine the operating status. All reports of fault conditions and detections are via I²C. The system can also set numerous features and operating conditions via I²C. The I²C interface is active approximately 1 ms after the STANDBY pin is high.

The I²C interface controls the following device features:

Changing gain setting to 20 dB, 26 dB, 32 dB, or 36 dB.

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SLOSE43

Controlling peak voltage value of SpeakerGuard protection circuitry

- · Reporting load diagnostic results
- Changing of switching frequency for AM radio avoidance

7.3.7.1 I²C Bus Protocol

The device has a bidirectional serial control interface that is compatible with the Inter IC (I^2 C) bus protocol and supports 400-kbps data transfer rates for random and sequential write and read operations. This is a slave-only device that does not support a multimaster bus environment or wait-state insertion. The master device uses the I^2 C control interface to program the registers of the device and to read device status.

The I²C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a system. Data transfer on the bus is serial, one bit at a time. The transfer of address and data is in byte (8-bit) format with the most-significant bit (MSB) transferred first. In addition, the receiving device acknowledges each byte transferred on the bus with an acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and ends with the master device driving a stop condition on the bus. The bus uses transitions on the data pin (SDA) while the clock is HIGH to indicate start and stop conditions. A HIGH-to-LOW transition on SDA indicates a start, and a LOW-to-HIGH transition indicates a stop. Normal data bit transitions must occur within the low time of the clock period. 8 7-4 shows these conditions. The master generates the 7-bit slave address and the read/write (R/ W) bit to open communication with another device and then waits for an acknowledge condition. The device holds SDA LOW during the acknowledge clock period to indicate an acknowledgment. When this occurs, the master transmits the next byte of the sequence. The address for each device is a unique 7-bit slave address plus a R/ \overline{W} bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. The SDA and SCL signals require the use of an external pullup resistor to set the HIGH level for the bus. There is no limit on the number of bytes that the communicating devices can transmit between start and stop conditions. After transfer of the last word, the master generates a stop condition to release the bus.

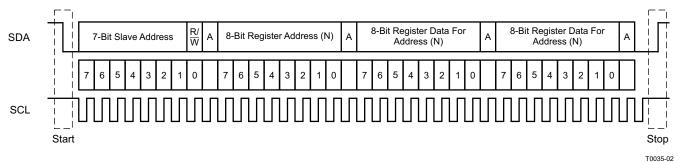


图 7-4. Typical I²C Sequence

To communicate with the device, the I²C master uses addresses shown in <u>⊠</u> 7-4. Transmission of read and write data can be by single-byte or multiple-byte data transfers.

7.3.7.2 Random Write

As shown in \$\text{\tex{

Product Folder Links: TAS5431-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

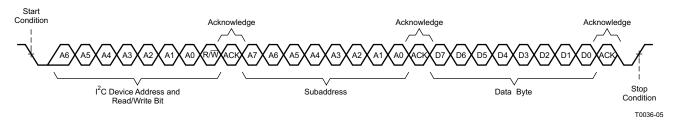


图 7-5. Random Write Transfer

7.3.7.3 Random Read

As shown in \$\text{\tex{

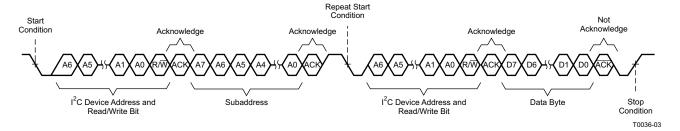


图 7-6. Random Read Transfer

7.3.7.4 Sequential Read

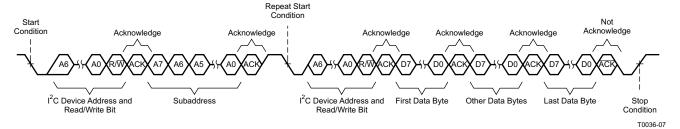


图 7-7. Sequential Read Transfer

Copyright © 2024 Texas Instruments Incorporated

7.4 Device Functional Modes

7.4.1 Hardware Control Pins

Three discrete hardware pins are available for real-time control and indication of device status.

- 1. **FAULT** pin: This active-low open-drain output pin indicates the presence of a fault condition which requires the device to go into the Hi-Z mode. On assertion of this pin, the device has protected itself and the system from potential damage. The system can read the exact nature of the fault via I²C with the exception of PVDD undervoltage faults below POR, in which case the I²C bus is no longer operational.
- 2. **STANDBY** pin: Assertion of this active-low pin sends the device into a complete shutdown, limiting the current draw. Load-dump protection is supported. I²C is inactive and non-blocking (does not pull I²C bus low) and the device registers are reset.
- 3. **MUTE** pin: On assertion of this active-high pin, the device is in mute mode. The output pins stop switching and audio does not pass from the input to the output. To place the device back into play mode, deassert this pin. The MUTE pin should be asserted low when the device is in STANDBY.

7.4.2 EMI Considerations

Automotive-level EMI performance depends on both careful integrated-circuit design and good system-level design. Controlling sources of electromagnetic interference (EMI) was a major consideration in all aspects of the design.

The design has minimal parasitic inductances due to the short leads on the package, which dramatically reduces the EMI that results from current passing from the die to the system PCB. The design incorporates circuitry that optimizes output transitions that cause EMI.

7.4.3 Operating Modes and Faults

The following tables list operating modes and faults.

表 7-2. Operating Modes

** = * * p ** *************************											
STATE NAME	OUTPUT	OSCILLATOR	I ² C (1)								
STANDBY	Hi-Z, floating	Stopped	Inactive, Registers Reset, Non-blocking								
Load diagnostic	DC biased	Active	Active								
Mute (Hi-Z) / Fault	Hi-Z, floating	Active	Active								
Play	Switching with audio	Active	Active								

(1) See SLOA264 for I2C applications.

表 7-3. Faults and Actions

FAULT EVENT	FAULT EVENT CATEGORY	MONITORING MODES	REPORTING METHOD	ACTION TYPE	ACTION RESULT	CLEARING	STANDBY	
POR					Standby		Disabled	
UV	Voltage fault	Mute (Hi-Z), Play					Disabled	
OV and Load dump ⁽¹⁾	J	, , ,	I ² C + FAULT pin	Hard mute (no ramp)			Protected, No Reporting	
OTSD	Thermal fault	Mute (Hi-Z), Play				Hi-Z	Self-clearing	
OC fault	Output channel	Play						
DC detect	fault	гіау	I ² C + FAULT pin	FAULT pin				
Load diagnostic - short	Diagnostic	Hi-Z		None	Hi-Z, re-run diagnostics		Disabled	
Load diagnostic - open	Diagilostic	1 II-Z	I ² C	ivolle	None	Clears on next diagnostic cycle		

(1) Tested in accordance with ISO7637-1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

17

7.5 Register Maps

表 7-4. I²C Address

DESCRIPTION			FIXI	ED ADDR	READ/WRITE BIT I ² C ADDRES					
DESCRIPTION	MSB	6	5	4	3	2	1	LSB	I-C ADDKE22	
I ² C write	1	1	0	1	1	0	0	0	0xD8	
I ² C read	1	1	0	1	1	0	0	1	0xD9	

7.5.1 I²C Address Register Definitions

表 7-5. I²C Address Register Definitions

ADDRESS	R/W	REGISTER DESCRIPTION					
0x01	R	Latched fault register					
0x02	R	Status and load diagnostics register					
0x03	R/ W	Control register					

表 7-6. Fault Register (0x01)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION
0	0	0	0	0	0	0	0	No protection-created faults, default value
-	-	-	-	-	-	-	1	Reserved
-	-	-	-	-	-	1	-	Reserved
-	-	-	-	-	1	-	-	A load-diagnostics fault has occurred.
-	-	-	-	1	-	-	-	Overcurrent shutdown has occurred.
-	-	-	1	-	-	-	-	PVDD undervoltage has occurred.
-	-	1	-	-	-	-	-	PVDD overvoltage has occurred.
-	1	-	-	-	-	-	-	DC offset protection has occurred.
1	-	-	ı	-	-	-	-	Overtemperature shutdown has occurred.

表 7-7. Status and Load Diagnostic Register (0x02)

D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION	
0	0	0	0	0	0	0	0	No speaker-diagnostic-created faults, default value	
-	-	-	-	-	-	-	1	Output short to PVDD is present.	
-	-	-	-	-	-	1	-	Output short to ground is present.	
-	-	-	-	-	1	-	-	Open load is present.	
-	-	-	-	1	-	-	-	Shorted load is present.	
-	-	-	1	-	-	-	-	In a fault condition	
-	-	1	-	-	-	-	-	Performing load diagnostics	
-	1	-	-	-	-	-	-	In mute mode	
1	-	-	-	-	-	-	-	In play mode	

Product Folder Links: TAS5431-Q1 English Data Sheet: SLOSE43

Copyright © 2024 Texas Instruments Incorporated

表 7-8. Control Register (0x03)

	,, a same grown (see a)								
D7	D6	D5	D4	D3	D2	D1	D0	FUNCTION	
0	1	1	1	1	0	0	0	0 26-dB gain, switching frequency set to 400 kHz , SpeakerGuard protection circuitry disabled	
-	-	-	-	-	-	-	1	Switching frequency set to 500 khz	
-	-	-	-	-	1	1	-	Reserved	
-	-	1	1	0	-	-	-	SpeakerGuard protection circuitry set to 14-V peak output	
-	-	1	0	1	-	-	-	SpeakerGuard protection circuitry set to 11.8-V peak output	
-	-	1	0	0	-	-	-	SpeakerGuard protection circuitry set to 9.8-V peak output	
-	-	0	1	1	-	-	-	SpeakerGuard protection circuitry set to 8.4-V peak output	
-	-	0	1	0	-	-	-	SpeakerGuard protection circuitry set to 7-V peak output	
-	-	0	0	1	-	-	-	SpeakerGuard protection circuitry set to 5.9-V peak output	
-	-	0	0	0	-	-	-	SpeakerGuard protection circuitry set to 5-V peak output	
0	0	-	-	-	-	-	-	- Gain set to 20 dB	
1	0	-	-	-	-	-	-	Gain set to 32 dB	
1	1	-	-	-	-	-	-	Gain set to 36 dB	

19

English Data Sheet: SLOSE43

8 Application and Implementation

备注

以下应用部分的信息不属于 TI 组件规范, TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

8.1 Application Information

The device is a mono high-efficiency class-D audio amplifier. Typical use of the device is to amplify an audio input to drive a speaker. The intent of its use is for a bridge-tied load (BTL) application, not for support of single-ended configuration. This section presents how to use the device in the application, including what external components are necessary and how to connect unused pins.

8.2 Typical Application

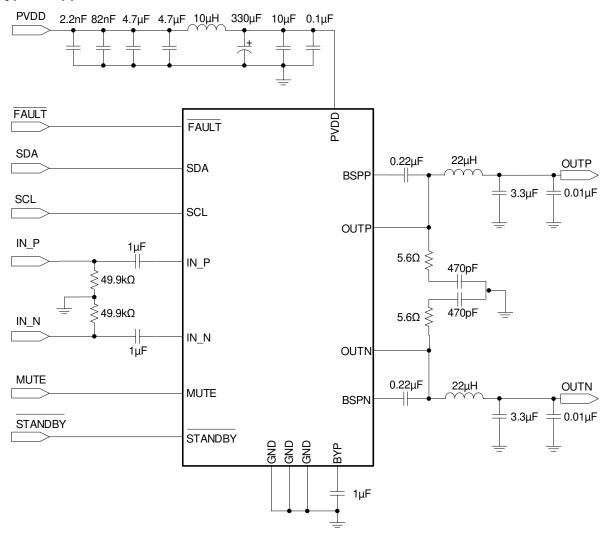


图 8-1. TAS5431-Q1 Typical Application Schematic

Product Folder Links: TAS5431-Q1

Copyright © 2024 Texas Instruments Incorporated

8.2.1 Design Requirements

Use the following for the design requirements:

· Power supplies

The device requires only a single power supply compliant with the recommended operation range. The device is designed to work with either a vehicle battery or regulated power supply such as from a backup battery.

Communication

The device communicates with the system controller with both discrete hardware control pins and with I^2C . The device is an I^2C slave and thus requires a master. If a master I^2C -compliant device is not present in the system, the device can still be used, but only with the default settings. Diagnostic information is limited to the discrete reporting \overline{FAULT} pin.

· External components

表 8-1 lists the components required for the device.

表 8-1	Supporting	Components
1X U-1.	Subbol tilla	COMPONENTS

EVM DESIGNATOR	QUANITY	VALUE	SIZE	DESCRIPTION	USE IN APPLICATION
C7	1	10 µF±10%	1206	X7R ceramic capacitor, 25-V	Power supply
C8	1	330 µF±20%	10 mm	Low-ESR aluminum capacitor, 25-V	Power supply
C9, C16, C20	3	1 μF ± 10%	0805	X7R ceramic capacitor, 25-V	Analog audio input filter, bypass
C10, C14	2	0.22 μF ± 10%	0603	X7R ceramic capacitor, 25-V	Bootstrap capacitors
C11, C17	2	3.3 µF±10%	0805	X7R ceramic capacitor, 25-V	Amplifier output filtering
C13, C15	2	470 pF ± 10%	0603	X7R ceramic capacitor, 250-V	Amplifier output snubbers
C6	1	0.1 μF ± 10%	0603	X7R ceramic capacitor, 25-V	Power supply
C2	1	2200 pF ± 10%	0603	X7R ceramic capacitor, 50-V	Power supply
C3	1	0.082 μF ± 10%	0603	X7R ceramic capacitor, 25-V	Power supply
C4, C5	2	4.7 μF ± 10%	1206	X7R ceramic capacitor, 25-V	Power supply
C12, C18	2	0.01 µF±10%	0603	X7R ceramic capacitor, 25-V	Output EMI filtering
L1	1	10 μH±20%	13.5 mm ×13.5 mm	Shielded ferrite inductor	Power supply
L2	1	22 μH ± 20%	8 mm × 8 mm	Coupled inductor	Amplifier output filtering
R5, R6	2	49.9 kΩ ± 1%	0805	Resistors, 0.125-W	Analog audio input filter
R4, R7	2	5.6 Ω ± 5%	0805	Resistors, 0.125-W	Output snubbers

8.2.1.1 Amplifier Output Filtering

Output FETs drive the amplifier outputs in an H-bridge configuration. These transistors are either fully off or on. The result is a square-wave output signal with a duty cycle that is proportional to the amplitude of the audio signal. The amplifier outputs require a low-pass filter to filter out the PWM modulation carrier frequency. People frequently call this filter the L-C filter, due to the presence of an inductive element L and a capacitive element C to make up the 2-pole low-pass filter. The L-C filter attenuates the carrier frequency, reducing electromagnetic emissions and smoothing the current waveform which the load draws from the power supply. See *Class-D LC Filter Design* for a detailed description on proper component selection and design of an L-C filter based upon the desired load and response.

Product Folder Links: TAS5431-Q1 English Data Sheet: SLOSE43

8.2.1.2 Amplifier Output Snubbers

A snubber is an RC network placed at the output of the amplifier to dampen ringing or overshoot on the PWM output waveform. Overshoot and ringing has several negative impacts including: potential EMI sources, degraded audio performance, and overvoltage stress of the output FETs or board components. For more information on the use and design of output snubbers, see Class-D Output Snubber Design Guide.

8.2.1.3 Bootstrap Capacitors

The output stage uses dual NMOS transistors; therefore, the circuit requires bootstrap capacitors for the high side of each output to turn on correctly. The required capacitor connection is from BSTN to OUTN and from BSTP to OUTP as shown in 88-1.

8.2.1.4 Analog Audio Input Filter

The circuit requires an input capacitor to allow biasing of the amplifier put to the proper dc level. The input capacitor and the input impedance of the amplifier form a high-pass filter with a - 3-dB corner frequency determined by the equation: $f = 1 / (2 \pi R_{(i)}C_{(i)})$, where $R_{(i)}$ is the input impedance of the device based on the gain setting and C_(i) is the input capacitor value. 表 8-2 lists largest recommended input capacitor values. Use a capacitor which matches the application requirement for the lowest frequency but does not exceed the values listed.

	per a minimum minimum minimum a autominimum												
GAIN (dB)	TYPICAL INPUT IMPEDANCE (kΩ)	INPUT CAPACITANCE (μF)	HIGH-PASS FILTER (Hz)										
20	60	1	2.7										
20	00	1.5	1.8										
26	30	1	5.3										
20	30	3.3	1.6										
32	15	5.6	2.3										
36	9	10	1.8										

表 8-2. Recommended Input AC-Coupling Capacitors

8.2.2 Detailed Design Procedure

Use the following steps for the design procedure:

- Step 1: Hardware Schematic Design: Using the 🛭 8-1 as a guide, integrate the hardware into the system schematic.
- Step 2: Following the layout guidelines recommended in the #10.1 section, integrate the device and its supporting components into the system PCB file.
- Step 3: Thermal Design: The device has an exposed thermal pad which requires proper soldering. For more information, see Semiconductor and IC Package Thermal Metrics and PowerPAD Thermally Enhanced Package.
- Step 4: Develop software: The EVM User's Guide has detailed instructions for how to set up the device, interpret diagnostic information, and so forth. For information about control registers, see the #7.5 section.

For questions and support, go to the E2E forums.

8.2.2.1 Unused Pin Connections

Even if unused, always connect pins to a fixed rail; do not leave them floating. Floating input pins represent an ESD risk, therefore the user must adhere to the following guidance for each pin.

8.2.2.1.1 MUTE Pin

If the MUTE pin is unused in the application, connect it to GND through a high-impedance resistor.

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: TAS5431-Q1

8.2.2.1.2 **STANDBY** Pin

If the STANDBY pin is unused in the application, connect it to a low-voltage rail such as 3.3 V or 5 V through a high-impedance resistor.

8.2.2.1.3 I²C Pins (SDA and SCL)

If there is no microcontroller in the system, use of the device without I^2C communication is possible. In this situation, connect the SDA and SCL pins to 3.3 V.

8.2.2.1.4 Terminating Unused Outputs

If the FAULT pin does not report to a system microcontroller in the application, connect it to GND.

8.2.2.1.5 Using a Single-Ended Audio Input

When using a single-ended audio source, ac-ground the negative input through a capacitor equal in value to the input capacitor on the positive input, and apply the audio source to the positive input. For best performance, the ac ground should be at the audio source instead of at the device input if possible.

8.2.3 Application Curves

See the *Typical Characteristcs* section for application performance plots.

GRAPH FIGURE NO. Efficiency vs Output Power Figure 6-1 Figure 6-2 THD+N vs Output Power Power Dissipation vs Output Power Figure 6-3 THD+N vs Frequency Figure 6-4 Figure 6-5 Noise FFT With - 60-dB Output Figure 6-6 Noise FFT With 1-W Output Overcurrent Threshold vs Temperature Figure 6-7

表 8-3. Table of Graphs

9 Power Supply Recommendations

A car battery that can have a large voltage range most commonly provides power for the device. PVDD, a filtered battery voltage, is the supply for the output FETs and the low-side FET gate driver. Good power-supply decoupling is necessary, especially at low voltage and temperature levels. To meet the PVDD specifications in the *Electrical Characteristics* section, TI uses 10-µF and 0.1-µF ceramic capacitors near the PVDD pin along with a larger bulk 330-µF electrolytic decoupling capacitor.

An internal linear regulator, which powers the analog circuitry, provides the voltage on the BYP pin. This supply requires an external bypass ceramic capacitor at the BYP pin.

Product Folder Links: TAS5431-Q1

提交文档反馈

23

Product Folder Links: TAS5431-Q1

10 Layout

10.1 Layout Guidelines

The EVM layout optimizes for thermal dissipation and EMC performance. The TAS5431-Q1 device has a thermal pad down, and good thermal conduction and dissipation require adequate copper area. Layout also affects EMC performance. TAS5431Q1EVM illustrations form the basis for the layout discussions.

10.2 Layout Examples

10.2.1 Top Layer

The red boxes around number 1 are the copper ground on the top layer. Soldered directly to the thermal pad, the ground is the first significant thermal dissipation required. There are vias that go to the other layers for further thermal relief, but vias have high thermal resistance. TI recommends that use of the top layer be mostly for thermal dissipation. A further recommendation is short routes from output pins to the second-order LC filter for EMC suppression. The number 2 arrow indicates these short routes for better ECM results. A short route from the PVDD pin to the LC filter from the battery or power source, as indicated by the number 3 arrow, also improves EMC suppression. Route on an outside layer for added current capability. The red box around number 4 indicates the ground plane that is common to both OUTP and OUTN. Place the capacitors of the LC filter in the common ground plane to help with common-mode noise and short ground loops

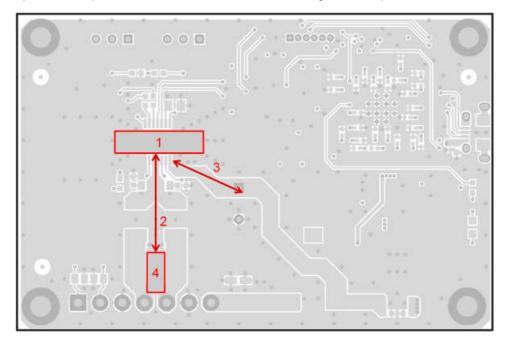


图 10-1. Top layer

25

10.2.2 Second Layer - Signal Layer

Pour a full ground plane on an inner layer to keep current loops small to reduce EMI.

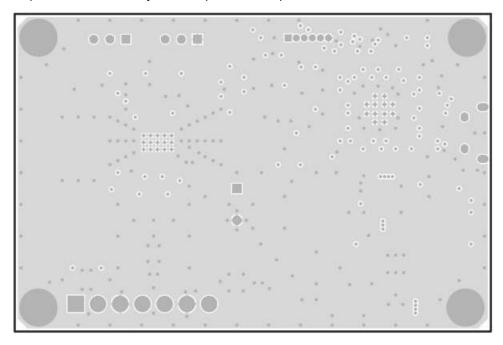


图 10-2. Signal Layer

10.2.3 Third Layer - Power Layer

There is no requirement for a power plane, but TI recommends a wide single wide trace to keep the switching noise to a minimum and provide enough current to the device. The wide trace provides a low-impedance path from the power source. Suppression of switching noise (ripple voltage) on both the positive and return (ground) paths requires a low impedance.

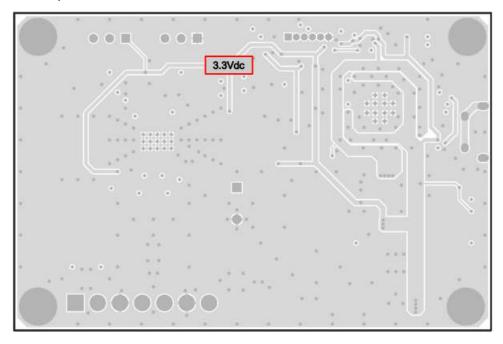


图 10-3. Power Layer

Product Folder Links: TAS5431-Q1

27

10.2.4 Bottom Layer - Ground Layer

The device has an exposed thermal pad on the bottom side for improved thermal performance. Conducting heat from the thermal pad to other layers requires thermal vias. Because the bottom layer is the secondary heat exchange surface to ambient, the thermal vias area must have low thermal resistance.

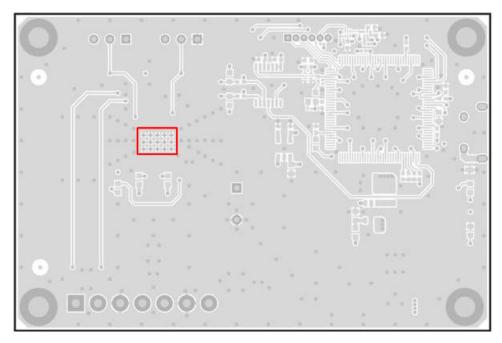


图 10-4. Bottom Layer

Product Folder Links: TAS5431-Q1

11 Device and Documentation Support

11.1 Device Support

11.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此 类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation see the following:

- AN-1737 Managing EMI in Class D Audio Applications (SNAA050)
- AN-1849 An Audio Amplifier Power Supply Design (SNAA057)
- Class-D LC Filter Design (SLOA119)
- Class-D Output Snubber Design Guide (SLOA201)
- Filter-Free™ Class-D Audio Amplifiers (SLOA145)
- Guidelines for Measuring Audio Power Amplifier Performance (SLOA068)
- Power Rating in Audio Amplifiers (SLEA047)
- PowerPAD Thermally Enhanced Package (SLMA002)

11.3 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.4 支持资源

TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索 现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI的使用条款。

11.5 Trademarks

PowerPAD™ and TI E2E™ are trademarks of Texas Instruments.

所有商标均为其各自所有者的财产。

Copyright © 2024 Texas Instruments Incorporated

11.6 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理 和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参 数更改都可能会导致器件与其发布的规格不相符。

11.7 术语表

TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the mostcurrent data available for the designated devices. This data is subject to change without notice and without revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
TAS5431QPWPRQ1	Active	Production	HTSSOP (PWP) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	TAS5431
TAS5431QPWPRQ1.A	Active	Production	HTSSOP (PWP) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	TAS5431

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

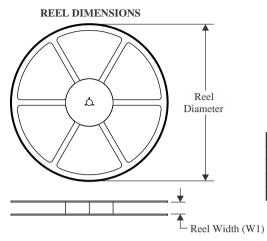
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

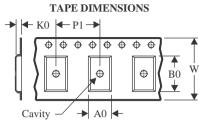
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

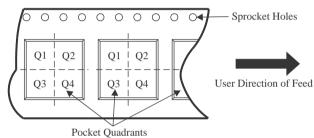
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

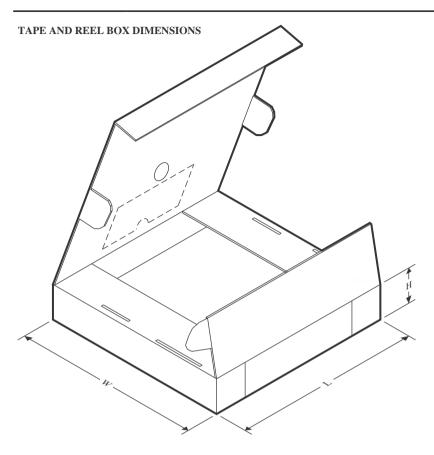
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

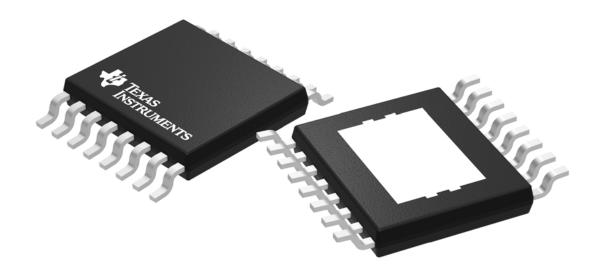
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TAS5431QPWPRQ1	HTSSOP	PWP	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

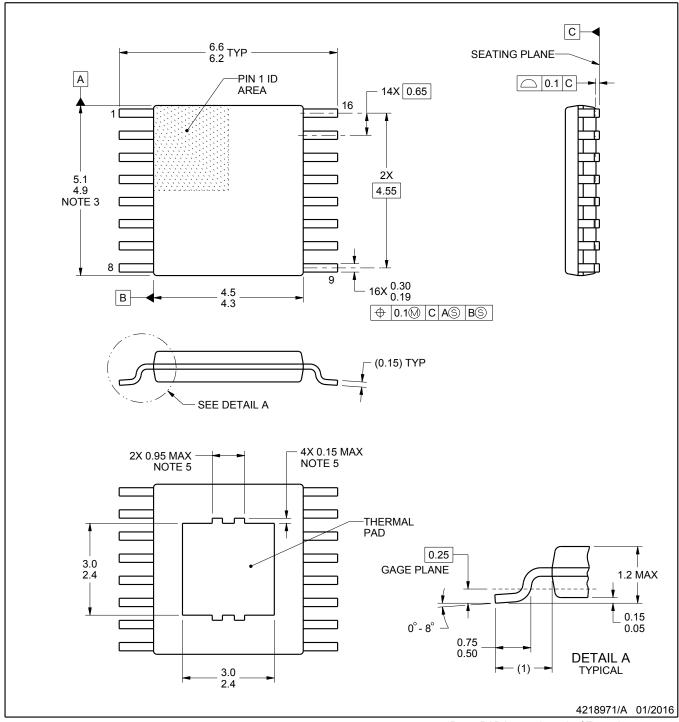
PACKAGE MATERIALS INFORMATION


www.ti.com 24-Jul-2025

*All dimensions are nominal

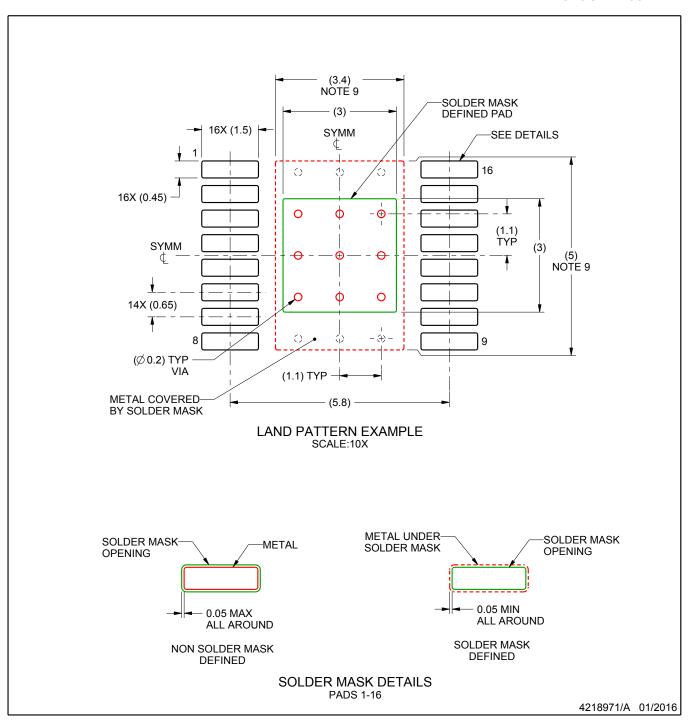
	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ı	TAS5431QPWPRQ1	HTSSOP	PWP	16	2000	353.0	353.0	32.0	

PLASTIC SMALL OUTLINE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

PowerPAD™ TSSOP - 1.2 mm max height

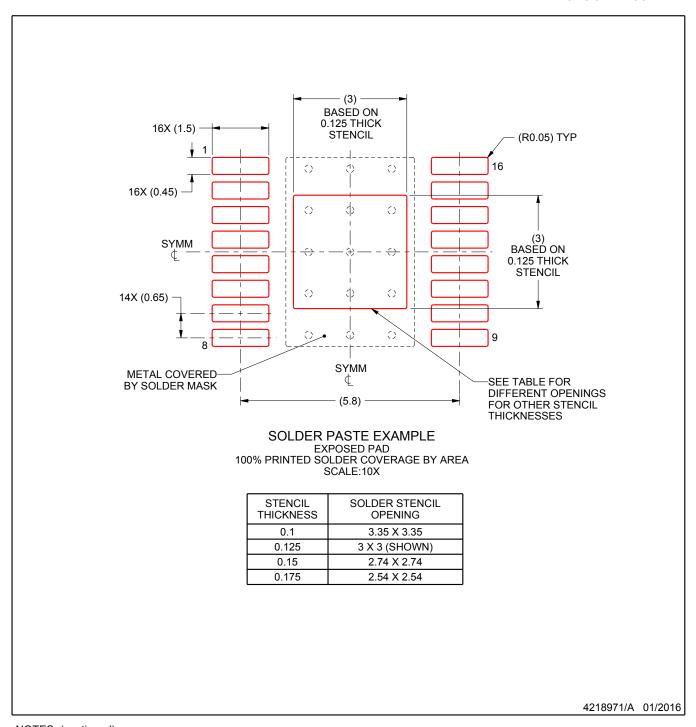
PLASTIC SMALL OUTLINE


NOTES:

PowerPAD is a trademark of Texas Instruments.

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
- exceed 0.15 mm per side.
 4. Reference JEDEC registration MO-153.
- 5. Features may not be present.

PLASTIC SMALL OUTLINE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).
- 9. Size of metal pad may vary due to creepage requirement.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 11. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司