

TAC5411-Q1

ZHCSPN4 - JANUARY 2024

TAC5411-Q1 具有集成可编程升压、麦克风偏置和诊断功能的低功耗单声道音 频编解码器

1 特性

• 符合面向汽车应用的 AEC-Q100 标准

- 温度等级 1: -40°C ≤ T_A ≤ +125°C

ADC 通道

- 性能:

• 线路差分输入动态范围: 108dB 麦克风差分输入动态范围:108dB

THD+N: -95dB

• 通道相加模式可提高 SNR

輸入电压:

• 差分 10V_{RMS} 满量程输入

单端 5V_{RMS} 满量程输入

- 采样速率 (f_S) = 8kHz 至 768kHz

- 可编程麦克风偏置(5V至10V):

• 具有集成的高效升压转换器,或

• 具有外部高电压 HVDD 电源

- 可编程麦克风输入故障诊断:

• 开路输入或短路输入

• 接地短路、MICBIAS 或 VBAT

• 麦克风偏置过流保护

• DAC 通道

DAC 性能:

• DAC 至线路输出动态范围: 119dB • DAC 至 HP 输出动态范围: 115dB

THD+N: -95dB

- 耳机/线路输出的输出电压:

• 差分 2V_{RMS} 满量程

• 单端 1V_{RMS} 满量程

- DAC 采样速率 (f_s) = 8KHz 至 768KHz

常见特性

- 低延迟滤波器选择

- 可编程 HPF 和双二阶滤波器

- I²C 控制接口

- 音频串行接口

• 格式: TDM、I²S 或左平衡

• 字长:16位、20位、24位或32位

- 用于灵活时钟的可编程 PLL

- 单电源运行:3.3V

- I/O 电源运行: 1.2V、1.8V 或 3.3V

2 应用

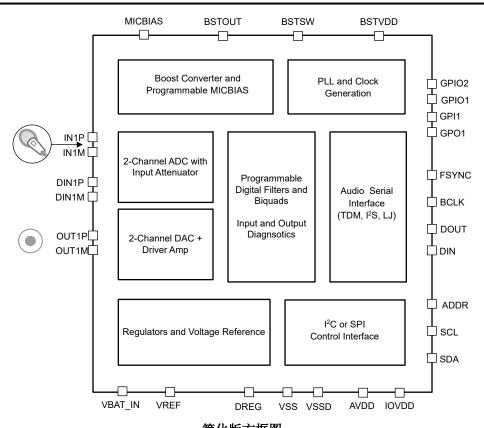
紧急呼叫 (E-Call)

远程信息处理控制单元

汽车有源噪声消除

汽车音响主机

3 说明


TAC5411-Q1 是一款高性能单声道编解码器,具有 10V_{RMS} 差分输入、108dB 单声道 ADC 和 2V_{RMS} 单声 道 DAC 通道。TAC5411-Q1 支持差分和单端输入与输 出。器件在 ADC 通道上支持麦克风输入和线路输入。 DAC 输出可配置为线路输出或耳机负载。TAC5411-Q1 可为耳机负载提供高达 62.5mW 的驱动功率。该器 件还提供集成的高电压、可编程麦克风偏置和输入诊断 电路,可直接连接到基于麦克风的汽车系统,提供全面 的直接耦合输入故障诊断功能。TAC5411-Q1 集成了一 个高效的升压转换器,以通过外部低电压 3.3V 电源产 生高电压麦克风偏置;该器件还可以直接使用系统内随 时可用的外部高电压电源 (HVDD),以产生高电压、可 编程的麦克风偏置。TAC5411-Q1 集成了可编程通道增 益、数字音量控制、低抖动锁相环 (PLL)、可编程高通 滤波器 (HPF)、可编程 EQ 和双二阶滤波器、低延迟滤 波器模式,并可实现高达 768kHz 的采样速率。 TAC5411-Q1 支持时分多路复用 (TDM)、I²S 或左平衡 (LJ) 音频格式,并可通过 I²C 进行控制。这些集成的高 性能特性以及 3.3V 单电源运行, 使得 TAC5411-Q1 特 别适用于空间受限的汽车应用。

器件信息

	PD 11 10	
器件型号	封装 ⁽¹⁾	封装尺寸 ⁽²⁾
TAC5411-Q1	WQFN (32)	5.0mm x 5.0mm

- 如需了解所有可用封装,请参阅数据表末尾的可订购产品附
- 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。

简化版方框图

内容

1 特性 1	6.2 功能方框图	15
2 应用	6.3 特性说明	16
3 说明1	7 寄存器映射	
4 引脚配置和功能	7.1 页 0 寄存器	
5 规格6	7.2 页 1 寄存器	118
5.1 绝对最大额定值6	7.3 Page_3 寄存器	
5.2 ESD 等级6	8 应用和实施	
5.3 建议运行条件6	8.1 应用信息	191
5.4 热性能信息7	8.2 典型应用	191
5.5 电气特性7	9 电源相关建议	194
5.6 时序要求:I ² C 接口12	10 器件和文档支持	195
5.7 开关特性:I ² C 接口13	10.1 文档支持	195
5.8 时序要求: SPI 接口13	10.2 接收文档更新通知	195
5.9 开关特性: SPI 接口13	10.3 支持资源	195
5.10 时序要求: TDM、I ² S 或 LJ 接口	10.4 商标	195
5.11 开关特性:TDM、I ² S 或 LJ 接口	10.5 静电放电警告	195
5.12 时序要求: PDM 数字麦克风接口14	10.6 术语表	
5.13 开关特性: PDM 数字麦克风接口14	11 修订历史记录	195
6 详细说明15	12 机械、封装和可订购信息	195
6.1 概述15	12.1 卷带包装信息	196

4 引脚配置和功能

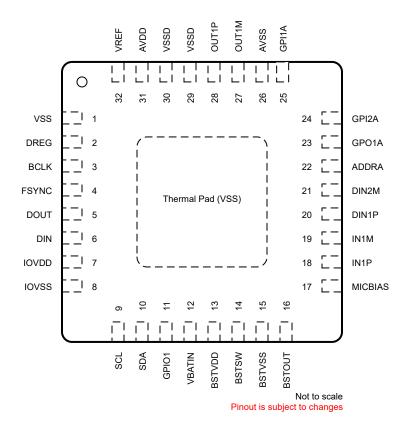


图 4-1. TAC5411-Q1 RTV 封装, 32 引脚 WQFN (带有外露散热焊盘), 顶视图

表 4-1. 引脚功能

名称编号		类型 ⁽¹⁾	说明		
		· 英堡(1)			
VSS	1	地	直接短接至电路板接地层。		
DREG	2	数字电源	数字电源的数字片上稳压器输出电压 (标称值为 1.5V)		
BCLK	3	数字 I/O	音频串行数据接口总线位时钟		
FSYNC	4	数字 I/O	音频串行数据接口总线帧同步信号		
DOUT	5	数字输出	音频串行数据接口总线输出		
DIN	6	数字输入	音频串行数据接口总线输入		
IOVDD	7	数字电源	数字 I/O 电源 (标称值为 1.8V 或 3.3V)		
IOVSS	8	地	直接短接至电路板接地层。		
SCL	9	数字输入	I ² C 控制接口的时钟		
SDA	10	数字 I/O	I ² C 控制接口的数据		
GPIO1	11	数字 I/O	通用数字输入/输出 1 (菊花链输入、音频数据输出、PLL 输入时钟源、中断等通用功能)		
VBAT_IN	12	模拟	模拟 VBAT 输入监控引脚(用于输入诊断)		
BSTVDD	13	模拟电源	升压转换器电源电压(标称 3.3V)		
BSTSW	14	模拟电源	升压转换器开关引脚		
BSTVSS	15	地	直接短接至电路板接地层。		
BSTOUT	16	模拟电源	升压转换器输出电压		
MICBIAS	17	模拟	MICBIAS 输出(可编程输出高达 11V)		
IN1P	18	模拟输入	模拟输入 1P 引脚		

提交文档反馈

Copyright © 2024 Texas Instruments Incorporated

表 4-1. 引脚功能 (续)

引脚 名称 编号		类型 (1)	74 mB
		英堡 (1)	说明
IN1M	19	模拟输入	模拟输入 1M 引脚
DIN1P	20	模拟输入	输入 1P 交流耦合模式的诊断引脚
DIN1M	21	模拟输入	输入 1M 交流耦合模式的诊断引脚
ADDRA	22	数字输入	I2C 地址引脚
GPO1A 23 数字输出 通用数字输出 1(音频数据输出、中断等通用功能)		通用数字输出 1 (音频数据输出、中断等通用功能)	
GPI2A	24	数字输入	通用数字输入 2 (菊花链输入、PLL 输入时钟源等通用功能)
GPI1A	25	数字输入	通用数字输入 1 (菊花链输入、PLL 输入时钟源等通用功能)
AVSS	26	地	直接短接至电路板接地层。
OUT1M	27	模拟输出	模拟输出 1M 引脚
OUT1P	28	模拟输出	模拟输出 1P 引脚
VSSD	29	模拟输出	直接短接至电路板接地层。
VSSD	30	模拟输出	直接短接至电路板接地层。
AVDD	31	模拟电源	模拟电源 (标称值为 3.3V)
VREF	32	模拟	模拟基准电压滤波器输出

⁽¹⁾ I=输入,O=输出,I/O=输入或输出,G=接地,P=电源。

5 规格

5.1 绝对最大额定值

在工作环境温度范围内测得(除非另有说明)(1)

		最小值	最大值	单位
电源电压	AVDD 至 AVSS	-0.3	3.9	V
电源电压	BSTVDD 至 VSS (散热焊盘)	-0.3	3.9	V
电源电压	IOVDD 至 VSS (散热焊盘)	-0.3	3.9	V
电源电压	BSTOUT (外部 HVDD 模式)至 VSS (散热焊盘)	-0.3	14	V
接地电压差	AVSS 至 VSS (散热焊盘)	-0.3	0.3	V
电池电压	VBAT_IN 至 AVSS	-0.3	18	V
模拟输入电压	模拟输入引脚电压至 AVSS	-0.3	18	V
数字输入电压	数字输入引脚电压至 VSS (散热焊盘)	-0.3	IOVDD + 0.3	V
	工作环境温度,T _A	-40	125	
温度	结温,T」	-40	150	°C
	贮存温度,T _{stg}	-65	150	

(1) 超出*绝对最大额定值*下列出的压力可能会对器件造成永久损坏。这些列出的值仅仅是应力额定值,这并不表示器件在这些条件下以及在 *建议运行条件* 以外的任何其他条件下能够正常运行。长时间处于绝对最大额定条件下可能会影响器件的可靠性。

5.2 ESD 等级

				值	単位
		人体放电模型 (HBM),符合 AEC Q100-002 标准 ⁽¹⁾		±2000	
V _(ESD)	静电放电	充电器件模型 (CDM),符合 AEC	转角封装引脚	±750	V
		Q100-011	所有其他非转角封装引脚		

(1) AEC Q100-002 指示 HBM 应力测试应当符合 ANSI/ESDA/JEDEC JS-001 规范。

5.3 建议运行条件

		最小值	标称值	最大值	单位
电源				<u>'</u>	
AVDD ⁽¹⁾	模拟电源电压至 AVSS, AVDD 3.3V 运行	3.0	3.3	3.6	V
BSTVDD	升压转换器电源电压至 VSS (散热焊盘)	3.0	3.3	3.6	V
IOVDD	IO 电源电压至 VSS (散热焊盘) - IOVDD 3.3V 运行	3.0	3.3	3.6	V
IOVDD	IO 电源电压至 VSS (散热焊盘) - IOVDD 1.8V 运行	1.65	1.8	1.95	
IOVDD	IO 电源电压至 VSS (散热焊盘) - IOVDD 1.2V 运行	1.08	1.2	1.32	V
BSTOUT	外部 HVDD 模式下 BSTOUT 电源电压至 VSS (散热焊盘)	5.6	9	12	V
输入				'	
VBAT_IN	VBAT_IN 输入引脚电压至 AVSS	0	12.6	18	V
	模拟输入引脚电压至 AVSS,用于线路输入录音	0		14.2	V
INxx	模拟输入引脚电压至 AVSS,用于麦克风录音	0.1	MICBIAS - 0.1		V
	短接至 VBAT_IN 期间模拟输入引脚电压至 AVSS			3.6 3.6 3.6 1.95 1.32 12	V
的な MA	数字输入引脚(ADDRA、GPO1A、GPI1A、GPI2A 除外)电压至 VSS(散热焊盘)	0		IOVDD	V
	数字输入引脚(ADDRA、GPO1A、GPI1A、GPI2A),以 AVSS 为基准	0		AVDD	V
温度				'	
T _A	工作环境温度	-40		125	°C

提交文档反馈 Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: TAC5411-Q1

6

		最小值	标称值	最大值	单位	
其他						
	GPIO1(用作 CCLK 输入)时钟频率			36.864 ⁽²⁾	MHz	
Сь	I ² C 接口的 SCL 和 SDA 总线电容支持标准模式 和快速模式		400		pF	
	I ² C 接口的 SCL 和 SDA 总线电容支持快速+ 模式		550			
C _L	数字输出负载电容		20	50	pF	
	适用于 TBD 时钟模式的升压转换器电感器		TBD		μΗ	

- (1) AVSS 和 VSS (散热焊盘);所有接地引脚必须连接在一起,并且电压差异不得超过 0.2V。
- (2) MCLK 输入上升时间(V_{IL} 到 V_{IH})和下降时间(V_{IH} 到 V_{IL})必须小于 5ns。为了获得更好的音频噪声性能,必须使用低抖动的 MCLK 输入。

5.4 热性能信息

		TAC5411-Q1	
	热指标 ⁽¹⁾	RTV (WQFN)	单位
		32 引脚	
R ₀ JA	结至环境热阻	39.7	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻	18.4	°C/W
R ₀ JB	结至电路板热阻	19.5	°C/W
ψ JT	结至顶部特征参数	0.2	°C/W
ψ ЈВ	结至电路板特征参数	19.5	°C/W
R _{θ JC(bot)}	结至外壳(底部)热阻	11.5	°C/W

(1) 有关新旧热指标的更多信息,请参阅 spra953 应用报告。

5.5 电气特性

 T_A = 25°C、AVDD = 3.3V、IOVDD = 3.3V、BSTVDD = 3.3V、HVDD = 11V(对于外部 HVDD 情况)、 f_{IN} = 1kHz 正弦信号、 f_S = 48kHz、32 位音频数据、BCLK = 256 × f_S 、TDM 目标模式且 PLL 开启(除非另有说明)

	参数	测试条件	最小值	标称值	最大值	单位
线路输入录	t音的 ADC 性能					
	光八松) 洪县和古济片	交流耦合输入,不支持输入故障诊断				
	差分输入满量程直流信 号电压	直流耦合输入,直流共模电压 INxP = INxM = 7.1V,支持输入故障诊断		10		V_{RMS}
	光冲热) , 进具和主体片	交流耦合输入,不支持输入故障诊断				
	单端输入满量程直流信 号电压	直流耦合输入,直流共模电压 INxP = INxM = 7.1V,支持输入故障诊断		5		V_{RMS}
SNR	信噪比, A 加权 ^{(1) (2)}	选择 IN1 差分交流耦合输入,交流信号对地短路, 0dB 通道增益	108			dB
SNK		选择 IN1 差分直流耦合输入,交流信号对地短路, 0dB 通道增益		108		uБ
DR	动态范围 ,A 加权 ⁽²⁾	选择 IN1 差分交流耦合输入, - 60dB 满量程交流信号输入,0dB 通道增益		108		dB
DK		选择 IN1 差分直流耦合输入, - 60dB 满量程交流信号输入,0dB 通道增益		108		αв
THD+N	N 总谐波失真 ⁽²⁾	选择 IN1 差分交流耦合输入, - 1dB 满量程交流信号输入,0dB 通道增益	-95 待定		待定	dB
I HU+IN		选择 IN1 差分直流耦合输入, - 1dB 满量程交流 信号输入,0dB 通道增益		-95		uБ
麦克风输入	录音的 ADC 性能					

	参数	测试条件	最小值	标称值	最大值	单位
ADC 其他	参数					
	<i>t</i> ♠)四 ₩	差分输入,INxP 和 INxM 之间		66.6		kΩ
	输入阻抗	单端输入,INxP 和 INxM 之间		33.3		K 73
	偏移量	短接输入。		待定		mV
	数字音量控制范围	可编程 0.5dB 阶跃	-120		42	dB
	松)	高达 192KSPS FS 速率		0.46		FS
	── 输入信号带宽	>192KSPS		90		kHz
	输出数据采样速率	可编程	3.675		768	kHz
	输出数据样本字长	可编程	16		32	位
	数字高通滤波器截止频 率	具有可编程系数的一阶 IIR 滤波器, - 3dB 点(默认设置)		2		Hz
PSRR	电源抑制比	100mV _{PP} ,AVDD 上 1kHz 正弦信号,选择差分输入,0dB 通道增益		92		dB
CMRR	共模抑制比	选择差分麦克风输入,0dB 通道增益,1V _{RMS} 交 流输入,两个引脚上都为 1kHz 信号并在输出端测 量电平,CHx_CFG0 D3-2 寄存器位设置为 2b'10 以将器件配置为高 CMRR 性能模式		80		dB
麦克风偏旨	置.				'	
	MICBIAS 噪声	BW = 20Hz 至 20kHz,A 加权,MICBIAS 和 AVSS 之间具有 1 μ F 电容器		20		μV _{RMS}
	MICBIAS 电压	可编程 0.5V 阶跃	3		10	V
	MICBIAS 电流驱动	MICBIAS 电压 10V			30	mA
	MICBIAS 负载调节	MICBIAS 电压 10V,在达到最大负载时测得	0		1	%
	MICBIAS 过流保护阈值	MICBIAS 电压 10V	35			mA
输入诊断						
	故障监控重复率	可编程直流耦合输入	1	4	8	ms
	故障响应时间	故障监控重复率 4ms,直流耦合输入		16		ms
	(INxx - AVSS) 输入对 地短路的阈值电压	可编程 60mV 阶跃,直流耦合输入	0		900	mV
	(INxP - INxM) 输入短接在一起的阈值电压	可编程 30mV 阶跃,直流耦合输入	0		450	mV
	(MICBIAS - INxx) 输入 短接至 MICBIAS 的阈值 电压	可编程 30mV 阶跃,直流耦合输入	0		450	mV
	(VBAT - INxx) 输入短 接至 VBAT_IN 的阈值电 压	可编程 30mV 阶跃,直流耦合输入	0		450	mV
线路输出/	耳机回放的 DAC 性能					
		OUTxP 和 OUTxM 之间的差分输出,AVDD=3.3V		2		
	满量程输出电压	单端输出,AVDD=3.3V		1		V_{RMS}
	11岁里在抽山 巴瓜	OUTxP 和 OUTxM 之间的伪差分输出, AVDD=3.3V		1		▼ RMS
		1				

提交文档反馈

	参数	测记	条件	最小值	标称值	最大值	单位
		差分输出, 0dBFS 信号	, AVDD=3.3V		119		
	信噪比, A 加权 ^{(1) (2)}	单端输出,0dBFS信号	, AVDD=3.3V		110		
		伪差分输出,0dBFS 信号,AVDD=3.3V 差分输出,0dBFS 信号,AVDD=3.3V,0dBFS 信 号,Power Tune 模式 单端输出,0dBFS 信号,AVDD=3.3V,Power Tune 模式			110		
SNR					114		dB
					105		
		伪差分输出,0dBFS 信号 Tune 模式	를 , AVDD=3.3V , Power		104		
		差分输出,-60dBFS 信号	∄ , AVDD=3.3V		119		
		单端输出,-60dBFS 信号	号 , AVDD=3.3V		110		
		伪差分输出,-60dBFS信	言号,AVDD=3.3V		110		
DR	动态范围, A 加权 ⁽²⁾	差分输出,-60dBFS 信号 信号,Power Tune 模式	T, AVDD=3.3V, 0dBFS		114		dB
		单端输出,-60dBFS 信号 Tune 模式	∄ , AVDD=3.3V , Power		105		
		伪差分输出,-60dBFS 信号,AVDD=3.3V, Power Tune 模式			104		
THD+N	总谐波失真(2)				- 95		dB
	耳机负载范围				16		Ω
	线路输出负载范围			600			Ω
	通道增益控制范围	可编程 1dB 阶跃		-6		12	dB
DAC 通道	 其他参数						
	输出偏移	0 输入			0.5		mV
	输出共模	OUTxP 和 OUTxM 的共 模电平 AVDD=3.3V (寄 存器可配置)	OUTxP 和 OUTxM 的共 模电平 AVDD=3.3V		1.625		V
	共模误差	共模电压下的直流误差			±20		mV
	数字音量控制范围	可编程 0.5dB 阶跃		-120		42	dB
	4 . 0	高达 192KSPS FS 速率			0.46		FS
	──輸出信号帯宽	>192KSPS			90		kHz
	输入数据采样速率	可编程		7.35		768	kHz
	输入数据样本字长	可编程		16		32	位
	数字高通滤波器截止频 率	具有可编程系数的一阶 II - 3dB 点(默认设置)	R 滤波器,		2		Hz
PSRR	电源抑制比	100mV _{PP} ,AVDD 上 1kl 入,0dB 通道增益	Hz 正弦信号,选择差分输		92		dB
	静音衰减				-130		dB
P _{out}	输出电力输送	单端/伪差分 R _L =16Ω, T	THD+N<1%		62.5		mW
数字 I/O	1	1					
V	低电平数字输入逻辑电	除 GPI1A、GPI2A、ADI的所有数字引脚,IOVDI		-0.3		0.35 x IOVDD	V
V_{IL}	压阈值	除 GPI1A、GPI2A、ADI的所有数字引脚,IOVDI		-0.3		0.8	V

	参数	测试条件	最小值	标称值	最大值	单位
\ /	高电平数字输入逻辑电	除 GPI1A、GPI2A、ADDRA、SDA 和 SCL 以外的所有数字引脚,IOVDD 1.8V 工作电压	0.65 x IOVDD		IOVDD + 0.3	
V _{IH}	压阈值	除 GPI1A、GPI2A、ADDRA、SDA 和 SCL 以外的所有数字引脚,IOVDD 3.3V 工作电压	2		IOVDD + 0.3	V
V _{OL}	低电平数字输出电压	除 GPO1A、SDA 和 SCL 以外的所有数字引脚, I _{OL} = -2mA,IOVDD 1.8V 工作电压			0.45	V
v OL	[版电丁数子捌出电压	除 GPO1A、SDA 和 SCL 以外的所有数字引脚, I _{OL} = -2mA,IOVDD 3.3V 工作电压			0.4	V
V_OH	高电平数字输出电压	除 GPO1A、SDA 和 SCL 以外的所有数字引脚, I _{OH} = 2mA,IOVDD 1.8V 工作电压	IOVDD - 0.45			V
VOH	同电丨数于棚山电压	除 GPO1A、SDA 和 SCL 以外的所有数字引脚, I _{OH} = 2mA,IOVDD 3.3V 工作电压	2.4			v
$V_{IL(AVDD)}$	低电平数字输入逻辑电 压阈值	适用于引脚 GPI1A、GPI2A、ADDRA	-0.3		0.35 x AVDD	V
V _{IH(AVDD)}	高电平数字输入逻辑电 压阈值	适用于引脚 GPI1A、GPI2A、ADDRA	0.65 x AVDD		AVDD + 0.3	V
$V_{OL(AVDD)}$	低电平数字输出电压	适用于 GPO1A 引脚			0.45	V
V _{OH(AVDD)}	高电平数字输出电压	适用于 GPO1A 引脚	AVDD - 0.45			V
V _{IL(I2C)}	低电平数字输入逻辑电 压阈值	SDA 和 SCL	-0.5		0.3 x IOVDD	V
V _{IH(I2C)}	高电平数字输入逻辑电 压阈值	SDA 和 SCL	0.7 x IOVDD		IOVDD + 0.5	V
V _{OL1(I2C)}	低电平数字输出电压	SDA , $I_{OL(I2C)} = -3mA$, $IOVDD > 2V$			0.4	V
V _{OL2(I2C)}	低电平数字输出电压	SDA , I _{OL(I2C)} = -2mA , IOVDD [char_not_recognized] 2V			0.2 x IOVDD	V
lo. 400)	低电平数字输出电流	SDA, V _{OL(I2C)} = 0.4V, 标准模式或快速模式	3			mA
I _{OL(I2C)}		SDA,V _{OL(I2C)} = 0.4V,快速+ 模式	20			111/3
I _{IL}	数字输入的输入逻辑低 电平泄漏电流	所有数字引脚,输入 = 0V	-5	0.1	5	μΑ
I _{IH}	数字输入的输入逻辑高 电平泄漏电流	所有数字引脚,输入 = IOVDD	-5	0.1	5	μΑ
C _{IN}	数字输入的输入电容	所有数字引脚		5		pF
R _{PD}	置位时数字 I/O 引脚的 下拉电阻			20		kΩ
典型电源电	流消耗					
I _{AVDD}				0.5		
I _{BSTVDD} 或 I _{HVDD}	硬件关断模式下的电流 消耗	SHDNZ = 0,所有器件外部时钟停止		0.1		μΑ
I _{IOVDD}		0.1				
I _{AVDD}				待定		
I _{BSTVDD} 或 I _{HVDD}	睡眠模式(软件关断模 式)下的电流消耗 -	所有器件外部时钟停止		0.1		μΑ
I _{IOVDD}				0.1		
I _{AVDD}	MICBIAS 开启、			待定		
I _{BSTVDD}	MICBIAS 电压 10V、	f _S = 48kHz , BCLK = 256 [char_not_recognized]		待定		mA
I _{HVDD}	│30mA 负载、ADC 关闭 一时的电流消耗	ts s		待定		
I_{IOVDD}				0.01		

Product Folder Links: TAC5411-Q1

提交文档反馈

10

Copyright © 2024 Texas Instruments Incorporated

2.人们及顷

	参数	测试条件	最小值	标称值	最大值	单位
I _{AVDD}	ADC 2 通道在 f _S			待定		
I _{BSTVDD} 或 I _{HVDD}	】16kHz、MICBIAS 关 闭、PLL 开启、BCLK = -512			0		mA
I _{IOVDD}	[char_not_recognized] f _S 下运行时的电流消耗			0.1		
I _{AVDD}	ADC 2 通道在 f _S			待定		
I _{BSTVDD} 或 I _{HVDD}	48kHz、MICBIAS 开 启、PLL 关闭、BCLK = 512			0		mA
I _{IOVDD}	[char_not_recognized] f _S 下运行时的电流消耗			0.1		
I _{AVDD}	DAC 至 HP 2 通道在 f _S			待定		
I _{BSTVDD} 或 I _{HVDD}	】16kHz、MICBIAS 关 闭、PLL 开启、BCLK = -512			0		mA
I _{IOVDD}	[char_not_recognized] f _S 下运行时的电流消耗			0.2		
I _{AVDD}	DAC 至 HP 2 通道在 f _S			待定		
I _{BSTVDD} 或 I _{HVDD}	48kHz、MICBIAS 关 闭、PLL 关闭、BCLK = 512			0		mA
I _{IOVDD}	[char_not_recognized] f _S 下运行时的电流消耗			待定		

- (1) 在 1kHz 满量程正弦波输入时的输出电平与交流信号输入对地短路时的输出电平之比,使用音频分析仪在 20Hz 至 20kHz 的带宽范围内测量并进行 A 加权。
- (2) 所有性能测量均使用 20kHz 低通滤波器以及 A 加权滤波器 (如注明)完成。如果不使用此类滤波器,会导致比"电气特性"中所示更高的 THD 以及更低的 SNR 与动态范围读数。低通滤波器可消除带外噪声,尽管这种噪声不可闻,但会影响动态规格值。

5.6 时序要求: I²C 接口

 T_A = 25°C、IOVDD = 3.3V 或 1.8V(除非另有说明);时序图详见 TBD

	10000 - 3.30 英 1.00 (除年月日 施州) ,时 / 1 国 伊 元 1 日 日	最小值	标称值 最大值	单位
标准模式				
f _{SCL}	SCL 时钟频率	0	100	kHz
t _{HD;STA}	(重复)START条件后的保持时间。在此时间段之后,生成第一个时钟脉冲。	4		μs
t _{LOW}	SCL 时钟的低电平周期	4.7		μ s
t _{HIGH}	SCL 时钟的高电平周期	4		μs
t _{SU;STA}	重复 START 条件的建立时间	4.7		μs
t _{HD;DAT}	数据保持时间	0	3.45	μ s
t _{SU;DAT}	数据设置时间	250		ns
t _r	SDA 和 SCL 上升时间		1000	ns
t _f	SDA 和 SCL 下降时间		300	ns
t _{SU;STO}	STOP 条件的建立时间	4		μ S
t _{BUF}	STOP 与 START 条件之间的总线空闲时间	4.7		μ s
快速模式				
f _{SCL}	SCL 时钟频率	0	400	kHz
t _{HD;STA}	(重复)START条件后的保持时间。在此时间段之后,生成第一个时钟脉冲。	0.6		μs
t _{LOW}	SCL 时钟的低电平周期	1.3		μs
t _{HIGH}	SCL 时钟的高电平周期	0.6		μs
t _{SU;STA}	重复 START 条件的建立时间	0.6		μs
t _{HD;DAT}	数据保持时间	0	0.9	μs
t _{SU;DAT}	数据设置时间	100		ns
t _r	SDA 和 SCL 上升时间	20	300	ns
t _f	SDA 和 SCL 下降时间	20 × (IOVDD / 5.5V)	300	ns
t _{SU;STO}	STOP 条件的建立时间	0.6		μs
t _{BUF}	STOP 与 START 条件之间的总线空闲时间	1.3		μ s
超快速模式				
f _{SCL}	SCL 时钟频率	0	1000	kHz
t _{HD;STA}	(重复)START条件后的保持时间。在此时间段之后,生成第一个时钟脉冲。	0.26		μs
t_{LOW}	SCL 时钟的低电平周期	0.5		μ s
t _{HIGH}	SCL 时钟的高电平周期	0.26		μ s
t _{SU;STA}	重复 START 条件的建立时间	0.26		μ s
t _{HD;DAT}	数据保持时间	0		μs
t _{SU;DAT}	数据设置时间	50		ns
t _r	SDA 和 SCL 上升时间		120	ns
t _f	SDA 和 SCL 下降时间	20 × (IOVDD / 5.5V)	120	ns
t _{SU;STO}	STOP 条件的建立时间	0.26		μ S
t _{BUF}	STOP 与 START 条件之间的总线空闲时间	0.5		μs

提交文档反馈

5.7 开关特性: I2C 接口

 $T_A = 25$ °C、IOVDD = 3.3V 或 1.8V (除非另有说明); 时序图详见 TBD

参数		测试条件	最小值	典型值 最大值	单位
	SCL 至 SDA 延迟	标准模式	200	1250	ns
t _{d(SDA)}		快速模式	200	850	ns
		快速+ 模式		400	ns

5.8 时序要求: SPI 接口

T_A = 25°C、IOVDD = 3.3V 或 1.8V 且所有输出端均具有 20pF 负载(除非另有说明);时序图详见 TBD

			最小值	标称值	最大值	单位
t _(SCLK)	SCLK 周期		40			ns
t _{H(SCLK)}	SCLK 高电平脉冲持续时间		18			ns
t _{L(SCLK)}	SCLK 低电平脉冲持续时间		18			ns
t _{LEAD}	启用超前时间		16			ns
t _{TRAIL}	启用跟踪时间	启用跟踪时间				ns
t _{DSEQ}	顺序传输延迟	顺序传输延迟				ns
t _{SU(MOSI)}	MOSI 数据设置时间		8			ns
t _{HLD(MOSI)}	MOSI 数据保持时间		8			ns
t _{r(SCLK)}	SCLK 上升时间	10% 至 90% 上升时间			6	ns
t _{f(SCLK)}	SCLK 下降时间	90% 至 10% 下降时间			6	ns

5.9 开关特性: SPI 接口

T₄ = 25°C、IOVDD = 3.3V 或 1.8V 且所有输出端均具有 20pF 负载(除非另有说明);时序图详见

	参数	测试条件	最小值	典型值	最大值	单位
+	MICO 法记时间	IOVDD = 1.8V			18	ns
t _{a(MISO)} MISO 访问时间	IOVDD = 3.3V			14	115	
t _{d(MISO)} SCLK 至 MISO 延迟	SCIN & MISO WITH	SCLK 的 50% 至 MISO 的 50%, IOVDD = 1.8V			19	no
	SCLK 至 MISO 延迟	SCLK 的 50% 至 MISO 的 50%, IOVDD = 3.3V			15	ns
t _{dis(MISO)}	MISO 禁用时间	IOVDD = 1.8V			18	ne
		IOVDD = 3.3V			14	ns

5.10 时序要求: TDM、I2S 或 LJ 接口

T_A = 25°C、IOVDD = 3.3V 或 1.8V 且所有输出端均具有 20pF 负载(除非另有说明);时序图详见

			最小值	标称值	最大值	单位
t _(BCLK)	BCLK 周期		40			ns
t _{H(BCLK)}	BCLK 高电平脉冲持续时间(1))	18			ns
t _{L(BCLK)}	BCLK 低电平脉冲持续时间 (1)	18			ns
t _{SU(FSYNC)}	FSYNC 设置时间	FSYNC 设置时间				ns
t _{HLD(FSYNC)}	FSYNC 保持时间		8			ns
t _{r(BCLK)}	BCLK 上升时间	10% 至 90% 上升时间			10	ns
t _{f(BCLK)}	BCLK 下降时间	90% 至 10% 下降时间			10	ns

(1) 如果 SDOUT 数据线锁存在与器件用于传输 SDOUT 数据的边沿相反的 BCLK 边沿极性上,则 BCLK 最短高电平或低电平脉冲持续时间 必须大于 25ns (以满足时序规格)。

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

13

5.11 开关特性: TDM、I²S 或 LJ 接口

 T_A = 25°C、IOVDD = 3.3V 或 1.8V 且所有输出端均具有 20pF 负载 (除非另有说明);时序图详见 TBD

	参数	测试条件	最小值	典型值 最大值	単位
t.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BCLK 到 SDOUT 延迟	BCLK 的 50% 至 SDOUT 的 50%, IOVDD = 1.8V		18	ns
t _d (SDOUT-BCLK)	BOLK 31 SDOOT ALS	BCLK 的 50% 至 SDOUT 的 50%, IOVDD = 3.3V		14	
	TDM 或 LJ 模式下的 FSYNC 到	FSYNC 的 50% 至 SDOUT 的 50%, IOVDD = 1.8V		18	
$t_{d(SDOUT ext{-}FSYNC)}$	SDOUT 延迟 (对于 TX_OFFSET = 0 的 MSB 数据)	FSYNC 的 50% 至 SDOUT 的 50%, IOVDD = 3.3V		14	ns ns
f _(BCLK)	BCLK 输出时钟频率;主模式 (1)			24.576	MHz
•	BCLK 高电平脉冲持续时间;主模式	IOVDD = 1.8V	14		no
t _{H(BCLK)}		IOVDD = 3.3V	14		ns
t	BCLK 低电平脉冲持续时间;主模式	IOVDD = 1.8V	14		ns
t _{L(BCLK)}		IOVDD = 3.3V	14		115
+	DOLK 至 FOVNO 紅印,土樹土	BCLK 的 50% 至 FSYNC 的 50%, IOVDD = 1.8V		18	ns
$t_{d(FSYNC)}$	BCLK 至 FSYNC 延迟;主模式	BCLK 的 50% 至 FSYNC 的 50%, IOVDD = 3.3V		14	
t	DCI V 上升时间, 子档子	10% - 90% 上升时间,IOVDD = 1.8V		10	ns
t _{r(BCLK)}	BCLK 上升时间;主模式	10% - 90% 上升时间,IOVDD = 3.3V		10	
$t_{f(BCLK)}$	BCLK 下降时间;主模式	90% - 10% 下降时间,IOVDD = 1.8V		8	ns
		90% - 10% 下降时间,IOVDD = 3.3V		8	

⁽¹⁾ 如果 SDOUT 数据线锁存在与器件用于传输 SDOUT 数据的边沿相反的 BCLK 边沿极性上,则 BCLK 输出时钟频率必须低于 18.5MHz(以满足时序规格)。

5.12 时序要求: PDM 数字麦克风接口

 T_A = 25°C、IOVDD = 3.3V 或 1.8V 且所有输出端均具有 20pF 负载 (除非另有说明) ; 时序图详见 TBD

		最小值	标称值	大值	単位
t _{SU(PDMDINx)}	PDMDINx 建立时间	30			ns
t _{HLD(PDMDINx)}	PDMDINx 保持时间	待定			ns

5.13 开关特性: PDM 数字麦克风接口

 $T_A = 25$ °C、IOVDD = 3.3V 或 1.8V 且所有输出端均具有 20pF 负载 (除非另有说明);时序图详见 TBD

	参数	测试条件	最小值	典型值	最大值	单位
f _(PDMCLK)	PDMCLK 时钟频率		0.768		6.144	MHz
t _{H(PDMCLK)}	PDMCLK 高电平脉冲持续时间		72			ns
t _{L(PDMCLK)}	PDMCLK 低电平脉冲持续时间		72			ns
t _{r(PDMCLK)}	PDMCLK 上升时间	10% 至 90% 上升时间			8	ns
t _{f(PDMCLK)}	PDMCLK 下降时间	90% 至 10% 下降时间			8	ns

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAC5411-Q1*

6 详细说明

6.1 概述

TAC5411-Q1 是可扩展 TAC5x1x-Q1 器件系列中的一员。作为扩展系列器件的一部分,TAC5411-Q1 包括高性能、低功耗、灵活的单声道/立体声音频模数转换器 (ADC) 和音频数模转换器 (DAC),具有广泛的功能集成。该器件适用于汽车应用,例如远程信息处理控制单元、免提车载通信、紧急呼叫和多媒体应用。此器件具有高动态范围,使其能够以高保真度实现远场音频录制。该器件集成了大量功能,可在空间受限的汽车子系统设计中降低成本、减小布板空间并降低功耗。扩展系列中的封装、性能和器件兼容的配置寄存器使得该器件非常适合可扩展系统设计。

TAC5411-Q1 包含以下模块:

- 单声道、多位、高性能 Δ Σ ADC
- 具有高电压 信号摆幅的可配置单端或差分音频输入
- 高电压、低噪声可编程麦克风偏置输出
- 高度灵活的全面输入故障诊断
- 单声道、多位、高性能 Δ Σ DAC
- 可配置单端、差分或伪差分音频输出
- 对于 MICBIAS 和模拟输出的过流诊断与保护
- 自动增益控制器 (AGC)
- 高级热折返和保护
- 高级电池保护和失真限制器
- 具有线性相位或低延时滤波器的可编程抽取滤波器
- 适用于每个通道的可编程通道增益、音量控制和双二阶滤波器
- 每个通道都具有分辨率超高的可编程相位和增益校准
- 可编程高通滤波器 (HPF) 和数字通道混频器
- 配备高性能抽取滤波器的脉冲密度调制 (PDM) 数字麦克风接口
- 支持多种系统时钟的集成低抖动锁相环 (PLL)
- 集成数字和模拟稳压器,用于支持单电源运行

TAC5411-Q1 支持使用 I²C 接口进行通信,用于配置控制寄存器。该器件支持高度灵活的音频串行接口(时分多路复用(TDM)、I²S 或左对齐(LJ)),以在系统中各个器件之间无缝传输音频数据。

Product Folder Links: TAC5411-Q1

6.2 功能方框图

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

15

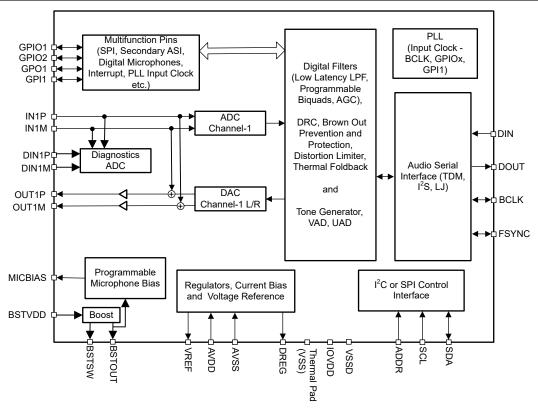


图 6-1. 功能方框图

6.3 特性说明

6.3.1 串行接口

该器件有两个串行接口:控制接口和音频数据接口。控制串行接口用于器件配置。音频数据串行接口用于将音频 数据传输到主机器件。

6.3.1.1 控制串行接口

该器件包含配置寄存器和可编程系数,这些系数可以设置为特定系统和应用用例所需的值。所有这些寄存器均可通过 I^2C 或 SPI 与器件通信来进行访问。如需更多信息,请参阅 $\not = 7$ 部分。

6.3.1.2 音频串行接口

数字音频数据通过数字音频串行接口 (ASI) 或音频总线,在主机处理器和 TAC5411-Q1 之间流动。这个高度灵活的 ASI 总线包括用于多通道运行的 TDM 模式、I²S 或左平衡协议格式支持、可编程数据长度选项、各总线时钟线路的控制器-目标灵活配置,以及直接与系统中多个器件进行通信的能力。

TAC5411-Q1 支持最多两个 ASI 接口。辅助 ASI 时钟和数据引脚可通过设置 GPIO 来进行配置。两个 ASI 的帧同步必须保持同步。

通过使用 PASI_FORMAT[1:0]、P0_R26_D[7:6] 寄存器位,可为主要 ASI 选择总线协议 TDM、I²S 或左平衡 (LJ) 格式。如表 6-1 和表 6-2 所示,这些模式都是最高有效字节 (MSB) 优先的脉冲编码调制 (PCM) 数据格式,输出通道数据字长可以通过配置 PASI WLEN[1:0]、P0 R26 D[5:4] 寄存器位编程为 16、20、24 或 32 位。

表 6-1. 主要音频串行接口格式

P0_R26_D[7:6] : PASI_FORMAT[1:0]	主要音频串行接口格式
00 (默认值)	时分多路复用 (TDM) 模式
01	IC 间音频 (I ² S) 模式
10	左对齐 (LJ) 模式
11	保留(不使用此设置)

表 6-2. 主要音频串行接口数据字长

P0_R7_D[5:4] : PASI_WLEN[1:0]	主要音频输出通道数据字长
00	数据字长设置为 16 位
01	数据字长设置为 20 位
10	数据字长设置为 24 位
11 (默认值)	数据字长设置为 32 位

帧同步引脚 FSYNC 在该音频总线协议中用于定义帧的起始,并具有与输出数据采样速率相同的频率。位时钟引脚 BCLK 用于通过串行总线在时钟沿输出数字音频数据。一个帧中的位时钟周期数必须能够容纳具有编程数据字长的多个器件活动输出通道。

一个帧包含多个时分通道时隙(最多 32 个),以允许一个器件或共享同一音频总线的多个器件在音频总线上完成所有输入/输出通道音频数据传输。该器件支持多达八个输入通道和八个输出通道,这些通道可在主要 ASI 总线上进行配置,以便将其音频数据放在总线时隙 0 至时隙 31 上。表 6-3 列出了输出通道 1 时隙配置设置。在 I²S 和 LJ 模式下,时隙分为两组,即左通道时隙和右通道时隙,如 # 6.3.1.2.2 和 # 6.3.1.2.3 部分所述。

表 6-3. 输出通道 1 时隙分配设置

P0_R30_D[4:0] : PASI_TX_CH1_SLOT[4:0]	输出通道 1 时隙分配
0 0000 = 0d (默认值)	时隙 0 用于 TDM,或左侧时隙 0 用于 I ² S、LJ。
0 0001 = 1d	时隙 1 用于 TDM,或左侧时隙 1 用于 LJ。
0 1111 = 15d	时隙 15 用于 TDM,或左侧时隙 15 用于 LJ。
1 0000 = 32d	时隙 16 用于 TDM,或右侧时隙 0 用于 I ² S、LJ。
1 1110 = 30d	时隙 30 用于 TDM,或右侧时隙 14 用于 LJ。
1 1111 = 31d	时隙 31 用于 TDM,或右侧时隙 15 用于 LJ。

同样,可分别使用 PASI_TX_CH2_SLOT (P0_R31) 至 PASI_TX_CH8_SLOT (P0_R37) 寄存器完成输出通道 2 至通道 8 的时隙分配设置,以及使用 PASI_RX_CH1_SLOT(P0_R40) 至 PAS_RX_CH8_SLOT(P0_R47) 完成输入通道 1 至通道 8 的时隙分配设置。

时隙字长与为器件设置的主要 ASI 通道字长相同。如果所有 TAC5411-Q1 器件在系统中共用同一 ASI 总线,则必须将所有器件的输出通道数据字长设置为相同的值。系统中 ASI 总线可能的最大时隙数受限于可用总线带宽,该带宽取决于 BCLK 频率、使用的输出数据采样速率以及配置的通道数据字长。

该器件还包括一项功能,可将关于帧同步的时隙数据传输开始时间偏移多达 31 个位时钟周期。可以为输入和输出数据路径单独配置偏移量。表 6-4 和表 6-5 分别列出了发送路径和接收路径的可编程偏移配置设置。

表 6-4. ASI 时隙开始发送时的可编程偏移设置

P0_R28_D[4:0] : PASI_TX_OFFSET[4:0]	时隙数据传输开始的可编程偏移设置
0 0000 = 0d (默认值)	该器件遵循标准协议时序,没有任何偏移。
0 0001 = 1d	与标准协议时序相比,时隙开始会偏移一个 BCLK 周期。 对于 I ² S 或 LJ,与标准协议时序相比,左侧和右侧时隙开始会偏移一个 BCLK 周期。
1 1110 = 30d	与标准协议时序相比,时隙开始会偏移 30 个 BCLK 周期。 对于 I ² S 或 LJ,与标准协议时序相比,左侧和右侧时隙开始会偏移 30 个 BCLK 周期。
1 1111 = 31d	与标准协议时序相比,时隙开始会偏移 31 个 BCLK 周期。 对于 I ² S 或 LJ,与标准协议时序相比,左侧和右侧时隙开始会偏移 31 个 BCLK 周期。

表 6-5. ASI 时隙开始接收时的可编程偏移设置

P0_R38_D[4:0] : PASI_RX_OFFSET[4:0]	时隙数据接收开始时的可编程偏移设置
0 0000 = 0d (默认值)	该器件遵循标准协议时序,没有任何偏移。
0 0001 = 1d	与标准协议时序相比,时隙开始会偏移一个 BCLK 周期。 对于 I ² S 或 LJ,与标准协议时序相比,左侧和右侧时隙开始会偏移一个 BCLK 周期。
1 1110 = 30d	与标准协议时序相比,时隙开始会偏移 30 个 BCLK 周期。 对于 I ² S 或 LJ,与标准协议时序相比,左侧和右侧时隙开始会偏移 30 个 BCLK 周期。
1 1111 = 31d	与标准协议时序相比,时隙开始会偏移 31 个 BCLK 周期。 对于 I ² S 或 LJ,与标准协议时序相比,左侧和右侧时隙开始会偏移 31 个 BCLK 周期。

与标准协议时序中使用的默认 FSYNC 极性相比,该器件还能够反转帧同步引脚 FSYNC 的极性,用于传输音频数据。该功能可以使用 PASI_FSYNC_POL、P0_R26_D3 寄存器位来设置。同样,该器件可以反转位时钟引脚 BCLK 的极性,而这可以使用 PASI BCLK POL、P0 R26 D2 寄存器位来设置。

此外,字时钟和位时钟还可以独立配置为控制器模式或目标模式,以便灵活地连接各种处理器。字时钟用于定义帧的起始,可编程为脉冲或方波信号。该时钟的频率对应于所选 ADC 采样频率的最大值。

6.3.1.2.1 时分多路复用 (TDM) 音频接口

在 TDM 模式(也称为 DSP 模式)下,FSYNC 的上升沿会首先从时隙 0 数据开始数据传输。紧接着时隙 0 数据传输,会按顺序传输剩余的时隙数据。FSYNC 和每个数据位(TX_OFFSET 等于 0 时,时隙 0 的 MSB 除外)会在 BCLK 的上升沿传输。图 6-2 至图 6-5 展示了各种配置下 TDM 运行的协议时序。

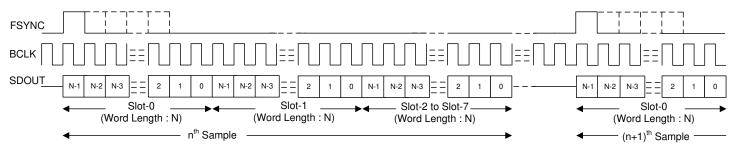


图 6-2. TDM 模式标准协议时序 (PASI_TX_OFFSET = 0)

ZHCSPN4 - JANUARY 2024 **FSYNC BCLK** SDOUT Slot-1 Slot-0 Slot-2 to Slot-7 Slot-0 (Word Length: N) (Word Length: N) (Word Length: N) (Word Length: N) nth Sample (n+1)th Sample 图 6-3. TDM 模式协议时序 (PASI_TX_OFFSET = 2) **FSYNC BCLK SDOUT** Slot-1 Slot-2 to Slot-7 Slot-0 Slot-0 (Word Length: N) (Word Length: N) (Word Length: N) (Word Length: N) TX_OFFSET = 2 nth Sample (n+1)th Sample 图 6-4. TDM 模式协议时序 (无空闲 BCLK 周期, PASI_TX_OFFSET = 2) **FSYNC SDOUT** N-3 Slot-0 Slot-1 Slot-2 to Slot-7 Slot-0 (Word Length: N) (Word Length: N) (Word Length: N) (Word Length: N) nth Sample (n+1)th Sample 图 6-5. TDM 模式协议时序 (PASI TX OFFSET = 0 且 PASI BCLK POL = 1)

为了使音频总线在 TDM 模式下正常运行,每帧的位时钟数必须大于或等于活动输出通道数乘以输出通道数据的编程字长。该器件支持 FSYNC 作为具有 1 周期宽位时钟的脉冲,同时也支持倍数。对于更高 BCLK 频率的运行,建议使用 PASI_TX_OFFSET 值大于 0 的 TDM 模式。

6.3.1.2.2 IC 间音频 (I²S) 接口

Copyright © 2024 Texas Instruments Incorporated

标准 I²S 协议仅针对两个通道进行定义:左通道和右通道。该器件为多通道运行扩展了相同的协议时序。在 I²S 模式下,左时隙 0 的 MSB 会在 FSYNC F降 沿之后第二个周期中的 BCLK 下降沿上传输。紧接着左侧时隙 0 数据传输,剩余的左侧时隙数据按顺序传输。右时隙 0 的 MSB 会在 FSYNC L升 沿之后第二个周期中的 BCLK 下降沿上传输。紧接着右侧时隙 0 数据传输,剩余的右侧时隙数据按顺序传输。FSYNC 和每个数据位在 BCLK 的下降沿传输。图 6-6 至图 6-9 展示了各种配置下 I²S 运行的协议时序。

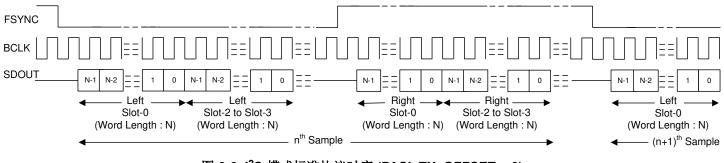
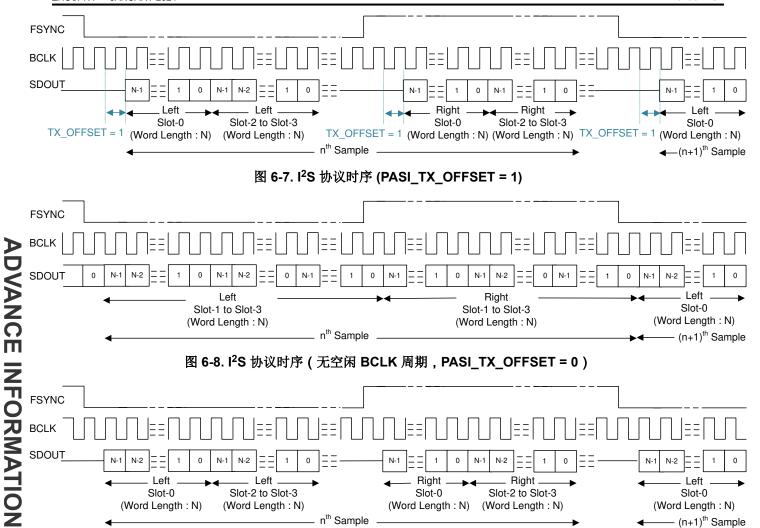
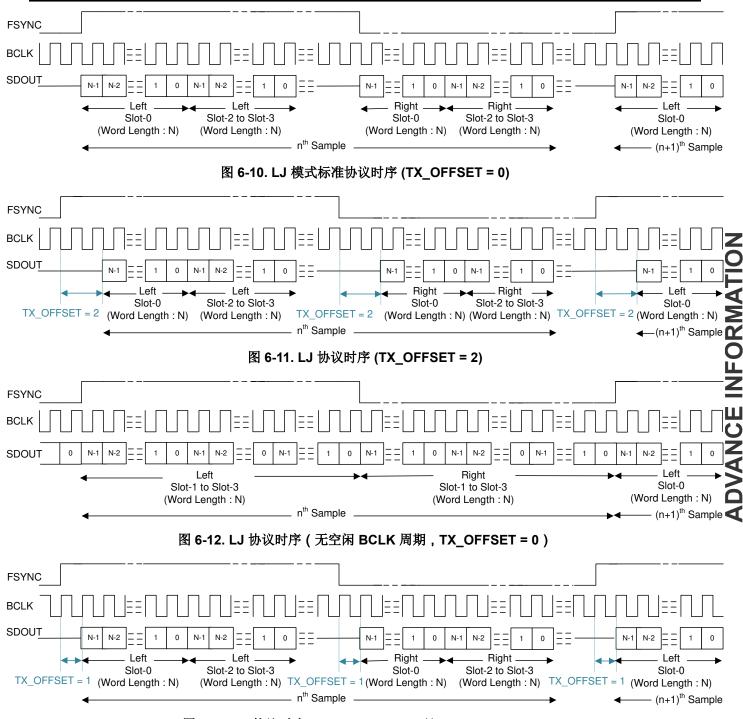


图 6-6. I²S 模式标准协议时序 (PASI_TX_OFFSET = 0)




图 6-9. I²S 协议时序(PASI_TX_OFFSET = 0 且 PASI_BCLK_POL = 1)

为了使音频总线在 I²S 模式下正常运行,每帧的位时钟数必须大于或等于活动输出通道的数量(包括左右时隙) 乘以输出通道数据的编程字长。器件 FSYNC 低电平脉冲必须是大于或等于活动左时隙数量乘以所配置的数据字 长的 BCLK 周期数。同样, FSYNC 高电平脉冲必须是大于或等于活动右时隙数量乘以所配置的数据字长的 BCLK 周期数。

6.3.1.2.3 左对齐 (LJ) 接口

标准 LJ 协议仅针对两个通道进行定义:左通道和右通道。该器件为多通道运行扩展了相同的协议时序。在 LJ 模 式下,左侧时隙 0 的 MSB 在 FSYNC 上升 沿之后的同一 BCLK 周期内传输。后续的每个数据位都在 BCLK 的下 降沿传输。紧接着左侧时隙 0 数据传输,剩余的左侧时隙数据按顺序传输。右侧时隙 0 的 MSB 在 FSYNC 下降 沿后的同一 BCLK 周期内传输。后续的每个数据位都在 BCLK 的下降沿传输。紧接着右侧时隙 0 数据传输,剩余 的右侧时隙数据按顺序传输。FSYNC 在 BCLK 的下降沿传输。图 6-10 至图 6-13 展示了各种配置下 LJ 运行的协 议时序。

Product Folder Links: TAC5411-Q1

图 6-13. LJ 协议时序 (TX_OFFSET = 1 且 BCLK_POL = 1)

为了使音频总线在 LJ 模式下正常运行,每帧的位时钟数必须大于或等于活动输出通道的数量(包括左右时隙)乘以输出通道数据的编程字长。器件 FSYNC 高电平脉冲必须是大于或等于活动左时隙数量乘以所配置的数据字长的 BCLK 周期数。同样,FSYNC 低电平脉冲必须是大于或等于活动右时隙数量乘以所配置的数据字长的 BCLK 周期数。对于更高 BCLK 频率的运行,建议使用 TX_OFFSET 值大于 0 的 LJ 模式。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

21

6.3.2 通过共享总线使用多个器件

该器件具有许多支持的功能和灵活选项,可在系统中用于通过共享单个公共 I²C 或 SPI 控制总线和音频串行接口总线无缝连接多个 TAC5411-Q1 器件。这种架构支持在需要使用麦克风或扬声器阵列进行波束形成、音频会议、噪声消除等用途的系统中实现多个应用。图 6-14 展示了多个 TAC5411-Q1 器件共享控制总线和音频数据总线的配置图。

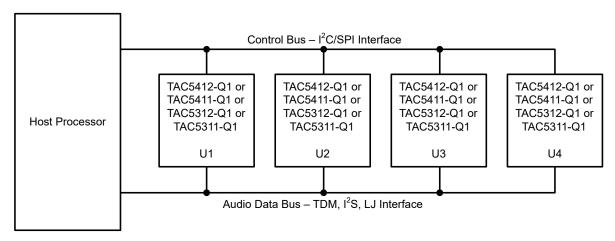


图 6-14. 多个 TAC5411-Q1 器件具有共享控制和音频数据总线

TAC5411-Q1 包含以下特性,用于通过共享总线实现多个器件的无缝连接和交互:

- 支持多达四个引脚可编程的 I²C 目标地址
- I²C 广播同时写入(或触发)所有 TAC5411-Q1 器件
- 支持多达 32 个用于音频串行接口的配置输入/输出通道时隙
- 针对器件中未使用的音频数据时隙提供三态特性(具有启用和禁用)
- 支持总线保持器特性(具有启用和禁用),以保持音频总线上最后驱动的值
- GPIOx、GPI1 或 GPO1 引脚可配置为辅助输入/输出数据通道或辅助音频串行接口
- GPIOx、GPI1 或 GPO1 引脚可用于多个 TAC5411-Q1 器件的菊花链配置
- 支持一个 BCLK 周期数据锁存时序,以降低高速接口的时序要求
- 主要和辅助音频串行接口的可编程控制器和目标选项
- 能够同步多个器件,来满足不同器件的同步采样要求

有关更多详细信息,请参阅*具有共享 TDM 和 I^2C/SPI 总线的多个 TAC5x1x 器件* 应用报告。

6.3.3 锁相环 (PLL) 和时钟生成

该器件具有智能自动配置模块,可生成 ADC 调制器和用于信号处理的数字滤波器引擎所需的所有必要内部时钟。该配置通过监测音频总线上 FSYNC 和 BCLK 信号的频率来实现。

该器件支持(FSYNC 信号频率的)各种数据采样速率和 BCLK 与 FSYNC 之比,以便在内部配置所有时钟分频器(包括 PLL 配置),而无需主机编程。表 6-6 和表 6-7 列出了支持的 FSYNC 和 BCLK 频率。

表 6-6. 支持的 FSYNC (48kHz 的倍数或约数) 和 BCLK 频率

		BCLK (MHz)							
BCLK 与 FSYNC 之比	FSYNC (8kHz)	FSYNC (16kHz)	FSYNC (24kHz)	FSYNC (32kHz)	FSYNC (48kHz)	FSYNC (96kHz)	FSYNC (192kHz)	FSYNC (384kHz)	FSYNC (768kHz)
16	保留	0.256	0.384	0.512	0.768	1.536	3.072	6.144	12.288
24	保留	0.384	0.576	0.768	1.152	2.304	4.608	9.216	18.432
32	0.256	0.512	0.768	1.024	1.536	3.072	6.144	12.288	24.576
48	0.384	0.768	1.152	1.536	2.304	4.608	9.216	18.432	保留
64	0.512	1.024	1.536	2.048	3.072	6.144	12.288	24.576	保留

Product Folder Links: TAC5411-Q1

表 6-6. 支持的 FSYNC (48kHz 的倍数或约数)和 BCLK 频率 (续)

	ス o o 入がけ o o o o o o o o o o o o o o o o o o o								
		BCLK (MHz)							
BCLK 与 FSYNC 之比	FSYNC (8kHz)	FSYNC (16kHz)	FSYNC (24kHz)	FSYNC (32kHz)	FSYNC (48kHz)	FSYNC (96kHz)	FSYNC (192kHz)	FSYNC (384kHz)	FSYNC (768kHz)
96	0.768	1.536	2.304	3.072	4.608	9.216	18.432	保留	保留
128	1.024	2.048	3.072	4.096	6.144	12.288	24.576	保留	保留
192	1.536	3.072	4.608	6.144	9.216	18.432	保留	保留	保留
256	2.048	4.096	6.144	8.192	12.288	24.576	保留	保留	保留
384	3.072	6.144	9.216	12.288	18.432	保留	保留	保留	保留
512	4.096	8.192	12.288	16.384	24.576	保留	保留	保留	保留
1024	8.192	16.384	24.576	保留	保留	保留	保留	保留	保留
2048	16.384	保留	保留	保留	保留	保留	保留	保留	保留

表 6-7. 支持的 FSYNC (44.1kHz 的倍数或约数) 和 BCLK 频率

	BCLK (MHz)								
BCLK 与 FSYNC 之比	FSYNC (7.35kHz)	FSYNC (14.7kHz)	FSYNC (22.05kHz)	FSYNC (29.4kHz)	FSYNC (44.1kHz)	FSYNC (88.2kHz)	FSYNC (176.4kHz)	FSYNC (352.8kHz)	FSYNC (705.6kHz)
16	保留	保留	0.3528	0.4704	0.7056	1.4112	2.8224	5.6448	11.2896
24	保留	0.3528	0.5292	0.7056	1.0584	2.1168	4.2336	8.4672	16.9344
32	保留	0.4704	0.7056	0.9408	1.4112	2.8224	5.6448	11.2896	22.5792
48	0.3528	0.7056	1.0584	1.4112	2.1168	4.2336	8.4672	16.9344	保留
64	0.4704	0.9408	1.4112	1.8816	2.8224	5.6448	11.2896	22.5792	保留
96	0.7056	1.4112	2.1168	2.8224	4.2336	8.4672	16.9344	保留	保留
128	0.9408	1.8816	2.8224	3.7632	5.6448	11.2896	22.5792	保留	保留
192	1.4112	2.8224	4.2336	5.6448	8.4672	16.9344	保留	保留	保留
256	1.8816	3.7632	5.6448	7.5264	11.2896	22.5792	保留	保留	保留
384	2.8224	5.6448	8.4672	11.2896	16.9344	保留	保留	保留	保留
512	3.7632	7.5264	11.2896	15.0528	22.5792	保留	保留	保留	保留
1024	7.5264	15.0528	22.5792	保留	保留	保留	保留	保留	保留
2048	15.0528	保留	保留	保留	保留	保留	保留	保留	保留

TAC5411-Q1 还支持除前面表格中所列之外的非音频采样速率。请参阅为 TAC5x1x 器件配置非音频采样速率,了解更多详细信息。

TAC5411-Q1 采样速率可以分别使用寄存器 CLK_DET0 (P0_R62) 和 CLK_DET1 (P0_R63) 对主要 ASI 和辅助 ASI 进行配置。这些寄存器还在自动检测模式下捕获器件在 FSYNC 频率下的自动检测结果。寄存器 CLK_DET2 (P0_R64) 和 CLK_DET3 (P0_R65) 捕获为器件检测到的 BCLK 与 FSYNC 之比。如果器件找到任何不受支持的 FSYNC 频率和 BCLK 与 FSYNC 之比组合,器件会生成 ASI 时钟错误中断,并相应地使所有通道静音。

在某些 ADC 通道已在运行时,TAC5411-Q1 也支持启用通道。这需要在上电之前进行预先配置,以指示在运行时可以启用的最大通道数,从而确保正确生成和使用时钟。这可以通过使用寄存器 DYN_PUPD_CFG (P0_R119) 进行配置。ADC_DYN_PUPD_EN 位可用于启用 ADC 通道动态上电。可使用 ADC_DYN_MAXCH_SEL 位来配置通道数。

该器件使用集成的低抖动锁相环 (PLL) 来生成调制器和数字滤波器引擎以及其他控制块所需的内部时钟。该器件还支持使用 BCLK、GPIOx 或 GPI1 引脚 (作为 CCLK)作为音频时钟源,而无需使用 PLL,从而降低功耗。但是,ADC 性能可能会因外部时钟源的抖动而下降,如果外部音频时钟源频率不够高,则可能无法支持某些处理功能。因此,TI 建议在高性能应用中使用 PLL。不同使用场景下的 TAC5x1x 功耗矩阵 应用报告论述了有关如何在低功耗模式下不使用 PLL 时配置和使用器件的更多细节和信息。

该器件还支持使用 GPIOx 或 GPI1 引脚(作为 CCLK)作为基准输入时钟源来实现音频总线控制器模式运行,并支持各种灵活选项和各种系统时钟。有关控制器模式配置和操作的更多详细信息和信息,请参阅*配置和操作TAC5x1x 作为音频总线控制器* 应用报告。

音频总线时钟错误检测和自动检测功能会自动生成所有内部时钟,但可以分别使用 IGNORE_CLK_ERR (P0_R4_D6) 和 CUSTOM_CLK_CFG (P0_R50_D0) 寄存器位来禁用。在系统中,该禁用功能可用于支持自动检测方案未涵盖的自定义时钟频率。对于此类应用用例,必须注意确保多个时钟分频器均已正确配置。因此,TI 建议使用 PPC3 GUI 进行器件配置设置;有关更多详细信息,请参阅 TAC5212EVM-PDK 评估模块 用户指南和PurePath™ 控制台图形开发套件。

6.3.4 输入通道配置

TAC5411-Q1 包含两对模拟输入引脚(INxP 和 INxM),这些引脚可以配置为差分输入或单端输入,用于录音通道。该器件支持使用多通道 ADC 同时对多达两个通道进行录音。模拟引脚的输入源可以是模拟麦克风,也可以是来自系统板的线路辅助输入。表 6-8 介绍了如何设置录音通道的输入配置。

At a c. stell Great May course.				
P0_R80_D[7:6] : ADC_CH1_INSRC[1:0]	输入通道 1 录音源选择			
00 (默认值)	通道 1 的模拟差分输入			
01	通道 1 的模拟单端输入			
10 或 11	保留(不使用此设置)			

表 6-8. 录音通道的输入源选择

该器件支持直流耦合输入配置的麦克风录音输入直流故障诊断功能。对于交流耦合输入,专用诊断引脚 DIN1P 和 DIN1M 也可用于诊断

对于直流耦合线路输入配置,模拟输入引脚的直流共模差 (INxP - INxM) 必须为 0V,以支持 10V_{RMS} 满量程差分输入。对于直流耦合麦克风输入配置,在默认运行模式下,模拟输入引脚的直流共模差 (INxP - INxM) 必须处于 3.4V 至 6.0V 范围内,从而支持 2V_{RMS} 满量程差分输入。之后,通过数字高通滤波器滤除直流差分共模电压,在这种情况下,数字输出满量程对应于 10V_{RMS} 交流信号。

图 6-15 和图 6-16 分别展示了如何将直流耦合麦克风连接到差分输入和单端输入。必须根据麦克风阻抗选择适当的外部偏置电阻器 R1 的值。对于差分输入,建议使用其值为麦克风阻抗一半的外部偏置电阻器,而对于单端输入,建议使用其值与麦克风阻抗相同的外部偏置电阻器。

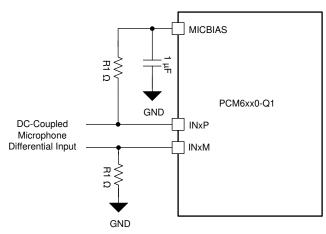


图 6-15. 直流耦合麦克风差分输入连接

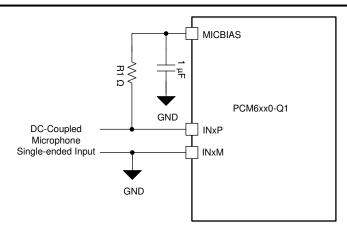


图 6-16. 直流耦合麦克风单端输入连接

在交流耦合模式下,选择的耦合电容值必须确保由耦合电容器和输入阻抗形成的高通滤波器不影响信号内容。该耦合电容器必须在上电时充电至共模电压,然后才能开始进行正确录音。对于单端输入配置,在交流耦合模式下,INxM 引脚必须在交流耦合电容器之后接地。

图 6-17 和图 6-18 分别展示了如何为差分输入和单端输入连接交流耦合麦克风或线路源。在交流耦合模式下,器 件输入引脚 INxP 和 INxM 必须针对直流共模值进行适当偏置,方法是使用片上 MICBIAS 输出电压以及外部偏置 电阻器 RO,或使用外部偏置发生器电路。电阻器 RO的最大值取决于信号摆幅和编程的 MICBIAS 值。请参阅 TAC5xxx-Q1 交流耦合外部电阻计算器,为所需系统配置计算R0值。

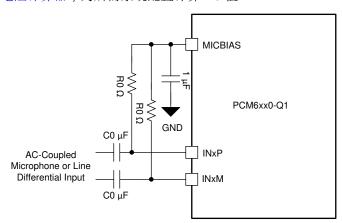


图 6-17. 交流耦合麦克风或线路差分输入连接

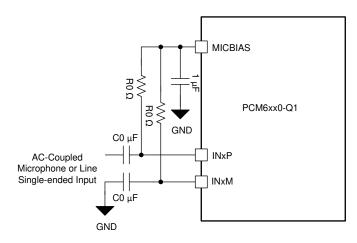


图 6-18. 交流耦合麦克风或线路单端输入连接

6.3.5 基准电压

所有音频数据转换器都需要直流基准电压。TAC5411-Q1 通过在内部生成低噪声基准电压来实现低噪声性能。该 基准电压由具有良好 PSRR 性能的带隙电路生成。该音频转换器基准电压必须使用连接在 VREF 引脚与模拟地 (VSS) 之间的最低 1µF 电容器从外部进行滤波。

为了 实 现 低 功 耗 , 该 音 频 基 准 模 块 会 在 睡 眠 模 式 或 软 件 关 断 时 断 电 。 退 出 睡 眠 模 式 时 , 应 通 过 将 SLEEP EXIT VREF EN(PO R2 D3) 设置为 1'b1 来为音频基准模块上电。内部快速充电方案有助于 VREF 引脚 更快地稳定到其稳态电压(与 VREF 引脚上的去耦电容器有关)。使用 1μF 去耦电容器时,该时间大约等于 3.5ms。如果在 VREF 引脚上使用较高值的去耦电容器,则必须使用 VREF QCHG (P0 R2 D[5:4]) 寄存器位重 新配置快速充电设置,这些位支持 3.5ms(默认值)、10ms、50ms 或 100ms 的选项。

6.3.6 麦克风偏置

该器件集成了一个内置低噪声可编程高压麦克风偏置引脚 (MICBIAS),该引脚可在系统中用于为模拟麦克风提供 偏置。集成的偏置放大器支持高达 30mA 的负载电流,可用于多个麦克风,旨在提供高 PSRR、低噪声和可编程 偏置电压的组合,以便针对特定的麦克风组合对偏置进行微调。TAC5411-Q1 具有集成式高效升压转换器,可通 过外部低电压 3.3V BSTVDD 电源为可编程麦克风偏置生成高电压电源。

Product Folder Links: TAC5411-Q1

当使用 MICBIAS 引脚对多个麦克风进行偏置时,TI 建议避免在用于 MICBIAS 连接的电路板布局布线上出现公共阻抗,从而尽可能地减小麦克风之间的耦合。表 6-9 显示了可用的麦克风偏置可编程选项。

表 6	3-9	MICB	IAS	可编和	冒份星
14	<i>,-</i> J.			~J >/mi/:	T. KX. 17.

P1_R115_D[7:4] : MBIAS_VAL[3:0]	MICBIAS 输出电压
0000	旁路至 BSTOUT
0001	设置为 3.0V
0010	设置为 3.5V
0011-1000	设置为 4.0V 至 6.5V。
1001	设置为 7.0V
1010	设置为 7.5V (默认)
1011	设置为 8.0V
1100	设置为 8.5V
1101	设置为 9.0V
1110	设置为 9.5V
1111	设置为 10.0V

通过配置 MICBIAS_PDZ (P0_R120_D5) 寄存器位,可以打开或关闭(默认)麦克风偏置输出。此外,该器件还提供配置 GPIOx 引脚的选项,以直接控制麦克风偏置输出的打开或关闭。该功能对于在某些系统中直接控制麦克风非常有用,无需主机进行 I²C 或 SPI 通信。如果 GPIOx 引脚配置用于打开或关闭麦克风偏置,则 MICBIAS_PDZ (P0_R120_D5) 寄存器位值将被忽略。

6.3.7 输入直流故障诊断

TAC5411-Q1 的每个输入都具有非常全面的直流故障诊断功能,这些诊断功能可以配置用于检测直流耦合输入配置中的故障状况并触发发送到主机处理器的中断请求。通过配置 DIAG_CFG0 (P1_R70) 可以为每个通道启用诊断功能。对于启用了诊断功能的通道,输入引脚由具有可编程重复率的集成 SAR ADC 自动扫描。重复率可通过REP_RATE (P1_R74_D[7:6]) 寄存器位进行配置。为实现超快速故障响应并为录音通道获得更好的信号完整性和信号链性能,必须将 REP_RATE 配置为 0(非默认设置)。诊断处理器会对每次测试八个连续样本取平均值来提高噪声性能。交流耦合输入配置中不支持直流故障诊断。

该器件具有各种可编程阈值寄存器 P1_R71 至 P1_R72,这些寄存器可以由主机处理器进行配置,以便为不同类别的故障条件检测定义故障区域。此外,还有一个去抖功能,该功能使用 FAULT_DBNCE_SEL (P1_R74_D[3:2])进行配置。该功能设置在触发锁存状态寄存器之前发生故障情况时的连续扫描计数,从而减少瞬态事件引起的错误触发。该器件还具有移动平均值功能,该功能使用 P1_R75 进行配置,并持续对新测量的数据和旧的测量数据求平均值,从而减少任何短时瞬态事件导致的错误触发。

6.3.7.1 故障条件

6.3.7.1.1 输入引脚接地短路

当测得的输入引脚电压低于相对于地的阈值电压 (AVSS) 时,会发生接地短路故障。可以通过配置 DIAG_SHT_GND (P1_R72_D[7:4]) 来设置该阈值。

6.3.7.1.2 输入引脚短接至 MICBIAS

当 MICBIAS 引脚和输入引脚测得的电压之间的差值 (MICBIAS - INxx) 小于阈值时,会发生短接至 MICBIAS 故障。可以通过配置 DIAG SHT MICBIAS (P1 R72 D[3:0]) 来设置该阈值。

6.3.7.1.3 开路输入

如果麦克风与输入断开连接,麦克风偏置电阻器会将 INxP 拉至 MICBIAS 并将 INxM 拉至接地。在诊断扫描中,同一通道的 INxP 短接至 MICBIAS 和 INxM 短接至地的组合会导致开路输入故障情况。

6.3.7.1.4 INxP 和 INxM 之间短接

当同一通道下输入引脚 INxP 和输入引脚 INxM 测得的电压之间的差值小于阈值时,会发生输入端子短路故障。可以通过配置 DIAG SHT TERM (P1 R71 D[7:4]) 来设置该阈值。

6.3.7.1.5 输入引脚过压

当为输入引脚测得的电压高于为 MICBIAS 引脚测得的电压时,会发生输入端子过压故障。

6.3.7.1.6 输入引脚短接至 VBAT IN

当 VBAT_IN 引脚和输入引脚测得的电压之间的差值 ABS(VBAT_IN - INxx) 小于阈值,或者 VBAT_IN 和 INxx 引脚测得的电压都高于 11.7V 时,便会发生短接至 VBAT_IN 故障。可以通过配置 DIAG_SHT_VBAT_IN (P1 R71 D[3:0])来设置该阈值。

当 VBAT_IN 低于 MICBIAS 时,根据 INxx 引脚的信号电平,可能会存在错误的故障检测。为了更大限度地减少错误检测,还可通过配置 VSHORT_DBNCE (P1_R74_D1) 来为此状况设置一个单独的去抖计数。

6.3.7.2 故障报告

故障会在实时和锁存状态寄存器中报告。实时寄存器 P1_R45 至 P1_R55 在每次新扫描时会持续更新,并报告诊断处理器报告的最新测量值。通道在 P1_R60 至 P1_R67 中报告每个诊断故障的锁存状态,并在 P1_R52 至 P1_R59 中报告锁存的汇总。如果 LTCH_CLR_ON_READ (P1_R66_D0) 位设置为"0",则锁存寄存器会在读取时清除,如果实时故障寄存器中的相关位从"0"转换为"1",则锁存。锁存寄存器中的任何位从"0"转换为"1"均会触发中断请求。

为了检测持续故障,锁存寄存器提供了一种额外模式。在该模式下,只有相关实时状态寄存器中的状态位在读取时为"0"时,锁存寄存器才会在读取时清除。通过将 LTCH_CLR_ON_READ (P0_R66_D0) 配置为"1"来启用此模式(默认设置)。

6.3.7.2.1 过流和过热保护

该器件具有过流保护电路,当 MICBIAS 引脚上发生外部有害短路事件时,该电路会将从 MICBIAS 输出汲取的电流限制在支持的最大电平。该器件会在检测到过流时设置状态标志 P1_R59_D2 位。此外,该器件还具有过热检测电路,该电路默认为启用,只要裸片结温高于支持的水平,就会设置状态标志 P1 R52 D5 位。

此外,P1_R80 和 P0_R66_D[4:3] 寄存器可以配置为在检测到过热时关闭 MICBIAS 和片上升压。TI 建议将 PD_ON_FLT_CFG、P0_R66_D4-3 配置为"10",以便在检测到过热时,该器件会将 MICBIAS、片上升压和所有 ADC 通道断电。

有关故障诊断的更多详细信息,请参阅 TAC5xxx-Q1 故障诊断、中断和保护功能 应用报告。

6.3.8 信号链处理

TAC5411-Q1 信号链由超低噪声、高性能和低功耗的模拟块以及高度灵活的可编程数字处理块组成。高性能和灵活性与紧凑的封装相结合,使得 TAC5411-Q1 非常适合需要多通道音频采集和回放的各种终端设备和应用。节6.3.8.1 进一步介绍 ADC 信号链的关键元件。

6.3.8.1 ADC 信号链

图 6-19 显示了录音路径信号链的关键元件。

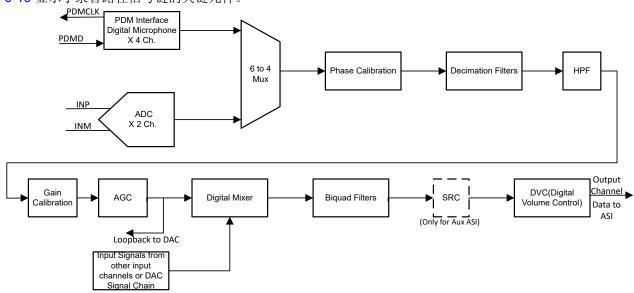


图 6-19. ADC 信号链处理流程图

前端 ADC 噪声非常低,并具有 115dB 的动态范围性能。这款低噪声、低失真、多位、 Δ - Σ ADC 使 TAC5411-Q1 能够在安静和嘈杂的环境中以极高的保真度录制远场音频信号。此外,ADC 架构具有固有的抗混叠滤波功能,能够很好地抑制多个调制器频率分量附近的带外频率噪声。因此,该器件可在 ADC 采样期间防止噪声混叠到音频频带中。此外,在信号链中,集成的高性能多级数字抽取滤波器会通过高阻带衰减来急剧削减任何带外频率噪声。

该器件还具有集成的可编程双二阶滤波器,可实现自定义低通、高通或任何其他所需的频率整形。因此,整体信号链架构无需添加用于抗混叠低通滤波的外部元件,从而显著节省外部系统元件成本和布板空间。有关更多详细信息,请参阅 TAC5212 集成模拟抗混叠滤波器和灵活数字滤波器 应用报告。

信号链还包含各种高度可编程的数字处理块,例如相位校准、增益校准、高通滤波器、数字加法器或混频器、双二阶滤波器、同步采样速率转换器和音量控制。本节将进一步介绍这些处理块的详细信息。当不使用模拟录制通道时,该器件还支持多达四个数字 PDM 麦克风录制通道。

可使用 CH_EN (P0_R118) 寄存器启用或禁用所需的输入通道,并可使用 ASI_TX_CHx_CFG 寄存器启用或禁用音频串行接口的输出通道。通常,该器件支持所有活动通道同时上电和断电,以进行同步录制。但是,根据应用需求,如果某些通道必须在另一个通道录制处于开启状态时动态加电或断电,则可以通过设置 DYN_PUPD_CFG 寄存器来支持该用例。

该器件支持高达 100kHz 的输入信号带宽,这允许使用 216kHz (或更高)采样速率来录制高频非音频信号。可以通过设置 ADC_CHx_BW_MODE 位来启用或禁用宽带宽模式。

对于 48kHz 或更低的采样速率,该器件支持所有功能和各种可编程处理块。不过,对于高于 48kHz 的采样速率,支持同时录音和回放的通道数量和双二阶滤波器数量等都存在限制。有关更多详细信息,请参阅 *TAC5212 采样速率和受支持的可编程处理块* 应用报告。

6.3.8.1.1 可编程通道增益和数字音量控制

该器件具有可编程数字音量控制功能,其范围为-80dB 至 47dB(步长为 0.5dB),并提供通道录音静音选项。当 ADC 通道加电并录音期间,可以动态更改数字音量控制值。在音量控制变化期间,内部使用软调高或调低音量功能来避免任何可闻失真。可以使用 ADC_DSP_DISABLE_SOFT_STEP (P0_R114_D1) 寄存器位来完全禁用软步进。

每个输出通道(包括数字麦克风录音通道)都具有独立的数字音量控制设置。不过,该器件还支持使用通道 1 数字音量控制设置将所有通道的音量控制设置组合在一起的选项,而无论通道 1 是通电还是断电。可以使用 ADC DSP DVOL GANG (PO R114 D0)寄存器位来启用该组合。

表 6-10 展示了可用于数字音量控制的可编程选项。

表 6-10. 数字音量控制 (DVC) 可编程设置

P0_R82_D[7:0] : ADC_CH1_DVOL[7:0]	输出通道 1 的 DVC 设置
0000 0000 = 0d	输出通道 1 DVC 设置为静音
0000 0001 = 1d	输出通道 1 DVC 设置为 - 80dB
0000 0010 = 2d	输出通道 1 DVC 设置为 - 79.5dB
0000 0011 = 3d	输出通道 1 DVC 设置为 - 79dB
	
1010 0000 = 160d	输出通道 1 DVC 设置为 - 0.5dB
1010 0001 = 161d(默认值)	输出通道 1 DVC 设置为 0dB
1010 0010 = 162d	输出通道 1 DVC 设置为 0.5dB
	
1111 1101 = 253d	输出通道 1 DVC 设置为 46dB
1111 1110 = 254d	输出通道 1 DVC 设置为 46.5dB
1111 1111 = 255d	输出通道 1 DVC 设置为 47dB

同样,输出通道 2 至通道 4 的数字音量控制设置可以分别使用 CH2_DVOL (P0_R87) 至 CH4_DVOL (P0_R95) 寄存器位进行配置。

当该通道上电时,内部数字处理引擎会将音量从静音级别软斜升至编程的音量级别,当该通道断电时,内部数字处理引擎会将音量从编程的音量软斜降至静音。这种音量软步进是为了防止录音通道突然上电和断电。也可以使用 ADC_DSP_DISABLE_SOFT_STEP (P0_R114_D1) 寄存器位来完全禁用该功能。

6.3.8.1.2 可编程通道增益校准

除了数字音量控制外,此器件还提供可编程通道增益校准。每个通道的增益能够以 0.1dB 的步长进行精细校准或调整,增益误差范围为 - 0.8dB 至 0.7dB。当尝试匹配外部元件和麦克风灵敏度导致的通道间增益时,此调整非常有用。该功能与常规数字音量控制相结合,可以在宽增益误差范围内实现所有通道上的增益匹配,分辨率为 0.1dB。表 6-11 展示了可用于通道增益校准的可编程选项。

表 6-11. 通道增益校准可编程设置

P0_R83_D[7:4] : ADC_CH1_FGAIN[3:0]	输入通道 1 的通道增益校准设置
0000 = 0d	输入通道 1 增益校准设置为 - 0.8dB
0001 = 1d	输入通道 1 增益校准设置为 - 0.7dB
1000 = 8d (默认值)	输入通道 1 增益校准设置为 0dB
1110 = 14d	输入通道 1 增益校准设置为 0.6dB
1111 = 15d	输入通道 1 增益校准设置为 0.7dB

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

31

同样,可以分别使用 ADC_CH2_CFG3 (P0_R88) 至 ADC_CH4_CFG3 (P0_R96) 寄存器位来配置输入通道 2 至 通道 4 的通道增益校准设置。

6.3.8.1.3 可编程通道相位校准

除了增益校准外,每个通道的相位延迟可进行精细校准或调整,步长为一个调制器时钟周期,相位误差的周期范围为 0 至 255。调制器时钟与用于 ADC_MOD_CLK 的时钟相同,为 6.144MHz(输出数据采样速率为 48kHz 的倍数或约数)或 5.6448MHz(输出数据采样速率为 44.1kHz 的倍数或约数),而与模拟麦克风或数字麦克风用例无关。对于许多必须在每个通道之间以高分辨率进行相位匹配的应用(包括由外部元件或麦克风导致的任何通道间相位不匹配),该功能非常有用。表 6-12 显示了通道相位校准的可用可编程选项。

表 6-12. 通道相位校准可编程设置

P0_R64_D[7:0] : CH1_PCAL[7:0]	输入通道 1 的通道相位校准设置
0000 0000 = 0d (默认值)	输入通道 1 相位校准,无延迟
0000 0001 = 1d	输入通道 1 相位校准延迟设置为一个调制器时钟周期
0000 0010 = 2d	输入通道 1 相位校准延迟设置为两个调制器时钟周期
	
1111 1110 = 254d	输入通道 1 相位校准延迟设置为 254 个调制器时钟周期
1111 1111 = 255d	输入通道 1 相位校准延迟设置为 255 个调制器时钟周期

同样,可以分别使用 CH2_PCAL (P0_R69) 到 CH8_PCAL (P0_R99) 寄存器位来配置输入通道 2 到通道 8 的通道相位校准设置。

当模拟输入和 PDM 输入一起用于同步转换时,不得使用相位校准功能。

6.3.8.1.4 可编程数字高通滤波器

为了去除直流偏移分量并衰减录音数据中不需要的低频噪声成分,该器件支持可编程高通滤波器 (HPF)。HPF 不是独立于通道的滤波器设置,但全局适用于所有 ADC 通道。该 HPF 使用一阶无限脉冲响应 (IIR) 滤波器构建,并具有足够高的效率来滤除信号中可能的直流分量。表 6-13 显示了可用的预定义 -3dB 截止频率,该频率可使用P0_R114 的 ADC_DSP_HPF_SEL[1:0] 寄存器位进行设置。此外,为了针对特定应用实现自定义的 - 3dB 截止频率,该器件还允许在 HPF_SEL[1:0] 寄存器位设置为 2'b00 时对一阶 IIR 滤波器系数进行编程。图 6-20 展示了HPF 滤波器的频率响应图。

表 6-13. HPF 可编程设置

P0_R107_D[1:0] : HPF_SEL[1:0]	-3dB 截止频率设置	16kHz 采样速率下的 -3dB 截止频率	48kHz 采样速率下的 -3dB 截止频率
00	可编程一阶 IIR 滤波器	可编程一阶 IIR 滤波器	可编程一阶 IIR 滤波器
01 (默认值)	0.00002 × f _S	0.25Hz	1Hz
10	0.00025 × f _S	4Hz	12Hz
11	0.002 × f _S	32Hz	96Hz

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAC5411-Q1*

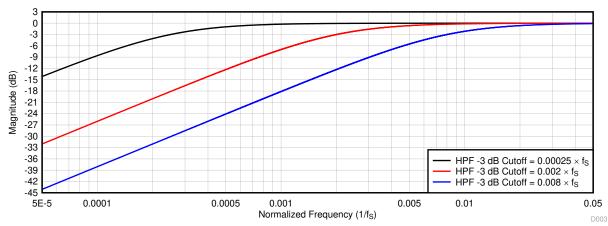


图 6-20. HPF 滤波器频率响应图

方程式 1 给出了一阶可编程 IIR 滤波器的传递函数:

$$H(z) = \frac{N_0 + N_1 z^{-1}}{2^{31} - D_1 z^{-1}} \tag{1}$$

对于具有默认系数的该一阶可编程 IIR 滤波器,其频率响应在增益为 0dB(全通滤波器)时是平坦的。主机器件可以通过对表 6-14 中的 IIR 系数进行编程来覆盖频率响应,从而实现高通滤波或任何其他必要滤波所需的频率响应。如果 HPF_SEL[1:0]设置为 2'b00,则主机器件必须写入这些系数值以实现所需的频率响应,然后再对任何 ADC 通道上电以进行录音。表 6-14 展示了一阶 IIR 滤波器的滤波器系数。

表 6-14. 一阶 IIR 滤波器系数

V - 171 V - W - W - 171			
滤波器	滤波器系数	默认系数值	系数寄存器映射
	N ₀	0x7FFFFFF	P4_R72-R75
可编程一阶 IIR 滤波器 (可分配至 HPF 或任何其他所需滤波器)	N ₁	0x0000000	P4_R76-R79
117/18/7/11/11 WO (A HA)	D ₁	0x0000000	P4_R80-R83

6.3.8.1.5 可编程数字双二阶滤波器

该器件支持多达 12 个可编程数字双二阶滤波器,可用于 ADC 信号链,限制为每通道 3 个滤波器。这些高效滤波器可实现所需的频率响应。TAC5411-Q1 还支持适用于两通道记录使用案例的动态可编程双二阶滤波器。在数字信号处理中,数字双二阶滤波器是具有两个极点和两个零点的二阶递归线性滤波器。方程式 2 给出了每个双二阶滤波器的传递函数:

$$H(z) = \frac{N_0 + 2N_1 z^{-1} + N_2 z^{-2}}{2^{31} - 2D_1 z^{-1} - D_2 z^{-2}}$$
(2)

对于具有默认系数的双二阶滤波器部分,其频率响应在增益为 0dB(全通滤波器)时是平坦的。主机器件可以通过对双二阶系数进行编程来覆盖频率响应,从而实现低通、高通或任何其他必要频率整形所需的频率响应。如果需要双二阶滤波,那么主机器件必须先写入这些系数值,然后再为任何 ADC 通道上电以进行录音。在双通道使用案例中,TAC5411-Q1 还支持动态可编程滤波器。在这种情况下,器件对一个通道使用两组滤波器,并通过开关位来执行从一个滤波器组到另一滤波器组的切换。如表 6-15 所述,可以根据 P0_R114 的ADC_DSP_BQ_CFG[1:0] 寄存器设置为每个输出通道分配这些双二阶滤波器。通过将 BIQUAD_CFG[1:0] 设置为2′b00,会禁用所有录音通道的双二阶滤波,并且如果系统应用不需要额外的滤波,则主机器件可以选择该设置。

表 6-15. 双二阶滤波器在记录输出通道中的分配

	使用 P0_R114_D[3:2] 寄存器设置的记录输出通道分配		
可编程双二阶滤波器	ADC_DSP_BQ_CFG[1:0] = 2'b01 (每通道1个双二阶滤波器)	ADC_DSP_BQ_CFG[1:0] = 2'b10 (默认值) (每通道 2 个双二阶滤波器)	ADC_DSP_BQ_CFG[1:0] = 2'b11 (每通道 3 个双二阶滤波器)
双二阶滤波器 1	分配至输出通道 1	分配至输出通道 1	分配至输出通道 1
双二阶滤波器 2	分配至输出通道 2	分配至输出通道 2	分配至输出通道 2
双二阶滤波器 3	分配至输出通道 3	分配至输出通道 3	分配至输出通道 3
双二阶滤波器 4	分配至输出通道 4	分配至输出通道 4	分配至输出通道 4
双二阶滤波器 5	未使用	分配至输出通道 1	分配至输出通道 1
双二阶滤波器 6	未使用	分配至输出通道 2	分配至输出通道 2
双二阶滤波器 7	未使用	分配至输出通道 3	分配至输出通道 3
双二阶滤波器 8	未使用	分配至输出通道 4	分配至输出通道 4
双二阶滤波器 9	未使用	未使用	分配至输出通道 1
双二阶滤波器 10	未使用	未使用	分配至输出通道 2
双二阶滤波器 11	未使用	未使用	分配至输出通道 3
双二阶滤波器 12	未使用	未使用	分配至输出通道 4

表 6-16 所示为寄存器空间中的双二阶滤波器系数映射。

表 6-16. 双二阶滤波器系数寄存器映射

* * * * * * * * * * * * * * * * * * *			
可编程双二阶滤波器	双二阶滤波器系数寄存器映射	可编程双二阶滤波器	双二阶滤波器系数寄存器映射
双二阶滤波器 1	P8_R8-R27	双二阶滤波器 7	P9_R8-R27
双二阶滤波器 2	P8_R28-R47	双二阶滤波器 8	P9_R28-R47
双二阶滤波器 3	P8_R48-R67	双二阶滤波器 9	P9_R48-R67
双二阶滤波器 4	P8_R68-R87	双二阶滤波器 10	P9_R68-R87
双二阶滤波器 5	P8_R88-R107	双二阶滤波器 11	P9_R88-R107
双二阶滤波器 6	P8_R108-R127	双二阶滤波器 12	P9_R108-R127

6.3.8.1.6 可编程通道加法器和数字混频器

如果应用所需的 SNR 高于每个通道支持的 SNR,可以使用器件数字求和模式。在该模式下,数字录音数据会以相等的权重因子在通道上求和,这有助于降低等效录音噪声。

该器件支持完全可编程的混频器功能,该功能可以将各种输入通道与其自定义可编程比例因子进行混频,以生成最终输出通道。图 6-21 所示的方框图描述了混频器 1 用于生成输出通道 1 的操作。

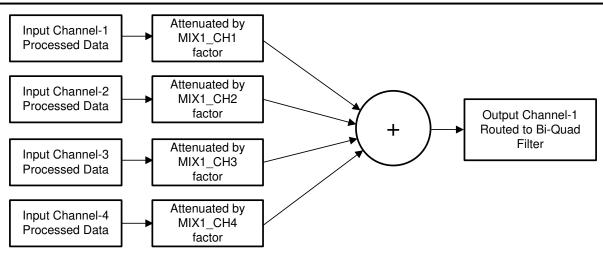


图 6-21. 可编程数字混频器方框图

混频器 2、混频器 3 和混频器 4 会执行类似的混频器操作,以分别生成输出通道 2、通道 3 和通道 4。

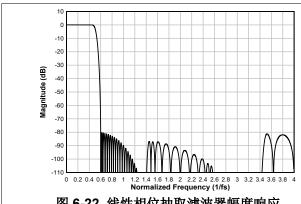
6.3.8.1.7 可配置数字抽取滤波器

器件录音通道包括一个内置的高动态范围数字抽取滤波器,用于处理来自多位 Δ-Σ 调制器的过采样数据,从而以与 FSYNC 速率相同的奈奎斯特采样速率生成数字数据。如图 6-19 所示,该抽取滤波器也可用于处理来自数字 麦克风的过采样 PDM 流。根据目标应用所需的频率响应、群延迟、功耗和相位线性度要求,可以从四种不同的类型中选择抽取滤波器。可以通过配置 ADC_DSP_DECI_FILT、P0_R114_D[7:6] 寄存器位来选择抽取滤波器选项。低功耗滤波器可以通过设置 ADC_LOW_PWR_FILT、P0_R78_D2 位来配置。表 6-17 显示了录音通道抽取滤波器模式选择的配置寄存器设置。

表 6-17. 录音通道的抽取滤波器模式选择

P0_R78_D2 : ADC_LOW_PWR_FILT	P0_R114_D[7:6] : ADC_DSP_DECI_FILT[1:0]	抽取滤波器模式选择
0	00 (默认值)	线性相位滤波器用于抽取
0	01	低延时滤波器用于抽取
0	10	超低延时滤波器用于抽取
0	11	保留(不使用此设置)
1	Х	低功耗滤波器用于抽取

6.3.8.1.7.1 线性相位滤波器


线性相位抽取滤波器是器件设置的默认滤波器,可用于需要在滤波器通带规格范围内具有良好线性相位和零相位偏差的所有应用。本节列出了所有受支持输出采样速率的滤波器性能规格和各种图。

提交文档反馈 Copyright © 2024
Product Folder Links: *TAC5411-Q1*

6.3.8.1.7.1.1 采样速率: 16kHz 或 14.7kHz

图 6-22 和图 6-23 分别展示了采样速率为 16kHz 或 14.7kHz 时抽取滤波器的幅度响应和通带纹波。表 6-18 列出 了采样速率为 16kHz 或 14.7kHz 时抽取滤波器的规格。

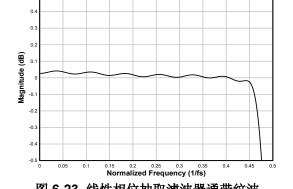


图 6-22. 线性相位抽取滤波器幅度响应

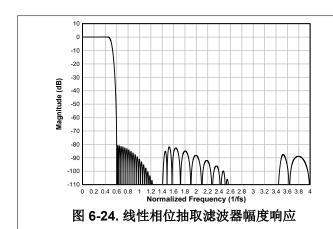
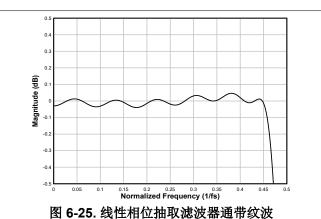

图 6-23. 线性相位抽取滤波器通带纹波

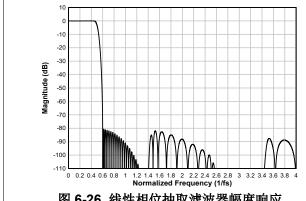
表 6-18. 线性相位抽取滤波器规格

参数	测试条件	最小值	典型值	最大值	单位	
通带纹波	频率范围为 0 至 0.454 × f _S	-0.05		0.05	dB	
四冊字件	频率范围为 0.6 × f _S 至 4 × f _S	80.2			dB	
阻带衰减	频率范围为 4×f _S 以上	84.7			ub	
群延迟或延时	频率范围为 0 至 0.454 × f _S		16.1		1/f _S	

6.3.8.1.7.1.2 采样速率: 24kHz 或 22.05kHz

图 6-24 和图 6-25 分别展示了采样速率为 24kHz 或 22.05kHz 时抽取滤波器的幅度响应和通带纹波。表 6-19 列出 了采样速率为 24kHz 或 22.05kHz 时抽取滤波器的规格。




表 6-19. 线性相位抽取滤波器规格

参数	测试条件	最小值	典型值	最大值	单位	
通带纹波	频率范围为 0 至 0.454 × f _S	-0.05		0.05	dB	
## ** **	频率范围为 0.6 × f _S 至 4 × f _S	80.6			dB	
阻带衰减	频率范围为 4×f _S 以上	92.9			uБ	
群延迟或延时	频率范围为 0 至 0.454 × f _S		14.7		1/f _S	

6.3.8.1.7.1.3 采样速率: 32kHz 或 29.4kHz

图 6-26 和图 6-27 分别展示了采样速率为 32kHz 或 29.4kHz 时抽取滤波器的幅度响应和通带纹波。表 6-20 列出 了采样速率为 32kHz 或 29.4kHz 时抽取滤波器的规格。

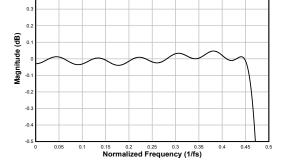
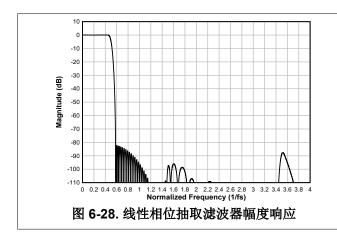
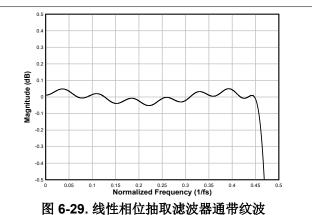


图 6-26. 线性相位抽取滤波器幅度响应


图 6-27. 线性相位抽取滤波器通带纹波

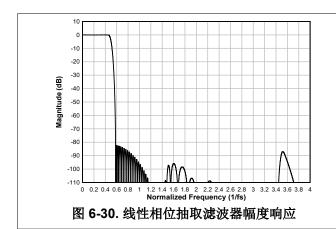

表 6-20. 线性相位抽取滤波器规格

参数	测试条件	最小值	典型值	最大值	单位	
通带纹波	频率范围为 0 至 0.454 × f _S	-0.05		0.05	dB	
加州之子	频率范围为 0.6 × f _S 至 4 × f _S	80.6			dB	
阻带衰减	频率范围为 4 × f _S 以上	92.9			uБ	
群延迟或延时	频率范围为 0 至 0.454 × f _S		14.7		1/f _S	

6.3.8.1.7.1.4 采样速率: 48kHz 或 44.1kHz

图 6-28 和图 6-29 分别展示了采样速率为 48kHz 或 44.1kHz 时抽取滤波器的幅度响应和通带纹波。表 6-21 列出 了采样速率为 48kHz 或 44.1kHz 时抽取滤波器的规格。

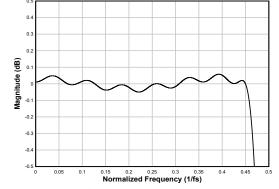
表 6-21. 线性相位抽取滤波器规格


参数	测试条件	最小值	典型值	最大值	单位	
通带纹波	频率范围为 0 至 0.454 × f _S	-0.052		0.05	dB	
77 # ÷ v+	频率范围为 0.58 × f _S 至 4 × f _S	82.2			dB	
阻带衰減	频率范围为 4 × f _S 以上	97.9			ub	
群延迟或延时	频率范围为 0 至 0.454 × f _S		17.0		1/f _S	

Product Folder Links: TAC5411-Q1

6.3.8.1.7.1.5 采样速率: 96kHz 或 88.2kHz

图 6-30 和图 6-31 分别展示了采样速率为 96kHz 或 88.2kHz 时抽取滤波器的幅度响应和通带纹波。表 6-22 列出了采样速率为 96kHz 或 88.2kHz 时抽取滤波器的规格。



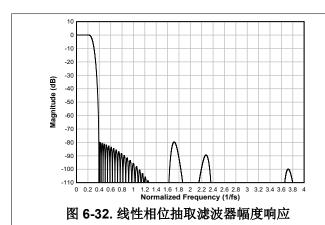

图 6-31. 线性相位抽取滤波器通带纹波

表 6-22. 线性相位抽取滤波器规格

参数	测试条件	最小值	典型值	最大值	单位	
通带纹波	频率范围为 0 至 0.454 × f _S	-0.05		0.058	dB	
加州之牙	频率范围为 0.58 × f _S 至 4 × f _S	82.2			dB	
阻带衰减	频率范围为 4×fs 以上	96.9			uБ	
群延迟或延时	频率范围为 0 至 0.454 × f _S		16.9		1/f _S	

6.3.8.1.7.1.6 采样速率: 384kHz 或 352.8kHz

图 6-32 和图 6-33 分别展示了采样速率为 384kHz 或 352.8kHz 时抽取滤波器的幅度响应和通带纹波。表 6-23 列出了采样速率为 384kHz 或 352.8kHz 时抽取滤波器的规格。

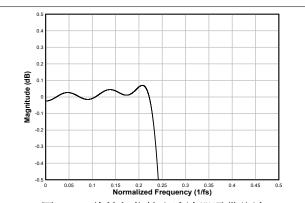


图 6-33. 线性相位抽取滤波器通带纹波

表 6-23. 线性相位抽取滤波器规格

At a least total ball ball ball ball ball ball ball b						
参数	测试条件	最小值	典型值	最大值	单位	
通带纹波	频率范围为 0 至 0.227 × f _S	-0.07		0.07	dB	
777 ## 六 17	频率范围为 0.391 × f _S 至 2 × f _S	79.7			dB	
阻带衰减	频率范围为 2×f _S 以上	89.3			db	
群延迟或延时	频率范围为 0 至 0.212 × f _S		11.45		1/f _S	

Product Folder Links: TAC5411-Q1

6.3.9 DAC 信号链

图 6-34 展示了回放信号链的关键元件。

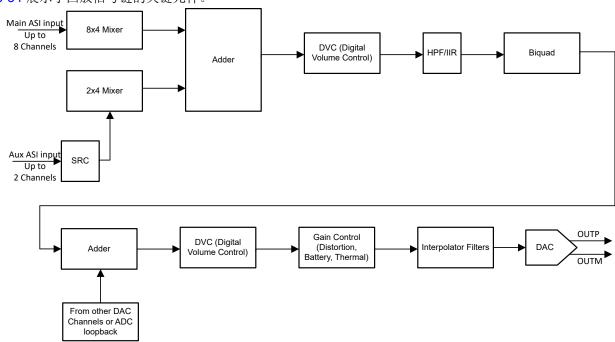


图 6-34. DAC 信号链处理流程图

DAC 信号链为低噪声和高保真音频应用提供高度灵活的低噪声回放路径。这款低噪声和低失真、多位 $\Delta - \Sigma$ DAC 使 TAC5411-Q1 能够以非常低的功耗实现 120dB 动态范围。此外,DAC 架构具有固有的抗混叠滤波功能,能够很好地抑制多个调制器频率分量附近的带外频率噪声。因此,该器件可防止噪声混叠到音频频带中。此外,在信号链中,集成的高性能多级数字内插滤波器会通过高阻带衰减来急剧削减任何带外频率噪声。

信号链还包含各种高度可编程的数字处理块,例如双二阶滤波器、相位校准、增益校准、高通滤波器、数字加法器或混频器、同步采样速率转换器、失真限制器、热折返、欠压预防和音量控制。本节将进一步介绍这些处理块的详细信息。该器件还支持多达四通道单端输出模式以及从 ADC 输入到 DAC 输出的模拟旁路选项。

可使用 CH_EN (P0_R118) 寄存器启用或禁用回放输出通道,并可使用 PASI_RX_CHx_CFG 或 SASI_RX_CHx_CFG 位启用或禁用音频串行接口的输入通道。该器件支持所有活动通道同时上电和断电,以进行同步回放。但是,根据应用需求,如果某些通道必须在另一个通道回放处于开启状态时动态上电或断电,则可以通过设置 DYN PUPD CFG 寄存器来支持该用例。

该器件支持多种数据混合选项,可在 DAC 输出上回放之前,使用每条路径的灵活增益选项将来自主要 ASI 的多达 8 个输入通道、来自辅助 ASI 的 2 个输入通道、ADC 环回数据和发音器混合起来。默认情况下,这些混频器处于禁用状态,并且通道配置为仅支持单通道数据。可按照第 17 页上的设置 ASI_DIN_Mixers 配置混频器。

该器件支持高达 100kHz 的输出信号带宽,这允许使用 216kHz(或更高)采样速率来播放高频非音频信号。可以使用 DAC_CHx_BW_Mode 位启用或禁用宽带模式。

对于 48kHz 或更低的采样速率,该器件支持所有功能和各种可编程处理块。不过,对于高于 48kHz 的采样速率,支持的同时通道录音和播放数量和双二阶滤波器数量等都存在限制。有关更多详细信息,请参阅 *TAC5212 采样速率和受支持的可编程处理块* 应用报告。

Product Folder Links: TAC5411-Q1

6.3.9.1 可编程通道增益和数字音量控制

该器件的每个输出通道都具有独立的可编程通道增益设置,用户可以根据系统中预期的最大输入信号将其设置为适当的值。这可以通过配置 OUT1x_LVL_CTRL 和 OUT2x_LVL_CTRL 位来完成。使用这些控件可提供从 -6dB 至 +24dB 的粗略增益配置 (步长为 6dB)。。

该器件具有可编程数字音量控制功能,其范围为 -100dB 至 27dB (步长为 0.5dB),并提供通道录音静音选项。当 DAC 通道上电并播放期间,可以动态更改数字音量控制值。在音量控制变化期间,内部使用软调高或调低音量功能来避免任何可闻失真。可以使用 DAC_DSP_DISABLE_SOFT_STEP (P0_R115_D1) 寄存器位来完全禁用软步进。

可分别对 4 个单端输出通道独立进行数字音量控制设置。对于 2 通道差分 DAC, 仅支持对 DAC_CH1A 和 DAC_CH2A 的设置。该器件还支持使用通道 1A 数字音量控制设置将所有通道的音量控制设置组合在一起的选项,而无论通道 1A 是上电还是断电。可以使用 DAC_DSP_DVOL_GANG (P0_R115_D0) 寄存器位来启用该组合。

表 6-24 展示了可用于数字音量控制的可编程选项。

表 6-24.					
P0_R103_D[7:0] : DAC_CH1A_DVOL[7:0]	输出通道 1A 的 DVC 设置				
0000 0000 = 0d	输出通道 1 DVC 设置为静音				
0000 0001 = 1d	输出通道 1 DVC 设置为 - 100dB				
0000 0010 = 2d	输出通道 1 DVC 设置为 - 99.5dB				
0000 0011 = 3d	输出通道 1 DVC 设置为 - 99dB				
1100 1000 = 200d	输出通道 1 DVC 设置为 - 0.5dB				
1100 1001 = 201d (默认值)	输出通道 1 DVC 设置为 0dB				
1100 1010 = 202d	输出通道 1 DVC 设置为 0.5dB				
1111 1101 = 253d	输出通道 1 DVC 设置为 26dB				
1111 1110 = 254d	输出通道 1 DVC 设置为 26.5dB				
1111 1111 = 255d	输出通道 1 DVC 设置为 27dB				

表 6-24. 数字音量控制 (DVC) 可编程设置

同样,输出通道 1B、2A 和 2B 的数字音量控制设置可以分别使用 CH1B_DVOL (P0_R103) 到 CH2B_DVOL (P0 R112) 寄存器位进行配置。

当该通道上电时,内部数字处理引擎会将音量从静音级别软斜升至编程的音量级别,当该通道断电时,内部数字处理引擎会将音量从编程的音量软斜降至静音。这种音量软步进是为了防止回放通道突然上电和断电,否则可导致音频失真。也可以使用 DAC_DSP_DISABLE_SOFT_STEP (P0_R115_D1) 寄存器位来完全禁用该功能。

6.3.9.2 可编程通道增益校准

除了数字音量控制外,此器件还提供可编程通道增益校准。每个通道的增益能够以 0.1dB 的步长进行精细校准或调整,增益误差范围为 - 0.8dB 至 0.7dB。当尝试匹配换能器灵敏度和负载阻抗不匹配导致的通道间增益时,此调整非常有用。该功能与常规数字音量控制相结合,可以在宽增益误差范围内实现所有通道上的增益匹配,分辨率为 0.1dB。表 6-25 展示了可用于通道增益校准的可编程选项。

表 6-25. DAC 通道增益校准可编程设置

P0_R104_D[7:4] : DAC_CH1A_FGAIN[3:0]	输入通道 1A 的通道增益校准设置
0000 = 0d	输入通道 1 增益校准设置为 - 0.8dB
0001 = 1d	输入通道 1 增益校准设置为 - 0.7dB

Product Folder Links: TAC5411-Q1

表 6-25. DAC 通道增益校准可编程设置 (续)

P0_R104_D[7:4] : DAC_CH1A_FGAIN[3:0]	输入通道 1A 的通道增益校准设置
1000 = 8d (默认值)	输入通道 1 增益校准设置为 0dB
1110 = 14d	输入通道 1 增益校准设置为 0.6dB
1111 = 15d	输入通道 1 增益校准设置为 0.7dB

同样,输入通道 1B、2A 和 2B 的通道增益校准设置可分别使用 DAC_CH1B_CFG1 (P0_R106)、 DAC_CH2A_CFG1 (P0_R111) 和 DAC_CH2B_CFG1 (P0_R113) 寄存器位进行配置。

6.3.9.3 可编程数字高通滤波器

为了去除直流偏移分量并衰减录音数据中不需要的低频噪声成分,该器件支持可编程高通滤波器 (HPF)。HPF 不 是独立于通道的滤波器设置,但全局适用于所有 DAC 通道。该 HPF 使用一阶无限脉冲响应 (IIR) 滤波器构建,并 具有足够高的效率来滤除信号中可能的直流分量。表 6-26 展示了可用的预定义 -3dB 截止频率,该频率可使用 P0_R115 的 DAC_DSP_HPF_SEL[1:0] 寄存器位进行设置。此外,为了针对特定应用实现自定义的 - 3dB 截止 频率,该器件还允许在 DAC DSP HPF SEL[1:0] 寄存器位设置为 2'b00 时对一阶 IIR 滤波器系数进行编程。图 6-35 展示了 HPF 滤波器的频率响应图。

表 6-26. HPF 可编程设置

P0_R115_D[5:4] : DAC_DSP_HPF_SE L[1:0]	-3dB 截止频率设置	16kHz 采样速率下的 -3dB 截止频率	48kHz 采样速率下的 -3dB 截止频率
00	可编程一阶 IIR 滤波器	可编程一阶 IIR 滤波器	可编程一阶 IIR 滤波器
01 (默认值)	0.00002 × f _S	0.25Hz	1Hz
10	0.00025 × f _S	4Hz	12Hz
11	0.002 × f _S	32Hz	96Hz

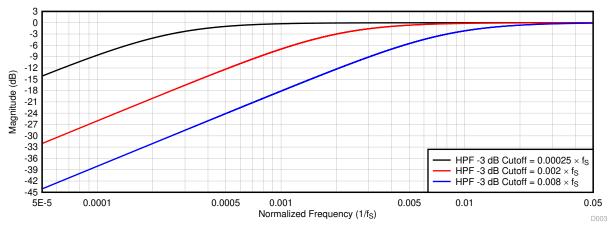


图 6-35. HPF 滤波器频率响应图

方程式 3 给出了一阶可编程 IIR 滤波器的传递函数:

$$H(z) = \frac{N_0 + N_1 z^{-1}}{2^{31} - D_1 z^{-1}}$$
(3)

Product Folder Links: TAC5411-Q1

对于具有默认系数的该一阶可编程 IIR 滤波器,其频率响应在增益为 0dB(全通滤波器)时是平坦的。主机器件可以通过对表 6-27 中的 IIR 系数进行编程来覆盖频率响应,从而实现高通滤波或任何其他必要滤波所需的频率响应。如果 DAC_DSP_HPF_SEL[1:0] 设置为 2'b00,则主机器件必须写入这些系数值以实现所需的频率响应,然后再对任何 DAC 通道上电以进行回放。表 6-27 展示了一阶 IIR 滤波器的滤波器系数。

表 6-27. 一阶 IIR 滤波器系数

滤波器	滤波器系数	默认系数值	系数寄存器映射
	N ₀	0x7FFFFFF	P17_R120-R124
可编程一阶 IIR 滤波器 (可分配至 HPF 或任 何其他所需滤波器)	N ₁	0x0000000	P17_R125-R128
1371 113 MG WA HA)	D ₁	0x0000000	P18_R8-R11

6.3.9.4 可编程数字双二阶滤波器

该器件支持多达 12 个可编程数字双二阶滤波器,可用于 DAC 信号链,限制为每通道 3 个滤波器。这些高效滤波器可实现所需的频率响应。TAC5411-Q1 还支持适用于双通道回放使用案例的动态可编程双二阶滤波器。在数字信号处理中,数字双二阶滤波器是具有两个极点和两个零点的二阶递归线性滤波器。方程式 4 给出了每个双二阶滤波器的传递函数:

$$H(z) = \frac{N_0 + 2N_1 z^{-1} + N_2 z^{-2}}{2^{31} - 2D_1 z^{-1} - D_2 z^{-2}}$$
(4)

对于具有默认系数的双二阶滤波器部分,其频率响应在增益为 0dB(全通滤波器)时是平坦的。主机器件可以通过对双二阶系数进行编程来覆盖频率响应,从而实现低通、高通或任何其他必要频率整形所需的频率响应。如果需要双二阶滤波,那么主机器件必须先写入这些系数值,然后再为任何 ADC 通道上电以进行录音。在双通道使用案例中,TAC5411-Q1 还支持动态可编程滤波器。在这种情况下,器件对一个通道使用两组滤波器,并通过开关位来执行从一个滤波器组到另一滤波器组的切换。如表 6-28 所述,可以根据 P0_R115 的 DAC_DSP_BQ_CFG[1:0] 寄存器设置为每个输出通道分配这些双二阶滤波器。通过将 DAC_DSP_BQ_CFG[1:0]设置为 2'b00,可禁用所有回放通道的双二阶滤波,并且如果系统应用不需要额外的滤波,则主机器件可以选择该设置。有关更多详细信息,请参阅 TAC5212 可编程双二阶滤波器配置和应用应用报告。

表 6-28. 双二阶滤波器在记录输出通道中的分配

	使用 P0_R115_D[3:2] 寄存器设置的记录输出通道分配			
可编程双二阶滤波器	DAC_DSP_BQ_CFG[1:0] = 2'b01 (每通道1个双二阶滤波器)	DAC_DSP_BQ_CFG[1:0] = 2'b10 (默认值) (每通道 2 个双二阶滤波器)	DAC_DSP_BQ_CFG[1:0] = 2'b11 (每通道 3 个双二阶滤波器)	
双二阶滤波器 1	分配至输出通道 1	分配至输出通道 1	分配至输出通道 1	
双二阶滤波器 2	分配至输出通道 2	分配至输出通道 2	分配至输出通道 2	
双二阶滤波器 3	分配至输出通道 3	分配至输出通道 3	分配至输出通道 3	
双二阶滤波器 4	分配至输出通道 4	分配至输出通道 4	分配至输出通道 4	
双二阶滤波器 5	未使用	分配至输出通道 1	分配至输出通道 1	
双二阶滤波器 6	未使用	分配至输出通道 2	分配至输出通道 2	
双二阶滤波器 7	未使用	分配至输出通道 3	分配至输出通道 3	
双二阶滤波器 8	未使用	分配至输出通道 4	分配至输出通道 4	
双二阶滤波器 9	未使用	未使用	分配至输出通道 1	
双二阶滤波器 10	未使用	未使用	分配至输出通道 2	
双二阶滤波器 11	未使用	未使用	分配至输出通道 3	
双二阶滤波器 12	未使用	未使用	分配至输出通道 4	

表 6-29 所示为寄存器空间中的双二阶滤波器系数映射。

表 6-29. 双二阶滤波器系数寄存器映射

可编程双二阶滤波器	双二阶滤波器系数寄存器映射	可编程双二阶滤波器	双二阶滤波器系数寄存器映射
双二阶滤波器 1	P16_R8-R27	双二阶滤波器 7	P17_R8-R27
双二阶滤波器 2	P16_R28-R47	双二阶滤波器 8	P17_R28-R47
双二阶滤波器 3	P16_R48-R67	双二阶滤波器 9	P17_R48-R67
双二阶滤波器 4	P16_R68-R87	双二阶滤波器 10	P17_R68-R87
双二阶滤波器 5	P16_R88-R107	双二阶滤波器 11	P17_R88-R107
双二阶滤波器 6	P16_R108-R127	双二阶滤波器 12	P17_R108-R127

6.3.9.5 可编程数字混频器

该器件支持完全可编程的混频器功能,该功能可以将各种输入通道与其自定义可编程比例因子进行混频,以生成最终输出通道。

Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: TAC5411-Q1

提交文档反馈

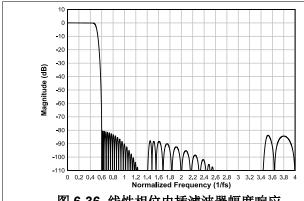
6.3.9.6 可配置数字内插滤波器

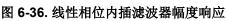
器件回放通道包括高动态范围、内置数字内插滤波器,用于处理输入数据流,从而为多位 Δ - Σ 调制器生成数字数据流。根据目标应用所需的频率响应、群延迟、功耗和相位线性度要求,可以从四种不同的类型中选择内插滤波器。可以通过配置 DAC_DSP_INTX_FILT、P0_R115_D[7:6] 寄存器位来选择内插滤波器选项。可通过设置 DAC_LOW_PWR_FILT、P0_R79_D2 位来配置低功耗滤波器。表 6-30 显示了录音通道抽取滤波器模式选择的配置寄存器设置。

表 6-30. 回放通道的内插滤波器模式选择

P0_R79_D2 : DAC_LOW_PWR_FILT	P0_R115_D[7:6] : DAC_DSP_INTX_FILT[1:0]	内插滤波器模式选择
0	00 (默认值)	线性相位滤波器用于内插
0	01	低延时滤波器用于内插
0	10	超低延时滤波器用于内插
0	11	保留(不使用此设置)
1	X	低功耗滤波器用于内插

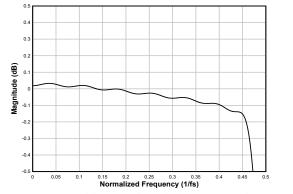
6.3.9.6.1 线性相位滤波器


线性相位内插滤波器是器件设置的默认滤波器,可用于需要在滤波器通带规格范围内具有良好线性相位和零相位偏差的所有应用。本节列出了所有受支持输出采样速率的滤波器性能规格和各种图。


Product Folder Links: TAC5411-Q1

6.3.9.6.1.1 采样速率: 16kHz 或 14.7kHz

图 6-36 和图 6-37 分别展示了采样速率为 16kHz 或 14.7kHz 时内插滤波器的幅度响应和通带纹波。表 6-31 列出 了采样速率为 16kHz 或 14.7kHz 时内插滤波器的规格。



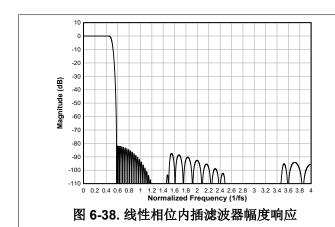

图 6-37. 线性相位内插滤波器通带纹波

表 6-31. 线性相位内插滤波器规格

参数	测试条件	最小值	典型值	最大值	单位	
通带纹波	频率范围为 0 至 0.454 × f _S	-0.17		0.03	dB	
阳典克泽	频率范围为 0.6 × f _S 至 4 × f _S	80.4			- dB	
阻带衰减	频率范围为 4 × f _S 至 7.43 × f _S	86.9			uБ	
群延迟或延时	频率范围为 0 至 0.454 × f _S		16.0		1/f _S	

6.3.9.6.1.2 采样速率: 24kHz 或 22.05kHz

图 6-38 和图 6-39 分别展示了采样速率为 24kHz 或 22.05kHz 时内插滤波器的幅度响应和通带纹波。表 6-32 列出 了采样速率为 24kHz 或 22.05kHz 时内插滤波器的规格。

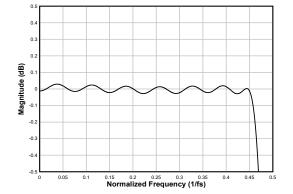
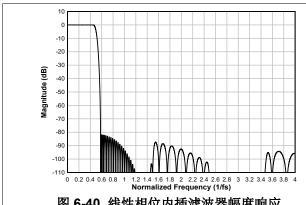


图 6-39. 线性相位内插滤波器通带纹波

表 6-32. 线性相位内插滤波器规格


*** *** *** **** *********************						
参数	测试条件	最小值	典型值	最大值	单位	
通带纹波	频率范围为 0 至 0.454 × f _S	-0.05		0.03	dB	
加州市社	频率范围为 0.58 × f _S 至 4 × f _S	81.9			- dB	
阻带衰减	频率范围为 4 × f _S 至 15.42 × f _S	87.6			αв	
群延迟或延时	频率范围为 0 至 0.454 × f _S		17.6		1/f _S	

Product Folder Links: TAC5411-Q1

6.3.9.6.1.3 采样速率: 32kHz 或 29.4kHz

图 6-40 和图 6-41 分别展示了采样速率为 32kHz 或 29.4kHz 时内插滤波器的幅度响应和通带纹波。表 6-33 列出 了采样速率为 32kHz 或 29.4kHz 时内插滤波器的规格。

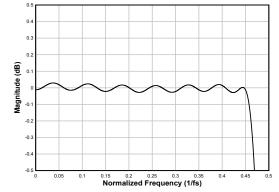


图 6-40. 线性相位内插滤波器幅度响应

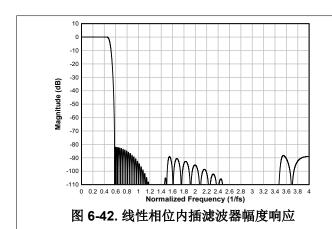

图 6-41. 线性相位内插滤波器通带纹波

表 6-33. 线性相位内插滤波器规格

参数	测试条件	最小值	典型值	最大值	单位	
通带纹波	频率范围为 0 至 0.454 × f _S	-0.05		0.03	dB	
加州之外	频率范围为 0.586 × f _S 至 4 × f _S	81.9			- dB	
阻带衰减	频率范围为 4 × f _S 至 15.42 × f _S	87.6			uБ	
群延迟或延时	频率范围为 0 至 0.454 × f _S	17.6		1/f _S		

6.3.9.6.1.4 采样速率: 48kHz 或 44.1kHz

图 6-42 和图 6-43 分别展示了采样速率为 48kHz 或 44.1kHz 时内插滤波器的幅度响应和通带纹波。表 6-34 列出 了采样速率为 48kHz 或 44.1kHz 时内插滤波器的规格。

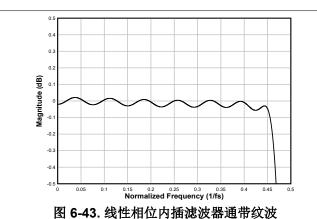
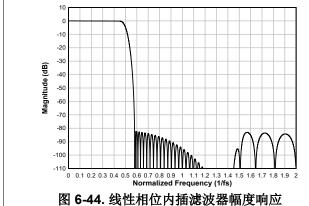


表 6-34. 线性相位内插滤波器规格

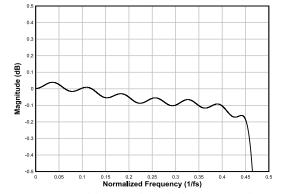


参数	测试条件	最小值	典型值	最大值	单位	
通带纹波	频率范围为 0 至 0.454 × f _S	-0.08		0.02	dB	
阻带衰减	频率范围为 0.585 × f _S 至 4 × f _S	82.0			dB	
阻市农佩	频率范围为 4 × f _S 至 7.42 × f _S 以上	89.0			uБ	
群延迟或延时	频率范围为 0 至 0.454 × f _S		17.3		1/f _S	

Product Folder Links: TAC5411-Q1

6.3.9.6.1.5 采样速率: 96kHz 或 88.2kHz

图 6-44 和图 6-45 分别展示了采样速率为 96kHz 或 88.2kHz 时内插滤波器的幅度响应和通带纹波。表 6-35 列出 了采样速率为 96kHz 或 88.2kHz 时内插滤波器的规格。



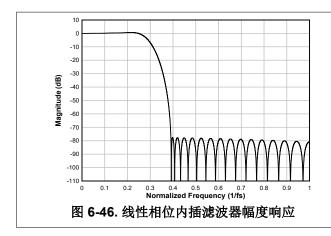

图 6-45. 线性相位内插滤波器通带纹波

表 6-35. 线性相位内插滤波器规格

参数	测试条件	最小值	典型值	最大值	单位
通带纹波	频率范围为 0 至 0.452 × f _S	-0.2		0.04	dB
阻带衰减	频率范围为 0.58 × f _S 至 3.42 × f _S	82.4			dB
群延迟或延时	频率范围为 0 至 0.454 × f _S		16.7		1/f _S

6.3.9.6.1.6 采样速率: 384kHz 或 352.8kHz

图 6-46 和图 6-47 分别展示了采样速率为 384kHz 或 352.8kHz 时内插滤波器的幅度响应和通带纹波。表 6-36 列 出了采样速率为 384kHz 或 352.8kHz 时内插滤波器的规格。

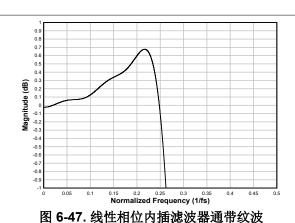


表 6-36. 线性相位内插滤波器规格

参数	测试条件	最小值	典型值	最大值	单位
通带纹波	频率范围为 0 至 0.245 × f _S	-0.03		0.67	dB
阻带衰减	频率范围为 0.391 × f _S 至 1.61 × f _S	77.6			dB
群延迟或延时	频率范围为 0 至 0.212 × f _S		10.7		1/f _S

6.3.10 中断、状态和数字 I/O 引脚多路复用

该器件中的某些事件可能需要主机处理器干预,并可用于触发主机处理器的中断。一个此类事件是音频串行接口 (ASI) 总线错误。如果检测到 ASI 总线错误时钟出现任何故障,该器件会关闭录音通道,例如:

- FSYNC 频率无效
- 无效的 SBCLK 与 FSYNC 之比
- SBCLK 或 FSYNC 时钟具有长暂停时间

当检测到 ASI 总线时钟错误时,该器件会尽快关闭所有录音和回放通道。解决所有 ASI 总线时钟错误后,器件音 量会恢复到之前的状态,从而恢复音频。在 ASI 总线时钟错误期间,如果将时钟错误中断屏蔽寄存器位 INT MASK0[7] (P1 R47 D7) 设置为低电平,则内部中断请求 (IRQ) 中断信号会置为低电平。此外还可以通过锁 存故障状态寄存器位 INT_LTCH0 (P1_R52) 回读该时钟故障,该寄存器是一个只读寄存器。读取锁存故障状态寄 存器 INT LTCH0 会清除所有锁存故障状态。此外,该器件可配置为在 GPIOx 或 GPO1 引脚上路由内部 IRQ 中 断信号,也可配置为开漏输出,以便这些引脚与其他器件的开漏中断输出进行线与连接。

通过设置 INT POL (PO R66 D7) 寄存器位,可以将 IRQ 中断信号配置为低电平有效或高电平有效极性。通过对 INT EVENT[1:0] (PO R66 D[6:5]) 寄存器位进行编程,该信号也可以配置为单个脉冲或一系列脉冲。如果中断配 置为一系列脉冲,则事件将触发脉冲开始;当读取锁存的故障状态寄存器以确定中断原因时,脉冲将停止。

该器件还支持只读实时状态寄存器,以确定通道是上电还是断电,以及器件是否处于睡眠模式。这些状态寄存器 位于 DEV_STS0 (P0_R121) 和 DEV_STS1 (P0_R122) 寄存器位中。

该器件具有一个多功能 GPIO1 引脚,该引脚可针对所需的特定功能进行配置。表 6-37 列出了这些多功能引脚用 于各种功能的所有可能分配。

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

表 6-37. 多功能引脚分配

行	引脚功能	GPIO1	GPIO2	GPO1	GPI1
_	——————————————————————————————————————	GPIO1_CFG	GPO2_CFG	GPO1_CFG	GPI1_CFG
_	_	P0_R10[7:4]	P0_R11[7:4]	P0_R12[7:4]	P0_R13[1]
A	引脚禁用	S ⁽¹⁾	S(默认值)	S(默认值)	S(默认值)
В	通用输出 (GPO)	S	S	S	NS
С	中断输出 (IRQ)	S(默认值)	S	S	NS
D	所有 ADC 通道断电	S	S	NS	S
E	PDM 时钟输出 (PDMCLK)	S	S	S	NS
F	MiCBIAS 开/关输入 (BIASEN)	S	S	NS	S
G	通用输入 (GPI)	S	S	NS	S
Н	控制器时钟输入 (CCLK)	S	S	S	S
I	ASI 菊花链输入	S	S	NS	S
J	PDM 数据输入 1 (PDMDIN1)	S	S	NS	S
К	PDM 数据输入 2 (PDMDIN2)	S	S	NS	S
L	ASI DOUT	S	S	S	NS
М	ASI BCLK	S	S	S	S
N	ASI FSYNC	S	S	S	S
0	通用时钟输出	S	S	S	NS
P	增量式 ADC 转换开始	S	S	NS	S

(1) S表示此列中提到的相应 GPIO1、GPOx 或 GPIx 引脚 支持 此行中提到的功能。

每个 GPOx 或 GPIOx 引脚都可以通过使用 GPIOx_DRV[2:0] 或 GPO1_DRV[2:0] 寄存器位独立设置为所需的驱动配置设置。表 6-38 列出了驱动配置设置。

表 6-38. GPIO 或 GPOx 引脚驱动配置设置

P0_R10_D[2:0] : GPIO1_DRV[2:0]	GPIO1 的 GPIO 输出驱动配置设置	
000	GPIO1 引脚设置为高阻抗(悬空)	
001 GPIO1 引脚设置为驱动为低电平有效或高电平有效		
010 (默认值)	GPIO1 引脚设置为驱动为低电平有效或弱高电平(片上上拉)	
011	GPIO1 引脚设置为驱动为低电平有效或高阻态 (悬空)	
100	GPIO1 引脚设置为驱动为弱低电平(片上下拉)或高电平有效	
101	GPIO1 引脚设置为驱动为高阻态(悬空)或高电平有效	
110 和 111	保留(不使用这些设置)	

同样, GPO1 引脚可以使用 GPO1_DRV(P0_R12) 寄存器位进行配置。

当配置为通用输出 (GPO) 时,可以通过写入 GPO_GPI_VAL (P0_R14) 寄存器来驱动 GPIOx 或 GPO1 引脚值。当配置为通用输入 (GPI) 时,GPIO_MON 位 (P0_R14_D[3:1]) 可用于读回 GPIOx 或 GPI1 引脚的状态。

7 寄存器映射

本节详细介绍了器件的控制寄存器。所有这些寄存器均具有 8 位宽度,并分配给器件配置和可编程系数设置。这些寄存器使用页方案在内部进行映射,可以通过 I²C 或 SPI 与器件通信来控制该方案。每页包含 128 字节的寄存器。所有器件配置寄存器都存储在第 0 页、第 1 页和第 3 页中。第 0 页是上电时(以及软件复位后)的默认页面设置。通过使用每页上寄存器 0 中的 PAGE[7:0] 位,可以将器件当前页切换到所需的新页。

请勿从保留页或保留寄存器读取数据或向其写入数据。仅写入有效寄存器中保留位的默认值。

跨页访问寄存器的步骤如下:

- 选择页 N (将数据 N 写入寄存器 0, 无论当前页码如何)
- 从页 N 中的有效寄存器读取数据或向其中写入数据
- 选择新页 M (将数据 M 写入寄存器 0,而不管当前页码如何)
- 从页 M 中的有效寄存器读取数据或向其中写入数据
- 根据需要重复

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

7.1 页 0 寄存器

表 7-1 列出了页 0 寄存器的存储器映射寄存器。表 7-1 中未列出的所有寄存器偏移地址都应视为保留的位置,并 且不应修改寄存器内容。

表 7-1. 页 0 寄存器

地址	首字母缩写词	寄存器名称	复位值	部分
0x0	PAGE_CFG	器件页寄存器	0x00	节 7.1.1
0x1	SW_RESET	软件复位寄存器	0x00	节 7.1.2
0x2	VREF_CFG		0x00	节 7.1.3
0x3	AVDD_IOVDD_STS		0x00	节 7.1.4
0x4	MISC_CFG		0x00	节 7.1.5
0x5	MISC_CFG1		0x15	节 7.1.6
0x6	DAC_CFG_A0	DAC DEPOP 配置寄存器	0x55	节 7.1.7
0x7	MISC_CFG0	其他配置寄存器	0x00	节 7.1.8
0xA	GPIO1_CFG0	GPIO1 配置寄存器 0	0x32	节 7.1.9
0xC	GPO1A_CFG0	GPO1A 配置寄存器 0	0x00	节 7.1.10
0xD	GPI_CFG	GPI1 配置寄存器 0	0x00	节 7.1.11
0xE	GPO_GPI_VAL	GPIO、GPO 输出值寄存器	0x00	节 7.1.12
0xF	INTF_CFG0	接口配置寄存器 0	0x00	节 7.1.13
0x10	INTF_CFG1	接口配置寄存器 1	0x52	节 7.1.14
0x11	INTF_CFG2	接口配置寄存器 2	0x80	节 7.1.15
0x12	INTF_CFG3	接口配置寄存器 3	0x00	节 7.1.16
0x13	INTF_CFG4	接口配置寄存器 3	0x00	节 7.1.17
0x14	INTF_CFG5	接口配置寄存器 4	0x00	节 7.1.18
0x15	INTF_CFG6	接口配置寄存器 5	0x00	节 7.1.19
0x18	ASI_CFG0	ASI 配置寄存器 0	0x40	节 7.1.20
0x19	ASI_CFG1	ASI 配置寄存器 1	0x00	节 7.1.21
0x1A	PASI_CFG0	主要 ASI 配置寄存器 0	0x30	节 7.1.22
0x1B	PASI_TX_CFG0	PASI TX 配置寄存器 0	0x00	节 7.1.23
0x1C	PASI_TX_CFG1	PASI TX 配置寄存器 1	0x00	节 7.1.24
0x1D	PASI_TX_CFG2	PASI TX 配置寄存器 2	0x00	节 7.1.25
0x1E	PASI_TX_CH1_CFG	PASI TX 通道 1 配置寄存器	0x20	节 7.1.26
0x1F	PASI_TX_CH2_CFG	PASI TX 通道 2 配置寄存器	0x21	节 7.1.27
0x20	PASI_TX_CH3_CFG	PASI TX 通道 3 配置寄存器	0x02	节 7.1.28
0x21	PASI_TX_CH4_CFG	PASI TX 通道 4 配置寄存器	0x03	节 7.1.29
0x22	PASI_TX_CH5_CFG	PASI TX 通道 5 配置寄存器	0x04	节 7.1.30
0x23	PASI_TX_CH6_CFG	PASI TX 通道 6 配置寄存器	0x05	节 7.1.31
0x24	PASI_TX_CH7_CFG	PASI TX 通道 7 配置寄存器	0x06	节 7.1.32
0x25	PASI_TX_CH8_CFG	PASI TX 通道 8 配置寄存器	0x07	节 7.1.33
0x26	PASI_RX_CFG0	PASI RX 配置寄存器 0	0x00	节 7.1.34
0x27	PASI_RX_CFG1	PASI RX 配置寄存器 1	0x00	节 7.1.35
0x28	PASI_RX_CH1_CFG	PASI RX 通道 1 配置寄存器	0x20	节 7.1.36
0x29	PASI_RX_CH2_CFG	PASI RX 通道 2 配置寄存器	0x21	节 7.1.37
0x2A	PASI_RX_CH3_CFG	PASI RX 通道 3 配置寄存器	0x02	节 7.1.38

Product Folder Links: TAC5411-Q1

表 7-1. 页 0 寄存器 (续)

表 7-1. 贝 0 奇仔器 ()						
地址	首字母缩写词	寄存器名称	复位值	部分		
0x2C	PASI_RX_CH5_CFG	PASI RX 通道 5 配置寄存器	0x04	节 7.1.40		
0x2D	PASI_RX_CH6_CFG	PASI RX 通道 6 配置寄存器	0x05	节 7.1.41		
0x2E	PASI_RX_CH7_CFG	PASI RX 通道 7 配置寄存器	0x06	节 7.1.42		
0x2F	PASI_RX_CH8_CFG	PASI RX 通道 8 配置寄存器	0x07	节 7.1.43		
0x32	CLK_CFG0	时钟配置寄存器 0	0x00	节 7.1.44		
0x33	CLK_CFG1	时钟配置寄存器 1	0x00	节 7.1.45		
0x34	CLK_CFG2	时钟配置寄存器 2	0x40	节 7.1.46		
0x35	CNT_CLK_CFG0	控制器模式时钟配置寄存器 0	0x00	节 7.1.47		
0x36	CNT_CLK_CFG1	控制器模式时钟配置寄存器 1	0x00	节 7.1.48		
0x37	CNT_CLK_CFG2	控制器模式时钟配置寄存器 2	0x20	节 7.1.49		
0x38	CNT_CLK_CFG3	控制器模式时钟配置寄存器 3	0x00	节 7.1.50		
0x39	CNT_CLK_CFG4	控制器模式时钟配置寄存器 4	0x00	节 7.1.51		
0x3A	CNT_CLK_CFG5	控制器模式时钟配置寄存器 5	0x00	节 7.1.52		
0x3B	CNT_CLK_CFG6	控制器模式时钟配置寄存器 6	0x00	节 7.1.53		
0x3C	CLK_ERR_STS0	时钟错误和状态寄存器 0	0x00	节 7.1.54		
0x3D	CLK_ERR_STS1	时钟错误和状态寄存器 1	0x00	节 7.1.55		
0x3E	CLK_DET_STS0	时钟比率检测寄存器 0	0x00	节 7.1.56		
0x3F	CLK_DET_STS1	时钟比率检测寄存器 1	0x00	节 7.1.57		
0x40	CLK_DET_STS2	时钟比率检测寄存器 2	0x00	节 7.1.58		
0x41	CLK_DET_STS3	时钟比率检测寄存器 3	0x00	节 7.1.59		
0x42	INT_CFG	中断配置寄存器	0x00	节 7.1.60		
0x43	DAC_FLT_CFG	中断配置寄存器	0x50	节 7.1.61		
0x4B	ADC_DAC_MISC_CFG	ADC 过载响应配置寄存器	0x00	节 7.1.62		
0x4D	VREF_CFG	Power Tune 配置寄存器 0	0x00	节 7.1.3		
0x4E	PWR_TUNE_CFG0	Power Tune 配置寄存器 0	0x00	节 7.1.63		
0x4F	PWR_TUNE_CFG1	Power Tune 配置寄存器 1	0x00	节 7.1.64		
0x50	ADC_CH1_CFG0	ADC 通道 1 配置寄存器 0	0x00	节 7.1.65		
0x52	ADC_CH1_CFG2	ADC 通道 1 配置寄存器 2	0xA1	节 7.1.66		
0x53	ADC_CH1_CFG3	ADC 通道 1 配置寄存器 3	0x80	节 7.1.67		
0x54	ADC_CH1_CFG4	ADC 通道 1 配置寄存器 4	0x00	节 7.1.68		
0x55	ADC_CH2_CFG0	ADC 通道 2 配置寄存器 0	0x00	节 7.1.69		
0x57	ADC_CH2_CFG2	通道2配置寄存器2	0xA1	节 7.1.70		
0x58	ADC_CH2_CFG3	ADC 通道 2 配置寄存器 3	0x80	节 7.1.71		
0x59	ADC_CH2_CFG4	ADC 通道 2 配置寄存器 4	0x00	节 7.1.72		
0x5A	ADC_CH3_CFG0	ADC 通道 3 配置寄存器 0	0x00	节 7.1.73		
0x5B	ADC_CH3_CFG2	ADC 通道 3 配置寄存器 2	0xA1	节 7.1.74		
0x5C	ADC_CH3_CFG3	ADC 通道 3 配置寄存器 3	0x80	节 7.1.75		
0x5D	ADC_CH3_CFG4	ADC 通道 3 配置寄存器 4	0x00	节 7.1.76		
0x5E	ADC_CH4_CFG0	ADC 通道 4 配置寄存器 0	0x00	节 7.1.77		
0x5F	ADC_CH4_CFG2	通道4配置寄存器2	0xA1	节 7.1.78		
0x60	ADC_CH4_CFG3	ADC 通道 4 配置寄存器 3	0x80	节 7.1.79		
0x61	ADC_CH4_CFG4	ADC 通道 4 配置寄存器 4	0x00	节 7.1.80		

表 7-1. 页 0 寄存器 (续)

		ない・い グ O H T T T (次)		
地址	首字母缩写词	寄存器名称	复位值	部分
0x64	OUT1x_CFG0	通道 OUT1x 配置寄存器 0	0x20	节 7.1.81
0x65	OUT1x_CFG1	通道 OUT1x 配置寄存器 1	0x20	节 7.1.82
0x66	OUT1x_CFG2	通道 OUT2x 配置寄存器 2	0x20	节 7.1.83
0x67	DAC_CH1A_CFG0	DAC 通道 1A 配置寄存器 0	0xC9	节 7.1.84
0x68	DAC_CH1A_CFG1	DAC 通道 1A 配置寄存器 1	0x80	节 7.1.85
0x69	DAC_CH1B_CFG0	DAC 通道 1B 配置寄存器 0	0xC9	节 7.1.86
0x6A	DAC_CH1B_CFG1	DAC 通道 1B 配置寄存器 1	0x80	节 7.1.87
0x6B	OUT2x_CFG0	通道 OUT2x 配置寄存器 0	0x20	节 7.1.88
0x6C	OUT2x_CFG1	通道 OUT2x 配置寄存器 1	0x20	节 7.1.89
0x6D	OUT2x_CFG2	通道 OUT2x 配置寄存器 2	0x20	节 7.1.90
0x6E	DAC_CH2A_CFG0	DAC 通道 2A 配置寄存器 0	0xC9	节 7.1.91
0x6F	DAC_CH2A_CFG1	DAC 通道 2A 配置寄存器 1	0x80	节 7.1.92
0x70	DAC_CH2B_CFG0	DAC 通道 2B 配置寄存器 0	0xC9	节 7.1.93
0x71	DAC_CH2B_CFG1	DAC 通道 2B 配置寄存器 1	0x80	节 7.1.94
0x72	DSP_CFG0	DSP 配置寄存器 0	0x18	节 7.1.95
0x73	DSP_CFG1	DSP 配置寄存器 0	0x18	节 7.1.96
0x76	CH_EN	通道使能配置寄存器	0xCC	节 7.1.97
0x77	DYN_PUPD_CFG	上电配置寄存器	0x00	节 7.1.98
0x78	PWR_CFG	上电配置寄存器	0x00	节 7.1.99
0x79	DEV_STS0	器件状态值寄存器 0	0x00	节 7.1.100
0x7A	DEV_STS1	器件状态值寄存器 1	0x80	节 7.1.101
0x7E	I2C_CKSUM	I ² C 校验和寄存器	0x00	节 7.1.102

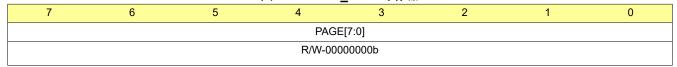

7.1.1 PAGE_CFG 寄存器 (地址 = 0x0) [复位 = 0x00]

图 7-1 中显示了 PAGE_CFG,表 7-2 中对此进行了介绍。

返回到汇总表。

器件存储器映射分为多个页面。该寄存器设置页。

图 7-1. PAGE_CFG 寄存器

表 7-2. PAGE_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-0	PAGE[7:0]	R/W	0x0	这些位设置器件页。
				Od = 第 0 页
				1d = 第 1 页
				2d 至 254d = 第 2 页至第 254 页
				255d = 第 255 页

Product Folder Links: TAC5411-Q1

7.1.2 SW_RESET 寄存器 (地址 = 0x1) [复位 = 0x00]

图 7-2 中显示了 SW_RESET,表 7-3 中对此进行了介绍。

返回到汇总表。

该寄存器是软件复位寄存器。软件复位置为有效会将所有寄存器值置于其默认上电复位 (POR) 状态。

图 7-2. SW_RESET 寄存器

7	6	5	4	3	2	1	0
			RESERVED				SW_RESET
			R-0000000b				R/W-0b

表 7-3. SW_RESET 寄存器字段说明

位	字段	类型	复位	说明
7-1	RESERVED	R	0x0	保留位;仅写入复位值
0	SW_RESET	R/W		软件复位。此位可自行清除。 0d = 不复位 1d = 将所有寄存器复位为其复位值

7.1.3 VREF_CFG 寄存器 (地址 = 0x2) [复位 = 0x00]

图 7-3 中显示了 VREF_CFG,表 7-4 中对此进行了介绍。

返回到汇总表。

图 7-3. VREF_CFG 寄存器

7	6	5	4	3	2	1	0
RESE	RVED	VREF_QC	HG[1:0]	SLEEP_EXIT_V REF_EN	AVDD_MODE	IOVDD_IO_MO DE	SLEEP_ENZ
R-	00b	R/W-0	00b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-4. VREF_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5-4	VREF_QCHG[1:0]	R/W	0x0	VREF 外部电容器的快速充电持续时间使用 200 Ω 的内部串联电阻来设置。 0d = VREF 快速充电持续时间为 3.5ms (典型值) 1d = VREF 快速充电持续时间为 10ms (典型值) 2d = VREF 快速充电持续时间为 50ms (典型值) 3d = VREF 快速充电持续时间为 100ms (典型值)
3	SLEEP_EXIT_VREF_EN	R/W	0x0	睡眠模式退出配置 0d = 仅启用 DREG 1d = 启用 DREG 和 VREF
2	AVDD_MODE	R/W	0x0	AVDD 模式配置。 0d = 使用内部 AREG 稳压器 (应在 AVDD > 2V 时使用) 1d = AVDD 1.8V 直接用于 AREG (对于 AVDD 1.7V-1.9V , 严格使用此设置)
1	IOVDD_IO_MODE	R/W	0x0	IOVDD 模式配置。 0d = 3.3V/1.8V/1.2V 时的 IOVDD (在 1.8V 和 1.2V 时速度限制适用) 1d = 仅 1.8V/1.2V 时的 IOVDD (无速度限制 - 在 IOVDD > 2V 时完全不要使用此设置)。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

表 7-4. VREF_CFG 寄存器字段说明 (续)

位	字段	类型	复位	说明
0	SLEEP_ENZ	R/W		睡眠模式设置。 0d = 器件处于睡眠模式 1d = 器件未处于睡眠模式

7.1.4 AVDD_IOVDD_STS 寄存器 (地址 = 0x3) [复位 = 0x00]

图 7-4 中显示了 AVDD_IOVDD_STS,表 7-5 中对此进行了介绍。 返回到汇总表。

图 7-4. AVDD_IOVDD_STS 寄存器

			_				
7	6	5	4	3	2	1	0
AVDD_MODE_ STS	IOVDD_IO_MO DE_STS		RESE	RVED		BRWNOUT_SH DN_STS	BRWNOUT_SH DN_EXIT_SLE EP
R-0b	R-0b		R-00	000b		R-0b	R/W-0b

表 7-5. AVDD_IOVDD_STS 寄存器字段说明

位	字段	类型	复位	说明
7	AVDD_MODE_STS	R	0x0	AVDD 模式状态标志寄存器。 0d = AVDD_MODE 取决于配置 1d = AVDD > 2V (AVDD_MODE 强制设置为 0d)
6	IOVDD_IO_MODE_STS	R	0x0	IOVDD 模式状态标志寄存器。 0d = IOVDD_MODE 取决于配置 1d = IOVDD > 2V(IOVDD_IO_MODE 强制设置为 0d)
5-2	RESERVED	R	0x0	保留位;仅写入复位值
1	BRWNOUT_SHDN_STS	R	0x0	Brwnout 关断状态 0d =无 Brwnout 关断 1d = Brwnout 关断
0	BRWNOUT_SHDN_EXIT_ SLEEP	R/W	0x0	Brwnout 关断睡眠退出配置 0d = 保持睡眠模式 1d = 退出睡眠模式

7.1.5 MISC_CFG 寄存器 (地址 = 0x4) [复位 = 0x00]

图 7-5 中显示了 MISC_CFG,表 7-6 中对此进行了介绍。

返回到汇总表。

图 7-5. MISC_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	I2C_BRDCAST _EN	RESERVED
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R/W-0b	R-0b

表 7-6. MISC_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6	RESERVED	R	0x0	保留位;仅写入复位值
5	RESERVED	R	0x0	保留位;仅写入复位值
4	RESERVED	R	0x0	保留位;仅写入复位值

Product Folder Links: TAC5411-Q1

表 7-6. MISC_CFG 寄存器字段说明 (续)

位	字段	类型	复位	说明
3	RESERVED	R	0x0	保留位;仅写入复位值
2	RESERVED	R	0x0	保留位;仅写入复位值
1	I2C_BRDCAST_EN	R/W		I ² C 广播寻址设置。 0d = 禁用 I ² C 广播模式 1d = 启用 I ² C 广播模式; I ² C 目标地址固定,引脚控制的 LSB 位为 '0'
0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.6 MISC_CFG1 寄存器 (地址 = 0x5) [复位 = 0x15]

图 7-6 中显示了 MISC_CFG1,表 7-7 中对此进行了介绍。

返回到汇总表。

图 7-6. MISC CFG1 寄存器

	A : 0: 11100_0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0										
7	6	5	4	3	2	1 0					
INCAP_QCHG[1:0] SHDN_CFG[1:0]		DREG_KA	_TIME[1:0]	RESERVED							
R/W-00b R/W-01b		′-01b	R/W-	-01b	R-	00b					

表 7-7. MISC_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-6	INCAP_QCHG[1:0]	R/W	0x0	外部交流耦合电容器的快速充电持续时间使用 800 Ω 的内部串联电阻来设置。 0d = INxP、INxM 快速充电持续时间为 2.5ms(典型值) 1d = INxP、INxM 快速充电持续时间为 12.5ms(典型值) 2d = INxP、INxM 快速充电持续时间为 25ms(典型值) 3d = INxP、INxM 快速充电持续时间为 50ms(典型值)
5-4	SHDN_CFG[1:0]	R/W	0x1	关断配置。 Od = IOVDD 置为无效后立即使 DREG 断电 1d = DREG 保持有效,以便在达到超时 (DREG_KA_TIME) 之前彻底断电;在超时之后,强制 DREG 断电 2d = DREG 保持有效,直至器件完全断电 3d = 保留;不使用
3-2	DREG_KA_TIME[1:0]	R/W	0x1	这些位设置在 IOVDD 置为无效后 DREG 在多长时间内保持有效状态。 Od = DREG 保持有效状态 30ms (典型值) 1d = DREG 保持有效状态 25ms (典型值) 2d = DREG 保持有效状态 10ms (典型值) 3d = DREG 保持有效状态 5ms (典型值)
1-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.7 DAC_CFG_A0 寄存器 (地址 = 0x6) [复位 = 0x55]

图 7-7 中显示了 DAC_CFG_A0,表 7-8 中对此进行了介绍。

返回到汇总表。

该寄存器配置器件 DAC DEPOP

图 7-7. DAC_CFG_A0 寄存器

7	6	5	4	3	2	1	0
	RSERIES_I	DE_POP[3:0]			PWR_UP_TIMI	E_DE_POP[3:0]	

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

图 7-7. DAC_CFG_A0 寄存器 (续)

R/W-0101b R/W-0101b

表 7-8. DAC_CFG_A0 寄存器字段说明

位	字段	类型	复位	说明
7-4	RSERIES_DE_POP[3:0]	R/W	0x5	耳机放大器串联电阻选择配置。 0d = 开路 1d = 1K 2d = 2.5K 3d = 0.715k 4d = 10K 5d = 0.91k 6d = 2K 7d = 0.667k 8d = 20K 不使用 不使用 不使用 不使用 不使用 不使用 不使用 不使用
3-0	PWR_UP_TIME_DE_PO P[3:0]	R/W	0x5	耳机放大器外部电容充电时间配置。 0d = 2ms 1d = 4ms 2d = 8ms 3d = 16ms 4d = 50ms 5d = 100ms 6d = 250ms 7d = 500ms 8d = 1s 9d = 5s 10d-15d = 保留

7.1.8 MISC_CFG0 寄存器 (地址 = 0x7) [复位 = 0x00]

图 7-8 中显示了 MISC_CFG0,表 7-9 中对此进行了介绍。

返回到汇总表。

该寄存器配置器件 Misc。

图 7-8. MISC CFG0 寄存器

7	6	5	4	3	2	1	0
DAC_ST_W_C AP_DIS	DAC_DLYD_P WRUP	DAC_DLYD_P WRUP_TIME	HW_RESET_O N_CLK_STOP_ EN		RESI	ERVED	
R/W-0b	R/W-0b	R/W-0b	R/W-0b		R-0	000b	

表 7-9. MISC_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7	DAC_ST_W_CAP_DIS	R/W	0x0	DAC 从直流阻断电容器放电序列开始。
				0d = 禁用
				1d = 启用
6	DAC_DLYD_PWRUP	R/W	0x0	DAC 上电延迟配置
				0d = 禁用
				1d = 启用(基于 DAC_DLYD_PWRUP_TIME 配置延迟上电)

Product Folder Links: TAC5411-Q1

表 7-9. MISC_CFG0 寄存器字段说明 (续)

位	字段	类型	复位	说明
5	E 0d = 64ms 至 128			DAC 上电延迟时间配置。 0d = 64ms 至 128ms 1d = 256ms 至 512ms
4	HW_RESET_ON_CLK_S TOP_EN	R/W	0x0	当 CLK_SRC_SEL 选择的时钟在 2ms 配置内不可用时,发出硬复位信号 0d = 禁用 1d = 启用
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.9 GPIO1_CFG0 寄存器 (地址 = 0xA) [复位 = 0x32]

图 7-9 中显示了 GPIO1_CFG0,表 7-10 中对此进行了介绍。

返回到汇总表。

该寄存器是 GPIO1 配置寄存器 0。

图 7-9. GPIO1_CFG0 寄存器

				_					
7	6	5	4	3	2	1	0		
	GPIO1_0	CFG[3:0]		RESERVED		GPIO1_DRV[2:0]			
	R/W-	0011b		R-0b		R/W-010b			

表 7-10. GPIO1_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-4	GPIO1_CFG[3:0]	R/W	0x3	GPIO1 配置。 0d = 禁用 GPIO1 1d = GPIO1 配置为通用输入 (GPI) 或任何其他输入功能 2d = GPIO1 配置为通用输出 (GPO) 3d = GPIO1 配置为进户断输出 (IRQ) 4d = GPIO1 配置为 PDM 时钟输出 (PDMCLK) 5d = GPIO1 配置为主要 ASI DOUT 6d = GPIO1 配置为主要 ASI DOUT2 7d = GPIO1 配置为辅助 ASI DOUT2 8d = GPIO1 配置为辅助 ASI DOUT2 9d = GPIO1 配置为辅助 ASI FSYNC 输出 10d = GPIO1 配置为辅助 ASI FSYNC 输出 11d = GPIO1 配置为通用 CLKOUT 12d = GPIO1 配置为 PASI DOUT 和 SASI DOUT 多路复用 13d = 对于 DIN 菊花链,GPIO1 配置为 DAISY_OUT 14d 至 15d = 保留
3	RESERVED	R	0x0	保留位;仅写入复位值
2-0	GPIO1_DRV[2:0]	R/W	0x2	GPIO1 输出驱动配置。(如果 GPIO1_CFG 配置为 I ² S OUT,则无效) 0d = 高阻态输出 1d = 驱动低电平有效和高电平有效 2d = 驱动低电平有效和弱高电平 3d = 驱动低电平有效和高阻态 4d = 驱动弱低电平有效和高电平有效 5d = 驱动高阻态和高电平有效 6d 至 7d =保留;不使用

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

7.1.10 GPO1A_CFG0 寄存器 (地址 = 0xC) [复位 = 0x00]

图 7-10 中显示了 GPO1A_CFG0,表 7-11 中对此进行了介绍。

返回到汇总表。

该寄存器是 GPO1 配置寄存器 0。

图 7-10. GPO1A CFG0 寄存器

			·						
7	6	5	4	3	2	1	0		
	GPO1A_0	CFG[3:0]		SPI_POCI_CF G		GPO1A_DRV[2:0]			
	R/W-0	000b		R/W-0b		R/W-000b			

表 7-11. GPO1A_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-4	GPO1A_CFG[3:0]	R/W	0x0	GPO1A 配置。(最大频率限制为 6MHz。对于 SPI 模式,此引脚充当 POCI,以下配置设置不适用)(用作 DOUT 时不支持启用总线保持器) 0d = 禁用 GPO1A 1d = GPO1A 配置为通用输入 (GPI) 或任何其他功能 2d = GPO1A 配置为通用输出 (GPO) 3d = GPO1A 配置为产片中断输出 (IRQ) 4d = GPO1A 配置为产身 PDM 时钟输出 (PDMCLK) 5d = GPO1A 配置为主要 ASI DOUT 6d = GPO1A 配置为主要 ASI DOUT2 7d = GPO1A 配置为辅助 ASI DOUT2 8d = GPO1A 配置为辅助 ASI BCLK 输出 10d = GPO1A 配置为辅助 ASI FSYNC 输出 11d = GPO1A 配置为通用 CLKOUT 12d = GPO1A 配置为 PASI DOUT 和 SASI DOUT 多路复用 13d = 对于 DIN 菊花链,GPO1A 配置为 DAISY_OUT 14d 至 15d = 保留
3	SPI_POCI_CFG	R/W	0x0	SPI POCI 配置。 Od = GPO1A 引脚用作 SPI POCI 输出(最大频率限制为 6MHz),并忽略 GPO1A_CFG 和 GPO1A_DRV 设置。 Od = GPIO1A 引脚用作高速用例的 SPI POCI 输出,并忽略 GPIO1A_CFG 和 GPIO1A_DRV 设置。
2-0	GPO1A_DRV[2:0]	R/W	0x0	GPO1A 输出驱动配置。(如果 GPO1A_CFG 配置为 I ² S,则无效) (在自动器件中为 GPO1A,但最大频率限制为 6MHz。对于 SPI 模式,此引脚充当 SSZ,以下配置设置不适用) 0d = 高阻态输出 1d = 驱动低电平有效和高电平有效 2d = 驱动低电平有效和弱高电平 3d = 驱动低电平有效和高阻态 4d = 驱动弱低电平和高电平有效 5d = 驱动弱低电平和高电平有效 6d 至 7d =保留;不使用

7.1.11 GPI_CFG 寄存器 (地址 = 0xD) [复位 = 0x00]

图 7-11 中显示了 GPI_CFG,表 7-12 中对此进行了介绍。

返回到汇总表。

该寄存器是 GPI1 配置寄存器 0。

图 7-11. GPI_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED							GPI2A_CFG
	R-000000b						

表 7-12. GPI_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-2	RESERVED	R	0x0	保留位;仅写入复位值
1	GPI1A_CFG	R/W		GPI1A 配置。 0d = 禁用 GPI1A 1d = GPI1A 配置为通用输入 (GPI) 或任何其他输入功能
0	GPI2A_CFG	R/W	0x0	GPI2A 配置。 0d = 禁用 GPI2A 1d = GPI2A 配置为通用输入 (GPI) 或任何其他输入功能

7.1.12 GPO_GPI_VAL 寄存器 (地址 = 0xE) [复位 = 0x00]

图 7-12 中显示了 GPO_GPI_VAL,表 7-13 中对此进行了介绍。

返回到汇总表。

该寄存器是 GPIO 和 GPO 输出值寄存器。

图 7-12. GPO_GPI_VAL 寄存器

7	6	5	4	3	2	1	0
GPIO1_VAL	RESERVED	GPO1A_VAL	RESERVED	GPIO1_MON	GPI2A_MON	GPI1A_MON	RESERVED
R/W-0b	R-0b	R/W-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 7-13. GPO_GPI_VAL 寄存器字段说明

位	字段	类型	 复位	说明
7	GPIO1_VAL	R/W	0x0	配置为 GPO 时的 GPIO1 输出值。 0d = 驱动值为 0 的输出 1d = 驱动值为 1 的输出
6	RESERVED	R	0x0	保留位;仅写入复位值
5	GPO1A_VAL	R/W	0x0	配置为 GPO 时的 GPO1A 输出值。 0d = 驱动值为 0 的输出 1d = 驱动值为 1 的输出
4	RESERVED	R	0x0	保留位;仅写入复位值
3	GPIO1_MON	R	0x0	配置为 GPI 时的 GPIO1 监控值。 0d = 输入监控值 0 1d = 输入监控值 1
2	GPI2A_MON	R	0x0	配置为 GPI 时的 GPI2A 监控值。 0d = 输入监控值 0 1d = 输入监控值 1
1	GPI1A_MON	R	0x0	配置为 GPI 时的 GPI1A 监控值。 0d = 输入监控值 0 1d = 输入监控值 1
0	RESERVED	R	0x0	保留位;仅写入复位值

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

7.1.13 INTF_CFG0 寄存器 (地址 = 0xF) [复位 = 0x00]

图 7-13 中显示了 INTF_CFG0,表 7-14 中对此进行了介绍。

返回到汇总表。

该寄存器是接口配置寄存器 0。

图 7-13. INTF CFG0 寄存器

7	6	5	4	3	2	1	0
RESERVED	CCLK_S	SEL[1:0]	P	ASI_DIN2_SEL[2	:0]	PASI_BCLK_S EL	PASI_FSYNC_ SEL
R-0b	R/W-	-00b		R/W-000b		R/W-0b	R/W-0b

表 7-14. INTF_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	CCLK_SEL[1:0]	R/W	0x0	CCLK 选择配置。 0d = 禁用 cclk 1d = GPIO1 2d = GPI2A 3d = GPI1A
4-2	PASI_DIN2_SEL[2:0]	R/W	0x0	主要 ASI DIN2 选择配置。 0d = 禁用主要 ASI DIN2 1d = GPIO1 2d = GPI2A 3d = GPI1A 4d = DOUT 5d = 主要 ASI DIN 6d 至 7d = 保留
1	PASI_BCLK_SEL	R/W	0x0	主要 ASI BCLK 选择配置。 0d = 主要 ASI BCLK 为 BCLK 1d = 主要 ASI BCLK 为辅助 ASI BCLK
0	PASI_FSYNC_SEL	R/W	0x0	主要 ASI FSYNC 选择配置。 0d = 主要 ASI FSYNC 为 FSYNC 1d = 主要 ASI FSYNC 为辅助 ASI FSYNC

7.1.14 INTF_CFG1 寄存器 (地址 = 0x10) [复位 = 0x52]

图 7-14 中显示了 INTF_CFG1,表 7-15 中对此进行了介绍。

返回到汇总表。

该寄存器是接口配置寄存器 1。

图 7-14. INTF_CFG1 寄存器

7	6	5	4	3	2	1	0
	DOUT_S	SEL[3:0]		DOUT_VAL		DOUT_DRV[2:0]	
R/W-0101b				R/W-0b		R/W-010b	

Product Folder Links: TAC5411-Q1

English Data Sheet: SLASF34

表 7-15. INTF CFG1 寄存器字段说明

Δ.	and a street			
位	字段	类型	复位	说明
7-4	DOUT_SEL[3:0]	R/W	0x5	DOUT 选择配置。 0d = 禁用 DOUT 1d = DOUT 配置为通用输入 (DOUT) 或任何其他输入功能 2d = DOUT 配置为通用输出 (GPO) 3d = DOUT 配置为进用输出 (IRQ) 4d = DOUT 配置为 PDM 时钟输出 (PDMCLK) 5d = DOUT 配置为主要 ASI DOUT 6d = DOUT 配置为主要 ASI DOUT 7d = DOUT 配置为辅助 ASI DOUT 8d = DOUT 配置为辅助 ASI DOUT 9d = DOUT 配置为辅助 ASI BCLK 输出 10d = DOUT 配置为辅助 ASI FSYNC 输出 11d = DOUT 配置为通用 CLKOUT 12d = DOUT 配置为 PASI DOUT 和 SASI DOUT 多路复用 13d = 对于 DIN 菊花链,DOUT 配置为 DAISY_OUT 14d = DOUT 配置为 DIN(LOOPBACK) 15d = 保留
3	DOUT_VAL	R/W	0x0	配置为 GPO 时的 DOUT 输出值。 Od = 驱动值为 0 的输出 1d = 驱动值为 1 的输出
2-0	DOUT_DRV[2:0]	R/W	0x2	DOUT 输出驱动配置。 0d = 高阻态输出 1d = 驱动低电平有效和高电平有效 2d = 驱动低电平有效和弱高电平 3d = 驱动低电平有效和高阻态 4d = 驱动弱低电平和高电平有效 5d = 驱动高阻态和高电平有效 6d 至 7d = 保留; 不使用

7.1.15 INTF_CFG2 寄存器 (地址 = 0x11) [复位 = 0x80]

图 7-15 中显示了 INTF_CFG2,表 7-16 中对此进行了介绍。

返回到汇总表。

该寄存器是接口配置寄存器 2。

图 7-15. INTF_CFG2 寄存器

7	6	5	4	3	2	1	0
PASI_DIN_EN	SASI_FSYNC_SEL[2:0]			SASI_BCLK_SEL[2:0]			RESERVED
R/W-1b	R/W-000b				R/W-000b		R-0b

表 7-16. INTF_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7	PASI_DIN_EN	R/W	0x1	主要 ASI DIN 使能配置。 0d = 禁用主要 ASI DIN 1d = 启用主要 ASI DIN
6-4	SASI_FSYNC_SEL[2:0]	R/W	0x0	辅助 ASI FSYNC 选择配置。 0d = 禁用辅助 ASI 1d = GPIO1 2d = GPI2A 3d = GPI1A 4d = 保留 5d = 主要 ASI FSYNC 6d 至 7d = 保留

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

表 7-16. INTF_CFG2 寄存器字段说明 (续)

位	字段	类型	复位	说明
3-1	SASI_BCLK_SEL[2:0]	R/W		辅助 ASI BCLK 选择配置。 0d = 禁用辅助 ASI 1d = GPIO1 2d = GPI2A 3d = GPI1A 4d = 保留 5d = 主要 ASI BCLK 6d 至 7d = 保留
0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.16 INTF_CFG3 寄存器 (地址 = 0x12) [复位 = 0x00]

图 7-16 中显示了 INTF_CFG3,表 7-17 中对此进行了介绍。

返回到汇总表。

该寄存器是接口配置寄存器 3。

图 7-16. INTF_CFG3 寄存器

7	6	5	4	3	2	1	0
	SASI_DIN_SEL[2:0	0]	S	ASI_DIN2_SEL[2	:0]	RESE	RVED
R/W-000b				R/W-000b		R-0	00b

表 7-17. INTF_CFG3 寄存器字段说明

位	字段	类型	复位	说明
7-5	SASI_DIN_SEL[2:0]	R/W	0x0	辅助 ASI DIN 选择配置。 0d = 禁用辅助 ASI DIN 1d = GPIO1 2d = GPI2A 3d = GPI1A 4d = DOUT 5d = 主要 ASI DIN 6d 至 7d = 保留
4-2	SASI_DIN2_SEL[2:0]	R/W	0x0	辅助 ASI DIN2 选择配置。 0d = 禁用辅助 ASI DIN2 1d = GPIO1 2d = GPI2A 3d = GPI1A 4d = DOUT 5d = 主要 ASI DIN 6d 至 7d = 保留
1-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.17 INTF_CFG4 寄存器 (地址 = 0x13) [复位 = 0x00]

图 7-17 中显示了 INTF_CFG4,表 7-18 中对此进行了介绍。

返回到汇总表。

该寄存器是接口配置寄存器 3。

图 7-17. INTF_CFG4 寄存器

7	6	5	4	3	2	1	0
PDM_CH1_SEL	PDM_CH2_SEL	PDMDIN1_EDG E	PDMDIN2_EDG E	PDM_DIN1	_SEL[1:0]	PDM_DIN2	2_SEL[1:0]

Product Folder Links: TAC5411-Q1

图 7-17. INTF_CFG4 寄存器 (续)

R/W-0b R/W-0b R/W-0b R/W-0b R/W-00b

表 7-18. INTF CFG4 寄存器字段说明

位	字段	类型	复位	说明
7	PDM_CH1_SEL	R/W	0x0	记录路径通道 1 的 PDM 选择配置。
				Od = 通道 1 是记录路径上的模拟 (ADC) 类型
				1d = 通道 1 是记录路径上的数字 (PDM) 类型
6	PDM_CH2_SEL	R/W	0x0	记录路径通道 2 的 PDM 选择配置。
				Od = 通道 2 是记录路径上的模拟 (ADC) 类型
				1d = 通道 2 是记录路径上的数字 (PDM) 类型
5	PDMDIN1 EDGE	R/W	0x0	用于通道 1 和通道 2 数据的 PDMCLK 锁存边沿。
	_			Od = 通道 1 数据在负边沿上锁存,通道 2 数据在正边沿上锁存
				1d = 通道 1 数据在正边沿上锁存,通道 2 数据在负边沿上锁存
4	PDMDIN2 EDGE	R/W	0x0	用于通道 3 和通道 4 数据的 PDMCLK 锁存边沿。
				Od = 通道 3 数据在负边沿上锁存,通道 4 数据在正边沿上锁存
				1d = 通道 3 数据在正边沿上锁存,通道 4 数据在负边沿上锁存
3-2	PDM DIN1 SEL[1:0]	R/W	0x0	PDM 数据通道 1 和 2 选择配置。
"	. 5552_[6]	1.4		Od = 禁用 PDM 数据通道 1 和 2
				1d = GPIO1
				2d = GPI2A
				3d = GPI1A
1-0	PDM DIN2 SEL[1:0]	R/W	0x0	PDM 数据通道 3 和 4 选择配置。
				0d = 禁用 PDM 数据通道 3 和 4
				1d = GPIO1
				2d = GPI2A
				3d = GPI1A

7.1.18 INTF_CFG5 寄存器 (地址 = 0x14) [复位 = 0x00]

图 7-18 中显示了 INTF_CFG5,表 7-19 中对此进行了介绍。

返回到汇总表。

该寄存器是接口配置寄存器 4。

图 7-18. INTF CFG5 寄存器

7	6	5	4	3	2	1	0
PDM_DIN_SEL _OVRD	DOUT_WITH_D IN	PD_ADC_	_GPIO[1:0]	PD_DAC_	GPIO[1:0]	PLIM_GPIO	GPA_GPIO
R/W-0b	R/W-0b	R/W	/-00b	R/W	-00b	R/W-0b	R/W-0b

表 7-19. INTF_CFG5 寄存器字段说明

位	字段	类型	复位	说明
7	PDM_DIN_SEL_OVRD	R/W		PDM 数据通道 (1 和 2) / (3 和 4) 选择配置覆盖。 0d = 无覆盖
				1d = 如果配置为 GPI1,则 PDM_DIN1/2_SEL 覆盖为 DIN
6	DOUT_WITH_DIN	R/W		DOUT 同时用作 ASI OUT 和 ASI IN 0d = DOUT 基于 DOUT_SEL 1d = DOUT 同时用作 ASI OUT 和 ASI DIN

Product Folder Links: TAC5411-Q1

表 7-19. INTF CFG5 寄存器字段说明 (续)

		.,		~ 17 HH 7 1×00/7 (>> /	
位	字段	类型	复位	说明	
5-4	PD_ADC_GPIO[1:0]	R/W	0x0	使用 GPIO 选择配置使 ADC 断电。(如果配置了任何一个PD_ADC_GPIO/ADC_PDZ 断电,则 ADC 断电)0d = 禁用使用 GPIO 使 ADC 断电1d = 使用 GPIO1 使 ADC 断电2d = 使用 GPI2A 使 ADC 断电3d = 使用 GPI1A 使 ADC 断电	
3-2	PD_DAC_GPIO[1:0]	R/W	0x0	使用 GPIO 选择配置使 DAC 断电。(如果配置了任何一个PD_DAC_GPIO/DAC_PDZ 断电,则 DAC 断电)0d = 禁用使用 GPIO 使 DAC 断电1d = 使用 GPIO1 使 DAC 断电2d = 使用 GPI2A 使 DAC 断电3d = 使用 GPI1A 使 DAC 断电	
1	PLIM_GPIO	R/W	0x0	使用 GPIO1 配置的 PLIM。 0d = 禁用使用 GPIO1 的 PLIM 1d = 使用 GPIO1 的 PLIM	
0	GPA_GPIO	R/W	0x0	使用 GPIO1 配置的 GPA。 0d = 禁用使用 GPIO1 的 GPA 1d = 使用 GPIO1 的 GPA	

7.1.19 INTF_CFG6 寄存器 (地址 = 0x15) [复位 = 0x00]

图 7-19 中显示了 INTF_CFG6,表 7-20 中对此进行了介绍。

返回到汇总表。

该寄存器是接口配置寄存器 5。

图 7-19. INTF CFG6 寄存器

7	6	5	4	3	2	1	0
EN_MBIAS_G	PIO[1:0]	IADC_CONV	ST_GPIO[1:0]		RESE	RVED	
R/W-00	b	R/W	/-00b		R-00	000b	

表 7-20. INTF_CFG6 寄存器字段说明

位	字段	类型	复位	说明
7-6	EN_MBIAS_GPIO[1:0]	R/W	0x0	使用 GPIO 选择配置启用 MICBIAS。 0d = 禁用使用 GPIO 启用 MICBIAS 1d = 使用 GPIO1 启用 MICBIAS 2d = 使用 GPI2A 启用 MICBIAS 3d = 使用 GPI1A 启用 MICBIAS
5-4	IADC_CONVST_GPIO[1:0]	R/W	0x0	IADC 转换使用 GPIO 选择配置开始。 0d = 禁用使用 GPIO 启用 IADC 1d = 使用 GPIO1 启用 IADC 2d = 使用 GPI2A 启用 IADC 3d = 使用 GPI1A 启用 IADC
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.20 ASI_CFG0 寄存器 (地址 = 0x18) [复位 = 0x40]

图 7-20 中显示了 ASI_CFG0,表 7-21 中对此进行了介绍。

返回到汇总表。

该寄存器是 ASI 配置寄存器 0。

图 7-20. ASI_CFG0 寄存器

7	6	5	4	3	2	1	0
PASI_DIS	SASI_DIS	SASI_CFG_GA NG	DAISY_	EN[1:0]		DAISY_IN_SEL[2:	0]
R/W-0b	R/W-1b	R/W-0b	R/W-	-00b		R/W-000b	

表 7-21. ASI CFG0 寄存器字段说明

	₹7-21. A0I_01 00 前行抽升校 施为							
位	字段	类型	复位	说明				
7	PASI_DIS	R/W	0x0	禁用或启用主要 ASI (PASI)。 0d = 启用主要 ASI 1d = 禁用主要 ASI				
6	SASI_DIS	R/W	0x1	禁用或启用辅助 ASI (SASI)。 0d = 启用辅助 ASI 1d = 禁用辅助 ASI				
5	SASI_CFG_GANG	R/W	0x0	辅助 ASI 的所有配置都与主要 ASI 成组。 0d = 辅助 ASI 具有独立的配置 1d = 辅助 ASI 配置与主要 ASI 相同				
4-3	DAISY_EN[1:0]	R/W	0x0	菊花链功能启用(菊花缓冲区长度为 64,仅 1 个 ASI,提供 1 个 DOUT 和 DIN) 0d = 禁用菊花链 1d = 启用 PASI 菊花链(辅助 ASI 不可用) 2d = 启用 SASI 菊花链(主要 ASI 不可用) 3d = 保留;不使用				
2-0	DAISY_IN_SEL[2:0]	R/W	0x0	菊花输入选择配置。 0d = 禁用菊花输入 1d = GPIO1 2d = GPI2A 3d = GPI1A 4d = 保留 5d = DIN 6d 至 7d = 保留				

7.1.21 ASI_CFG1 寄存器 (地址 = 0x19) [复位 = 0x00]

图 7-21 中显示了 ASI_CFG1,表 7-22 中对此进行了介绍。

返回到汇总表。

该寄存器是 ASI 配置寄存器 1。

图 7-21. ASI CFG1 寄存器

7	6	5	4	3	2	1	0
ASI_DOUT_CF	G[1:0]	ASI_DIN_0	CFG[1:0]	DAISY_DIR	RESERVED	RESERVED	RESERVED
R/W-00b		R/W-	00b	R/W-0b	R-0b	R-0b	R-0b

表 7-22. ASI_CFG1 寄存器字段说明

位 字段 类型 复位 说明	
0d = 1 1 1d = 2 1 2d = 2 1	输出配置。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

表 7-22. ASI_CFG1 寄存器字段说明 (续)

位	字段	类型	复位	说明
5-4	ASI_DIN_CFG[1:0]	R/W	0x0	ASI 数据输入配置。 0d = 1 个主要 ASI 数据输入和 1 个辅助 ASI 数据输入 1d = 2 个主要 ASI 数据输入 2d = 2 个辅助 ASI 数据输入 3d = 保留;不使用
3	DAISY_DIR	R/W	0x0	菊花链方向配置。 Od = ASI DOUT 菊花链 1d = ASI DIN 菊花链
2	RESERVED	R	0x0	保留位;仅写入复位值
1	RESERVED	R	0x0	保留位;仅写入复位值
0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.22 PASI_CFG0 寄存器 (地址 = 0x1A) [复位 = 0x30]

图 7-22 中显示了 PASI_CFG0,表 7-23 中对此进行了介绍。

返回到汇总表。

该寄存器是 ASI 配置寄存器 0。

图 7-22. PASI_CFG0 寄存器

				_			
7	6	5	4	3	2	1	0
PASI_FO	RMAT[1:0]	PASI_WLE	EN[1:0]	PASI_FSYNC_ POL	PASI_BCLK_P OL	PASI_BUS_ER R	PASI_BUS_ER R_RCOV
R/W	/-00b	R/W-1	1b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-23. PASI_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-6	PASI_FORMAT[1:0]	R/W	0x0	主要 ASI 协议格式。 0d = TDM 模式 1d = I ² S 模式 2d = LJ (左平衡) 模式 3d = 保留; 不使用
5-4	PASI_WLEN[1:0]	R/W	0x3	主要 ASI 字长或时隙长度。 0d = 16 位 (建议将此设置与 10k Ω 输入阻抗配置一起使用) 1d = 20 位 2d = 24 位 3d = 32 位
3	PASI_FSYNC_POL	R/W	0x0	ASI FSYNC 极性(仅适用于 PASI 协议)。 0d = 符合标准协议的默认极性 1d = 相对于标准协议的反向极性
2	PASI_BCLK_POL	R/W	0x0	ASI BCLK 极性(仅适用于 PASI 协议)。 0d = 符合标准协议的默认极性 1d = 相对于标准协议的反向极性
1	PASI_BUS_ERR	R/W	0x0	ASI 总线错误检测。 0d = 启用总线错误检测 1d = 禁用总线错误检测
0	PASI_BUS_ERR_RCOV	R/W	0x0	ASI 总线错误自动恢复。 0d = 启用总线错误恢复后自动恢复 1d = 禁用总线错误恢复后自动恢复,并在主机配置器件之前保持断电状态

7.1.23 PASI_TX_CFG0 寄存器 (地址 = 0x1B) [复位 = 0x00]

图 7-23 中显示了 PASI_TX_CFG0,表 7-24 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI TX 配置寄存器 0。

图 7-23. PASI_TX_CFG0 寄存器

7	6	5	4	3	2	1	0
PASI_TX_EDG E	PASI_TX_FILL	PASI_TX_LSB	PASI_TX_KE	EPER[1:0]	PASI_TX_USE_ INT_FSYNC	PASI_TX_USE_ INT_BCLK	PASI_TDM_PU LSE_WIDTH
R/W-0b	R/W-0b	R/W-0b	R/W-0	0b	R/W-0b	R/W-0b	R/W-0b

表 7-24. PASI_TX_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7	PASI_TX_EDGE	R/W	0x0	主要 ASI 数据输出(在主要和辅助数据引脚上)发送边沿。 0d = 基于 PASI_BCLK_POL 中协议配置设置的默认边沿 1d = 相对于默认边沿设置的反相随后边沿(半个周期延迟)
6	PASI_TX_FILL	R/W	0x0	任何未使用周期的主要 ASI 数据输出(在主要和辅助数据引脚上) 0d = 针对未使用周期始终发送 0 1d = 针对未使用周期始终使用高阻态
5	PASI_TX_LSB	R/W	0x0	用于 LSB 传输的主要 ASI 数据输出(在主要和辅助数据引脚上)。 0d =在一个完整周期内发送 LSB 1d = 在前半个周期内发送 LSB,在后半个周期内发送高阻态
4-3	PASI_TX_KEEPER[1:0]	R/W	0x0	主要 ASI 数据输出(在主要和辅助数据引脚上)总线保持器。 0d = 始终禁用总线保持器 1d = 始终启用总线保持器 2d = 总线保持器仅在 LSB 传输期间启用一个周期 3d = 总线保持器仅在 LSB 传输期间启用一个半周期
2	PASI_TX_USE_INT_FSY NC	R/W	0x0	主要 ASI 使用内部 FSYNC 在控制器模式配置中根据情况生成输出数据。 Od = 使用外部 FSYNC 进行 ASI 协议数据生成 1d = 使用内部 FSYNC 进行 ASI 协议数据生成
1	PASI_TX_USE_INT_BCL K	R/W	0x0	主要 ASI 使用内部 BCLK 在控制器模式配置中生成输出数据。 0d = 使用外部 BCLK 进行 ASI 协议数据生成 1d = 使用内部 BCLK 进行 ASI 协议数据生成
0	PASI_TDM_PULSE_WIDT H	R/W	0x0	TDM 格式的主要 ASI fsync 脉冲宽度。(对控制器模式有效) 0d = Fsync 脉冲为 1 个 BCLK 周期宽 1d = Fsync 脉冲为 2 个 BCLK 周期宽

7.1.24 PASI_TX_CFG1 寄存器 (地址 = 0x1C) [复位 = 0x00]

图 7-24 中显示了 PASI_TX_CFG1,表 7-25 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI TX 配置寄存器 1。

图 7-24. PASI_TX_CFG1 寄存器

7	6	5	4	3	2	1	0	
RESERVED			PASI_TX_OFFSET[4:0]					
	R-000b				R/W-00000b			

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

表 7-25. PASI_TX_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-5	RESERVED	R	0x0	保留位;仅写入复位值
4-0	PASI_TX_OFFSET[4:0]	R/W	0x0	主要 ASI 输出数据 MSB 时隙 0 偏移 (在主要和辅助数据引脚上)。 0d = ASI 数据 MSB 位置没有偏移,并符合标准协议 1d = 一个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0) 偏移 2d = 两个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0) 的偏移 3d 至 30d = 根据配置分配的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0) 偏移 31d = 31 个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0) 偏移

7.1.25 PASI_TX_CFG2 寄存器 (地址 = 0x1D) [复位 = 0x00]

图 7-25 中显示了 PASI_TX_CFG2,表 7-26 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI TX 配置寄存器 2。

图 7-25. PASI_TX_CFG2 寄存器

7	6	5	4	3	2	1	0
		PASI_TX_CH6_	PASI_TX_CH5_	PASI_TX_CH4_	PASI_TX_CH3_	PASI_TX_CH2_	PASI_TX_CH1_
SEL	SEL	SEL	SEL	SEL	SEL	SEL	SEL
R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-26. PASI_TX_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7	PASI_TX_CH8_SEL	R/W	0x0	主要 ASI 输出通道 8 选择。 0d = 主要 ASI 通道 8 输出在 DOUT 上 1d = 主要 ASI 通道 8 输出在 DOUT2 上
6	PASI_TX_CH7_SEL	R/W	0x0	主要 ASI 输出通道 7 选择。 0d = 主要 ASI 通道 7 输出在 DOUT 上 1d = 主要 ASI 通道 7 输出在 DOUT2 上
5	PASI_TX_CH6_SEL	R/W	0x0	主要 ASI 输出通道 6 选择。 0d = 主要 ASI 通道 6 输出在 DOUT 上 1d = 主要 ASI 通道 6 输出在 DOUT2 上
4	PASI_TX_CH5_SEL	R/W	0x0	主要 ASI 输出通道 5 选择。 0d = 主要 ASI 通道 5 输出在 DOUT 上 1d = 主要 ASI 通道 5 输出在 DOUT2 上
3	PASI_TX_CH4_SEL	R/W	0x0	主要 ASI 输出通道 4 选择。 0d = 主要 ASI 通道 4 输出在 DOUT 上 1d = 主要 ASI 通道 4 输出在 DOUT2 上
2	PASI_TX_CH3_SEL	R/W	0x0	主要 ASI 输出通道 3 选择。 0d = 主要 ASI 通道 3 输出在 DOUT 上 1d = 主要 ASI 通道 3 输出在 DOUT2 上
1	PASI_TX_CH2_SEL	R/W	0x0	主要 ASI 输出通道 2 选择。 0d = 主要 ASI 通道 2 输出在 DOUT 上 1d = 主要 ASI 通道 2 输出在 DOUT2 上
0	PASI_TX_CH1_SEL	R/W	0x0	主要 ASI 输出通道 1 选择。 0d = 主要 ASI 通道 1 输出在 DOUT 上 1d = 主要 ASI 通道 1 输出在 DOUT2 上

7.1.26 PASI_TX_CH1_CFG 寄存器 (地址 = 0x1E) [复位 = 0x20]

图 7-26 中显示了 PASI_TX_CH1_CFG,表 7-27 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI TX 通道 1 配置寄存器。

图 7-26. PASI TX CH1 CFG 寄存器

7	6	5	4	3	2	1	0
RESE	RVED	PASI_TX_CH1_ CFG		PASI_T	X_CH1_SLOT_N	UM[4:0]	
R-	00b	R/W-1b			R/W-00000b		

表 7-27. PASI_TX_CH1_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5	PASI_TX_CH1_CFG	R/W	0x1	主要 ASI 输出通道 1 配置。 0d = 主要 ASI 通道 1 输出处于三态条件 1d = 主要 ASI 通道 1 输出对应于 ADC/PDM 通道 1 数据
4-0	PASI_TX_CH1_SLOT_NU M[4:0]	R/W	0x0	主要 ASI 输出通道 1 时隙分配。 Od = TDM 是时隙 0 或 I ² S, LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S, LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S, LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S, LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S, LJ 是右侧时隙 15

7.1.27 PASI_TX_CH2_CFG 寄存器 (地址 = 0x1F) [复位 = 0x21]

图 7-27 中显示了 PASI_TX_CH2_CFG,表 7-28 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI TX 通道 2 配置寄存器。

图 7-27. PASI_TX_CH2_CFG 寄存器

7	6	5	4	3	2	1	0
RESE	RVED	PASI_TX_CH2_ CFG		PASI_T	X_CH2_SLOT_N	UM[4:0]	
R-0	00b	R/W-1b			R/W-00001b		

表 7-28. PASI_TX_CH2_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5	PASI_TX_CH2_CFG	R/W		主要 ASI 输出通道 2 配置。 0d = 主要 ASI 通道 2 输出处于三态条件 1d = 主要 ASI 通道 2 输出对应于 ADC/PDM 通道 2 数据

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

表 7-28. PASI TX CH2 CFG 寄存器字段说明 (续)

位	字段	类型	复位	说明
4-0	PASI_TX_CH2_SLOT_NU M[4:0]	R/W		主要 ASI 输出通道 2 时隙分配。 0d = TDM 是时隙 0 或 l ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 15
				16d = TDM 是时隙 16 或 I ² S, LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S, LJ 是右侧时隙 15

7.1.28 PASI_TX_CH3_CFG 寄存器 (地址 = 0x20) [复位 = 0x02]

图 7-28 中显示了 PASI_TX_CH3_CFG,表 7-29 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI TX 通道 3 配置寄存器。

图 7-28. PASI_TX_CH3_CFG 寄存器

7	6	5	4	3	2	1	0		
RESERVED	PASI_TX_C	H3_CFG[1:0]	PASI_TX_CH3_SLOT_NUM[4:0]						
R-0b	R/W	/-00b		R/W-00010b					

表 7-29. PASI_TX_CH3_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	PASI_TX_CH3_CFG[1:0]	R/W	0x0	主要 ASI 输出通道 3 配置。 0d = 主要 ASI 通道 3 输出处于三态条件 1d = 主要 ASI 通道 3 输出对应于 PDM 通道 3 数据 2d = 主要 ASI 通道 3 输出对应于 VBAT 数据 3d = 保留
4-0	PASI_TX_CH3_SLOT_NU M[4:0]	R/W	0x2	主要 ASI 输出通道 3 时隙分配。 0d = TDM 是时隙 0 或 l ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S , LJ 是右侧时隙 15

7.1.29 PASI_TX_CH4_CFG 寄存器 (地址 = 0x21) [复位 = 0x03]

图 7-29 中显示了 PASI_TX_CH4_CFG,表 7-30 中对此进行了介绍。

返回到汇总表。

提交文档反馈

该寄存器是 PASI TX 通道 4 配置寄存器。

图 7-29. PASI TX CH4 CFG 寄存器

					**			
7	6	5	4	3	2	1	0	
RESERVED	PASI_TX_C	H4_CFG[1:0]	PASI_TX_CH4_SLOT_NUM[4:0]					
R-0b	R/W	/-00b	R/W-00011b					

表 7-30. PASI TX CH4 CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	PASI_TX_CH4_CFG[1:0]	R/W	0x0	主要 ASI 输出通道 4 配置。 0d = 主要 ASI 通道 4 输出处于三态条件 1d = 主要 ASI 通道 4 输出对应于 PDM 通道 4 数据 2d = 主要 ASI 通道 4 输出对应于 TEMP 数据 3d = 保留
4-0	PASI_TX_CH4_SLOT_NU M[4:0]	R/W	0x3	主要 ASI 输出通道 4 时隙分配。 Od = TDM 是时隙 0 或 I ² S, LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S, LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S, LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S, LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S, LJ 是右侧时隙 15

7.1.30 PASI_TX_CH5_CFG 寄存器 (地址 = 0x22) [复位 = 0x04]

图 7-30 中显示了 PASI_TX_CH5_CFG,表 7-31 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI TX 通道 5 配置寄存器。

图 7-30. PASI_TX_CH5_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	PASI_TX_C	H5_CFG[1:0]		PASI_T	X_CH5_SLOT_N	UM[4:0]	
R-0b	R/W	/-00b			R/W-00100b		

表 7-31. PASI TX CH5 CFG 寄存器字段说明

位	字段	类型	复位	说明
777	于权	天空	及世	
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	PASI_TX_CH5_CFG[1:0]	R/W	0x0	主要 ASI 输出通道 5 配置。 0d = 主要 ASI 通道 5 输出处于三态条件 1d = 主要 ASI 通道 5 输出对应于 ASI 输入通道 1 环回数据 2d = 主要 ASI 通道 5 输出对应于回声基准通道 1 数据 3d = 保留
4-0	PASI_TX_CH5_SLOT_NU M[4:0]	R/W	0x4	主要 ASI 输出通道 5 时隙分配。 Od = TDM 是时隙 0 或 l ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S , LJ 是右侧时隙 15

Product Folder Links: TAC5411-Q1

7.1.31 PASI_TX_CH6_CFG 寄存器 (地址 = 0x23) [复位 = 0x05]

图 7-31 中显示了 PASI_TX_CH6_CFG,表 7-32 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI TX 通道 6 配置寄存器。

图 7-31. PASI_TX_CH6_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	PASI_TX_C	H6_CFG[1:0]		PASI_T	X_CH6_SLOT_N	UM[4:0]	
R-0b	R/W	/-00b			R/W-00101b		

表 7-32. PASI_TX_CH6_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	PASI_TX_CH6_CFG[1:0]	R/W	0x0	主要 ASI 输出通道 6 配置。 0d = 主要 ASI 通道 6 输出处于三态条件 1d = 主要 ASI 通道 6 输出对应于 ASI 输入通道 2 环回数据 2d = 主要 ASI 通道 6 输出对应于回声基准通道 2 数据 3d = 保留
4-0	PASI_TX_CH6_SLOT_NU M[4:0]	R/W	0x5	主要 ASI 输出通道 6 时隙分配。 Od = TDM 是时隙 0 或 I ² S, LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S, LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S, LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S, LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S, LJ 是右侧时隙 15

7.1.32 PASI_TX_CH7_CFG 寄存器 (地址 = 0x24) [复位 = 0x06]

图 7-32 中显示了 PASI_TX_CH7_CFG,表 7-33 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI TX 通道 7 配置寄存器。

图 7-32. PASI_TX_CH7_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	PASI_TX_C	H7_CFG[1:0]		PASI_T	X_CH7_SLOT_N	UM[4:0]	
R-0b	R/W	/-00b			R/W-00110b		

表 7-33. PASI_TX_CH7_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	PASI_TX_CH7_CFG[1:0]	R/W		主要 ASI 输出通道 7 配置。 0d = 主要 ASI 通道 7 输出处于三态条件 1d = 主要 ASI 通道 7 输出对应于 {VBAT_WLby2, TEMP_WLby2} 2d = 主要 ASI 通道 7 输出对应于 {echo_ref_ch1, echo_ref_ch2} 3d = 保留

Product Folder Links: TAC5411-Q1

表 7-33. PASI TX CH7 CFG 寄存器字段说明 (续)

位	字段	类型	 说明
4-0	PASI_TX_CH7_SLOT_NU M[4:0]	R/W	主要 ASI 输出通道 7 时隙分配。 0d = TDM 是时隙 0 或 l ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S , LJ 是右侧时隙 0
			17d = TDM 是时隙 17 或 I ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S, LJ 是右侧时隙 15

7.1.33 PASI_TX_CH8_CFG 寄存器 (地址 = 0x25) [复位 = 0x07]

图 7-33 中显示了 PASI_TX_CH8_CFG,表 7-34 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI TX 通道 8 配置寄存器。

图 7-33. PASI_TX_CH8_CFG 寄存器

7	6	5	4	3	2	1	0
RESE	RVED	PASI_TX_CH8_ CFG		PASI_T	X_CH8_SLOT_N	UM[4:0]	
R-	00b	R/W-0b			R/W-00111b		

表 7-34. PASI_TX_CH8_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5	PASI_TX_CH8_CFG	R/W	0x0	主要 ASI 输出通道 8 配置。 0d = 主要 ASI 通道 8 输出处于三态条件 1d = 主要 ASI 通道 8 输出对应于 ICLA 数据
4-0	PASI_TX_CH8_SLOT_NU M[4:0]	R/W	0x7	主要 ASI 输出通道 8 时隙分配。 Od = TDM 是时隙 0 或 I ² S, LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S, LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S, LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S, LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S, LJ 是右侧时隙 15

7.1.34 PASI_RX_CFG0 寄存器 (地址 = 0x26) [复位 = 0x00]

图 7-34 中显示了 PASI_RX_CFG0,表 7-35 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI RX 配置寄存器 0。

图 7-34. PASI RX CFG0 寄存器

7	6	5	4	3	2	1	0
PASI_RX_EDG E	PASI_RX_USE _INT_FSYNC	PASI_RX_USE _INT_BCLK		PAS	SI_RX_OFFSET[4	:0]	
R/W-0b	R/W-0b	R/W-0b			R/W-00000b		

English Data Sheet: SLASF34

表 7-35. PASI_RX_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7	PASI_RX_EDGE	R/W	0x0	主要 ASI 数据输入(在主要和辅助数据引脚上)接收边沿。 Od = 基于 PASI_BCLK_POL 中协议配置设置的默认边沿 1d = 相对于默认边沿设置的反相随后边沿(半个周期延迟)
6	PASI_RX_USE_INT_FSY NC	R/W	0x0	主要 ASI 使用内部 FSYNC 在控制器模式配置中根据情况锁存输入数据。 Od = 使用外部 FSYNC 进行 ASI 协议数据锁存 1d = 使用内部 FSYNC 进行 ASI 协议数据锁存
5	PASI_RX_USE_INT_BCL K	R/W	0x0	主要 ASI 使用内部 BCLK 在控制器模式配置中锁存输入数据。 0d = 使用外部 BCLK 进行 ASI 协议数据锁存 1d = 使用内部 BCLK 进行 ASI 协议数据锁存
4-0	PASI_RX_OFFSET[4:0]	R/W	0x0	主要 ASI 输入数据 MSB 时隙 0 偏移 (在主要和辅助数据引脚上)。 0d = ASI 数据 MSB 位置没有偏移,并符合标准协议 1d = 一个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0)偏移 2d = 两个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0)的偏移 3d 至 30d = 根据配置分配的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0)偏移 31d = 31 个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0)偏移

7.1.35 PASI_RX_CFG1 寄存器 (地址 = 0x27) [复位 = 0x00]

图 7-35 中显示了 PASI_RX_CFG1,表 7-36 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI RX 配置寄存器 1。

图 7-35. PASI_RX_CFG1 寄存器

7	6	5	4	3	2	1	0
PASI_RX_CH8 _SEL	PASI_RX_CH7 _SEL	PASI_RX_CH6 _SEL	PASI_RX_CH5 _SEL	PASI_RX_CH4 _SEL	PASI_RX_CH3 _SEL	PASI_RX_CH2 _SEL	PASI_RX_CH1 _SEL
R/W-0b							

表 7-36. PASI_RX_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7	PASI_RX_CH8_SEL	R/W	0x0	主要 ASI 输入通道 8 选择。 0d = 主要 ASI 通道 8 输入在 DIN 上 1d = 主要 ASI 通道 8 输入在 DIN2 上
6	PASI_RX_CH7_SEL	R/W	0x0	主要 ASI 输入通道 7 选择。 0d = 主要 ASI 通道 7 输入在 DIN 上 1d = 主要 ASI 通道 7 输入在 DIN2 上
5	PASI_RX_CH6_SEL	R/W	0x0	主要 ASI 输入通道 6 选择。 0d = 主要 ASI 通道 6 输入在 DIN 上 1d = 主要 ASI 通道 6 输入在 DIN2 上
4	PASI_RX_CH5_SEL	R/W	0x0	主要 ASI 输入通道 5 选择。 0d = 主要 ASI 通道 5 输入在 DIN 上 1d = 主要 ASI 通道 5 输入在 DIN2 上
3	PASI_RX_CH4_SEL	R/W	0x0	主要 ASI 输入通道 4 选择。 0d = 主要 ASI 通道 4 输入在 DIN 上 1d = 主要 ASI 通道 4 输入在 DIN2 上

表 7-36. PASI RX CFG1 寄存器字段说明 (续)

位	字段	类型	复位	说明
2	PASI_RX_CH3_SEL	R/W	0x0	主要 ASI 输入通道 3 选择。 0d = 主要 ASI 通道 3 输入在 DIN 上 1d = 主要 ASI 通道 3 输入在 DIN2 上
1	PASI_RX_CH2_SEL	R/W	0x0	主要 ASI 输入通道 2 选择。 0d = 主要 ASI 通道 2 输入在 DIN 上 1d = 主要 ASI 通道 2 输入在 DIN2 上
0	PASI_RX_CH1_SEL	R/W	0x0	主要 ASI 输入通道 1 选择。 0d = 主要 ASI 通道 1 输入在 DIN 上 1d = 主要 ASI 通道 1 输入在 DIN2 上

7.1.36 PASI_RX_CH1_CFG 寄存器 (地址 = 0x28) [复位 = 0x20]

图 7-36 中显示了 PASI_RX_CH1_CFG,表 7-37 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI RX 通道 1 配置寄存器。

图 7-36. PASI_RX_CH1_CFG 寄存器

7	6	5	4	3	2	1	0
RESE	RVED	PASI_RX_CH1 _CFG		PASI_R	X_CH1_SLOT_N	UM[4:0]	
R-	00b	R/W-1b			R/W-00000b		

表 7-37. PASI_RX_CH1_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5	PASI_RX_CH1_CFG	R/W	0x1	主要 ASI 输入通道 1 配置。 0d = 禁用主要 ASI 通道 1 输入 1d = 主要 ASI 通道 1 输入对应于 DAC 通道 1 数据
4-0	PASI_RX_CH1_SLOT_NU M[4:0]	R/W	0x0	主要 ASI 输入通道 1 时隙分配。 Od = TDM 是时隙 0 或 l ² S, LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S, LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S, LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S, LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S, LJ 是右侧时隙 15

7.1.37 PASI_RX_CH2_CFG 寄存器 (地址 = 0x29) [复位 = 0x21]

图 7-37 中显示了 PASI_RX_CH2_CFG,表 7-38 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI RX 通道 2 配置寄存器。

图 7-37. PASI RX CH2 CFG 寄存器

					,,		
7	6	5	4	3	2	1	0
RESE	RVED	PASI_RX_CH2 _CFG		PASI_R	RX_CH2_SLOT_N	JM[4:0]	
R-0	00b	R/W-1b			R/W-00001b		

图 7-37. PASI_RX_CH2_CFG 寄存器 (续)

表 7-38. PASI_RX_CH2_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5	PASI_RX_CH2_CFG	R/W	0x1	主要 ASI 输入通道 2 配置。 0d = 禁用主要 ASI 通道 2 输入 1d = 主要 ASI 通道 2 输入对应于 DAC 通道 2 数据
4-0	PASI_RX_CH2_SLOT_NU M[4:0]	R/W	0x1	主要 ASI 输入通道 2 时隙分配。 Od = TDM 是时隙 0 或 l ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S , LJ 是右侧时隙 15

7.1.38 PASI_RX_CH3_CFG 寄存器 (地址 = 0x2A) [复位 = 0x02]

图 7-38 中显示了 PASI_RX_CH3_CFG,表 7-39 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI RX 通道 3 配置寄存器。

图 7-38. PASI_RX_CH3_CFG 寄存器

7	6	5	4	3	2	1	0
RESE	RVED	PASI_RX_CH3 _CFG		PASI_R	X_CH3_SLOT_N	UM[4:0]	
R-	00b	R/W-0b			R/W-00010b		

表 7-39. PASI_RX_CH3_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5	PASI_RX_CH3_CFG	R/W	0x0	主要 ASI 输入通道 3 配置。 0d = 禁用主要 ASI 通道 3 输入 1d = 主要 ASI 通道 3 输入对应于 DAC 通道 3 数据
4-0	PASI_RX_CH3_SLOT_NU M[4:0]	R/W	0x2	主要 ASI 输入通道 3 时隙分配。 0d = TDM 是时隙 0 或 I ² S, LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S, LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S, LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S, LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S, LJ 是右侧时隙 15

7.1.39 PASI_RX_CH4_CFG 寄存器 (地址 = 0x2B) [复位 = 0x03]

图 7-39 中显示了 PASI_RX_CH4_CFG,表 7-40 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI RX 通道 4 配置寄存器。

マンドラ Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: TAC5411-Q1

图 7-39. PASI_RX_CH4_CFG 寄存器

7	6	5	4	3	2	1	0
RESE	RVED	PASI_RX_CH4 _CFG		PASI_R	X_CH4_SLOT_N	UM[4:0]	
R-	00b	R/W-0b			R/W-00011b		

表 7-40. PASI RX CH4 CFG 寄存器字段说明

位	字段	类型		
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5	PASI_RX_CH4_CFG	R/W	0x0	主要 ASI 输入通道 4 配置。 0d = 禁用主要 ASI 通道 4 输入 1d = 主要 ASI 通道 4 输入对应于 DAC 通道 4 数据
4-0	PASI_RX_CH4_SLOT_NU M[4:0]	R/W	0x3	主要 ASI 输入通道 4 时隙分配。 0d = TDM 是时隙 0 或 l ² S, LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S, LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S, LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S, LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S, LJ 是右侧时隙 15

7.1.40 PASI_RX_CH5_CFG 寄存器 (地址 = 0x2C) [复位 = 0x04]

图 7-40 中显示了 PASI_RX_CH5_CFG,表 7-41 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI RX 通道 5 配置寄存器。

图 7-40. PASI_RX_CH5_CFG 寄存器

	7	6	5	4	3	2	1	0
F	RESERVED	PASI_RX_C	H5_CFG[1:0]		PASI_R	X_CH5_SLOT_NU	JM[4:0]	
	R-0b	R/W	/-00b			R/W-00100b		

表 7-41. PASI_RX_CH5_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	PASI_RX_CH5_CFG[1:0]	R/W	0x0	主要 ASI 输入通道 5 配置。 0d = 禁用主要 ASI 通道 5 输入 1d = 主要 ASI 通道 5 输入对应于 DAC 通道 5 数据 2d = 主要 ASI 通道 5 输入对应于 ADC 通道 1 输出环回 3d = 保留
4-0	PASI_RX_CH5_SLOT_NU M[4:0]	R/W	0x4	主要 ASI 输入通道 5 时隙分配。 Od = TDM 是时隙 0 或 l ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S , LJ 是右侧时隙 15

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

79

7.1.41 PASI_RX_CH6_CFG 寄存器 (地址 = 0x2D) [复位 = 0x05]

图 7-41 中显示了 PASI_RX_CH6_CFG,表 7-42 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI RX 通道 6 配置寄存器。

图 7-41. PASI_RX_CH6_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	PASI_RX_C	:H6_CFG[1:0]		PASI_F	RX_CH6_SLOT_N	JM[4:0]	
R-0b	R/V	V-00b			R/W-00101b		

表 7-42. PASI_RX_CH6_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	PASI_RX_CH6_CFG[1:0]	R/W	0x0	主要 ASI 输入通道 6 配置。 0d = 禁用主要 ASI 通道 6 输入 1d = 主要 ASI 通道 6 输入对应于 DAC 通道 6 数据 2d = 主要 ASI 通道 6 输入对应于 ADC 通道 2 输出环回 3d = 主要 ASI 通道 6 输入对应于 ICLA 器件 1 数据
4-0	PASI_RX_CH6_SLOT_NU M[4:0]	R/W	0x5	主要 ASI 输入通道 6 时隙分配。 Od = TDM 是时隙 0 或 l ² S, LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S, LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S, LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S, LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S, LJ 是右侧时隙 15

7.1.42 PASI_RX_CH7_CFG 寄存器 (地址 = 0x2E) [复位 = 0x06]

图 7-42 中显示了 PASI_RX_CH7_CFG,表 7-43 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI RX 通道 7 配置寄存器。

图 7-42. PASI_RX_CH7_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	PASI_RX_C	H7_CFG[1:0]		PASI_R	X_CH7_SLOT_N	JM[4:0]	
R-0b	R/W	/-00b			R/W-00110b		

表 7-43. PASI_RX_CH7_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	PASI_RX_CH7_CFG[1:0]	R/W	0x0	主要 ASI 输入通道 7 配置。 0d = 禁用主要 ASI 通道 7 输入 1d = 主要 ASI 通道 7 输入对应于 DAC 通道 7 数据 2d = 主要 ASI 通道 7 输入对应于 ADC 通道 3 输出环回 3d = 主要 ASI 通道 7 输入对应于 ICLA 器件 2 数据

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAC5411-Q1*

表 7-43. PASI RX CH7 CFG 寄存器字段说明 (续)

位	字段	类型	复位	说明
4-0	PASI_RX_CH7_SLOT_NU	R/W	0x6	主要 ASI 输入通道 7 时隙分配。
	M[4:0]			0d = TDM 是时隙 0 或 l ² S, LJ 是左侧时隙 0
				1d = TDM 是时隙 1 或 l ² S, LJ 是左侧时隙 1
				2d 至 14d = 分配的时隙视配置而定
				15d = TDM 是时隙 15 或 I ² S , LJ 是左侧时隙 15
				16d = TDM 是时隙 16 或 I ² S, LJ 是右侧时隙 0
				17d = TDM 是时隙 17 或 I ² S, LJ 是右侧时隙 1
				18d 至 30d = 分配的时隙视配置而定
				31d = TDM 是时隙 31 或 I ² S, LJ 是右侧时隙 15

7.1.43 PASI_RX_CH8_CFG 寄存器 (地址 = 0x2F) [复位 = 0x07]

图 7-43 中显示了 PASI_RX_CH8_CFG,表 7-44 中对此进行了介绍。

返回到汇总表。

该寄存器是 PASI RX 通道 8 配置寄存器。

图 7-43. PASI_RX_CH8_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	PASI_RX_C	H8_CFG[1:0]		PASI_F	RX_CH8_SLOT_N	UM[4:0]	
R-0b	R/W	/-00b			R/W-00111b		

表 7-44. PASI_RX_CH8_CFG 寄存器字段说明

位	字段	类型	复位	
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	PASI_RX_CH8_CFG[1:0]	R/W	0x0	主要 ASI 输入通道 8 配置。 0d = 禁用主要 ASI 通道 8 输入 1d = 主要 ASI 通道 8 输入对应于 DAC 通道 8 数据 2d = 主要 ASI 通道 8 输入对应于 ADC 通道 4 输出环回 3d = 主要 ASI 通道 8 输入对应于 ICLA 器件 3 数据
4-0	PASI_RX_CH8_SLOT_NU M[4:0]	R/W	0x7	主要 ASI 输入通道 8 时隙分配。 0d = TDM 是时隙 0 或 l ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S , LJ 是右侧时隙 15

7.1.44 CLK_CFG0 寄存器 (地址 = 0x32) [复位 = 0x00]

图 7-44 中显示了 CLK_CFG0,表 7-45 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 0。

图 7-44. CLK CFG0 寄存器

				4 ,4 ,4,			
7	6	5	4	3	2	1	0
	PASI_SAMP_RATE[5:0]					PASI_FS_RATE _NO_LIM	CUSTOM_CLK _CFG
		R/W-0		R/W-0b	R/W-0b		

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

81

图 7-44. CLK_CFG0 寄存器 (续)

表 7-45. CLK_CFG0 寄存器字段说明

位	字段	类型	复位	说明
位7-2	字段 PASI_SAMP_RATE[5:0]	类型 R/W	_	主要 ASI 采样速率配置。- 典型(允许的范围) 0d = 自动检测器件中的主要 ASI 采样速率 1d = 768000 (670320-791040) 2d = 614400 (536256-6328322) 3d = 512000 (446880-527360) 4d = 438857 (383040-452022) 5d = 384000 (335160-395520) 6d = 341333 (297920-351573) 7d = 307200 (268128-316416) 8d = 256000 (223440-263680) 9d = 219429 (191520-226011) 10d = 192000 (167580-197760) 11d = 170667 (148960-175786) 12d = 153600 (134064-158208) 13d = 128000 (111720-131840) 14d = 109714 (95760-113005) 15d = 96000 (83790-98880) 16d = 85333 (74480-87893) 17d = 76800 (67032-79104) 18d = 64000 (55860-65920) 19d = 54857 (47880-56502) 20d = 48000 (41895-49440) 21d = 42667 (37240-43946) 22d = 38400 (33516-39552) 23d = 32000 (27930-32960) 24d = 27429 (23940-28251) 25d = 24000 (20947-24720) 26d = 21333 (18620-219776) 28d = 16000 (13965-16480) 29d = 13714 (11970-14125) 30d = 12000 (10473-12360) 31d = 10667 (9310-10986) 32d = 9600 (8379-9888) 33d = 8000 (6982-8240) 34d = 6857 (5985-7062) 35d = 6000 (5236-6180) 36d = 5333 (4655-5493) 37d = 4800 (4189-4944) 38d = 4000 (3491-4120) 39d = 3429 (2992-3531)
1	PASI_FS_RATE_NO_LIM	R/W	0x0	, , , , , , , , , , , , , , , , , , , ,
				0d = 使用自动模式时支持容差为 1% 的标准音频速率 1d = 使用自动模式时支持容差为 5% 的标准音频速率
0	CUSTOM_CLK_CFG	R/W	0x0	自定义时钟配置启用,需要手动配置所有分频器和多路复用器选择。 Od = 自动时钟配置 1d = 自定义时钟配置

7.1.45 CLK_CFG1 寄存器 (地址 = 0x33) [复位 = 0x00]

图 7-45 中显示了 CLK_CFG1,表 7-46 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 1。

图 7-45. CLK_CFG1 寄存器

7	6	5	4	3	2	1	0
	SASI_SAMP_RATE[5:0]						RESERVED
			R/W-0b	R-0b			

表 7-46. CLK CFG1 寄存器字段说明

	表 7-46. CLK_CFG1							
位	字段	类型	复位	说明				
7-2	字段 SASI_SAMP_RATE[5:0]			補助 ASI 采样速率配置。- 典型 (范围)				
				35d = 6000 (5236-6180) 36d = 5333 (4655-5493)				
1	SASI_FS_RATE_NO_LIM	R/W	0x0	将采样速率限制为仅标准音频采样速率。 0d = 使用自动模式时支持容差为 1% 的标准音频速率 1d = 使用自动模式时支持容差为 5% 的标准音频速率				
0	RESERVED	R	0x0	保留位;仅写入复位值				

Product Folder Links: TAC5411-Q1

7.1.46 CLK_CFG2 寄存器 (地址 = 0x34) [复位 = 0x40]

图 7-46 中显示了 CLK_CFG2,表 7-47 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 2。

图 7-46. CLK_CFG2 寄存器

			· ·				
7	6	5	4	3	2	1	0
PLL_DIS	AUTO_PLL_FR _ALLOW	RESERVED	RESERVED	С	CLK_SRC_SEL[2:	0]	RATIO_CLK_E DGE
R/W-0b	R/W-1b	R-0b	R-0b		R/W-000b		R/W-0b

表 7-47. CLK_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7	PLL_DIS	R/W	0x0	自定义/自动时钟模式 PLL 设置。 0d = 始终在自定义时钟模式下启用 PLL/根据自动时钟模式下的 DSP MIPS 要求启用 PLL 1d = 禁用 PLL
6	AUTO_PLL_FR_ALLOW	R/W	0x1	允许 PLL 以小数运行模式运行。 0d = 禁用 PLL 小数模式 1d = 允许 PLL 小数模式
5	RESERVED	R	0x0	保留位;仅写入复位值
4	RESERVED	R	0x0	保留位;仅写入复位值
3-1	CLK_SRC_SEL[2:0]	R/W	0x0	输入时钟源选择。
0	RATIO_CLK_EDGE	R/W	0x0	用于时钟源比率检测的边沿选择。 Od = 使用时钟源的上升沿检查主要或辅助 FSYNC 的比率 1d = 使用时钟源的下降沿检查主要或辅助 FSYNC 的比率

7.1.47 CNT_CLK_CFG0 寄存器 (地址 = 0x35) [复位 = 0x00]

图 7-47 中显示了 CNT_CLK_CFG0,表 7-48 中对此进行了介绍。

返回到汇总表。

该寄存器是控制器模式时钟配置寄存器 0。

图 7-47. CNT_CLK_CFG0 寄存器

7	6	5	4	3	2	1	0	
PDM_CLK_CFG[1:0]		CCLK_FS_RATIO_MSB[5:0]						
R/V	V-00b			R/W-0	00000b			

表 7-48. CNT_CLK_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-6	PDM_CLK_CFG[1:0]	R/W	0x0	PDM_CLK 配置。
				0d = PDM_CLK 是 2.8224MHz 或 3.072MHz
				1d = PDM_CLK 是 1.4112MHz 或 1.536MHz
				2d = PDM_CLK 是 705.6kHz 或 768kHz
				3d = PDM_CLK 是 5.6448MHz 或 6.144MHz

Product Folder Links: TAC5411-Q1

表 7-48. CNT CLK CFG0 寄存器字段说明 (续)

位	3	字段	类型	复位	说明
5-0		CCLK_FS_RATIO_MSB[5: 0]	R/W		用于选择 cclk 与 cclk 同步的主要/辅助 ASI FSYNC 之间比率的最高有效位。 Od = 自动检测比率(假设 cclk 与主要/辅助 FSYNC 同步) 1d 至 16383d = 根据配置确定比率

7.1.48 CNT_CLK_CFG1 寄存器 (地址 = 0x36) [复位 = 0x00]

图 7-48 中显示了 CNT_CLK_CFG1,表 7-49 中对此进行了介绍。

返回到汇总表。

该寄存器是控制器模式时钟配置寄存器 1。

图 7-48. CNT_CLK_CFG1 寄存器

7	6	5	4	3	2	1	0
CCLK_FS_RATIO_LSB[7:0]							
			R/W-000	000000ь			

表 7-49. CNT_CLK_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-0	CCLK_FS_RATIO_LSB[7: 0]	R/W		用于选择 cclk 与 cclk 同步的主要/辅助 ASI FSYNC 之间的比率。 0d = 自动检测比率(假设 cclk 与主要/辅助 FSYNC 同步) 1d 至 16383d = 根据配置确定比率

7.1.49 CNT_CLK_CFG2 寄存器 (地址 = 0x37) [复位 = 0x20]

图 7-49 中显示了 CNT_CLK_CFG2,表 7-50 中对此进行了介绍。

返回到汇总表。

该寄存器是控制器模式时钟配置寄存器 2。

图 7-49. CNT_CLK_CFG2 寄存器

7	6	5	4	3	2	1	0
	CCLK_FREQ_SEL[2:0]		PASI_CNT_CF G	SASI_CNT_CF G	RESERVED	RESERVED	FS_MODE
	R/W-001b		R/W-0b	R/W-0b	R-0b	R-0b	R/W-0b

表 7-50. CNT_CLK_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7-5	CCLK_FREQ_SEL[2:0]	R/W	0x1	这些位选择 CCLK 输入频率(仅在控制器模式配置下使用)。 Od = 12MHz 1d = 12.288MHz 2d = 13MHz 3d = 16MHz 4d = 19.2MHz 5d = 19.68MHz 6d = 24MHz 7d = 24.576MHz
4	PASI_CNT_CFG	R/W	0x0	主要 ASI 控制器或目标配置 Od = 目标配置中的主要 ASI 1d = 控制器配置中的主要 ASI

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

85

表 7-50. CNT CLK CFG2 寄存器字段说明 (续)

位	字段	类型	复位	说明
3	SASI_CNT_CFG	R/W	0x0	辅助 ASI 控制器或目标配置 0d = 目标配置中的辅助 ASI 1d = 控制器配置中的辅助 ASI
2	RESERVED	R	0x0	保留位;仅写入复位值
1	RESERVED	R	0x0	保留位;仅写入复位值
0	FS_MODE	R/W	0x0	采样速率设置(器件处于控制器模式时有效)。这适用于 PASI 和 SASI。 0d = 采样速率是 48kHz 的倍数(或约数) 1d = 采样速率是 44.1kHz 的倍数(或约数)

7.1.50 CNT_CLK_CFG3 寄存器 (地址 = 0x38) [复位 = 0x00]

图 7-50 中显示了 CNT_CLK_CFG3,表 7-51 中对此进行了介绍。

返回到汇总表。

该寄存器是控制器模式时钟配置寄存器 3。

图 7-50. CNT_CLK_CFG3 寄存器

7	6	5	4	3	2	1	0
PASI_USE_INT	PASI_INV_BCL			PASI_BCLK_FS_	RATIO_MSB[5:0]		
_BCLK_FOR_F	K_FOR_FSYN						
SYNC	C						
R/W-0b	R/W-0b			R/W-00	00000b		

表 7-51. CNT CLK CFG3 寄存器字段说明

位	字段	类型	复位	说明		
7	PASI_USE_INT_BCLK_F OR_FSYNC	R/W	0x0	在控制器模式配置期间,在 PASI 中使用内部 BCLK 来生成 FSYNC。 0d = 使用外部 BCLK 生成 FSYNC 1d = 使用内部 BCLK 生成 FSYNC		
6	PASI_INV_BCLK_FOR_F SYNC	R/W	0x0	在控制器模式配置中,仅对 PASI BCLK 的极性进行反转来生成 PASI FSYNC。 0d = 不反转 PASI BCLK 极性来生成 PASI FSYNC 1d = 反转 PASI BCLK 极性来生成 PASI FSYNC		
5-0	PASI_BCLK_FS_RATIO_ MSB[5:0]	R/W	0x0	控制器模式下主要 ASI BCLK 与 FSYNC 比率的 MSB 位。		

7.1.51 CNT_CLK_CFG4 寄存器 (地址 = 0x39) [复位 = 0x00]

图 7-51 中显示了 CNT_CLK_CFG4,表 7-52 中对此进行了介绍。

返回到汇总表。

该寄存器是控制器模式时钟配置寄存器 4。

图 7-51. CNT_CLK_CFG4 寄存器

7	6	5	4	3	2	1	0
	PASI_BCLK_FS_RATIO_LSB[7:0]						
	R/W-0000000b						

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAC5411-Q1*

表 7-52. CNT_CLK_CFG4 寄存器字段说明

位	字段	类型	复位	说明
7-0	PASI_BCLK_FS_RATIO_L SB[7:0]	R/W	0x0	控制器模式下主要 ASI BCLK 与 FSYNC 比率的 LSB 字节。

7.1.52 CNT_CLK_CFG5 寄存器(地址 = 0x3A)[复位 = 0x00]

图 7-52 中显示了 CNT_CLK_CFG5,表 7-53 中对此进行了介绍。

返回到汇总表。

该寄存器是控制器模式时钟配置寄存器 5。

图 7-52. CNT_CLK_CFG5 寄存器

7	6	5	4	3	2	1	0
SASI_USE_INT _BCLK_FOR_F SYNC	SASI_INV_BCL K_FOR_FSYN C			SASI_BCLK_FS_	RATIO_MSB[5:0]		
R/W-0b	R/W-0b			R/W-00	00000b		

表 7-53. CNT_CLK_CFG5 寄存器字段说明

位	字段	类型	复位	说明
7	SASI_USE_INT_BCLK_F OR_FSYNC	R/W	0x0	在控制器模式配置期间,在 SASI 中使用内部 BCLK 来生成 FSYNC。 0d = 使用外部 BCLK 生成 FSYNC 1d = 使用内部 BCLK 生成 FSYNC
6	SASI_INV_BCLK_FOR_F SYNC	R/W	0x0	在控制器模式配置中,仅对 SASI BCLK 的极性进行反转来生成 SASI FSYNC。 0d = 不反转 SASI BCLK 极性来生成 SASI FSYNC 1d = 反转 SASI BCLK 极性来生成 SASI FSYNC
5-0	SASI_BCLK_FS_RATIO_ MSB[5:0]	R/W	0x0	控制器模式下辅助 ASI BCLK 与 FSYNC 比率的 MSB 位。

7.1.53 CNT_CLK_CFG6 寄存器(地址 = 0x3B)[复位 = 0x00]

图 7-53 中显示了 CNT_CLK_CFG6,表 7-54 中对此进行了介绍。

返回到汇总表。

该寄存器是控制器模式时钟配置寄存器 6。

图 7-53. CNT CLK CFG6 寄存器

7	6	5	4	3	2	1	0	
	SASI_BCLK_FS_RATIO_LSB[7:0]							
	R/W-0000000b							

表 7-54. CNT_CLK_CFG6 寄存器字段说明

位	字段	类型	复位	说明
	SASI_BCLK_FS_RATIO_ LSB[7:0]	R/W	0x0	控制器模式下辅助 ASI BCLK 与 FSYNC 比率的 LSB 字节。

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

87

7.1.54 CLK_ERR_STS0 寄存器(地址 = 0x3C)[复位 = 0x00]

图 7-54 中显示了 CLK_ERR_STS0,表 7-55 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟错误和状态寄存器 0。

图 7-54. CLK ERR STS0 寄存器

7	6	5	4	3	2	1	0
DSP_CLK_ERR	RESERVED	RESERVED	SRC_RATIO_E RR	DEM_RATE_E RR	PDM_CLK_ER R	RESET_ON_CL K_STOP_DET_ STS	RESERVED
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 7-55. CLK_ERR_STS0 寄存器字段说明

位	字段	类型	复位	说明
7	DSP_CLK_ERR	R	0x0	指示 FSYNC 与所选时钟源之间比率错误的标志。 Od = 无比率错误 1d = 主要或辅助 ASI FSYNC 与所选时钟源之间的比率错误
6	RESERVED	R	0x0	保留位;仅写入复位值
5	RESERVED	R	0x0	保留位;仅写入复位值
4	SRC_RATIO_ERR	R	0x0	指示不支持 SRC m:n 比率的标志。 (不适用自定义 m/n 比率配置) 。 0d = 支持 m:n 比率 1d = 不支持 m:n 比率错误
3	DEM_RATE_ERR	R	0x0	指示时钟配置不允许采用有效 DEM 速率的标志。 0d = 无 DEM 时钟速率错误 1d = 所选时钟配置中存在 DEM 时钟速率错误
2	PDM_CLK_ERR	R	0x0	指示时钟配置不允许有效 PDM 时钟生成的标志。 0d = 无 PDM 时钟生成错误 1d = 所选时钟配置中存在 PDM 时钟生成错误
1	RESET_ON_CLK_STOP_ DET_STS	R	0x0	指示音频时钟源停止至少 1ms 的标志。 Od = 无音频时钟源错误 1d = 音频时钟源停止至少 1ms
0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.55 CLK_ERR_STS1 寄存器(地址 = 0x3D)[复位 = 0x00]

图 7-55 中显示了 CLK_ERR_STS1,表 7-56 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟错误和状态寄存器 1。

图 7-55. CLK_ERR_STS1 寄存器

			_				
7	6	5	4	3	2	1	0
PASI_BCLK_FS _RATIO_ERR	SASI_BCLK_F S_RATIO_ERR		PASI_FS_ERR	SASI_FS_ERR		RESERVED	
R-0b	R-0b	R-0b	R-0b	R-0b		R-000b	

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAC5411-Q1*

表 7-56. CLK ERR STS1 寄存器字段说明

	次 7 00. 0 EN_ENN_0101 前								
位	字段	类型	复位	说明					
7	PASI_BCLK_FS_RATIO_ ERR	R	0x0	指示 PASI bclk fsync 比率错误的标志。 0d =无 PASI bclk fsync 比率错误 1d = 所选时钟配置中的 PASI bclk fsync 比率错误					
6	SASI_BCLK_FS_RATIO_ ERR	R	0x0	指示 SASI bclk fsync 比率错误的标志。 0d =无 SASI bclk fsync 比率错误 1d = 所选时钟配置中的 SASI bclk fsync 比率错误					
5	CCLK_FS_RATIO_ERR	R	0x0	指示 CCLK fsync 比率错误的标志。 0d = 无 CCLK fsync 比率错误 1d = CCLK fsync 比率错误					
4	PASI_FS_ERR	R	0x0	指示 PASI FS 速率变化或停止错误的标志。 0d = 无 PASI FS 错误 1d = 检测到 PASI FS 速率变化或停止					
3	SASI_FS_ERR	R	0x0	指示 SASI FS 速率变化或停止错误的标志。 0d = 无 SASI FS 错误 1d = 检测到 SASI FS 速率变化或停止					
2-0	RESERVED	R	0x0	保留位;仅写入复位值					

7.1.56 CLK_DET_STS0 寄存器 (地址 = 0x3E) [复位 = 0x00]

图 7-56 中显示了 CLK_DET_STS0,表 7-57 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟比检测寄存器 0。

图 7-56. CLK_DET_STS0 寄存器

7	6	5	4	3	2	1	0
		PASI_SAMP_F	RATE_STS[5:0]			PLL_MOD	E_STS[1:0]
		R-000			R-	00b	

English Data Sheet: SLASF34

表 7-57. CLK DET STS0 寄存器字段说明

		衣 /-5/. 0	LK_DEI_S	表 7-57. CLK_DET_STS0 寄存器字段说明							
位	字段	类型	复位	说明							
7-2	PASI_SAMP_RATE_STS[R	0x0	主要 ASI 采样速率检测状态。							
	5:0]			0d = 保留							
				1d = 768000 (670320-791040)							
				2d = 614400 (536256-632832)							
				3d = 512000 (446880-527360)							
				4d = 438857 (383040-452022)							
				5d = 384000 (335160-395520)							
				6d = 341333 (297920-351573)							
				7d = 307200 (268128-316416)							
				8d = 256000 (223440-263680)							
				9d = 219429 (191520-226011)							
				10d = 192000 (167580-197760)							
				11d = 170667 (148960-175786)							
				12d = 153600 (134064-158208)							
				13d = 128000 (111720-131840)							
				14d = 109714 (95760-113005)							
				15d = 96000 (83790-98880)							
				16d = 85333 (74480-87893)							
				17d = 76800 (67032-79104)							
				18d = 64000 (55860-65920)							
				19d = 54857 (47880-56502)							
				20d = 48000 (41895-49440) 21d = 42667 (37240-43946)							
				22d = 38400 (33516-39552)							
				23d = 32000 (27930-32960)							
				24d = 27429 (23940-28251)							
				25d = 24000 (20947-24720)							
				26d = 21333 (18620-21973)							
				27d = 19200 (16758-19776)							
				28d = 16000 (13965-16480)							
				29d = 13714 (11970-14125)							
				30d = 12000 (10473-12360)							
				31d = 10667 (9310-10986)							
				32d = 9600 (8379-9888)							
				33d = 8000 (6982-8240)							
				34d = 6857 (5985-7062)							
				35d = 6000 (5236-6180)							
				36d = 5333 (4655-5493)							
				37d = 4800 (4189-4944)							
				38d = 4000 (3491-4120)							
				39d = 3429 (2992-3531)							
				40d = 3000 (2618-3090)							
				41d-63d = 保留							
1-0	PLL_MODE_STS[1:0]	R	0x0	PLL 使用状态。							
				0d = 在整数模式下使用 PLL							
				1d = 在小数模式下使用 PLL							
				2d = 未使用 PLL							
				3d = 保留							
				W III							

7.1.57 CLK_DET_STS1 寄存器 (地址 = 0x3F) [复位 = 0x00]

图 7-57 中显示了 CLK_DET_STS1,表 7-58 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟比检测寄存器 1。

图 7-57. CLK_DET_STS1 寄存器

H: 0:: 0=:(_==:, 7, 1, iii								
7	6	2	1 0					
	RESE	RVED						
		R-	00b					

图 7-57. CLK_DET_STS1 寄存器 (续)

表 7-58. CLK_DET_STS1 寄存器字段说明

表 7-36. CLN_DEI_3131 前仔爺子校见明							
位	字段	类型	复位	说明			
7-2	字段 SASI_SAMP_RATE_STS[5:0]	类型					
				40d = 3000 (2618-3090) 41d-63d = 保留			
1-0	RESERVED	R	0x0	保留位;仅写入复位值			
			-	MEE, N. V. CEE			

7.1.58 CLK_DET_STS2 寄存器 (地址 = 0x40) [复位 = 0x00]

图 7-58 中显示了 CLK_DET_STS2,表 7-59 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟比检测寄存器 2。

图 7-58. CLK_DET_STS2 寄存器

7 6	5	4	3	2	1	0
RESERVED		FS_	CLKSRC_RATIO	_DET_MSB_STS[5:0]	
R-00b			R-000	0000b		

English Data Sheet: SLASF34

表 7-59. CLK DET STS2 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5-0	FS_CLKSRC_RATIO_DE T_MSB_STS[5:0]	R	0x0	用于检测主要 ASI 或辅助 ASI FSYNC 与时钟源比率的 MSB 位。

7.1.59 CLK_DET_STS3 寄存器 (地址 = 0x41) [复位 = 0x00]

图 7-59 中显示了 CLK_DET_STS3,表 7-60 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟比检测寄存器 3。

图 7-59. CLK_DET_STS3 寄存器

7 6 5 4 3 2 1 0									
FS_CLKSRC_RATIO_DET_LSB_STS[7:0]									
	R-00000000b								

表 7-60. CLK_DET_STS3 寄存器字段说明

位	字段	类型	复位	说明
7-0	FS_CLKSRC_RATIO_DE T_LSB_STS[7:0]	R	0x0	用于检测主要 ASI 或辅助 ASI FSYNC 与时钟源比率的 LSB 字节。

7.1.60 INT_CFG 寄存器 (地址 = 0x42) [复位 = 0x00]

图 7-60 中显示了 INT_CFG,表 7-61 中对此进行了介绍。

返回到汇总表。

该寄存器是中断配置寄存器。

图 7-60. INT_CFG 寄存器

7	6	5	4	3	2	1	0
INT_POL	INT_EVE	ENT[1:0]	PD_ON_FLT	_CFG[1:0]	LTCH_READ_C FG	PD_ON_FLT_R CV_CFG	LTCH_CLR_ON _READ
R/W-0b	R/W-	·00b	R/W-	00b	R/W-0b	R/W-0b	R/W-0b

表 7-61. INT_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	INT_POL	R/W	0x0	中断极性。 0b = 低电平有效 (IRQZ) 1b = 高电平有效 (IRQ)
6-5	INT_EVENT[1:0]	R/W	0x0	中断事件配置。 Od = INT 在发生任何未屏蔽的锁存中断事件时置为有效 1d = INT 在发生任何未屏蔽的实时中断事件时置为有效 2d = 在发生任何未屏蔽的锁存中断事件时,INT 每 4ms(典型值)置 为有效一次且每次持续 2ms(典型值) 3d = 在发生任何未屏蔽的中断事件时,INT 在每个脉冲上置为有效一次且每次持续 2ms(典型值)
4-3	PD_ON_FLT_CFG[1:0]	R/W	0x0	在 chx 和 micbias 发生故障期间的断电配置。 0d = 断电时不考虑故障 1d = 断电时仅考虑未屏蔽的故障 2d = 断电时考虑所有故障 3d = 保留

表 7-61. INT CFG 寄存器字段说明 (续)

	76. C. H. 1 _ C. C. A 1 HL 1 1 A 00 7									
位	字段	类型	复位	说明						
2	LTCH_READ_CFG	R/W	0x0	中断锁存寄存器回读配置。 0b = 所有中断都可以通过 LTCH 寄存器读取 1b = 只有未屏蔽的中断可以通过 LTCH 寄存器读取						
1	PD_ON_FLT_RCV_CFG	R/W	/W 0x0 故障时 ADC 通道断电的配置 0b = 自动恢复,在故障消失时 ADC 通道重新上电 1b = 手动恢复,故障消失时 ADC 通道不会重新上							
0	LTCH_CLR_ON_READ	N_READ R/W 0x0 用于将 LTCH 寄存器位清零的 Cfgn 0 = 仅当实时状态为零时,才在寄存器读取印		用于将 LTCH 寄存器位清零的 Cfgn 0 = 仅当实时状态为零时,才在寄存器读取时将 LTCH 寄存器位清零 1 = 无论实时状态如何,在寄存器读取时都将 LTCH 寄存器位清零						

7.1.61 DAC_FLT_CFG 寄存器 (地址 = 0x43) [复位 = 0x50]

图 7-61 中显示了 DAC_FLT_CFG,表 7-62 中对此进行了介绍。

返回到汇总表。

该寄存器是中断配置寄存器。

图 7-61. DAC_FLT_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	DAC_PD_ON_I	FLT_CFG[1:0]	DAC_PD_ON_ FLT_RCV_CFG	OUT_CHx_PD_ FLT_STS	DAC_DIS_PD_ W_PU	DAC_FLT_DET _DIS	AREG_SC_FLA G_DET_DIS
R-0b	R/W-	10b	R/W-1b	R-0b	R/W-0b	R/W-0b	R/W-0b

表 7-62. DAC_FLT_CFG 寄存器字段说明

X: 01. 57.0_1. 1 01. 0 A 1 A									
位	字段	类型	复位	说明					
7	RESERVED	R	0x0	保留位;仅写入复位值					
6-5	DAC_PD_ON_FLT_CFG[1:0]	R/W	0x2	DAC 故障期间的断电配置。 0d = 断电时不考虑故障 1d = 断电时仅考虑未屏蔽的故障 2d = 断电时考虑所有故障 3d = 保留					
4	DAC_PD_ON_FLT_RCV_ CFG	R/W	0x1	故障时 DAC 通道断电的配置 0b = 自动恢复,在故障消失时 DAC 通道重新上电 1b = 手动恢复,故障消失时 DAC 通道不会重新上电					
3	OUT_CHx_PD_FLT_STS	R	0x0	出现 OUTxx 故障时 PD 的状态 Od = 没有 DAC 通道因故障而断电 1d = 某些 DAC 通道因故障而断电					
2	DAC_DIS_PD_W_PU	R/W	0x0	DAC 上电期间禁用在 DRVR VG 故障时断电 0b = 上电期间在 DRVR VG 故障时断电 1b = 上电期间禁用在 DRVR VG 故障时断电					
1	DAC_FLT_DET_DIS	R/W	0x0	DAC vg_fault/sc_fault 检测配置 0b = 启用 1b = 禁用					
0	AREG_SC_FLAG_DET_D IS	R/W	0x0	AREG 短路检测配置 0b = 启用 1b = 禁用					

Product Folder Links: TAC5411-Q1

7.1.62 ADC_DAC_MISC_CFG 寄存器 (地址 = 0x4B) [复位 = 0x00]

图 7-62 中显示了 ADC_DAC_MISC_CFG,表 7-63 中对此进行了介绍。

返回到汇总表。

在过载恢复阶段使 ADC 通道静音的选项

图 7-62. ADC_DAC_MISC_CFG 寄存器

					4 14 PP		
7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED	ADC_CH1_MU TE_ON_OVRL D	ADC_CH2_MU TE_ON_OVRL D		RESERVED	
R-0b	R-0b	R-0b	R/W-0b	R/W-0b		R-000b	

表 7-63. ADC_DAC_MISC_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6	RESERVED	R	0x0	保留位;仅写入复位值
5	RESERVED	R	0x0	保留位;仅写入复位值
4	ADC_CH1_MUTE_ON_O VRLD	R/W	0x0	在 ADC1 处于过载恢复阶段时使 ADC 通道 1 静音 0b = 禁用 1b = 启用
3	ADC_CH2_MUTE_ON_O VRLD	R/W	0x0	在 ADC2 处于过载恢复阶段时使 ADC 通道 2 静音 0b = 禁用 1b = 启用
2-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.63 PWR_TUNE_CFG0 寄存器 (地址 = 0x4E) [复位 = 0x00]

图 7-63 中显示了 PWR_TUNE_CFG0,表 7-64 中对此进行了介绍。

返回到汇总表。

该寄存器是 power tune 配置的配置寄存器。

图 7-63. PWR_TUNE_CFG0 寄存器

7	6	5	4	3	2	1	0
ADC_CLK_BY2 _MODE	ADC_CIC_ORD ER	ADC_FIR_BYP ASS	RESERV	ED	ADC_LOW_PW R_FILT	RESE	RVED
R/W-0b	R/W-0b	R/W-0b	R-00b		R/W-0b	R-0	00b

表 7-64. PWR_TUNE_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7	ADC_CLK_BY2_MODE	R/W	0x0	ADC MOD CLK 选择配置。 0d = MOD CLK 3MHz 1d = MOD CLK 1.5MHz
6	ADC_CIC_ORDER	R/W	0x0	ADC CIC 阶数配置。 0d = 5 阶 CIC 1d = 4 阶 CIC
5	ADC_FIR_BYPASS	R/W	0x0	ADC FIR 旁路配置。 0d = 旁路禁用 1d = 旁路启用
4-3	RESERVED	R	0x0	保留位;仅写入复位值
2	ADC_LOW_PWR_FILT	R/W	0x0	ADC 的低功耗滤波器配置 0d = 禁用 1d = 启用

Product Folder Links: TAC5411-Q1

表 7-64. PWR TUNE CFG0 寄存器字段说明 (续)

位	字段	类型	复位	说明
1-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.64 PWR_TUNE_CFG1 寄存器 (地址 = 0x4F) [复位 = 0x00]

图 7-64 中显示了 PWR_TUNE_CFG1,表 7-65 中对此进行了介绍。

返回到汇总表。

该寄存器是 power tune 配置的配置寄存器。

图 7-64. PWR_TUNE_CFG1 寄存器

7	6	5	4	3	2	1	0
DAC_CLK_BY2 _MODE	RESERVED	DAC_FIR_SEG _BYPASS	RESER\	/ED	DAC_LOW_PW R_FILT	DAC_POWER_ SCAL	RESERVED
R/W-0b	R-0b	R/W-0b	R-00)	R/W-0b	R/W-0b	R-0b

表 7-65. PWR_TUNE_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7	DAC_CLK_BY2_MODE	R/W	0x0	DAC MOD CLK 选择配置。 0d = MOD CLK 3MHz 1d = MOD CLK 1.5MHz
6	RESERVED	R	0x0	保留位;仅写入复位值
5	DAC_FIR_SEG_BYPASS	R/W	0x0	DAC FIR 和分段器旁路配置。 0d = 旁路禁用 1d = 旁路启用
4-3	RESERVED	R	0x0	保留位;仅写入复位值
2	DAC_LOW_PWR_FILT	R/W	0x0	DAC 的低功耗滤波器配置 0d = 禁用 1d = 启用
1	DAC_POWER_SCAL	R/W	0x0	DAC IREF 选择配置。 0d = Vref/R 1d = Vref/2R
0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.65 ADC_CH1_CFG0 寄存器 (地址 = 0x50) [复位 = 0x00]

图 7-65 中显示了 ADC_CH1_CFG0,表 7-66 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 1 的配置寄存器 0。

图 7-65. ADC_CH1_CFG0 寄存器

7	6	5	4	3	2	1	0
ADC	_CH1_INSRC[1:0]	RESERVED		RESE	RVED	ADC_CH1_FUL LSCALE_VAL	ADC_CH1_BW _MODE
	R/W-00b	R-00b		R-0	0b	R/W-0b	R/W-0b

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

95

表 7-66. ADC_CH1_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-6	ADC_CH1_INSRC[1:0]	R/W	0x0	ADC 通道 1 输入配置。 0d = 模拟差分输入 1d = 模拟单端输入 不使用 不使用
5-4	RESERVED	R	0x0	保留位;仅写入复位值
3-2	RESERVED	R	0x0	保留位;仅写入复位值
1	ADC_CH1_FULLSCALE_ VAL	R/W	0x0	VREF=2.75V 时的 ADC 通道 1 满量程值(适用于模拟输入)。 0d = 10Vrms 差分 1d = 5Vrms 差分
0	ADC_CH1_BW_MODE	R/W	0x0	ADC 通道 1 带宽选择耦合(适用于模拟输入)。 0d = 音频带宽(24kHz 模式) 1d = 宽带宽(96kHz 模式)

7.1.66 ADC_CH1_CFG2 寄存器 (地址 = 0x52) [复位 = 0xA1]

图 7-66 中显示了 ADC_CH1_CFG2,表 7-67 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 1 的配置寄存器 2。

图 7-66. ADC_CH1_CFG2 寄存器

	6	5	1	2	2	1	Λ
•	0	J	7	3		•	U
			ADC_CH1_DVOL	_[7:0]			
			R/W-10100001	1b			

表 7-67. ADC_CH1_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7-0	ADC_CH1_DVOL[7:0]	R/W	0xA1	通道 1 数字音量控制。 0d = 数字音量静音 1d = 数字音量控制设置为 - 80dB 2d = 数字音量控制设置为 - 79.5dB 3d 至 160d = 数字音量控制根据配置进行设置 161d = 数字音量控制设置为 0dB 162d = 数字音量控制设置为 0.5dB 163d 至 253d = 数字音量控制根据配置进行设置
				254d = 数字音量控制设置为 46.5dB 255d = 数字音量控制设置为 47dB

7.1.67 ADC_CH1_CFG3 寄存器 (地址 = 0x53) [复位 = 0x80]

图 7-67 中显示了 ADC_CH1_CFG3,表 7-68 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 1 的配置寄存器 3。

图 7-67. ADC_CH1_CFG3 寄存器

7	6	5	4	3	2	1	0
	ADC_CH1_	FGAIN[3:0]		RESERVED			
R/W-1000b					R-00	00b	

Product Folder Links: TAC5411-Q1

表 7-68. ADC CH1 CFG3 寄存器字段说明

位	字段	类型	复位	说明
7-4	ADC_CH1_FGAIN[3:0]	R/W	0x8	ADC 通道 1 精细增益校准。
				0d = 精细增益设置为 -0.8dB
				1d = 精细增益设置为 -0.7dB
				2d = 精细增益设置为 -0.6dB
				3d 至 7d = 根据配置设置精细增益
				8d = 精细增益设置为 0dB
				9d = 精细增益设置为 0.1dB
				10d 至 13d = 根据配置设置精细增益
				14d = 精细增益设置为 0.6dB
				15d = 精细增益设置为 0.7dB
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.68 ADC_CH1_CFG4 寄存器 (地址 = 0x54) [复位 = 0x00]

图 7-68 中显示了 ADC_CH1_CFG4,表 7-69 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 1 的配置寄存器 4。

图 7-68. ADC_CH1_CFG4 寄存器

7	6	5	4	3	2	1	0
		PCAL_ANA_	DIG_SEL[1:0]				
			R/W	'-00b			

表 7-69. ADC_CH1_CFG4 寄存器字段说明

位	字段	类型	复位	说明
7-2	ADC_CH1_PCAL[5:0]	R/W	0x0	具有调制器时钟分辨率的 ADC 通道 1 相位校准。 0d = 无相位校准 1d = 相位校准延迟设置为一个调制器时钟周期 2d = 相位校准延迟设置为两个调制器时钟周期 3d 至 62d = 相位校准延迟视配置而定 63d = 相位校准延迟设置为 63 个调制器时钟周期
1-0	PCAL_ANA_DIG_SEL[1:0]	R/W	0x0	PCAL 支持配置。 0d = 支持模拟和数字的 Pcal 1d = 仅支持模拟的 Pcal 2d = 仅支持数字的 Pcal 3d = 保留

7.1.69 ADC_CH2_CFG0 寄存器 (地址 = 0x55) [复位 = 0x00]

图 7-69 中显示了 ADC_CH2_CFG0,表 7-70 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 2 的配置寄存器 0。

图 7-69. ADC CH2 CFG0 寄存器

7	6	5	4	3	2	1	0
ADC_CH2_INSRC[1:0] RESERVED			ADC_CH2_	CM_TOL[1:0]	ADC_CH2_FUL LSCALE_VAL	ADC_CH2_BW _MODE	
R/W	-00b	R-00b		R/V	V-00b	R/W-0b	R/W-0b

English Data Sheet: SLASF34

表 7-70. ADC CH2 CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-6	ADC_CH2_INSRC[1:0]	R/W	0x0	ADC 通道 2 输入配置。 0d = 模拟差分输入 1d = 模拟单端输入 不使用
5-4	RESERVED	R	0x0	保留位;仅写入复位值
3-2	ADC_CH2_CM_TOL[1:0]	R/W	0x0	ADC 通道 2 输入耦合(适用于模拟输入)。 0d = 具有共模变化容差的交流耦合输入,单端配置支持 50mVpp,差分配置支持 100mVpp 1d = 具有共模变化容差的交流耦合/直流耦合输入,单端配置支持500mVpp,差分配置支持 1Vpp(预计 SNR 下降 1-2dB) 2d = 具有共模变化容差的交流耦合/直流耦合输入,支持轨到轨(电源到地)(预计 SNR 下降 3-4dB,仅在这种情况下支持高 CMRR)3d = 保留
1	ADC_CH2_FULLSCALE_ VAL	R/W	0x0	VREF=2.75V 时的 ADC 通道 2 满量程值(适用于模拟输入)。 0d = 10Vrms 差分 1d = 5Vrms 差分
0	ADC_CH2_BW_MODE	R/W	0x0	ADC 通道 2 带宽选择耦合(适用于模拟输入)。 0d = 音频带宽(24kHz 模式) 1d = 宽带宽(96kHz 模式)(仅支持 40kΩ 输入阻抗情况)

7.1.70 ADC_CH2_CFG2 寄存器 (地址 = 0x57) [复位 = 0xA1]

图 7-70 中显示了 ADC_CH2_CFG2,表 7-71 中对此进行了介绍。

返回到汇总表。

该寄存器是通道2的配置寄存器2。

图 7-70. ADC_CH2_CFG2 寄存器

7	6	5	4	3	2	1	0		
	ADC_CH2_DVOL[7:0]								
	R/W-10100001b								

表 7-71. ADC_CH2_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7-0	ADC_CH2_DVOL[7:0]	R/W	0xA1	通道 1 数字音量控制。
				0d = 数字音量静音
				1d = 数字音量控制设置为 - 80dB
				2d = 数字音量控制设置为 - 79.5dB
				3d 至 160d = 数字音量控制根据配置进行设置
				161d = 数字音量控制设置为 0dB
				162d = 数字音量控制设置为 0.5dB
				163d 至 253d = 数字音量控制根据配置进行设置
				254d = 数字音量控制设置为 46.5dB
				255d = 数字音量控制设置为 47dB

7.1.71 ADC_CH2_CFG3 寄存器 (地址 = 0x58) [复位 = 0x80]

图 7-71 中显示了 ADC_CH2_CFG3,表 7-72 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 2 的配置寄存器 3。

图 7-71. ADC_CH2_CFG3 寄存器

7	6	5	4	3	2	1	0
	ADC_CH2_	FGAIN[3:0]		RESERVED			
	R/W-	1000b			R-00	000b	

表 7-72. ADC CH2 CFG3 寄存器字段说明

位	字段	类型	复位	说明
7-4	ADC_CH2_FGAIN[3:0]	R/W		ADC 通道 2 精细增益校准。 0d = 精细增益设置为 -0.8dB 1d = 精细增益设置为 -0.7dB 2d = 精细增益设置为 -0.6dB 3d 至 7d = 根据配置设置精细增益 8d = 精细增益设置为 0dB 9d = 精细增益设置为 0.1dB
				10d 至 13d = 根据配置设置精细增益 14d = 精细增益设置为 0.6dB 15d = 精细增益设置为 0.7dB
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.72 ADC_CH2_CFG4 寄存器 (地址 = 0x59) [复位 = 0x00]

图 7-72 中显示了 ADC_CH2_CFG4,表 7-73 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 2 的配置寄存器 4。

图 7-72. ADC_CH2_CFG4 寄存器

7	6	5	4	3	2	1	0
ADC_CH2_PCAL[5:0]							RVED
			R-(00b			

表 7-73. ADC_CH2_CFG4 寄存器字段说明

位	字段	类型	复位	说明
7-2	ADC_CH2_PCAL[5:0]	R/W		具有调制器时钟分辨率的 ADC 通道两相位校准。 0d = 无相位校准 1d = 相位校准延迟设置为一个调制器时钟周期 2d = 相位校准延迟设置为两个调制器时钟周期 3d 至 62d = 相位校准延迟视配置而定 63d = 相位校准延迟设置为 63 个调制器时钟周期
1-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.73 ADC_CH3_CFG0 寄存器 (地址 = 0x5A) [复位 = 0x00]

图 7-73 中显示了 ADC_CH3_CFG0,表 7-74 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 3 的配置寄存器 0。

图 7-73. ADC_CH3_CFG0 寄存器

			_				
7	6	5	4	3	2	1	0
ADC_CH3_CL ONE				RESERVED			
R/W-0b				R-0000000b			

Product Folder Links: TAC5411-Q1

图 7-73. ADC_CH3_CFG0 寄存器 (续)

表 7-74. ADC_CH3_CFG0 寄存器字段说明

位	字段	类型	复位	说明			
7	ADC_CH3_CLONE	R/W		ADC 通道 3 输入配置。 Od = 禁用克隆 1d = 生成的通道 3 数字滤波器输入与通道 1 数字滤波器输入(克隆输入)相同			
6-0	RESERVED	R	0x0	保留位;仅写入复位值			

7.1.74 ADC_CH3_CFG2 寄存器(地址 = 0x5B)[复位 = 0xA1]

图 7-74 中显示了 ADC_CH3_CFG2,表 7-75 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 3 的配置寄存器 2。

图 7-74. ADC_CH3_CFG2 寄存器

7	6	5	4	3	2	1	0	
	ADC_CH3_DVOL[7:0]							
			R/W-10	100001b				

表 7-75. ADC_CH3_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7-0	ADC_CH3_DVOL[7:0]	R/W	0xA1	通道3数字音量控制。
				Od = 数字音量静音
				1d = 数字音量控制设置为 - 80dB
				2d = 数字音量控制设置为 - 79.5dB
				3d 至 160d = 数字音量控制根据配置进行设置
				161d = 数字音量控制设置为 0dB
				162d = 数字音量控制设置为 0.5dB
				163d 至 253d = 数字音量控制根据配置进行设置
				254d = 数字音量控制设置为 46.5dB
				255d = 数字音量控制设置为 47dB

7.1.75 ADC_CH3_CFG3 寄存器 (地址 = 0x5C) [复位 = 0x80]

图 7-75 中显示了 ADC_CH3_CFG3,表 7-76 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 3 的配置寄存器 3。

图 7-75. ADC_CH3_CFG3 寄存器

7	6	5	4	3	2	1	0	
	ADC_CH3_	FGAIN[3:0]		RESERVED				
	R/W-1000b				R-00	00b		

Product Folder Links: TAC5411-Q1

English Data Sheet: SLASF34

表 7-76. ADC_CH3_CFG3 寄存器字段说明

位	字段	类型	复位	说明
7-4	ADC_CH3_FGAIN[3:0]	R/W	0x8	ADC 通道 3 精细增益校准。 0d = 精细增益设置为 -0.8dB 1d = 精细增益设置为 -0.7dB 2d = 精细增益设置为 -0.6dB 3d 至 7d = 根据配置设置精细增益 8d = 精细增益设置为 0dB 9d = 精细增益设置为 0.1dB 10d 至 13d = 根据配置设置精细增益 14d = 精细增益设置为 0.6dB 15d = 精细增益设置为 0.7dB
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.76 ADC_CH3_CFG4 寄存器 (地址 = 0x5D) [复位 = 0x00]

图 7-76 中显示了 ADC_CH3_CFG4,表 7-77 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 3 的配置寄存器 4。

图 7-76. ADC CH3 CFG4 寄存器

7	6	5	4	3	2	1	0
		ADC_CH3_PCAL[5:0] RESERVED					RVED
		R/W-000000b					00b

表 7-77. ADC_CH3_CFG4 寄存器字段说明

位	字段	类型	复位	说明
7-2	ADC_CH3_PCAL[5:0]	R/W		具有调制器时钟分辨率的 ADC 通道三相位校准。 0d = 无相位校准 1d = 相位校准延迟设置为一个调制器时钟周期 2d = 相位校准延迟设置为两个调制器时钟周期 3d 至 62d = 相位校准延迟视配置而定 63d = 相位校准延迟设置为 63 个调制器时钟周期
1-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.77 ADC_CH4_CFG0 寄存器 (地址 = 0x5E) [复位 = 0x00]

图 7-77 中显示了 ADC_CH4_CFG0,表 7-78 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 4 的配置寄存器 0。

图 7-77. ADC_CH4_CFG0 寄存器

7	6	5	4	3	2	1	0
ADC_CH4_CL ONE				RESERVED			
R/W-0b				R-0000000b			

English Data Sheet: SLASF34

表 7-78. ADC CH4 CFG0 寄存器字段说明

位	字段	类型	复位	说明
7	ADC_CH4_CLONE	R/W		ADC 通道 4 输入配置。 Od = 禁用克隆 1d = 生成的通道 4 数字滤波器输入与通道 2 数字滤波器输入(克隆输入)相同
6-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.78 ADC_CH4_CFG2 寄存器 (地址 = 0x5F) [复位 = 0xA1]

图 7-78 中显示了 ADC_CH4_CFG2,表 7-79 中对此进行了介绍。

返回到汇总表。

该寄存器是通道2的配置寄存器4。

图 7-78. ADC_CH4_CFG2 寄存器

7	6	5	4	3	2	1	0	
	ADC_CH4_DVOL[7:0]							
			R/W-10	100001b				

表 7-79. ADC_CH4_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7-0	ADC_CH4_DVOL[7:0]	R/W	0xA1	通道4数字音量控制。
				0d = 数字音量静音
				1d = 数字音量控制设置为 - 80dB
				2d = 数字音量控制设置为 - 79.5dB
				3d 至 160d = 数字音量控制根据配置进行设置
				161d = 数字音量控制设置为 0dB
				162d = 数字音量控制设置为 0.5dB
				163d 至 253d = 数字音量控制根据配置进行设置
				254d = 数字音量控制设置为 46.5dB
				255d = 数字音量控制设置为 47dB

7.1.79 ADC_CH4_CFG3 寄存器 (地址 = 0x60) [复位 = 0x80]

图 7-79 中显示了 ADC_CH4_CFG3,表 7-80 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 4 的配置寄存器 3。

图 7-79. ADC_CH4_CFG3 寄存器

7	6	5	4	3	2	1	0	
	ADC_CH4_	FGAIN[3:0]		RESERVED				
	R/W-1000b				R-00	000b		

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

表 7-80. ADC_CH4_CFG3 寄存器字段说明

位	字段	类型	复位	说明
7-4	ADC_CH4_FGAIN[3:0]	R/W	0x8	ADC 通道 4 精细增益校准。 0d = 精细增益设置为 -0.8dB 1d = 精细增益设置为 -0.7dB 2d = 精细增益设置为 -0.6dB 3d 至 7d = 根据配置设置精细增益 8d = 精细增益设置为 0dB 9d = 精细增益设置为 0.1dB 10d 至 13d = 根据配置设置精细增益 14d = 精细增益设置为 0.6dB
3-0	RESERVED	R	0x0	15d = 精细增益设置为 0.7dB 保留位;仅写入复位值

7.1.80 ADC_CH4_CFG4 寄存器 (地址 = 0x61) [复位 = 0x00]

图 7-80 中显示了 ADC_CH4_CFG4,表 7-81 中对此进行了介绍。

返回到汇总表。

该寄存器是 ADC 通道 4 的配置寄存器 4。

图 7-80. ADC_CH4_CFG4 寄存器

7	6	5	4	3	2	1	0
	RESERVED						
			R-	00b			

表 7-81. ADC_CH4_CFG4 寄存器字段说明

位	字段	类型	复位	说明
7-2	ADC_CH4_PCAL[5:0]	R/W		具有调制器时钟分辨率的 ADC 通道 4 相位校准。 0d = 无相位校准 1d = 相位校准延迟设置为一个调制器时钟周期 2d = 相位校准延迟设置为两个调制器时钟周期 3d 至 62d = 相位校准延迟视配置而定 63d = 相位校准延迟设置为 63 个调制器时钟周期
1-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.81 OUT1x_CFG0 寄存器 (地址 = 0x64) [复位 = 0x20]

图 7-81 中显示了 OUT1x_CFG0,表 7-82 中对此进行了介绍。

返回到汇总表。

该寄存器是通道 OUT1x 的配置寄存器 0。

图 7-81. OUT1x_CFG0 寄存器

7	6	5	4	3	2	1	0
	OUT1x_SRC[2:0]			OUT1x_CFG[2:0]]	OUT1x_VCOM	OUT1x_LP_MO DE
	R/W-001b			R/W-000b		R/W-0b	R/W-0b

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 103

表 7-82. OUT1x CFG0 寄存器字段说明

• • • • • • • • • • • • • • • • • • • •	次 1-02. OOT IX_OT OO 向行相子校処力											
位	字段	 类型	复位	说明								
7-5	OUT1x_SRC[2:0]	R/W	0x1	OUT1x 源配置。 0d = 禁用输出驱动器 1d = 来自 DAC 信号链的输入 2d = 来自模拟旁路路径的输入 3d = 来自 DAC 信号链和模拟旁路路径的输入 4d = 来自 DAC 信号链和模拟旁路路径的独立输入(DAC -> OUT1P, IN1P -> OUT1M) 5d = 来自 DAC 信号链和模拟旁路路径的独立输入(IN1M -> OUT1P, DAC -> OUT1M) 6d-7d = 保留;不使用								
4-2	OUT1x_CFG[2:0]	R/W	0x0	OUT1x DAC/模拟旁路路由配置。(如果 OUT1x_SRC 配置了 4d 或 5d,则不使用) 0d = 差分(DAC1AP + DAC1BP/IN1M -> OUT1P; DAC1AM + DAC1BM/IN1P -> OUT1M) 1d = 立体声单端(DAC1A/IN1M -> OUT1P; DAC1B/IN1P -> OUT1M) 2d = 单声道单端,仅限 OUT1P 处输出 (DAC1A + DAC1B/IN1M-> OUT1P) 3d = 单声道单端,仅限 OUT1M 处输出 (DAC1A + DAC1B/IN1P -> OUT1M) 4d = 伪差分,OUT1M 用作 VCOM(DAC1A,DAC1B/IN1M -> OUT1P,VCOM -> OUT1M) 5d = 伪差分,OUT1M 用作 VCOM,OUT2M 用于外部检测(DAC1A,DAC1B/IN1M -> OUT1P,VCOM -> OUT1M) 6d = 伪差分,OUT1P 用作 VCOM(IN1P -> OUT1M,VCOM -> OUT1P) 7d = 保留;不使用								
1	OUT1x_VCOM	R/W	0x0	通道 OUT1x VCOM 配置。 0d = 0.6 * Vref(仅对于 1.375V VREF 模式为 0.654*Vref) 1d = AVDD/2								
0	OUT1x_LP_MODE	R/W	0x0	OUT1x 通道的低功耗模式。(仅对配置为 DAC 信号链的 OUT1x_SRC 有效)(对于配置为立体声 SE 的 OUT1x_CFG 无效) 0d = 禁用低功耗模式(性能高 3dB) 1d = 启用低功耗模式								

7.1.82 OUT1x_CFG1 寄存器 (地址 = 0x65) [复位 = 0x20]

图 7-82 中显示了 OUT1x_CFG1,表 7-83 中对此进行了介绍。

返回到汇总表。

该寄存器是通道 OUT1x 的配置寄存器 1。

图 7-82. OUT1x CFG1 寄存器

7	6	5	4	3	2	1	0
OUT1P_DRIVE[1:0] OUT1P_LVL_CTRL[2:0]				2:0]	RESERVED	RESERVED	DAC_CH1_BW _MODE
R/W-00b			R/W-100b		R-0b	R-0b	R/W-0b

表 7-83. OUT1x_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-6	OUT1P_DRIVE[1:0]	R/W		通道 OUT1P 驱动配置。 $0d = 具有最小 300 \Omega 阻抗的线路输出驱动器 \\ 1d = 具有最小 4\Omega 阻抗的耳机驱动器 2d = 4\Omega \\ 3d = FD 接收器/调试$

表 7-83. OUT1x CFG1 寄存器字段说明 (续)

	位	字段	类型	复位	说明
	5-3	OUT1P_LVL_CTRL[2:0]	R/W	0x4	通道 OUT1P 电平控制配置 不使用 不使用 不使用 4d = -8dB 5d = -14dB 6d = -20dB 7d = -26dB
	2	RESERVED	R	0x0	保留位;仅写入复位值
Ī	1	RESERVED	R	0x0	保留位;仅写入复位值
	0	DAC_CH1_BW_MODE	R/W	0x0	DAC 通道 1 带宽选择。 0d = 音频带宽 (24kHz 模式) 1d = 宽带宽 (96kHz 模式)

7.1.83 OUT1x_CFG2 寄存器 (地址 = 0x66) [复位 = 0x20]

图 7-83 中显示了 OUT1x_CFG2,表 7-84 中对此进行了介绍。

返回到汇总表。

该寄存器是通道 OUT2x 的配置寄存器 2。

图 7-83. OUT1x_CFG2 寄存器

7	6	5	4	3	2	1	0
OUT1M_DRIVE[1:0] OUT1M_LVL_CTRL[2			2:0]	RESERVED	DAC_CH1_FUL LSCALE_VAL	DAC_CH1_CM _TOL	
R/W	-00b		R/W-100b			R/W-0b	R/W-0b

表 7-84. OUT1x_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7-6	OUT1M_DRIVE[1:0]	R/W	0x0	通道 OUT1M 驱动配置。 $0d = 具有最小 300 \Omega 阻抗的线路输出驱动器 \\ 1d = 具有最小 4\Omega 阻抗的耳机驱动器 2d = 4\Omega \\ 3d = FD 接收器/调试$
5-3	OUT1M_LVL_CTRL[2:0]	R/W	0x4	通道 OUT1M 电平控制配置。 不使用 不使用 不使用 4d = -8dB 5d = -14dB 6d = -20dB 7d = -26dB
2	RESERVED	R	0x0	保留位;仅写入复位值
1	DAC_CH1_FULLSCALE_ VAL	R/W	0x0	VREF=2.75V 时的 DAC 通道 1 满量程值 0d = 10Vrms 差分 1d = 5Vrms 差分
0	DAC_CH1_CM_TOL	AC_CH1_CM_TOL R/W		DAC 通道 1 输入耦合(适用于模拟输入)。 0d = 具有共模变化容差的交流耦合输入,单端配置支持 50mVpp,差分配置支持 100mVpp 1d = 具有共模变化容差的交流耦合/直流耦合输入,支持轨到轨(电源到地)(预计 SNR 下降 3-4dB,仅在这种情况下支持高 CMRR)

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 105

Product Folder Links: TAC5411-Q1

7.1.84 DAC_CH1A_CFG0 寄存器(地址 = 0x67)[复位 = 0xC9]

图 7-84 中显示了 DAC_CH1A_CFG0,表 7-85 中对此进行了介绍。

返回到汇总表。

该寄存器是 DAC 通道 1A 的配置寄存器 0。

图 7-84. DAC_CH1A_CFG0 寄存器

7 6 5 4 3 2 1 0									
DAC_CH1A_DVOL[7:0]									
R/W-11001001b									

表 7-85. DAC_CH1A_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-0	DAC_CH1A_DVOL[7:0]	R/W	0xC9	通道 1A 数字音量控制。
				0d = 数字音量静音
				1d = 数字音量控制设置为 -100dB
				2d = 数字音量控制设置为 -99.5dB
				3d 至 200d = 数字音量控制根据配置进行设置
				201d = 数字音量控制设置为 0dB
				202d = 数字音量控制设置为 +0.5dB
				203d 至 253d = 数字音量控制根据配置进行设置
				254d = 数字音量控制设置为 +26.5dB
				255d = 数字音量控制设置为 +27dB

7.1.85 DAC_CH1A_CFG1 寄存器(地址 = 0x68)[复位 = 0x80]

图 7-85 中显示了 DAC_CH1A_CFG1,表 7-86 中对此进行了介绍。

返回到汇总表。

该寄存器是 DAC 通道 1A 的配置寄存器 1。

图 7-85. DAC_CH1A_CFG1 寄存器

			_					
7	6	5	4	3	2	1	0	
	DAC_CH1A	_FGAIN[3:0]		RESERVED				
	R/W-	1000b		R-0000b				

表 7-86. DAC_CH1A_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-4	DAC_CH1A_FGAIN[3:0]	R/W	0x8	DAC 通道 1A 精细增益校准。 0d = 精细增益设置为 -0.8dB 1d = 精细增益设置为 -0.7dB 2d = 精细增益设置为 -0.6dB 3d 至 7d = 根据配置设置精细增益 8d = 精细增益设置为 0dB
				9d = 精细增益设置为 0.1dB 10d 至 13d = 根据配置设置精细增益 14d = 精细增益设置为 0.6dB 15d = 精细增益设置为 0.7dB
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.86 DAC_CH1B_CFG0 寄存器 (地址 = 0x69) [复位 = 0xC9]

图 7-86 中显示了 DAC_CH1B_CFG0,表 7-87 中对此进行了介绍。

返回到汇总表。

该寄存器是 DAC 通道 1B 的配置寄存器 0。

图 7-86. DAC_CH1B_CFG0 寄存器

7	6	5	4	3	2	1	0
DAC_CH1B_DVOL[7:0]							
R/W-11001001b							

表 7-87. DAC CH1B CFG0 寄存器字段说明

位	字段	类型		说明
7-0	DAC_CH1B_DVOL[7:0]	R/W	0xC9	通道 1B 数字音量控制。
				0d = 数字音量静音
				1d = 数字音量控制设置为 -100dB
				2d = 数字音量控制设置为 -99.5dB
				3d 至 200d = 数字音量控制根据配置进行设置
				201d = 数字音量控制设置为 0dB
				202d = 数字音量控制设置为 +0.5dB
				203d 至 253d = 数字音量控制根据配置进行设置
				254d = 数字音量控制设置为 +26.5dB
				255d = 数字音量控制设置为 +27dB

7.1.87 DAC_CH1B_CFG1 寄存器 (地址 = 0x6A) [复位 = 0x80]

图 7-87 中显示了 DAC_CH1B_CFG1,表 7-88 中对此进行了介绍。

返回到汇总表。

该寄存器是 DAC 通道 1B 的配置寄存器 1。

图 7-87. DAC CH1B CFG1 寄存器

		· ·		_			
7	6	5	4	3	2	1	0
	DAC_CH1E	3_FGAIN[3:0]		RESERVED			
	R/W	-1000b			R-00	000b	

表 7-88. DAC CH1B CFG1 寄存器字段说明

位	字段	类型	复位	说明		
7-4	DAC_CH1B_FGAIN[3:0]	R/W	0x8	DAC 通道 1B 精细增益校准。 0d = 精细增益设置为 -0.8dB 1d = 精细增益设置为 -0.7dB 2d = 精细增益设置为 -0.6dB 3d 至 7d = 根据配置设置精细增益 8d = 精细增益设置为 0dB 9d = 精细增益设置为 0.1dB 10d 至 13d = 根据配置设置精细增益 14d = 精细增益设置为 0.6dB 15d = 精细增益设置为 0.7dB		
3-0	RESERVED	R	0x0	保留位;仅写入复位值		

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 107

Product Folder Links: TAC5411-Q1

7.1.88 OUT2x_CFG0 寄存器 (地址 = 0x6B) [复位 = 0x20]

图 7-88 中显示了 OUT2x_CFG0,表 7-89 中对此进行了介绍。

返回到汇总表。

该寄存器是通道 OUT2x 的配置寄存器 0。

图 7-88. OUT2x CFG0 寄存器

				_			
7	6	5	4	3	2	1	0
	OUT2x_SRC[2:0]			OUT2x_CFG[2:0]		OUT2x_VCOM	OUT2x_LP_MO DE
	R/W-001b			R/W-000b		R/W-0b	R/W-0b

表 7-89. OUT2x_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-5	OUT2x_SRC[2:0]	R/W	0x1	OUT2x 源配置。 Od = 禁用输出驱动器 1d = 来自 DAC 信号链的输入 2d = 来自模拟旁路路径的输入 3d = 来自 DAC 信号链和模拟旁路路径的输入 4d = 来自 DAC 信号链和模拟旁路路径的独立输入(DAC -> OUT2P, IN2P -> OUT2M) 5d = 来自 DAC 信号链和模拟旁路路径的独立输入(IN2M -> OUT2P, DAC -> OUT2M) 6d-7d = 保留;不使用
4-2	OUT2x_CFG[2:0]	R/W	0x0	OUT2x DAC/模拟旁路路由配置。(如果 OUT1x_SRC 配置了 4d 或 5d,则不使用) 0d = 差分(DAC2AP + DAC2BP/IN2M -> OUT2P; DAC2AM + DAC2BM/IN2P -> OUT2M) 1d = 立体声单端(DAC2A/IN2M -> OUT2P; DAC2B/IN2P -> OUT2M) 2d = 单声道单端,仅限 OUT2P 处输出 (DAC2A + DAC2B/IN2M-> OUT2P) 3d = 单声道单端,仅限 OUT2M 处输出 (DAC2A + DAC2B/IN2P -> OUT2M) 4d = 伪差分,OUT2M 用作 VCOM(DAC2A、DAC2B/IN2M -> OUT2P,VCOM -> OUT2M) 5d = 保留;不使用 6d = 伪差分,OUT2P 用作 VCOM(IN2P -> OUT2M,VCOM -> OUT2P) 7d = 保留;不使用
1	OUT2x_VCOM	R/W	0x0	通道 OUT2x VCOM 配置。 0d = 0.6 * Vref(仅对于 1.375V VREF 模式为 0.654*Vref) 2d = AVDD/2
0	OUT2x_LP_MODE	R/W	0x0	OUT2x 通道的低功耗模式。(仅对配置为 DAC 信号链的 OUT2x_SRC 有效)(对于配置为立体声 SE 的 OUT2x_CFG 无效) 0d = 禁用低功耗模式(性能高 3dB) 1d = 启用低功耗模式

7.1.89 OUT2x_CFG1 寄存器 (地址 = 0x6C) [复位 = 0x20]

图 7-89 中显示了 OUT2x_CFG1,表 7-90 中对此进行了介绍。

返回到汇总表。

该寄存器是通道 OUT2x 的配置寄存器 1。

Copyright © 2024 Texas Instruments Incorporated

108 提交文档反馈

图 7-89. OUT2x_CFG1 寄存器

7	6	5	4	3	2	1	0
OUT2P_[DRIVE[1:0]	OL	JT2P_LVL_CTRL[2	:0]	RESERVED	RESERVED	DAC_CH2_BW _MODE
R/W	/-00b		R/W-100b		R-0b	R-0b	R/W-0b

表 7-90. OUT2x CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-6	OUT2P_DRIVE[1:0]	R/W	0x0	通道 OUT2P 驱动配置。 $0d = 具有最小 300 \Omega $
5-3	OUT2P_LVL_CTRL[2:0]	R/W	0x4	通道 OUT2P 电平控制配置。 不使用 不使用 不使用 4d = -8dB 5d = -14dB 6d = -20dB 7d = -26dB
2	RESERVED	R	0x0	保留位;仅写入复位值
1	RESERVED	R	0x0	保留位;仅写入复位值
0	DAC_CH2_BW_MODE	R/W	0x0	DAC 通道 2 带宽选择。 0d = 音频带宽 (24kHz 模式) 1d = 宽带宽 (96kHz 模式)

7.1.90 OUT2x_CFG2 寄存器 (地址 = 0x6D) [复位 = 0x20]

图 7-90 中显示了 OUT2x_CFG2,表 7-91 中对此进行了介绍。

返回到汇总表。

该寄存器是通道 OUT2x 的配置寄存器 2。

图 7-90. OUT2x_CFG2 寄存器

					••		
7	6	5	4	3	2	1	0
OUT2M_[DRIVE[1:0]	OU	OUT2M_LVL_CTRL[2:0]			DAC_CH2_FUL LSCALE_VAL	DAC_CH2_CM _TOL
R/W	′-00b		R/W-100b		R-0b	R/W-0b	R/W-0b

表 7-91. OUT2x_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7-6	OUT2M_DRIVE[1:0]	R/W		通道 OUT2M 驱动配置。 Od = 具有最小 300 Ω 阻抗的线路输出驱动器
				$1d = 具有最小 4\Omega$ 阻抗的耳机驱动器 $2d = 4\Omega$ 3d = FD 接收器/调试

English Data Sheet: SLASF34

表 7-91. OUT2x CFG2 寄存器字段说明 (续)

				7114111007 (2)		
位	字段	类型	复位	说明		
5-3	OUT2M_LVL_CTRL[2:0]	R/W	0x4	通道 OUT2M 电平控制配置。 不使用 不使用 不使用 4d = -8dB 5d = -14dB 6d = -20dB 7d = -26dB		
2	RESERVED	R	0x0	保留位;仅写入复位值		
1	DAC_CH2_FULLSCALE_ VAL	R/W	0x0	VREF=2.75V 时的 DAC 通道 2 满量程值 0d = 10Vrms 差分 1d = 5Vrms 差分		
0	DAC_CH2_CM_TOL	R/W	0x0	DAC 通道 2 输入耦合(适用于模拟输入)。 0d = 具有共模变化容差的交流耦合输入,单端配置支持 50mVpp,差分配置支持 100mVpp 1d = 具有共模变化容差的交流耦合/直流耦合输入,支持轨到轨(电源到地)(预计 SNR 下降 3-4dB,仅在这种情况下支持高 CMRR)		

7.1.91 DAC_CH2A_CFG0 寄存器 (地址 = 0x6E) [复位 = 0xC9]

图 7-91 中显示了 DAC_CH2A_CFG0,表 7-92 中对此进行了介绍。

返回到汇总表。

该寄存器是 DAC 通道 2A 的配置寄存器 0。

图 7-91. DAC CH2A CFG0 寄存器

				_			
7	6	5	4	3	2	1	0
			DAC_CH2A	_DVOL[7:0]			
			R/W-11	001001b			

表 7-92. DAC_CH2A_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-0	DAC_CH2A_DVOL[7:0]	R/W	0xC9	通道 2A 数字音量控制。
				0d = 数字音量静音
				1d = 数字音量控制设置为 -100dB
				2d = 数字音量控制设置为 -99.5dB
				3d 至 200d = 数字音量控制根据配置进行设置
				201d = 数字音量控制设置为 0dB
				202d = 数字音量控制设置为 +0.5dB
				203d 至 253d = 数字音量控制根据配置进行设置
				254d = 数字音量控制设置为 +26.5dB
				255d = 数字音量控制设置为 +27dB

7.1.92 DAC_CH2A_CFG1 寄存器(地址 = 0x6F)[复位 = 0x80]

图 7-92 中显示了 DAC_CH2A_CFG1,表 7-93 中对此进行了介绍。

返回到汇总表。

该寄存器是 DAC 通道 2A 的配置寄存器 1。

图 7-92. DAC_CH2A_CFG1 寄存器

7	6	5	4	3	2	1	0

图 7-92. DAC CH2A CFG1 寄存器 (续)

DAC_CH2A_FGAIN[3:0]	RESERVED
R/W-1000b	R-0000b

表 7-93. DAC_CH2A_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-4	DAC_CH2A_FGAIN[3:0]	R/W	8x0	DAC 通道 2A 精细增益校准。 0d = 精细增益设置为 -0.8dB 1d = 精细增益设置为 -0.7dB 2d = 精细增益设置为 -0.6dB 3d 至 7d = 根据配置设置精细增益 8d = 精细增益设置为 0dB 9d = 精细增益设置为 0.1dB 10d 至 13d = 根据配置设置精细增益 14d = 精细增益设置为 0.6dB
				14d - 桐细增益设置为 0.0db 15d = 精细增益设置为 0.7dB
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.93 DAC_CH2B_CFG0 寄存器 (地址 = 0x70) [复位 = 0xC9]

图 7-93 中显示了 DAC_CH2B_CFG0,表 7-94 中对此进行了介绍。

返回到汇总表。

该寄存器是 DAC 通道 2B 的配置寄存器 0。

图 7-93. DAC_CH2B_CFG0 寄存器

	7	6	5	4	3	2	1	0
ľ				DAC_CH2B	3_DVOL[7:0]			
ľ				R/W-110	001001b			

表 7-94. DAC_CH2B_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-0	DAC_CH2B_DVOL[7:0]	R/W	0xC9	通道 2B 数字音量控制。
				0d = 数字音量静音
				1d = 数字音量控制设置为 -100dB
				2d = 数字音量控制设置为 -99.5dB
				3d 至 200d = 数字音量控制根据配置进行设置
				201d = 数字音量控制设置为 0dB
				202d = 数字音量控制设置为 +0.5dB
				203d 至 253d = 数字音量控制根据配置进行设置
				254d = 数字音量控制设置为 +26.5dB
				255d = 数字音量控制设置为 +27dB

7.1.94 DAC_CH2B_CFG1 寄存器(地址 = 0x71)[复位 = 0x80]

图 7-94 中显示了 DAC_CH2B_CFG1,表 7-95 中对此进行了介绍。

返回到汇总表。

该寄存器是 DAC 通道 2B 的配置寄存器 1。

图 7-94. DAC_CH2B_CFG1 寄存器

7	6	5	4	3	2	1	0
	DAC_CH2B_FGAIN[3:0]				RESE	RVED	

图 7-94. DAC_CH2B_CFG1 寄存器 (续)

R/W-1000b R-0000b

表 7-95. DAC_CH2B_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-4	DAC_CH2B_FGAIN[3:0]	R/W	0x8	DAC 通道 2B 精细增益校准。
				0d = 精细增益设置为 -0.8dB
				1d = 精细增益设置为 -0.7dB
				2d = 精细增益设置为 -0.6dB
				3d 至 7d = 根据配置设置精细增益
				8d = 精细增益设置为 0dB
				9d = 精细增益设置为 0.1dB
				10d 至 13d = 根据配置设置精细增益
				14d = 精细增益设置为 0.6dB
				15d = 精细增益设置为 0.7dB
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.1.95 DSP_CFG0 寄存器 (地址 = 0x72) [复位 = 0x18]

图 7-95 中显示了 DSP_CFG0,表 7-96 中对此进行了介绍。

返回到汇总表。

该寄存器是数字信号处理器 (DSP) 配置寄存器 0。

图 7-95. DSP_CFG0 寄存器

7	6	5	4	3	2	1	0
ADC_DSP_D	ECI_FILT[1:0]	ADC_DSP_HPF_SEL[1:0]		ADC_DSP_	_BQ_CFG[1:0]	ADC_DSP_DIS ABLE_SOFT_S TEP	ADC_DSP_DV OL_GANG
R/W	-00b	R/W-	-01b	RΛ	N-10b	R/W-0b	R/W-0b

表 7-96. DSP_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-6	ADC_DSP_DECI_FILT[1:0]	R/W	0x0	ADC 通道抽取滤波器响应。 0d = 线性相位 1d = 低延迟 2d = 超低延迟 3d = 保留;不使用
5-4	ADC_DSP_HPF_SEL[1:0]	R/W	0x1	ADC 通道高通滤波器 (HPF) 选择。 Od = 使用可编程一阶 IIR 滤波器来实现自定义 HPF,在 P10_R120-127 至 P11_R8-11 范围内,默认系数值设置为实现全通滤 波器 Id = 选择截止频率为 $0.00002 \times f_S$ ($f_S = 48$ kHz 时为 1 Hz) 的 HPF 2d = 选择截止频率为 $0.00025 \times f_S$ ($f_S = 48$ kHz 时为 12 Hz) 的 HPF 3d = 选择截止频率为 $0.002 \times f_S$ ($f_S = 48$ kHz 时为 16 Hz) 的 HPF
3-2	ADC_DSP_BQ_CFG[1:0]	R/W	0x2	每个 ADC 通道配置的双二阶滤波器数。 0d = 每个通道均无双二阶滤波器;双二阶滤波器全部禁用 1d = 每个通道 1 个双二阶滤波器 2d = 每个通道 2 个双二阶滤波器 3d = 每个通道 3 个双二阶滤波器
1	ADC_DSP_DISABLE_SO FT_STEP	R/W	0x0	在 DVOL 更改、静音和取消静音期间禁用 ADC 软步进。 0d = 启用软步进 1d = 禁用软步进

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SLASF34

112 提交文档反馈

表 7-96. DSP_CFG0 寄存器字段说明 (续)

位	字段	类型	复位	说明
0	ADC_DSP_DVOL_GANG	R/W		成组控制 ADC 通道上的 DVOL。 0d = 每个通道均有自己的 DVOL CTRL 设置,基于 ADC_CHx_DVOL 位的编程 1d = 无论通道 1 是否打开,所有活动通道都必须使用通道 1 DVOL 设置 (ADC_CH1_DVOL)

7.1.96 DSP_CFG1 寄存器 (地址 = 0x73) [复位 = 0x18]

图 7-96 中显示了 DSP_CFG1,表 7-97 中对此进行了介绍。

返回到汇总表。

该寄存器是数字信号处理器 (DSP) 配置寄存器 0。

图 7-96. DSP CFG1 寄存器

					•••		
7	6	5	4	3	2	1	0
DAC_DSP_IN	TX_FILT[1:0]	DAC_DSP_H	IPF_SEL[1:0]	DAC_DSP	_BQ_CFG[1:0]	DAC_DSP_DIS ABLE_SOFT_S TEP	
R/W-	00b	R/W	-01b	R/	W-10b	R/W-0b	R/W-0b

表 7-97. DSP_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-6	DAC_DSP_INTX_FILT[1:0]	R/W	0x0	DAC 通道抽取滤波器响应。 0d = 线性相位 1d = 低延迟 2d = 超低延迟 3d = 保留;不使用
5-4	DAC_DSP_HPF_SEL[1:0]	R/W	0x1	DAC 通道高通滤波器 (HPF) 选择。 0d = 使用可编程一阶 IIR 滤波器来实现自定义 HPF,在 P17_R120-127 至 P18_R8-11 范围内,默认系数值设置为实现全通滤波器 1d = 选择截止频率为 0.00002 x f _S (f _S = 48kHz 时为 1Hz) 的 HPF 2d = 选择截止频率为 0.00025 x f _S (f _S = 48kHz 时为 12Hz) 的 HPF 3d = 选择截止频率为 0.0002 x f _S (f _S = 48kHz 时为 96Hz) 的 HPF
3-2	DAC_DSP_BQ_CFG[1:0]	R/W	0x2	每个 DAC 通道配置的双二阶滤波器数。 Od = 每个通道均无双二阶滤波器;双二阶滤波器全部禁用 1d = 每个通道 1 个双二阶滤波器 2d = 每个通道 2 个双二阶滤波器 3d = 每个通道 3 个双二阶滤波器
1	DAC_DSP_DISABLE_SO FT_STEP	R/W	0x0	在 DVOL 更改、静音和取消静音期间禁用 DAC 软步进。 0d = 启用软步进 1d = 禁用软步进
0	DAC_DSP_DVOL_GANG	R/W	0x0	成组控制 DAC 通道上的 DVOL。 Od = 每个 DAC 通道均有自己的 DVOL CTRL 设置,基于 DAC_CHx_DVOL 位的编程 1d = 无论通道 1 是否打开,所有活动通道都必须使用通道 1 DVOL 设置 (DAC_CH1_DVOL)

Product Folder Links: TAC5411-Q1

7.1.97 CH_EN 寄存器 (地址 = 0x76) [复位 = 0xCC]

图 7-97 中显示了 CH_EN,表 7-98 中对此进行了介绍。

返回到汇总表。

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

113

该寄存器是通道使能配置寄存器。

图 7-97. CH_EN 寄存器

7	6	5	4	3	2	1	0
IN_CH1_EN	IN_CH2_EN	IN_CH3_EN	IN_CH4_EN	OUT_CH1_EN	OUT_CH2_EN	OUT_CH3_EN	OUT_CH4_EN
R/W-1b	R/W-1b	R/W-0b	R/W-0b	R/W-1b	R/W-1b	R/W-0b	R/W-0b

表 7-98. CH_EN 寄存器字段说明

位	字段	类型	复位	说明
7	IN_CH1_EN	R/W	0x1	输入通道 1 使能设置。 Od = 输入通道 1 禁用 1d = 输入通道 1 启用
6	IN_CH2_EN	R/W	0x1	输入通道 2 使能设置。 0d = 输入通道 2 禁用 1d = 输入通道 2 启用
5	IN_CH3_EN	R/W	0x0	输入通道 3 使能设置。 0d = 输入通道 3 禁用 1d = 输入通道 3 启用
4	IN_CH4_EN	R/W	0x0	输入通道 4 使能设置。 0d = 输入通道 4 禁用 1d = 输入通道 4 启用
3	OUT_CH1_EN	R/W	0x1	输出通道 1 使能设置。 Od = 禁用输出通道 1 1d = 启用输出通道 1
2	OUT_CH2_EN	R/W	0x1	输出通道 2 使能设置。 0d = 禁用输出通道 2 1d = 启用输出通道 2
1	OUT_CH3_EN	R/W	0x0	输出通道 3 使能设置。 Od = 禁用输出通道 3 1d = 启用输出通道 3
0	OUT_CH4_EN	R/W	0x0	输出通道 4 使能设置。 Od = 禁用输出通道 4 1d = 启用输出通道 4

7.1.98 DYN_PUPD_CFG 寄存器 (地址 = 0x77) [复位 = 0x00]

图 7-98 中显示了 DYN_PUPD_CFG,表 7-99 中对此进行了介绍。

返回到汇总表。

该寄存器是上电配置寄存器。

图 7-98. DYN PUPD CFG 寄存器

		р—,			нн		
7	6	5	4	3	2	1	0
ADC_DYN_PU PD_EN	ADC_DYN_MA XCH_SEL	DAC_DYN_PU PD_EN	DAC_DYN_MA XCH_SEL	DYN_PUPD_A DC_PDM_DIFF _CLK		RESERVED	
R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b		R-000b	

表 7-99. DYN_PUPD_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	ADC_DYN_PUPD_EN	R/W		用于录音路径的动态通道上电/断电使能。 Od = 如果任何通道录音处于开启状态,则不支持通道上电/断电 1d = 即使通道录音处于开启状态,通道也可以单独上电或断电

Copyright © 2024 Texas Instruments Incorporated

114 提交文档反馈

表 7-99. DYN PUPD CFG 寄存器字段说明 (续)

	农: 00: D: N_: 01 D_01 0 构						
位	字段	类型	复位	说明			
6	ADC_DYN_MAXCH_SEL	R/W	0x0	记录路径的动态模式最大通道选择配置。 0d = 启用动态通道上电/断电功能时使用通道 1 和通道 2 1d = 启用动态通道上电/断电功能时使用通道 1 至通道 4			
5	DAC_DYN_PUPD_EN	R/W	0x0	用于回放路径的动态通道上电/断电使能。 Od = 如果任何通道回放处于开启状态,则不支持通道上电/断电 1d = 即使回放录音处于开启状态,通道也可以单独上电或断电			
4	DAC_DYN_MAXCH_SEL	R/W	0x0	回放路径的动态模式最大通道选择配置。 0d = 启用动态通道上电/断电功能时使用通道 1 和通道 2 1d = 启用动态通道上电/断电功能时使用通道 1 至通道 4			
3	DYN_PUPD_ADC_PDM_ DIFF_CLK	R/W	0x0	使用不同的 ADC 调制器时钟和 PDM 时钟配置进行动态上电/断电。 0d = 动态上电/断电使用相同的 ADC 调制器时钟和 PDM 时钟 1d = 动态上电/断电使用不同的 ADC 调制器时钟和 PDM 时钟			
2-0	RESERVED	R	0x0	保留位;仅写入复位值			

7.1.99 PWR_CFG 寄存器 (地址 = 0x78) [复位 = 0x00]

图 7-99 中显示了 PWR_CFG,表 7-100 中对此进行了介绍。

返回到汇总表。

该寄存器是上电配置寄存器。

图 7-99. PWR CFG 寄存器

				_			
7	6	5	4	3	2	1	0
ADC_PDZ	DAC_PDZ	MICBIAS_PDZ	RESERVED	UAD_EN	VAD_EN	UAG_EN	RESERVED
R/W-0b	R/W-0b	R/W-0b	R-0b	R/W-0b	R/W-0b	R/W-0b	R-0b

表 7-100. PWR_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	ADC_PDZ	R/W	0x0	ADC 和 PDM 通道的电源控制。 0d = 所有 ADC 和 PDM 通道断电 1d = 所有已启用的 ADC 和 PDM 通道上电
6	DAC_PDZ	R/W	0x0 DAC 通道的电源控制。 0d = 所有 DAC 通道断电 1d = 所有已启用的 DAC 通道上电	
5	MICBIAS_PDZ	R/W	0x0	MICBIAS 的电源控制。 0d = MICBIAS 断电 1d = MICBIAS 上电
4	RESERVED	R	0x0	保留位;仅写入复位值
3	UAD_EN	R/W	0x0	启用超声活动检测 (UAD) 算法。 0d = 禁用 UAD 1d = 启用 UAD
2	VAD_EN	R/W	0x0	启用语音活动检测 (VAD) 算法。 0d = 禁用 VAD 1d = 启用 VAD
1	UAG_EN	R/W	0x0	启用超声活动检测 (UAG) 算法。 0d = 禁用 UAG 1d = 启用 UAG
0	RESERVED	R	0x0	保留位;仅写入复位值

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

115

7.1.100 DEV_STS0 寄存器 (地址 = 0x79) [复位 = 0x00]

图 7-100 中显示了 DEV_STS0,表 7-101 中对此进行了介绍。

返回到汇总表。

该寄存器是器件状态值寄存器 0。

图 7-100. DEV STS0 寄存器

7	6	5	4	3	2	1	0
IN_CH1_STATU S	IN_CH2_STATU S	IN_CH3_STATU S	IN_CH4_STATU S	OUT_CH1_STA TUS	OUT_CH2_STA TUS	OUT_CH3_STA TUS	OUT_CH4_STA TUS
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 7-101. DEV_STS0 寄存器字段说明

位	字段	类型	复位	说明
7	IN_CH1_STATUS	R	0x0	ADC 或 PDM 通道 1 电源状态。 0d = ADC 或 PDM 通道断电 1d = ADC 或 PDM 通道上电
6	IN_CH2_STATUS	R	0x0	ADC 或 PDM 通道 2 电源状态。 0d = ADC 或 PDM 通道断电 1d = ADC 或 PDM 通道上电
5	IN_CH3_STATUS	R	0x0	ADC 或 PDM 通道 1 电源状态。 0d = ADC 或 PDM 通道断电 1d = ADC 或 PDM 通道上电
4	IN_CH4_STATUS	R	0x0	ADC 或 PDM 通道 2 电源状态。 0d = ADC 或 PDM 通道断电 1d = ADC 或 PDM 通道上电
3	OUT_CH1_STATUS	R	0x0	DAC 通道 1 电源状态。 0d = DAC 通道断电 1d = DAC 通道上电
2	OUT_CH2_STATUS	R	0x0	DAC 通道 2 电源状态。 0d = DAC 通道断电 1d = DAC 通道上电
1	OUT_CH3_STATUS	R	0x0	DAC 通道 3 电源状态。 0d = DAC 通道断电 1d = DAC 通道上电
0	OUT_CH4_STATUS	R	0x0	DAC 通道 4 电源状态。 0d = DAC 通道断电 1d = DAC 通道上电

7.1.101 DEV_STS1 寄存器 (地址 = 0x7A) [复位 = 0x80]

图 7-101 中显示了 DEV_STS1,表 7-102 中对此进行了介绍。

返回到汇总表。

该寄存器是器件状态值寄存器 1。

图 7-101. DEV_STS1 寄存器

7	6	5	4	3	2	1	0
	MODE_STS[2:0]		PLL_STS	MICBIAS_STS	BOOST_STS	CHx_PD_FLT_ STS	ALL_CHx_PD_ FLT_STS
	R-100b		R-0b	R-0b	R-0b	R-0b	R-0b

and the Estate Cities TARE 444 O4

Product Folder Links: TAC5411-Q1

English Data Sheet: SLASF34

表 7-102. DEV_STS1 寄存器字段说明

位	字段	类型	复位	说明
7-5	MODE_STS[2:0]	R	0x4	器件模式状态。 0-3d = 保留 4d = 器件处于睡眠模式或软件关断模式 5d = 保留 6d = 器件处于工作模式且所有录音和回放通道都关闭 7d = 器件处于工作模式且至少一个录音或回放通道开启
4	PLL_STS	R	0x0	PLL 状态。 0d = 未启用 PLL 1d = 启用 PLL
3	MICBIAS_STS	R	0x0	MICBIAS 状态。 0d = 禁用 MICBIAS 1d = 启用 MICBIAS
2	BOOST_STS	R	0x0	升压状态。 0d = 禁用升压 1d = 启用升压
1	CHx_PD_FLT_STS	R	0x0	出现 INxx 模拟输入故障时 PD 的状态 0d = 没有 ADC 通道因模拟输入 INxx 上的故障而断电 1d = 某些 ADC 通道因模拟输入 INxx 上的故障而断电
0	ALL_CHx_PD_FLT_STS	R	0x0	出现 Micbias 故障时 PD 的状态 0d = 没有 ADC 通道因与 Micbias 相关故障而断电 1d = 所有 ADC 通道都因与 Micbias 相关故障而断电

7.1.102 I2C_CKSUM 寄存器 (地址 = 0x7E) [复位 = 0x00]

图 7-102 中显示了 I2C_CKSUM,表 7-103 中对此进行了介绍。

返回到汇总表。

该寄存器返回 I²C 事务校验和值。

图 7-102. I2C CKSUM 寄存器

	121									
7 6 5 4 3 2 1 0										
	I2C_CKSUM[7:0]									
	R/W-0000000b									

表 7-103. I2C_CKSUM 寄存器字段说明

位	字段	类型	复位	说明
7-0	I2C_CKSUM[7:0]	R/W	0x0	这些位返回 I ² C 事务校验和值。写入此寄存器会将校验和复位为写入 值。此寄存器在所有页上的其他寄存器进行写操作时更新。

Product Folder Links: TAC5411-Q1

7.2 页 1 寄存器

表 7-104 列出了页 1 寄存器的存储器映射寄存器。表 7-104 中未列出的所有寄存器偏移地址都应视为保留的位置,并且不应修改寄存器内容。

表 7-104. 页 1 寄存器

0x18 JACK_DET_CFG2 JACK DET 配置寄存器 2 0x00 节72.10 0x1C JACK_DET_CFG3 JACK DET 配置寄存器 3 0x00 节72.11 0x1E LPAD_CFG1 LPAD 0x20 节72.12 0x1F LPSG 0x80 节72.13 0x20 LPAD_LPSG_CFG1 LPAD 和 LPSG 公共配置寄存器 1 0x00 节72.14 0x22 LIMITER_CFG 限制器配置寄存器 2 0x00 节72.15 0x24 AGC_DRC_CFG AGC_DRC 配置寄存器 2 0x00 节72.16 0x2B PLIM_CFG0 PLIM 配置寄存器 2 0x00 节72.17 0x2C MISC_GFG0 MISC 配置寄存器 0 0x00 节72.18 0x2D MISC_CFG0 MISC 配置寄存器 0 0x00 节72.18 0x2E BRWNOUT 0x8F 节72.20 0x2F INT_MASK0 中断屏蔽寄存器 0 0xFF 节72.21 0x30 INT_MASK1 中断屏蔽寄存器 1 0x0 节72.22 0x31 INT_MASK4 中断屏蔽寄存器 3 0x0 节72.23 0x32 INT_MASK5 中断屏蔽寄存器	地址	首字母缩写词	寄存器名称	复位值	部分
0xD CLK_CFG0 0x00 事72.3 0xE CHANNEL_CFG1 0x00 第72.4 0xF CHANNEL_CFG2 0x00 第72.5 0x17 SRC_CFG0 SRC 配置寄存器 1 0x00 第72.6 0x18 SRC_CFG1 SRC 配置寄存器 2 0x00 第72.7 0x19 JACK_DET_CFG0 JACK DET 配置寄存器 0 0x00 第72.8 0x1A JACK_DET_CFG2 JACK DET 配置寄存器 1 0x00 第72.9 0x1B JACK_DET_CFG2 JACK DET 配置寄存器 2 0x00 第72.10 0x1C JACK_DET_CFG3 JACK DET 配置寄存器 3 0x00 第72.10 0x1C JACK_DET_CFG3 JACK DET 配置寄存器 3 0x00 第72.11 0x1C JACK_DET_GFG3 JACK DET 配置寄存器 3 0x00 第72.12 0x1C JACK_DET_GFG3 JACK DET 配置寄存器 3 0x00 第72.12 0x1C JACK_DET_GFG3 JACK DET 配置寄存器 3 0x00 第72.12 0x21 LPAD_LPSG_CFG1 LPAD 和 LPSG 公共配置寄存器 3 0x00 第72.15 0x22 MIXE	0x0	PAGE_CFG	器件页寄存器	0x00	节 7.2.1
OXE CHANNEL_CFG1 のx00 节7.2.4 0xF CHANNEL_CFG2 0x00 节7.2.5 0x17 SRC_CFG0 SRC 配置寄存器 1 0x00 节7.2.7 0x18 SRC_CFG1 SRC 配置寄存器 2 0x00 节7.2.7 0x19 JACK_DET_CFG0 JACK DET 配置寄存器 0 0x00 节7.2.7 0x14 JACK_DET_CFG1 JACK DET 配置寄存器 1 0x00 节7.2.9 0x18 JACK_DET_CFG2 JACK DET 配置寄存器 2 0x00 节7.2.10 0x16 JACK_DET_CFG3 JACK DET 配置寄存器 2 0x00 节7.2.10 0x16 JACK_DET_CFG3 JACK DET 配置寄存器 3 0x00 节7.2.11 0x16 LPAC_DFG1 LPAG 0x20 节7.2.12 0x16 LPAC_DFG1 LPAG 0x20 节7.2.12 0x16 LPAC_DFG1 LPAG 0x20 サ7.2.12 0x17 LPAG 0x20 サ7.2.12 0x20 上PAC_LT2 0x22 LIMITER_CFG 展轉配置寄存器 0x00 节7.2.15 0x22 0x24 <td>0x3</td> <td>DSP_CFG0</td> <td></td> <td>0x00</td> <td>节 7.2.2</td>	0x3	DSP_CFG0		0x00	节 7.2.2
OxF	0xD	CLK_CFG0		0x00	节 7.2.3
0x17 SRC_CFG0 SRC 配置寄存器 1 0x00 労7.2.6 0x18 SRC_CFG1 SRC 配置寄存器 2 0x00 労7.2.7 0x19 JACK_DET_CFG0 JACK DET 配置寄存器 0 0x00 ヴ7.2.8 0x1A JACK_DET_CFG1 JACK DET 配置寄存器 1 0x00 ヴ7.2.10 0x1B JACK_DET_CFG3 JACK DET 配置寄存器 2 0x00 ヴ7.2.10 0x1C JACK_DET_CFG3 JACK DET 配置寄存器 3 0x00 ヴ7.2.11 0x1E LPAD_CFG1 LPAD 0x20 ヴ7.2.12 0x1E LPAD_CFG1 LPAD 0x20 ヴ7.2.12 0x1E LPAD_CFG1 LPAD 0x20 ヴ7.2.12 0x1E LPAD_CFG1 LPAD 和 LPSG 公共配置寄存器 3 0x00 ヴ7.2.12 0x21E LPAD_LPSG_CFG1 LPAD 和 LPSG 公共配置寄存器 1 0x00 ヴ7.2.14 0x22 LPALLESG_CFG1 LPAD 和 LPSG 公共配置寄存器 2 0x00 ヴ7.2.16 0x24 AGC_DRC_CFG AGC_DRC 配置寄存器 2 0x00 ヴ7.2.16 0x24 AGC_DRC_CFG AGC_DRC 配置寄存器 0 0x00 <td>0xE</td> <td>CHANNEL_CFG1</td> <td></td> <td>0x00</td> <td>节 7.2.4</td>	0xE	CHANNEL_CFG1		0x00	节 7.2.4
Ox18	0xF	CHANNEL_CFG2		0x00	节 7.2.5
0x19 JACK_DET_CFG0 JACK DET 配置寄存器 0 0x00 サ7.2.8 0x1A JACK_DET_CFG1 JACK DET 配置寄存器 1 0x00 サ7.2.9 0x1B JACK_DET_CFG2 JACK DET 配置寄存器 2 0x00 サ7.2.10 0x1C JACK_DET_CFG3 JACK DET 配置寄存器 3 0x00 サ7.2.11 0x1E LPAD_CFG1 LPAD 0x20 サ7.2.13 0x21 LPAD_CFG1 LPAD 0x20 サ7.2.13 0x22 LPAD_LPSG_CFG1 LPAD 和 LPSG 公共配置寄存器 1 0x00 サ7.2.14 0x23 LIMITER_CFG 限制器配置寄存器 2 0x00 サ7.2.15 0x24 AGC_DRC_CFG AGC_DRC 配置寄存器 2 0x00 サ7.2.16 0x24 AGC_DRC_CFG AGC_DRC 配置寄存器 0 0x00 サ7.2.18 0x2D MISC_CFG0 MISC 配置寄存器 0 0x00 サ7.2.18 0x2E BRWMOUT 0x8F サ7.2.20 0x2E INT_MASK0 中断屏藏寄存器 1 0x0 サ7.2.21 0x30 INT_MASK1 中断屏藏寄存器 2 0x0 サ7.2.23	0x17	SRC_CFG0	SRC 配置寄存器 1	0x00	节 7.2.6
0x1A JACK_DET_CFG1 JACK DET 配置寄存器 1 0x00 节7.2.9 0x1B JACK_DET_CFG2 JACK DET 配置寄存器 2 0x00 节7.2.10 0x1C JACK_DET_CFG3 JACK DET 配置寄存器 3 0x00 节7.2.11 0x1E LPAD_CFG1 LPAD 0x20 节7.2.12 0x1F LPSG_CFG1 LPAD 0x80 节7.2.13 0x20 LPAD_LPSG_CFG1 LPAD 和 LPSG 公共配置寄存器 1 0x00 节7.2.14 0x23 LIMITER_CFG 限制器配置寄存器 2 0x00 节7.2.15 0x24 AGC_DRC_CFG AGC_DRC 配置寄存器 2 0x00 节7.2.16 0x28 PLIM_CFG0 PLIM 配置寄存器 0 0x00 节7.2.17 0x2C MIXER_CFG0 MISC 配置寄存器 0 0x00 节7.2.18 0x2D MISC_CFG0 MISC 配置寄存器 0 0x00 节7.2.19 0x2E BRWNOUT 0xBF 节7.2.20 0x2F INT_MASK0 中断屏蔽寄存器 0 0xFF 节7.2.21 0x30 INT_MASK1 中断屏蔽寄存器 1 0x0F 节7.2.22 0x31 INT_MASK2 中断屏蔽寄存器 3 0x00 节7.2.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x00 节7.2.26 0x33 INT_MASK5 中断屏蔽寄存器 3 0x00 节7.2.26 0x35 CHx_LTCH 诊断持要 0x00 节7.2.27 0x36 IN_CH1_LTCH 0x00 节7.2.31	0x18	SRC_CFG1	SRC 配置寄存器 2	0x00	节 7.2.7
0x18 JACK_DET_CFG2 JACK DET 配置寄存器 2 0x00 节7.2.10 0x1C JACK_DET_CFG3 JACK DET 配置寄存器 3 0x00 节7.2.11 0x1E LPAD_CFG1 LPAD 0x20 节7.2.12 0x1F LPSG Ox80 ヴ7.2.13 0x20 LPAD_LPSG_CFG1 LPAD 0x80 ヴ7.2.13 0x20 LPAD_LPSG_CFG1 LPAD 和 LPSG 公共配置寄存器 1 0x00 ヴ7.2.14 0x22 LPAD_LPSG_CFG1 LPAD 和 LPSG 公共配置寄存器 1 0x00 ヴ7.2.15 0x23 LIMITER_CFG 限制器配置寄存器 2 0x00 ヴ7.2.15 0x24 AGC_DRC_CFG AGC_DRC 配置寄存器 2 0x00 ヴ7.2.16 0x22 MISC_CFG MISC 配置寄存器 0 0x00 ヴ7.2.17 0x22 MISC_CFG0 MISC 配置寄存器 0 0x00 ヴ7.2.18 0x2D MISC_CFG0 MISC 配置寄存器 0 0x00 ヴ7.2.21 0x2E BRWNOUT 0xBF ヴ7.2.22 0x31 INT_MASK0 中断屏蔽寄存器 1 0x0F ヴ7.2.22 0x31 I	0x19	JACK_DET_CFG0	JACK DET 配置寄存器 0	0x00	节 7.2.8
0x1C JACK_DET_CFG3 JACK DET 配置寄存器3 0x00 节72.11 0x1E LPAD_CFG1 LPAD 0x20 节72.12 0x1F LPSG_CFG1 LPSG 0x80 节72.13 0x20 LPAD_LPSG_CFG1 LPAD 和 LPSG 公共配置寄存器1 0x00 节72.14 0x22 LIMITER_CFG 限制器配置寄存器2 0x00 节72.15 0x24 AGC_DRC_CFG AGC_DRC 配置寄存器2 0x00 节72.16 0x2B PLIM_CFG0 PLIM 配置寄存器2 0x00 节72.17 0x2C MISC_GFG0 MISC_配置寄存器0 0x00 节72.18 0x2D MISC_CFG0 MISC_配置寄存器0 0x00 节72.19 0x2E BRWNOUT 0x8F 节72.20 0x2F INT_MASK0 中断屏蔽寄存器0 0xFF 节72.21 0x30 INT_MASK1 中断屏蔽寄存器2 0x00 节72.22 0x31 INT_MASK2 中断屏蔽寄存器3 0x30 节72.23 0x32 INT_MASK4 中断屏蔽寄存器3 0x30 节72.25 0x33 INT_MASK5 <td< td=""><td>0x1A</td><td>JACK_DET_CFG1</td><td>JACK DET 配置寄存器 1</td><td>0x00</td><td>节 7.2.9</td></td<>	0x1A	JACK_DET_CFG1	JACK DET 配置寄存器 1	0x00	节 7.2.9
NATE	0x1B	JACK_DET_CFG2	JACK DET 配置寄存器 2	0x00	节 7.2.10
0x1F LPSG_CFG1 LPSG 0x80 节72.13 0x20 LPAD_LPSG_CFG1 LPAD 和 LPSG 公共配置寄存器 1 0x00 节72.14 0x23 LIMITER_CFG 限制器配置寄存器 2 0x00 节72.15 0x24 AGC_DRC_CFG AGC_DRC 配置寄存器 2 0x00 节72.16 0x2B PLIM_CFG0 PLIM 配置寄存器 0 0x00 节72.17 0x2C MIXER_CFG0 MISC 配置寄存器 0 0x00 节72.18 0x2D MISC_CFG0 MISC 配置寄存器 0 0x00 节72.19 0x2E BRWNOUT 0xBF 节72.20 0x2F INT_MASK0 中断屏蔽寄存器 0 0xFF 节72.21 0x30 INT_MASK1 中断屏蔽寄存器 1 0x0F 节72.22 0x31 INT_MASK2 中断屏蔽寄存器 3 0x00 节72.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x00 节72.25 0x33 INT_LTCH0 領存中断回读寄存器 0 0x00 节72.26 0x35 CHx_LTCH 诊断摘要 0x00 节72.27 0x36 IN_CH2_LTCH	0x1C	JACK_DET_CFG3	JACK DET 配置寄存器 3	0x00	节 7.2.11
0x20 LPAD_LPSG_CFG1 LPAD 和 LPSG 公共配置寄存器 1 0x00 节72.14 0x23 LIMITER_CFG 限制器配置寄存器 2 0x00 节72.15 0x24 AGC_DRC_CFG AGG_DRC 配置寄存器 2 0x00 节72.16 0x2B PLIM_CFG0 PLIM 配置寄存器 0 0x00 节72.17 0x2C MIXER_CFG0 MISC 配置寄存器 0 0x00 节72.18 0x2D MISC_CFG0 MISC 配置寄存器 0 0x00 节72.19 0x2E BRWNOUT 0xBF 节72.20 0x2F INT_MASK0 中断屏蔽寄存器 0 0xFF 节72.21 0x30 INT_MASK1 中断屏蔽寄存器 1 0x0F 节72.22 0x31 INT_MASK2 中断屏蔽寄存器 3 0x00 节72.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x30 节72.25 0x33 INT_MASK5 中断屏蔽寄存器 3 0x30 节72.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节72.27 0x35 CHx_LTCH 诊断摘要 0x00 节72.23 0x37 IN_CH2_LTCH	0x1E	LPAD_CFG1	LPAD	0x20	节 7.2.12
0x23 LIMITER_CFG 限制器配置寄存器 2 0x00 节72.15 0x24 AGC_DRC_CFG AGC_DRC 配置寄存器 2 0x00 节72.16 0x2B PLIM_CFG0 PLIM 配置寄存器 0 0x00 节72.17 0x2C MIXER_CFG0 MISC 配置寄存器 0 0x00 节72.18 0x2D MISC_GFG0 MISC 配置寄存器 0 0x00 节72.19 0x2E BRWNOUT 0xBF 节7.2.20 0x2F INT_MASK0 中断屏蔽寄存器 0 0xFF 节7.2.21 0x30 INT_MASK1 中断屏蔽寄存器 1 0x0F 节7.2.22 0x31 INT_MASK2 中断屏蔽寄存器 2 0x00 节7.2.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x00 节7.2.24 0x33 INT_MASK5 中断屏蔽寄存器 3 0x00 节7.2.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节7.2.26 0x35 CHx_LTCH 诊断摘要 0x00 节7.2.27 0x36 IN_CH1_LTCH 0x00 节7.2.28 0x37 IN_CH2_LTCH 0x00 节7	0x1F	LPSG_CFG1	LPSG	0x80	节 7.2.13
0x24 AGC_DRC_CFG AGC_DRC 配置寄存器 2 0x00 节72.16 0x2B PLIM_CFG0 PLIM 配置寄存器 0 0x00 节72.17 0x2C MIXER_CFG0 MISC 配置寄存器 0 0x00 节72.18 0x2D MISC_CFG0 MISC 配置寄存器 0 0x00 节72.19 0x2E BRWNOUT 0xBF 节7.2.20 0x2F INT_MASK0 中断屏蔽寄存器 0 0xFF 节7.2.21 0x30 INT_MASK1 中断屏蔽寄存器 1 0x0F 节7.2.22 0x31 INT_MASK2 中断屏蔽寄存器 2 0x00 节7.2.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x00 节7.2.24 0x33 INT_MASK5 中断屏蔽寄存器 3 0x30 节7.2.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节7.2.26 0x35 CHx_LTCH 诊断摘要 0x00 节7.2.27 0x36 IN_CH1_LTCH 0x00 节7.2.23 0x37 IN_CH2_LTCH 0x00 节7.2.31 0x38 OUT_CH1_LTCH 锁存中断回读寄存器 0 0x00 <t< td=""><td>0x20</td><td>LPAD_LPSG_CFG1</td><td>LPAD 和 LPSG 公共配置寄存器 1</td><td>0x00</td><td>节 7.2.14</td></t<>	0x20	LPAD_LPSG_CFG1	LPAD 和 LPSG 公共配置寄存器 1	0x00	节 7.2.14
0x2B PLIM_CFG0 PLIM 置寄存器 0 0x00 节7.2.17 0x2C MIXER_CFG0 MISC 配置寄存器 0 0x00 节7.2.18 0x2D MISC_CFG0 MISC 配置寄存器 0 0x00 节7.2.19 0x2E BRWNOUT 0xBF 节7.2.20 0x2F INT_MASK0 中断屏蔽寄存器 0 0xFF 节7.2.21 0x30 INT_MASK1 中断屏蔽寄存器 1 0x0F 节7.2.22 0x31 INT_MASK2 中断屏蔽寄存器 2 0x00 节7.2.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x00 节7.2.24 0x33 INT_MASK5 中断屏蔽寄存器 3 0x30 节7.2.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节7.2.26 0x35 CHX_LTCH 诊断摘要 0x00 节7.2.27 0x36 IN_CH1_LTCH 0x00 节7.2.28 0x37 IN_CH2_LTCH 0x00 节7.2.30 0x39 OUT_CH2_LTCH 0x00 节7.2.31 0x30 INT_LTCH2 锁存中断回读寄存器 3 0x00 节7.2.32	0x23	LIMITER_CFG	限制器配置寄存器 2	0x00	节 7.2.15
0x2C MIXER_CFG0 MISC 配置寄存器 0 0x00 节7.2.18 0x2D MISC_CFG0 MISC 配置寄存器 0 0x00 节7.2.19 0x2E BRWNOUT 0xBF 节7.2.20 0x2F INT_MASK0 中断屏蔽寄存器 0 0xFF 节7.2.21 0x30 INT_MASK1 中断屏蔽寄存器 1 0x0F 节7.2.22 0x31 INT_MASK2 中断屏蔽寄存器 2 0x00 节7.2.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x30 节7.2.25 0x33 INT_MASK5 中断屏蔽寄存器 3 0x30 节7.2.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节7.2.27 0x35 CHx_LTCH 诊断摘要 0x00 节7.2.27 0x36 IN_CH1_LTCH 0x00 节7.2.28 0x37 IN_CH2_LTCH 0x00 节7.2.30 0x39 OUT_CH2_LTCH 0x00 节7.2.31 0x3A INT_LTCH2 锁存中断回读寄存器 0 0x00 节7.2.32 0x3B INT_LIVEO 实时中断回读寄存器 0 0x00 节7.2.33 <tr< td=""><td>0x24</td><td>AGC_DRC_CFG</td><td>AGC_DRC 配置寄存器 2</td><td>0x00</td><td>节 7.2.16</td></tr<>	0x24	AGC_DRC_CFG	AGC_DRC 配置寄存器 2	0x00	节 7.2.16
0x2D MISC_CFG0 MISC 配置寄存器 0 0x00 节7.2.19 0x2E BRWNOUT 0xBF 节7.2.20 0x2F INT_MASK0 中断屏蔽寄存器 0 0xFF 节7.2.21 0x30 INT_MASK1 中断屏蔽寄存器 1 0x0F 节7.2.22 0x31 INT_MASK2 中断屏蔽寄存器 2 0x00 节7.2.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x00 节7.2.24 0x33 INT_MASK5 中断屏蔽寄存器 3 0x30 节7.2.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节7.2.27 0x36 IN_CH1_LTCH 诊断摘要 0x00 节7.2.28 0x37 IN_CH2_LTCH 0x00 节7.2.30 0x38 OUT_CH1_LTCH 0x00 节7.2.31 0x39 OUT_CH2_LTCH 0x00 节7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节7.2.33 0x3C INT_LIVE 诊断摘要 0x00 节7.2.35 0x3B IN_CH2_LIVE 诊断摘要 0x00 节7.2.35 0x3E IN_CH2_LIVE 诊断摘要 0x00 节7.2.36	0x2B	PLIM_CFG0	PLIM 配置寄存器 0	0x00	节 7.2.17
0x2E BRWNOUT 0xBF 节7.2.20 0x2F INT_MASK0 中断屏蔽寄存器 0 0xFF 节7.2.21 0x30 INT_MASK1 中断屏蔽寄存器 1 0x0F 节7.2.22 0x31 INT_MASK2 中断屏蔽寄存器 2 0x00 节7.2.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x00 节7.2.24 0x33 INT_MASK5 中断屏蔽寄存器 3 0x30 节7.2.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节7.2.26 0x35 CHx_LTCH 诊断摘要 0x00 节7.2.27 0x36 IN_CH1_LTCH 0x00 节7.2.28 0x37 IN_CH2_LTCH 0x00 节7.2.30 0x38 OUT_CH2_LTCH 0x00 节7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 0 0x00 节7.2.33 0x3C INT_LIVEO 实时中断回读寄存器 0 0x00 节7.2.34 0x3B INCH1_LIVE 诊断摘要 0x00 节7.2.35	0x2C	MIXER_CFG0	MISC 配置寄存器 0	0x00	节 7.2.18
0x2F INT_MASK0 中断屏蔽寄存器 0 0xFF 节7.2.21 0x30 INT_MASK1 中断屏蔽寄存器 1 0x0F 节7.2.22 0x31 INT_MASK2 中断屏蔽寄存器 2 0x00 节7.2.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x00 节7.2.24 0x33 INT_MASK5 中断屏蔽寄存器 3 0x30 节7.2.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节7.2.26 0x35 CHx_LTCH 诊断摘要 0x00 节7.2.27 0x36 IN_CH1_LTCH 0x00 节7.2.28 0x37 IN_CH2_LTCH 0x00 节7.2.29 0x38 OUT_CH1_LTCH 0x00 节7.2.30 0x39 OUT_CH2_LTCH 0x00 节7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 0 0x00 节7.2.33 0x3C INT_LIVEO 实时中断回读寄存器 0 0x00 节7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节7.2.35	0x2D	MISC_CFG0	MISC 配置寄存器 0	0x00	节 7.2.19
0x30 INT_MASK1 中断屏蔽寄存器 1 0x0F 节7.2.22 0x31 INT_MASK2 中断屏蔽寄存器 2 0x00 节7.2.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x00 节7.2.24 0x33 INT_MASK5 中断屏蔽寄存器 3 0x30 节7.2.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节7.2.26 0x35 CHx_LTCH 诊断摘要 0x00 节7.2.27 0x36 IN_CH1_LTCH 0x00 节7.2.28 0x37 IN_CH2_LTCH 0x00 节7.2.30 0x38 OUT_CH1_LTCH 0x00 节7.2.31 0x39 OUT_CH2_LTCH 0x00 节7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节7.2.32 0x3B INT_LIVEO 实时中断回读寄存器 0 0x00 节7.2.33 0x3C INT_LIVE 诊断摘要 0x00 节7.2.35 0x3E IN_CH1_LIVE 诊断摘要 0x00 节7.2.36 0x3F IN_CH2_LIVE 0x00 节7.2.37	0x2E	BRWNOUT		0xBF	节 7.2.20
0x31 INT_MASK2 中断屏蔽寄存器 2 0x00 节7.2.23 0x32 INT_MASK4 中断屏蔽寄存器 3 0x00 节7.2.24 0x33 INT_MASK5 中断屏蔽寄存器 3 0x30 节7.2.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节7.2.26 0x35 CHx_LTCH 诊断摘要 0x00 节7.2.27 0x36 IN_CH1_LTCH 0x00 节7.2.28 0x37 IN_CH2_LTCH 0x00 节7.2.29 0x38 OUT_CH1_LTCH 0x00 节7.2.30 0x39 OUT_CH2_LTCH 0x00 节7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节7.2.33 0x3C INT_LIVEO 实时中断回读寄存器 0 0x00 节7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节7.2.35 0x3E IN_CH1_LIVE 诊断摘要 0x00 节7.2.36 0x3F IN_CH2_LIVE 0x00 节7.2.37	0x2F	INT_MASK0	中断屏蔽寄存器 0	0xFF	节 7.2.21
0x32 INT_MASK4 中断屏蔽寄存器 3 0x00 节7.2.24 0x33 INT_MASK5 中断屏蔽寄存器 3 0x30 节7.2.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节7.2.26 0x35 CHx_LTCH 诊断摘要 0x00 节7.2.27 0x36 IN_CH1_LTCH 0x00 节7.2.28 0x37 IN_CH2_LTCH 0x00 节7.2.29 0x38 OUT_CH1_LTCH 0x00 节7.2.30 0x39 OUT_CH2_LTCH 0x00 节7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节7.2.33 0x3C INT_LIVEO 实时中断回读寄存器 0 0x00 节7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节7.2.35 0x3E IN_CH1_LIVE 诊断摘要 0x00 节7.2.36 0x3F IN_CH2_LIVE 0x00 节7.2.37	0x30	INT_MASK1	中断屏蔽寄存器 1	0x0F	节 7.2.22
0x33 INT_MASK5 中断屏蔽寄存器 3 0x30 节 7.2.25 0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节 7.2.26 0x35 CHx_LTCH 诊断摘要 0x00 节 7.2.27 0x36 IN_CH1_LTCH 0x00 节 7.2.28 0x37 IN_CH2_LTCH 0x00 节 7.2.29 0x38 OUT_CH1_LTCH 0x00 节 7.2.30 0x39 OUT_CH2_LTCH 0x00 节 7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节 7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节 7.2.33 0x3C INT_LIVEO 实时中断回读寄存器 0 0x00 节 7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节 7.2.36 0x3F IN_CH1_LIVE 0x00 节 7.2.37	0x31	INT_MASK2	中断屏蔽寄存器 2	0x00	节 7.2.23
0x34 INT_LTCH0 锁存中断回读寄存器 0 0x00 节 7.2.26 0x35 CHx_LTCH 诊断摘要 0x00 节 7.2.27 0x36 IN_CH1_LTCH 0x00 节 7.2.28 0x37 IN_CH2_LTCH 0x00 节 7.2.29 0x38 OUT_CH1_LTCH 0x00 节 7.2.30 0x39 OUT_CH2_LTCH 0x00 节 7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节 7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节 7.2.33 0x3C INT_LIVEO 实时中断回读寄存器 0 0x00 节 7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节 7.2.35 0x3E IN_CH1_LIVE 0x00 节 7.2.36 0x3F IN_CH2_LIVE 0x00 节 7.2.37	0x32	INT_MASK4	中断屏蔽寄存器 3	0x00	节 7.2.24
0x35 CHx_LTCH 诊断摘要 0x00 节 7.2.27 0x36 IN_CH1_LTCH 0x00 节 7.2.28 0x37 IN_CH2_LTCH 0x00 节 7.2.29 0x38 OUT_CH1_LTCH 0x00 节 7.2.30 0x39 OUT_CH2_LTCH 0x00 节 7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节 7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节 7.2.33 0x3C INT_LIVEO 实时中断回读寄存器 0 0x00 节 7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节 7.2.35 0x3E IN_CH1_LIVE 0x00 节 7.2.36 0x3F IN_CH2_LIVE 0x00 节 7.2.37	0x33	INT_MASK5	中断屏蔽寄存器 3	0x30	节 7.2.25
0x36 IN_CH1_LTCH 0x00 节7.2.28 0x37 IN_CH2_LTCH 0x00 节7.2.29 0x38 OUT_CH1_LTCH 0x00 节7.2.30 0x39 OUT_CH2_LTCH 0x00 节7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节7.2.33 0x3C INT_LIVEO 实时中断回读寄存器 0 0x00 节7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节7.2.35 0x3E IN_CH1_LIVE 0x00 节7.2.36 0x3F IN_CH2_LIVE 0x00 节7.2.37	0x34	INT_LTCH0	锁存中断回读寄存器 0	0x00	节 7.2.26
0x37 IN_CH2_LTCH 0x00 节7.2.29 0x38 OUT_CH1_LTCH 0x00 节7.2.30 0x39 OUT_CH2_LTCH 0x00 节7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节7.2.33 0x3C INT_LIVEO 实时中断回读寄存器 0 0x00 节7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节7.2.35 0x3E IN_CH1_LIVE 0x00 节7.2.36 0x3F IN_CH2_LIVE 0x00 节7.2.37	0x35	CHx_LTCH	诊断摘要	0x00	节 7.2.27
0x38 OUT_CH1_LTCH 0x00 节 7.2.30 0x39 OUT_CH2_LTCH 0x00 节 7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节 7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节 7.2.33 0x3C INT_LIVE0 实时中断回读寄存器 0 0x00 节 7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节 7.2.35 0x3E IN_CH1_LIVE 0x00 节 7.2.36 0x3F IN_CH2_LIVE 0x00 节 7.2.37	0x36	IN_CH1_LTCH		0x00	节 7.2.28
0x39 OUT_CH2_LTCH 0x00 节 7.2.31 0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节 7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节 7.2.33 0x3C INT_LIVE0 实时中断回读寄存器 0 0x00 节 7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节 7.2.35 0x3E IN_CH1_LIVE 0x00 节 7.2.36 0x3F IN_CH2_LIVE 0x00 节 7.2.37	0x37	IN_CH2_LTCH		0x00	节 7.2.29
0x3A INT_LTCH1 锁存中断回读寄存器 0 0x00 节 7.2.32 0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节 7.2.33 0x3C INT_LIVE0 实时中断回读寄存器 0 0x00 节 7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节 7.2.35 0x3E IN_CH1_LIVE 0x00 节 7.2.36 0x3F IN_CH2_LIVE 0x00 节 7.2.37	0x38	OUT_CH1_LTCH		0x00	节 7.2.30
0x3B INT_LTCH2 锁存中断回读寄存器 3 0x00 节 7.2.33 0x3C INT_LIVE0 实时中断回读寄存器 0 0x00 节 7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节 7.2.35 0x3E IN_CH1_LIVE 0x00 节 7.2.36 0x3F IN_CH2_LIVE 0x00 节 7.2.37	0x39	OUT_CH2_LTCH		0x00	节 7.2.31
0x3C INT_LIVE0 实时中断回读寄存器 0 0x00 节 7.2.34 0x3D CHx_LIVE 诊断摘要 0x00 节 7.2.35 0x3E IN_CH1_LIVE 0x00 节 7.2.36 0x3F IN_CH2_LIVE 0x00 节 7.2.37	0x3A	INT_LTCH1	锁存中断回读寄存器 0	0x00	节 7.2.32
0x3D CHx_LIVE 诊断摘要 0x00 节 7.2.35 0x3E IN_CH1_LIVE 0x00 节 7.2.36 0x3F IN_CH2_LIVE 0x00 节 7.2.37	0x3B	INT_LTCH2	锁存中断回读寄存器 3	0x00	节 7.2.33
0x3E IN_CH1_LIVE 0x00 节 7.2.36 0x3F IN_CH2_LIVE 0x00 节 7.2.37	0x3C	INT_LIVE0	实时中断回读寄存器 0	0x00	节 7.2.34
0x3F IN_CH2_LIVE 0x00 节 7.2.37	0x3D	CHx_LIVE	诊断摘要	0x00	节 7.2.35
	0x3E	IN_CH1_LIVE		0x00	节 7.2.36
0x40 OUT_CH1_LIVE 0x00 节 7.2.38	0x3F	IN_CH2_LIVE		0x00	节 7.2.37
	0x40	OUT_CH1_LIVE		0x00	节 7.2.38

表 7-104. 页 1 寄存器 (续)

地址		寄存器名称		 部分
0x41	OUT_CH2_LIVE		0x00	节 7.2.39
0x42	INT_LIVE1	锁存中断回读寄存器 0	0x00	节 7.2.40
0x43	INT_LIVE2	锁存中断回读寄存器 3	0x00	节 7.2.41
0x46	DIAG_CFG0		0x00	节 7.2.42
0x47	DIAG_CFG1		0x37	节 7.2.43
0x48	DIAG_CFG2		0x87	节 7.2.44
0x4A	DIAG_CFG4		0xB8	节 7.2.45
0x4B	DIAG_CFG5		0x00	节 7.2.46
0x4C	DIAG_CFG6		0xA2	节 7.2.47
0x4D	DIAG_CFG7		0x48	节 7.2.48
0x4E	DIAG_CFG8		0xBA	节 7.2.49
0x4F	DIAG_CFG9		0x4B	节 7.2.50
0x50	DIAG_CFG10		0x88	节 7.2.51
0x51	DIAG_CFG11		0x40	节 7.2.52
0x52	DIAG_CFG12		0x44	节 7.2.53
0x53	DIAG_CFG13		0x00	节 7.2.54
0x54	DIAG_CFG14		0x48	节 7.2.55
0x56	DIAG_MON_MSB_VBAT		0x00	节 7.2.56
0x57	DIAG_MON_LSB_VBAT		0x00	节 7.2.57
0x58	DIAG_MON_MSB_MBIAS		0x00	节 7.2.58
0x59	DIAG_MON_LSB_MBIAS		0x01	节 7.2.59
0x5A	DIAG_MON_MSB_IN1P		0x00	节 7.2.60
0x5B	DIAG_MON_LSB_IN1P		0x02	节 7.2.61
0x5C	DIAG_MON_MSB_IN1M		0x00	节 7.2.62
0x5D	DIAG_MON_LSB_IN1M		0x03	节 7.2.63
0x5E	DIAG_MON_MSB_IN2P		0x00	节 7.2.64
0x5F	DIAG_MON_LSB_IN2P		0x04	节 7.2.65
0x60	DIAG_MON_MSB_IN2M		0x00	节 7.2.66
0x61	DIAG_MON_LSB_IN2M		0x05	节 7.2.67
0x62	DIAG_MON_MSB_OUT1F		0x00	节 7.2.68
0x63	DIAG_MON_LSB_OUT1P		0x06	节 7.2.69
0x64	DIAG_MON_MSB_OUT1N	1	0x00	节 7.2.70
0x65	DIAG_MON_LSB_OUT1M		0x07	节 7.2.71
0x66	DIAG_MON_MSB_OUT2F		0x00	节 7.2.72
0x67	DIAG_MON_LSB_OUT2P		0x08	节 7.2.73
0x68	DIAG_MON_MSB_OUT2N	1	0x00	节 7.2.74
0x69	DIAG_MON_LSB_OUT2M		0x09	节 7.2.75
0x6A	DIAG_MON_MSB_TEMP		0x00	节 7.2.76
0x6B	DIAG_MON_LSB_TEMP		0x0A	节 7.2.77
0x6C	DIAG_MON_MSB_MBIAS LOAD	_	0x00	节 7.2.78
0x6D	DIAG_MON_LSB_MBIAS_ OAD	L	0x0B	节 7.2.79

119

表 7-104. 页 1 寄存器 (续)

地址	首字母缩写词	寄存器名称	复位值	部分
0x6E	DIAG_MON_MSB_AVDD		0x00	节 7.2.80
0x6F	DIAG_MON_LSB_AVDD		0x0C	节 7.2.81
0x70	DIAG_MON_MSB_GPA		0x00	节 7.2.82
0x71	DIAG_MON_LSB_GPA		0x0D	节 7.2.83
0x72	BOOST_CFG		0x00	节 7.2.84
0x73	MICBIAS_CFG		0xA0	节 7.2.85

7.2.1 PAGE_CFG 寄存器 (地址 = 0x0) [复位 = 0x00]

图 7-103 中显示了 PAGE_CFG,表 7-105 中对此进行了介绍。

返回到汇总表。

器件存储器映射分为多个页面。该寄存器设置页。

图 7-103. PAGE_CFG 寄存器

7	6	5	4	3	2	1	0			
	PAGE[7:0]									
	R/W-00000000b									

表 7-105. PAGE_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-0	PAGE[7:0]	R/W	0x0	这些位设置器件页。 Od = 第 0 页
				1d = 第 1 页
				2d 至 254d = 第 2 页至第 254 页
				255d = 第 255 页

7.2.2 DSP_CFG0 寄存器 (地址 = 0x3) [复位 = 0x00]

图 7-104 中显示了 DSP_CFG0,表 7-106 中对此进行了介绍。

返回到汇总表。

120

提交文档反馈

图 7-104. DSP_CFG0 寄存器

7	6	5	4	3	2	1	0
RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	DIS_DVOL_OT F_CHG	EN_BQ_OTF_C HG
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R/W-0b	R/W-0b

表 7-106. DSP_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6	RESERVED	R	0x0	保留位;仅写入复位值
5	RESERVED	R	0x0	保留位;仅写入复位值
4	RESERVED	R	0x0	保留位;仅写入复位值
3	RESERVED	R	0x0	保留位;仅写入复位值
2	RESERVED	R	0x0	保留位;仅写入复位值

Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: TAC5411-Q1

表 7-106. DSP_CFG0 寄存器字段说明 (续)

位	字段	类型	复位	说明
1	DIS_DVOL_OTF_CHG	R/W	0x0	禁用对 DVOL 设置的运行时更改。 0d = ADC 上电时支持数字音量控制更改 1d = ADC 上电时不支持数字音量控制更改。如果需要多个通道处理,这对于 384kHz 及更高的采样速率非常有用。
0	EN_BQ_OTF_CHG	R/W	0x0	启用对 Biquad 设置的运行时更改。 0d = 禁用动态双二阶滤波器更改 1d = 启用动态双二阶滤波器更改

7.2.3 CLK_CFG0 寄存器(地址 = 0xD)[复位 = 0x00]

图 7-105 中显示了 CLK_CFG0,表 7-107 中对此进行了介绍。

返回到汇总表。

图 7-105. CLK CFG0 寄存器

7	6	5	4	3	2	1	0
CNT_TGT_CF G_OVR_PASI	CNT_TGT_CF G_OVR_SASI	RESERVED	RESERVED		PASI_USE_INT _FSYNC	SASI_USE_INT _FSYNC	RESERVED
R/W-0b	R/W-0b	R-0b	R-00b		R/W-0b	R/W-0b	R-0b

表 7-107. CLK CFG0 寄存器字段说明

	次 101:021/_01 00 時 1 冊 1 校 60分								
位	字段	类型	复位	说明					
7	CNT_TGT_CFG_OVR_PA SI	R/W	0x0	ASI 控制器目标配置覆盖寄存器 Od = 根据 PASI_CNT_CFG 位确定控制器-目标配置。 1d = 覆盖 PASI_CNT_CFG 的标准行为。在这种情况下,时钟自动检测功能不可用。 PASI_CNT_CFG = 0:BCLK 是输入,而 FSYNC 是输出。 PASI_CNT_CFG = 1:BCLK 是输出,而 FSYNC 是输入。					
6	CNT_TGT_CFG_OVR_SA SI	R/W	0x0	ASI 控制器目标配置覆盖寄存器 Od = 根据 SASI_CNT_CFG 位确定控制器-目标配置。 1d = 覆盖 SASI_CNT_CFG 的标准行为。在这种情况下,时钟自动检测功能不可用。 SASI_CNT_CFG = 0: BCLK 是输入,而 FSYNC 是输出。 SASI_CNT_CFG = 1: BCLK 是输出,而 FSYNC 是输入。					
5	RESERVED	R	0x0	保留位;仅写入复位值					
4-3	RESERVED	R	0x0	保留位;仅写入复位值					
2	PASI_USE_INT_FSYNC	R/W	0x0	对于主要 ASI,在控制器模式配置下使用内部 FSYNC。 0d = 使用外部 FSYNC 1d = 使用内部 FSYNC					
1	SASI_USE_INT_FSYNC	R/W	0x0	对于辅助 ASI,在控制器模式配置下使用内部 FSYNC。 0d = 使用外部 FSYNC 1d = 使用内部 FSYNC					
0	RESERVED	R	0x0	保留位;仅写入复位值					

7.2.4 CHANNEL_CFG1 寄存器 (地址 = 0xE) [复位 = 0x00]

图 7-106 中显示了 CHANNEL_CFG1,表 7-108 中对此进行了介绍。

返回到汇总表。

图 7-106. CHANNEL_CFG1 寄存器

7	6	5	4	3	2	1	0

图 7-106. CHANNEL CFG1 寄存器 (续)

	H : 1001 011 1111 ====01 01 14 H	
FORCE_DYN_ MODE_CUST_ MAX_CH	DYN_MODE_CUST_MAX_CH[3:0]	RESERVED
R/W-0b	R/W-0000b	R-000b

表 7-108. CHANNEL_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7	FORCE_DYN_MODE_CU ST_MAX_CH	R/W	0x0	ADC 强制动态模式自定义最大通道 Od = 在动态模式下,最大通道基于 ADC_DYN_MAXCH_SEL 1d = 在动态模式下,最大通道自定义为 DYN_MODE_CUST_MAX_CH
6-3	DYN_MODE_CUST_MAX _CH[3:0]	R/W		ADC 动态模式自定义最大通道配置 [3]->CH4_EN [2]->CH3_EN [1]->CH2_EN [0]->CH1_EN
2-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.5 CHANNEL_CFG2 寄存器 (地址 = 0xF) [复位 = 0x00]

图 7-107 中显示了 CHANNEL_CFG2,表 7-109 中对此进行了介绍。

返回到汇总表。

图 7-107. CHANNEL_CFG2 寄存器

7	6	5	4	3	2	1	0
DAC_FORCE_ DYN_MODE_C UST_MAX_CH	Г	OAC_DYN_MODE_0	CUST_MAX_CH[3:0]		RESERVED	
R/W-0b		R/W-0	0000b			R-000b	

表 7-109. CHANNEL_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7	DAC_FORCE_DYN_MOD E_CUST_MAX_CH	R/W	0x0	DAC 强制动态模式自定义最大通道 Od = 在动态模式下,最大通道基于 DAC_DYN_MAXCH_SEL 1d = 在动态模式下,最大通道根据 DAC_DYN_MODE_CUST_MAX_CH 自定义
6-3	DAC_DYN_MODE_CUST _MAX_CH[3:0]	R/W		DAC 动态模式自定义最大通道配置([3]->CH4_EN, [2]->CH3_EN, [1]->CH2_EN, [0]->CH1_EN) [3]->CH4_EN [2]->CH3_EN [2]->CH3_EN [1]->CH2_EN [0]->CH1_EN
2-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.6 SRC_CFG0 寄存器 (地址 = 0x17) [复位 = 0x00]

图 7-108 中显示了 SRC_CFG0,表 7-110 中对此进行了介绍。

返回到汇总表。

提交文档反馈

122

该寄存器是 SRC 的配置寄存器 1。

图 7-108. SRC_CFG0 寄存器

	7	6	5	1	3	2	1	Λ Ι
	1	U	J	4	J			U
- 1								

图 7-108. SRC_CFG0 寄存器 (续)

SRC	_EN	DIS_AUTO_SR C_DET	RESERVED
R/V	/-0b	R/W-0b	R-000000b

表 7-110. SRC_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7	SRC_EN	R/W		SRC 使能配置 0b = SRC 禁用 1b = SRC 启用
6	DIS_AUTO_SRC_DET	R/W		SRC 自动检测配置 0b = SRC 自动检测启用 1b = SRC 自动检测禁用
5-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.7 SRC_CFG1 寄存器 (地址 = 0x18) [复位 = 0x00]

图 7-109 中显示了 SRC_CFG1,表 7-111 中对此进行了介绍。

返回到汇总表。

该寄存器是 SRC 的配置寄存器 2。

图 7-109. SRC_CFG1 寄存器

7	6	5	4	3	2	1	0
MAIN_FS_C TOM_CF		MAIN_AUX_	RATIO_M_CUST	OM_CFG[2:0]	MAIN_AUX_	RATIO_N_CUST	FOM_CFG[2:0]
R/W-0b	R/W-0b		R/W-000b			R/W-000b	

表 7-111. SRC_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7	MAIN_FS_CUSTOM_CFG	R/W	0x0	主 Fs 自定义配置 0b = 自动推断主 Fs 1b = 需要从 MAIN_FS_SELECT_CFG 中选择主 Fs
6	MAIN_FS_SELECT_CFG	R/W	0x0	主 Fs 选择配置 0b = PASI Fs 应用作主 Fs 1b = SASI Fs 应用作主 Fs
5-3	MAIN_AUX_RATIO_M_C USTOM_CFG[2:0]	R/W	0x0	主 Fs 与辅助 Fs 之比 m:n 配置 0d = m 为自动推断 1d = 1 2d = 2 3d = 3 4d = 4 5d = 保留 6d = 6 7d = 保留
2-0	MAIN_AUX_RATIO_N_C USTOM_CFG[2:0]	R/W	0x0	主 Fs 与辅助 Fs 之比 m:n 配置 0d = n 为自动推断 1d = 1 2d = 2 3d = 3 4d = 4 5d = 保留 6d = 6 7d = 保留

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

123 提交文档反馈

7.2.8 JACK_DET_CFG0 寄存器 (地址 = 0x19) [复位 = 0x00]

图 7-110 中显示了 JACK_DET_CFG0,表 7-112 中对此进行了介绍。

返回到汇总表。

该寄存器是 JACK DET 配置寄存器 0。

图 7-110. JACK DET CFG0 寄存器

7	6	5	4	3	2	1	0
JACK_DET_MO	NITOR_FREQ[1:)]	JACK_DET_PU LSE_WIDTH	RESERVED	RESERVED	HPDET_CLO	CK_SEL[1:0]	RESERVED
R/W	-00b	R/W-0b	R-0b	R-0b	R/W-	00b	R-0b

表 7-112. JACK_DET_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-6	JACK_DET_MONITOR_F REQ[1:0]	R/W	0x0	耳机检测脉冲频率 0d = 0.5Hz 1d = 1Hz 2d = 7.5Hz 3d = 15Hz
5	JACK_DET_PULSE_WID TH	R/W	0x0	检测器脉冲高宽度 0d = 4ms(MICBIAS 引脚电容 = 1uF) 1d = 32ms(MICBIAS 引脚电容 = 10uF)
4	RESERVED	R	0x0	保留位;仅写入复位值
3	RESERVED	R	0x0	保留位;仅写入复位值
2-1	HPDET_CLOCK_SEL[1:0]	R/W	0x0	耳机检测时钟时间周期选择 Od = 1ms 1d = 2ms 2d = 4ms 3d = 保留
0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.9 JACK_DET_CFG1 寄存器 (地址 = 0x1A) [复位 = 0x00]

图 7-111 中显示了 JACK_DET_CFG1,表 7-113 中对此进行了介绍。

返回到汇总表。

该寄存器是 JACK DET 配置寄存器 1。

图 7-111. JACK_DET_CFG1 寄存器

7	6	5	4	3	2	1	0
RESERVED	JACK_DET_CO MP_CTRL2	JACK_DET_	COMP_CTRL3[1:0]	HPDET_COUP LING	HPDET_USE_2 x_CURR	JACK_DET_EN	RESERVED
R-0b	R/W-0b	F	R/W-00b	R/W-0b	R/W-0b	R/W-0b	R-0b

表 7-113. JACK_DET_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: TAC5411-Q1

表 7-113. JACK_DET_CFG1 寄存器字段说明 (续)

位	字段	类型	复位	说明
6	JACK_DET_COMP_CTRL 2	R/W	0x0	固定外部电阻情况下的挂钩按压阈值控制,控制选择要支持的最低麦克风阻抗或要支持的最高挂钩按钮阻抗 0d = 支持最小麦克风电阻,R_Mic = 支持 800 Ω 和最大挂钩按钮阻抗,R_Hook = 320 Ω ,适用于交流耦合耳机 R26<3> = 0(否则,当 R26<3> = 1 时,R_hook = 150 Ω 1d = 支持最大挂钩按钮阻抗,R_hook = 680 Ω ;支持最小麦克风电阻,R_Mic = 1350 Ω ,适用于交流耦合耳机 R26<3> = 0(否则,当 R26<3> = 1 时,R_Mic = 1750 Ω)
5-4	JACK_DET_COMP_CTRL 3[1:0]	R/W	0x0	挂钩按压插孔插入支持,仅对外部电阻类型 $P0_R25_D4 = 0$ 有效,否则不用考虑。 $0d = $ 支持 150Ω 最小挂钩按钮阻抗,适用于挂钩按压插孔插入检测 $1d = $ 支持 100Ω 最小挂钩按钮阻抗,适用于挂钩按压插孔插入检测 $2d = $ 支持 50Ω 最小挂钩按钮阻抗,适用于挂钩按压插孔插入检测 $3d = $ 保留
3	HPDET_COUPLING	R/W	0x0	耳机检测耦合 0d = 交流耦合 1d = 直流耦合
2	HPDET_USE_2x_CURR	R/W	0x0	耳机检测电流选择配置 0d = 禁用 2 倍耳机检测电流 1d = 启用 2 倍耳机检测电流
1	JACK_DET_EN	R/W	0x0	耳机检测启用 0d = 禁用耳机检测 1d = 启用耳机检测
0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.10 JACK_DET_CFG2 寄存器 (地址 = 0x1B) [复位 = 0x00]

图 7-112 中显示了 JACK_DET_CFG2,表 7-114 中对此进行了介绍。

返回到汇总表。

该寄存器是 JACK DET 配置寄存器 2。

图 7-112. JACK_DET_CFG2 寄存器

7	6	5	4	3	2	1	0
RESERVED	HPDET_DEB	JACK_	_DET_DEB_INSE	RT[2:0]	JACK_DET_DE B_REMOVAL	JACK_DET_DEE S[1	
R-0b	R/W-0b		R/W-000b		R/W-0b	R/W-	·00b

表 7-114. JACK_DET_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6	HPDET_DEB	R/W	0x0	耳机检测去抖可编程性 0d = 无去抖 1d = 3 个检测去抖
5-3	JACK_DET_DEB_INSER T[2:0]	R/W	0x0	耳机插入检测去抖可编程性 0d = 去抖时间 = 16ms 1d = 去抖时间 = 32ms 2d = 去抖时间 = 64ms 3d = 去抖时间 = 128ms 4d = 去抖时间 = 256ms 5d = 去抖时间 = 512ms 6d = 保留。不使用 7d = 无去抖

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 125

Product Folder Links: *TAC5411-Q1*English Data Sheet: SLASF34

表 7-114. JACK DET CFG2 寄存器字段说明 (续)

位	字段	类型	复位	说明	
2	JACK_DET_DEB_REMO VAL	R/W	0x0	耳机移除检测去抖可编程性 0d = 5 次检测去抖 1d = 3 次检测去抖	
1-0	JACK_DET_DEB_HOOK_ PRESS[1:0]	R/W		挂钩按压去抖配置 0d = 无去抖 1d = 无去抖 2d = 2 个检测去抖 3d = 3 个检测去抖	

7.2.11 JACK_DET_CFG3 寄存器 (地址 = 0x1C) [复位 = 0x00]

图 7-113 中显示了 JACK_DET_CFG3,表 7-115 中对此进行了介绍。

返回到汇总表。

该寄存器是 JACK DET 配置寄存器 3。

图 7-113. JACK_DET_CFG3 寄存器

7	6	5	4	3	2	1	0
JACK_TYPE_FLAG[1:0] HEADSET_TYPE_DET[1:0]			RESE	RVED			
R-00b		R-0	0b		R-00	00b	

表 7-115. JACK_DET_CFG3 寄存器字段说明

位	字段	类型	复位	说明
7-6	JACK_TYPE_FLAG[1:0]	R	0x0	耳机插孔类型标志 Od = 插孔未插入 1d = 插入插孔,无麦克风 2d = 保留。不使用 3d = 插入插孔,有麦克风
5-4	HEADSET_TYPE_DET[1: 0]	R	0x0	耳机类型 0d = 未插入耳机 1d = 插入插孔,带单声道 HS(右) 2d = 插入插孔,带单声道 HS(左) 3d = 插入插孔,带单声道 HS
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.12 LPAD_CFG1 寄存器 (地址 = 0x1E) [复位 = 0x20]

图 7-114 中显示了 LPAD_CFG1,表 7-116 中对此进行了介绍。

返回到汇总表。

126

提交文档反馈

低功耗活动检测。语音活动检测或超声波活动检测配置寄存器 1

图 7-114. LPAD_CFG1 寄存器

7	6	5	4	3	2	1	0
LPAD_M	IODE[1:0]	LPAD_CH_	SEL[1:0]	LPAD_SDOUT_ INT_CFG	RESERVED	LPAD_PD_DET _EN	RESERVED
R/W	/-00b	R/W-	10b	R/W-0b	R-0b	R/W-0b	R-0b

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SLASF34

表 7-116. LPAD CFG1 寄存器字段说明

位	字段	类型	复位	说明					
7-6	LPAD_MODE[1:0]	R/W	0x0	自动 ADC 上电/断电配置选择。 Od = 用户启动的 ADC 上电和 ADC 断电 1d = 基于 VAD/UAD 中断的 ADC 上电和 ADC 断电 2d = 基于 VAD/UAD 中断的 ADC 上电和用户启动的 ADC 断电不使用					
5-4	LPAD_CH_SEL[1:0]	R/W	0x2	VAD 通道选择。 0d = 在通道 1 上监视 VAD/UAD 活动 1d = 在通道 2 上监视 VAD/UAD 活动 2d = 在通道 3 上监视 VAD/UAD 活动 3d = 在通道 4 上监视 VAD/UAD 活动					
3	LPAD_SDOUT_INT_CFG	R/W	0x0	SDOUT 中断配置。 0d = 未使 SDOUT 引脚支持中断功能 1d = 使 SDOUT 引脚在未记录通道数据期间支持中断输出					
2	RESERVED	R	0x0	保留位;仅写入复位值					
1	LPAD_PD_DET_EN	R/W	0x0	在 VAD/UAD 活动期间启用 ASI 输出数据。 Od = 在 ADC 记录期间不启用 VAD/UAD 处理 1d = 在 ADC 记录期间启用 VAD/UAD 处理,并按照配置生成 VAD 中断					
0	RESERVED	R	0x0	保留位;仅写入复位值					

7.2.13 LPSG_CFG1 寄存器 (地址 = 0x1F) [复位 = 0x80]

图 7-115 中显示了 LPSG_CFG1,表 7-117 中对此进行了介绍。

返回到汇总表。

低功耗信号生成配置寄存器 1

图 7-115. LPSG_CFG1 寄存器

•
0

表 7-117. LPSG_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-6	LPSG_CH_SEL[1:0]	R/W		LPSG 通道选择 - UAG 0d = 在通道 1 上生成 UAG 活动 1d = 在通道 2 上生成 UAG 活动 2d = 在通道 3 上生成 UAG 活动 3d = 在通道 4 上生成 UAG 活动
5	RESERVED	R	0x0	保留位;仅写入复位值
4-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.14 LPAD_LPSG_CFG1 寄存器 (地址 = 0x20) [复位 = 0x00]

图 7-116 中显示了 LPAD_LPSG_CFG1,表 7-118 中对此进行了介绍。

返回到汇总表。

该寄存器是 VAD/UAD/UAG 的配置寄存器 1。

图 7-116. LPAD_LPSG_CFG1 寄存器

7 6 5	4 3	2	1	0
-------	-----	---	---	---

Product Folder Links: TAC5411-Q1

127

图 7-116. LPAD_LPSG_CFG1 寄存器 (续)

		_		
LPAD_LPSG_CLK_CFG[1:0]	LPAD_LPSG_EXT_CLK_CFG[1:	RESERVED	LPAD_PH1_EN	RESERVED
	0]			
R/W-00b	R/W-00b	R-0b	R/W-0b	R-00b

表 7-118. LPAD_LPSG_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-6	LPAD_LPSG_CLK_CFG[1:0]	R/W	0x0	VAD/UAD/UAG 的时钟选择 0d = 使用内部振荡器时钟的 VAD/UAD/UAG 处理 1d = 使用 BCLK 输入上的外部时钟的 VAD/UAD/UAG 处理 2d = 使用 CCLK 输入上的外部时钟的 VAD/UAD/UAG 处理 3d = 基于页面 0 中的 CNT_CFG、CLK_SRC 和 CLKGEN_CFG 寄存器的自定义时钟配置
5-4	LPAD_LPSG_EXT_CLK_ CFG[1:0]	R/W	0x0	使用外部时钟的 VAD/UAD/UAG 时钟配置 0d = 外部时钟为 24.576MHz 1d = 外部时钟为 6.144MHz 2d = 外部时钟为 12.288MHz 3d = 外部时钟为 18.432MHz
3	RESERVED	R	0x0	保留位;仅写入复位值
2	LPAD_PH1_EN	R/W	0x0	通过插孔检测比较器启用 LPAD 第 1 阶段检测。 0d = 禁用 LPAD 相位 1 1d = 启用 LPAD 相位 1
1-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.15 LIMITER_CFG 寄存器 (地址 = 0x23) [复位 = 0x00]

图 7-117 中显示了 LIMITER_CFG,表 7-119 中对此进行了介绍。

返回到汇总表。

该寄存器是限制器的配置寄存器 2。

图 7-117. LIMITER_CFG 寄存器

7	6	5	4	3	2	1	0
LIMITER_INP_SEL[1:0] LIMITER_OUT_SEL[1:0]			RESE	RVED			
R/W-00b		R/W	′-00b		R-00	000b	

表 7-119. LIMITER_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	LIMITER_INP_SEL[1:0]	R/W	0x0	限制器输入选择配置 0d = max(dacin_ch0, dacin_ch1) 1d = dacin_ch1 2d = dacin_ch0 3d = avg(dacin_ch0, dacin_ch1)
5-4	LIMITER_OUT_SEL[1:0]	R/W	0x0	限制器输出选择配置 Od = 同时应用 1d = dacin_ch1 2d = dacin_ch0 3d = 均不应用
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.16 AGC_DRC_CFG 寄存器 (地址 = 0x24) [复位 = 0x00]

图 7-118 中显示了 AGC_DRC_CFG,表 7-120 中对此进行了介绍。

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAC5411-Q1*

返回到汇总表。

该寄存器是 AGC_DRC 的配置寄存器 2。

图 7-118. AGC_DRC_CFG 寄存器

7	6	5	4	3	2	1	0
AGC_CH1_EN	AGC_CH2_EN	AGC_CH3_EN	AGC_CH4_EN	DRC_CH1_EN	DRC_CH2_EN	DRC_CH3_EN	DRC_CH4_EN
R/W-0b							

表 7-120. AGC DRC CFG 寄存器字段说明

位	字段	类型	复位	说明
7	AGC_CH1_EN	R/W	0x0	AGC 通道 1 使能配置 0d = 禁用 1d = 启用
6	AGC_CH2_EN	R/W	0x0	AGC 通道 2 使能配置 0d = 禁用 1d = 启用
5	AGC_CH3_EN	R/W	0x0	AGC 通道 3 使能配置 0d = 禁用 1d = 启用
4	AGC_CH4_EN	R/W	0x0	AGC 通道 4 使能配置 0d = 禁用 1d = 启用
3	DRC_CH1_EN	R/W	0x0	DRC 通道 1 使能配置 0d = 禁用 1d = 启用
2	DRC_CH2_EN	R/W	0x0	DRC 通道 2 使能配置 0d = 禁用 1d = 启用
1	DRC_CH3_EN	R/W	0x0	DRC 通道 3 使能配置 0d = 禁用 1d = 启用
0	DRC_CH4_EN	R/W	0x0	DRC 通道 4 使能配置 0d = 禁用 1d = 启用

7.2.17 PLIM_CFG0 寄存器 (地址 = 0x2B) [复位 = 0x00]

图 7-119 中显示了 PLIM_CFG0,表 7-121 中对此进行了介绍。

返回到汇总表。

该寄存器是 PLIM 的配置寄存器 0。

图 7-119. PLIM CFG0 寄存器

		-		, 1, 1,	H		
7	6	5	4	3	2	1	0
EN_PLIM	PLIM_ATTN_VAL[2:0]			PLIM_BY_SAR _GPA	PLIM_RECOVE RY	RESE	RVED
R/W-0b		R/W-000b		R/W-0b	R/W-0b	R-0	00b

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 129

表 7-121. PLIM_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7	EN_PLIM	R/W	0x0	PLIM 使能 0d = 禁用 1d = 启用
6-4	PLIM_ATTN_VAL[2:0]	R/W	0x0	PLIM 衰减系数 0d = 0dB 1d = -6dB 2d = -12dB 3d = -18dB 4d = -24dB 5d = -30dB 6d = -36dB 7d = -42dB
3	PLIM_BY_SAR_GPA	R/W	0x0	PLIM 衰减值源 0d = 基于 GPIO 和 reg_plimi_attn_val 的 Plimit 衰减 1d = 基于 GPA 模拟电压的 Plimit 衰减。LUT 会将 SAR ADC 数据映射到衰减系数
2	PLIM_RECOVERY	R/W	0x0	PLIM 衰减恢复 0d = Plimit func 未恢复。它保持在相同的衰减水平,或者可根据需要应用更多衰减 1d = Plimit func 恢复(减少衰减),如果"gpio_val=0"或 "sar_adc_gpa"数据表明电池电压已恢复,则我们可以减少应用的衰减
1-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.18 MIXER_CFG0 寄存器 (地址 = 0x2C) [复位 = 0x00]

图 7-120 中显示了 MIXER_CFG0,表 7-122 中对此进行了介绍。

返回到汇总表。

该寄存器是 MISC 配置寄存器 0。

图 7-120. MIXER_CFG0 寄存器

					_			
	7	6	5	4	3	2	1	0
E	EN_DAC_ASI_ MIXER	EN_SIDE_CHAI N_MIXER	EN_ADC_CHA NNEL_MIXER	EN_LOOPBAC K_MIXER		RESER	RVED	
	R/W-0b	R/W-0b	R/W-0b	R/W-0b		R-00	00b	

表 7-122. MIXER_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7	EN_DAC_ASI_MIXER	R/W	0x0	启用 DAC ASI 混频器 0b = 禁用 1b = 启用
6	EN_SIDE_CHAIN_MIXER	R/W	0x0	启用侧链混频器 0b = 禁用 1b = 启用
5	EN_ADC_CHANNEL_MIX ER	R/W	0x0	启用 ADC 通道混频器 0b = 禁用 1b = 启用
4	EN_LOOPBACK_MIXER	R/W	0x0	启用环回混频器 0b = 禁用 1b = 启用
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.19 MISC_CFG0 寄存器 (地址 = 0x2D) [复位 = 0x00]

图 7-121 中显示了 MISC_CFG0,表 7-123 中对此进行了介绍。

返回到汇总表。

该寄存器是 MISC 配置寄存器 0。

图 7-121. MISC_CFG0 寄存器

7	6	5	4	3	2	1	0
EN_DISTORTI ON	EN_BOP	EN_THERMAL _FOLDBACK	EN_DRC	DAC_SIGNAL_ GENERATOR_ 1_ENABLE	DAC_SIGNAL_ GENERATOR_ 2_ENABLE	DSP_VBAT_AV DD_SEL	BRWNOUT_EN
R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-123. MISC CFG0 寄存器字段说明

₽ ,	中 市						
位	字段	类型	复位	说明			
7	EN_DISTORTION	R/W	0x0	失真限制器使能配置 0b = 失真限制器禁用 1b = 失真限制器启用			
6	EN_BOP	R/W	0x0	BOP 使能配置 0b = BOP 禁用 1b = BOP 启用			
5	EN_THERMAL_FOLDBA	R/W	0x0	热折返使能配置 0b = 热折返禁用 1b = 热折返启用			
4	EN_DRC	C R/W 0x0		0x0 DRC 使能配置 0b = DRC 禁用 1b = DRC 启用			
3	DAC_SIGNAL_GENERAT OR_1_ENABLE	R/W	0x0	DAC 信号生成器 1 使能配置 0b = 禁用信号生成器 1b = 启用信号生成器			
2	DAC_SIGNAL_GENERAT OR_2_ENABLE	0b = ½		DAC 信号生成器 2 使能配置 0b = 禁用信号生成器 1b = 启用信号生成器			
1	DSP_VBAT_AVDD_SEL	R/W	0x0	DSP 限制器、BOP、DRC 的 SAR 数据源选择 0b = DSP 的 SAR VBAT 数据 1b = DSP 的 SAR AVDD 数据			
0	BRWNOUT_EN	R/W	0x0	Brownout 使能配置 0b = Brownout 禁用 1b = Brownout 启用			

7.2.20 BRWNOUT 寄存器 (地址 = 0x2E) [复位 = 0xBF]

图 7-122 中显示了 BRWNOUT,表 7-124 中对此进行了介绍。

返回到汇总表。

图 7-122. BRWNOUT 寄存器

□ · ·==· >· · · · · · · · · · · · · · · ·									
7 6 5 4 3 2 1 0									
BRWNOUT_THRS[7:0]									
	R/W-10111111b								

Product Folder Links: TAC5411-Q1

表 7-124. BRWNOUT 寄存器字段说明

位	字段	类型	复位	说明
7-0	BRWNOUT_THRS[7:0]	R/W		欠压关断阈值 (IF P1_R45_D1->DSP_VBAT_AVDD_SEL=1) 默认值 = 7.8V (~2.7V) Nd = ((0.9×(N*16)/4095)-0·211764)x17) (V) (((0.9×(N*16)/4095)-0·225)x6 (V))

7.2.21 INT_MASK0 寄存器 (地址 = 0x2F) [复位 = 0xFF]

图 7-123 中显示了 INT_MASKO,表 7-125 中对此进行了介绍。

返回到汇总表。

中断屏蔽。

图 7-123. INT_MASK0 寄存器

7	6	5	4	3	2	1	0
INT_MASK0	INT_MASK0	INT_MASK0	INT_MASK0	INT_MASK0	RESERVED	RESERVED	RESERVED
R/W-1b	R/W-1b	R/W-1b	R/W-1b	R/W-1b	R-0b	R-0b	R-0b

表 7-125. INT_MASK0 寄存器字段说明

位	字段	类型	复位	说明
7	INT_MASK0	R/W	0x1	时钟错误中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
6	INT_MASK0	R/W	0x1	PLL 锁定中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
5	INT_MASK0	R/W	0x1	升压过热中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
4	INT_MASK0	R/W	0x1	升压过流中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
3	INT_MASK0	R/W	0x1	升压 MO 中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
2	RESERVED	R 0x0		保留位;仅写入复位值
1	RESERVED	R	0x0	保留位;仅写入复位值
0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.22 INT_MASK1 寄存器 (地址 = 0x30) [复位 = 0x0F]

图 7-124 中显示了 INT_MASK1,表 7-126 中对此进行了介绍。

返回到汇总表。

中断屏蔽。

图 7-124. INT_MASK1 寄存器

7	6	5	4	3	2	1	0
INT_MASK1	INT_MASK1	INT_MASK1	INT_MASK1	INT_MASK1	RESERVED	RESERVED	RESERVED
R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-1b	R-0b	R-0b	R-0b

Product Folder Links: TAC5411-Q1

表 7-126. INT_MASK1 寄存器字段说明

位	字段	类型	复位	说明				
7	INT_MASK1	R/W	0x0	通道 1 输入直流故障诊断中断屏蔽。 0b = 不屏蔽 1b = 屏蔽				
6	INT_MASK1	R/W	0x0	通道 2 输入直流故障诊断中断屏蔽。 0b = 不屏蔽 1b = 屏蔽				
5	INT_MASK1	R/W	0x0	通道 1 输出直流故障诊断中断屏蔽。 0b = 不屏蔽 1b = 屏蔽				
4	INT_MASK1	R/W	0x0	通道 2 输出直流故障诊断中断屏蔽。 0b = 不屏蔽 1b = 屏蔽				
3	INT_MASK1	R/W	0x1	当 VBAT_IN 电压低于 MICBIAS 电压时,触发"短接至 VBAT_IN" 检测的输入故障诊断中断屏蔽。 0b = 不屏蔽 1b = 屏蔽				
2	RESERVED	R	0x0	保留位;仅写入复位值				
1	RESERVED	R	0x0	保留位;仅写入复位值				
0	RESERVED	R	0x0	保留位;仅写入复位值				

7.2.23 INT_MASK2 寄存器 (地址 = 0x31) [复位 = 0x00]

图 7-125 中显示了 INT_MASK2,表 7-127 中对此进行了介绍。

返回到汇总表。

中断屏蔽。

图 7-125. INT_MASK2 寄存器

7	6	5	4	3	2	1	0
INT_MASK2							
R/W-0b							

表 7-127. INT_MASK2 寄存器字段说明

位	字段	类型	复位	说明
7	INT_MASK2	R/W	0x0	输入诊断 - 开路输入故障中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
6	INT_MASK2	R/W	0x0	输入诊断 - 输入短路故障中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
5	INT_MASK2	R/W	0x0	输入诊断 - INP 短接至 GND 故障中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
4	INT_MASK2	R/W	0x0	输入诊断 - INM 短接至 GND 故障中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
3	INT_MASK2	R/W	0x0	输入诊断 - INP 短接至 MICBIAS 故障中断屏蔽。 0b = 不屏蔽 1b = 屏蔽

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

反馈 133

表 7-127. INT_MASK2 寄存器字段说明 (续)

位	字段	类型	复位	说明
2	INT_MASK2	R/W	0x0	输入诊断 - INM 短接至 MICBIAS 故障中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
1	INT_MASK2	R/W	0x0	输入诊断 - INP 短接至 VBAT_IN 故障中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
0	INT_MASK2	R/W	0x0	输入诊断 - INM 短接至 VBAT_IN 故障中断屏蔽。 0b = 不屏蔽 1b = 屏蔽

7.2.24 INT_MASK4 寄存器 (地址 = 0x32) [复位 = 0x00]

图 7-126 中显示了 INT_MASK4,表 7-128 中对此进行了介绍。

返回到汇总表。

中断屏蔽。

图 7-126. INT_MASK4 寄存器

7	6	5	4	3	2	1	0
INT_MASK4	RESERVED						
R/W-0b	R-0b						

表 7-128. INT_MASK4 寄存器字段说明

位	字段	类型	复位	说明			
7	INT_MASK4	R/W	0x0	INP 过压故障屏蔽。 0b = 不屏蔽 1b = 屏蔽			
6	INT_MASK4			INM 过压故障屏蔽。 0b = 不屏蔽 1b = 屏蔽			
5	INT_MASK4	R/W					
4	INT_MASK4	R/W	0x0	DRVR 虚拟接地故障中断屏蔽。 0b = 不屏蔽 1b = 屏蔽			
3	INT_MASK4	R/W	0x0	耳机插入检测中断屏蔽。 0b = 不屏蔽 1b = 屏蔽			
2	INT_MASK4	R/W	0x0	耳机移除检测中断屏蔽。 0b = 不屏蔽 1b = 屏蔽			
1	INT_MASK4	R/W	0x0	耳机检测挂钩(按钮)中断屏蔽。 0b = 不屏蔽 1b = 屏蔽			
0	RESERVED	R	0x0	保留位;仅写入复位值			

7.2.25 INT_MASK5 寄存器 (地址 = 0x33) [复位 = 0x30]

图 7-127 中显示了 INT_MASK5,表 7-129 中对此进行了介绍。

Copyright © 2024 Texas Instruments Incorporated

4 提交文档反馈

返回到汇总表。

中断屏蔽。

图 7-127. INT_MASK5 寄存器

7	6	5	4	3	2	1	0
INT_MASK5							
R/W-0b	R/W-0b	R/W-1b	R/W-1b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-129. INT_MASK5 寄存器字段说明

位	字段	类型	复位	说明
7	INT_MASK5	R/W	0x0	GPA 上阈值故障屏蔽。 0b = 不屏蔽 1b = 屏蔽
6	INT_MASK5	R/W	0x0	GPA 低阈值故障屏蔽。 0b = 不屏蔽 1b = 屏蔽
5	INT_MASK5	R/W	0x1	VAD 上电检测中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
4	INT_MASK5	R/W	0x1	VAD 断电检测中断屏蔽。 0b = 不屏蔽 1b = 屏蔽
3	INT_MASK5	R/W	0x0	Micbias 短路故障屏蔽。 0b = 不屏蔽 1b = 屏蔽
2	INT_MASK5	R/W	0x0	Micbias 高电流故障屏蔽。 0b = 不屏蔽 1b = 屏蔽
1	INT_MASK5	R/W	0x0	Micbias 低电流故障屏蔽。 0b = 不屏蔽 1b = 屏蔽
0	INT_MASK5	R/W	0x0	Micbias 过压故障屏蔽。 0b = 不屏蔽 1b = 屏蔽

7.2.26 INT_LTCH0 寄存器 (地址 = 0x34) [复位 = 0x00]

图 7-128 中显示了 INT_LTCH0,表 7-130 中对此进行了介绍。

返回到汇总表。

锁存中断读回。

图 7-128. INT_LTCH0 寄存器

7	6	5	4	3	2	1	0
INT_LTCH0	INT_LTCH0	INT_LTCH0	INT_LTCH0	INT_LTCH0	RESERVED	RESERVED	RESERVED
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 7-130. INT_LTCH0 寄存器字段说明

_					
	位	字段	类型	复位	说明
	7	INT_LTCH0	R	0x0	时钟错误导致的中断(自行清零位)。 0b = 无中断 1b = 中断

表 7-130. INT_LTCH0 寄存器字段说明 (续)

位	字段	类型	复位	说明
6	INT_LTCH0	R	0x0	PLL 锁定导致的中断(自行清零位) 0b = 无中断 1b =中断
5	INT_LTCH0	R	0x0	升压过热导致的中断(自行清零位)。 0b = 无中断 1b = 中断
4	INT_LTCH0	R	0x0	升压过流导致的中断(自行清零位)。 0b = 无中断 1b = 中断
3	INT_LTCH0	R	0x0	升压 MO 导致的中断(自行清零位)。 0b = 无中断 1b = 中断
2	RESERVED	R	0x0	保留位;仅写入复位值
1	RESERVED	R	0x0	保留位;仅写入复位值
0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.27 CHx_LTCH 寄存器 (地址 = 0x35) [复位 = 0x00]

图 7-129 中显示了 CHx_LTCH,表 7-131 中对此进行了介绍。

返回到汇总表。

通道级诊断锁存状态

图 7-129. CHx_LTCH 寄存器

7	6	5	4	3	2	1	0
STS_CHx_LTC	STS_CHx_LTC	STS_CHx_LTC	STS_CHx_LTC	STS_CHx_LTC	RESERVED	RESERVED	RESERVED
Н	H	H	H	H			
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 7-131. CHx LTCH 寄存器字段说明

	ベルロルーロの 単一 									
位	字段	类型	复位	说明						
7 5	STS_CHx_LTCH	R	0x0	输入 CH1_LTCH 的状态。 0b = 输入通道 1 中未发生故障 1b = 输入通道 1 中发生故障						
6	STS_CHx_LTCH	R	0x0	输入 CH2_LTCH 的状态。 0b = 输入通道 2 中未发生故障 1b = 输入通道 2 中发生故障						
5 8	STS_CHx_LTCH	R	0x0	输出 CH1_LTCH 的状态。 0b = 输出通道 1 中未发生故障 1b = 输出通道 1 中发生故障						
4 8	STS_CHx_LTCH	R	0x0	输出 CH2_LTCH 的状态。 0b = 输出通道 2 中未发生故障 1b = 输出通道 2 中发生故障						
3	STS_CHx_LTCH	R	0x0	"当 VBAT_IN 低于 MICBIAS 时,检测到'短接至 VBAT_IN'故障"的故障状态 Ob = 当 VBAT_IN 低于 MICBIAS 时,任何通道中均未出现短接至 VBAT_IN 故障 1b = 当 VBAT_IN 低于 MICBIAS 时,至少一个通道出现短接至 VBAT_IN 故障						
2 F	RESERVED	R	0x0	保留位;仅写入复位值						
1 F	RESERVED	R	0x0	保留位;仅写入复位值						

Copyright © 2024 Texas Instruments Incorporated

136 提交文档反馈

Product Folder Links: TAC5411-Q1

表 7-131. CHx_LTCH 寄存器字段说明 (续)

位	字段	类型	复位	说明
0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.28 IN_CH1_LTCH 寄存器 (地址 = 0x36) [复位 = 0x00]

图 7-130 中显示了 IN_CH1_LTCH,表 7-132 中对此进行了介绍。

返回到汇总表。

图 7-130. IN_CH1_LTCH 寄存器

7	6	5	4	3	2	1	0
IN_CH1_LTCH							
R-0b							

表 7-132. IN_CH1_LTCH 寄存器字段说明

位	字段	类型	复位	说明
7	IN_CH1_LTCH	R	0x0	输入通道 1 开路输入(自行清零位)。 0b = 无开路输入 1b = 开路输入
6	IN_CH1_LTCH	R	0x0	输入通道 1 输入短路(自行清零位)。 0b = 无输入短路 1b = 输入相互短接
5	IN_CH1_LTCH	R	0x0	输入通道 1 INP 短接至 GND(自行清零位)。 0b = INP 未短接至 GND 1b = INP 短接至 GND
4	IN_CH1_LTCH	R	0x0	输入通道 1 INM 短接至 GND(自行清零位)。 0b = INM 未短接至 GND 1b = INM 短接至 GND
3	IN_CH1_LTCH	R	0x0	输入通道 1 INP 短接至 MICBIAS(自行清零位)。 0b = INP 未短接至 MICBIAS 1b = INP 短接至 MICBIAS
2	IN_CH1_LTCH	R	0x0	输入通道 1 INM 短接至 MICBIAS(自行清零位)。 0b = INM 未短接至 MICBIAS 1b = INM 短接至 MICBIAS
1	IN_CH1_LTCH	R	0x0	输入通道 1 INP 短接至 VBAT_IN(自行清零位)。 0b = INP 未短接至 VBAT_IN 1b = INP 短接至 VBAT_IN
0	IN_CH1_LTCH	R	0x0	输入通道 1 INM 短接至 VBAT_IN(自行清零位)。 0b = INM 未短接至 VBAT_IN 1b = INM 短接至 VBAT_IN

7.2.29 IN_CH2_LTCH 寄存器 (地址 = 0x37) [复位 = 0x00]

图 7-131 中显示了 IN_CH2_LTCH,表 7-133 中对此进行了介绍。

返回到汇总表。

图 7-131. IN CH2 LTCH 寄存器

7	6	5	4	3	2	1	0
IN_CH2_LTCH							
R-0b							

English Data Sheet: SLASF34

表 7-133. IN CH2 LTCH 寄存器字段说明

		- , , , ,	•• ··• <u></u> • · ·- <u>-</u>	
位	字段	类型	复位	说明
7	IN_CH2_LTCH	R	0x0	输入通道 2 开路输入(自行清零位)。 0b = 无开路输入 1b = 开路输入
6	IN_CH2_LTCH	R	0x0	输入通道 2 输入短路(自行清零位)。 0b = 无输入短路 1b = 输入相互短接
5	IN_CH2_LTCH	R	0x0	输入通道 2 INP 短接至 GND(自行清零位)。 0b = INP 未短接至 GND 1b = INP 短接至 GND
4	IN_CH2_LTCH	R	0x0	输入通道 2 INM 短接至 GND(自行清零位)。 0b = INM 未短接至 GND 1b = INM 短接至 GND
3	IN_CH2_LTCH	R	0x0	输入通道 2 INP 短接至 MICBIAS(自行清零位)。 0b = INP 未短接至 MICBIAS 1b = INP 短接至 MICBIAS
2	IN_CH2_LTCH	R	0x0	输入通道 2 INM 短接至 MICBIAS(自行清零位)。 0b = INM 未短接至 MICBIAS 1b = INM 短接至 MICBIAS
1	IN_CH2_LTCH	R	0x0	输入通道 2 INP 短接至 VBAT_IN(自行清零位)。 0b = INP 未短接至 VBAT_IN 1b = INP 短接至 VBAT_IN
0	IN_CH2_LTCH	R	0x0	输入通道 2 INM 短接至 VBAT_IN(自行清零位)。 0b = INM 未短接至 VBAT_IN 1b = INM 短接至 VBAT_IN

7.2.30 OUT_CH1_LTCH 寄存器 (地址 = 0x38) [复位 = 0x00]

图 7-132 中显示了 OUT_CH1_LTCH,表 7-134 中对此进行了介绍。

返回到汇总表。

图 7-132. OUT_CH1_LTCH 寄存器

7	6	5	4	3	2	1	0
OUT_CH1_LTC H	OUT_CH1_LTC H	OUT_CH1_LTC H	OUT_CH1_LTC H	MASK_ADC_C H1_OVRLD_FL AG	MASK_ADC_C H2_OVRLD_FL AG	RESER	RVED
R-0b	R-0b	R-0b	R-0b	R/W-0b	R/W-0b	R-00	Ob

表 7-134. OUT_CH1_LTCH 寄存器字段说明

位	字段	类型	复位	说明
7	OUT_CH1_LTCH	R	0x0	OUT1P 短路故障(自行清零位)。 0b = 无短路故障 1b = 短路故障
6	OUT_CH1_LTCH	R	0x0	OUT1M 短路故障(自行清零位)。 0b = 无短路故障 1b = 短路故障
5	OUT_CH1_LTCH	R	0x0	通道 1 DRVRP 虚拟接地故障 (自行清零位)。 0b = 无虚拟接地故障 1b = 虚拟接地故障
4	OUT_CH1_LTCH	R	0x0	通道 1 DRVRM 虚拟接地故障(自行清零位)。 0b = 无虚拟接地故障 1b = 虚拟接地故障

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SLASF34

表 7-134. OUT CH1 LTCH 寄存器字段说明 (续)

	•			· · · · · · · · · · · · · · · · · · ·
位	字段	类型	复位	说明
3	MASK_ADC_CH1_OVRL D_FLAG	R/W	0x0	ADC CH1 OVRLD 故障屏蔽。 0b = 不屏蔽 1b = 屏蔽
2	MASK_ADC_CH2_OVRL D_FLAG	R/W	0x0	ADC CH2 OVRLD 故障屏蔽。 0b = 不屏蔽 1b = 屏蔽
1-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.31 OUT_CH2_LTCH 寄存器 (地址 = 0x39) [复位 = 0x00]

图 7-133 中显示了 OUT_CH2_LTCH,表 7-135 中对此进行了介绍。

返回到汇总表。

图 7-133. OUT_CH2_LTCH 寄存器

			_	_			
7	6	5	4	3	2	1	0
OUT_CH2_LTC H	OUT_CH2_LTC H	OUT_CH2_LTC H	OUT_CH2_LTC H	RESE	RVED	MASK_AREG_ SC_FLAG	AREG_SC_FLA G_LTCH
R-0b	R-0b	R-0b	R-0b	R-0	10b	R/W-0b	R-0b

表 7-135. OUT_CH2_LTCH 寄存器字段说明

位	字段	类型	复位	说明
7	OUT_CH2_LTCH	R	0x0	OUT2P 短路故障 (自行清零位)。 0b = 无短路故障 1b = 短路故障
6	OUT_CH2_LTCH	R	0x0	OUT2M 短路故障(自行清零位)。 0b = 无短路故障 1b = 短路故障
5	OUT_CH2_LTCH	R	0x0	通道 2 DRVRP 虚拟接地故障 (自行清零位)。 0b = 无虚拟接地故障 1b = 虚拟接地故障
4	OUT_CH2_LTCH	R	0x0	通道 2 DRVRM 虚拟接地故障(自行清零位)。 0b = 无虚拟接地故障 1b = 虚拟接地故障
3-2	RESERVED	R	0x0	保留位;仅写入复位值
1	MASK_AREG_SC_FLAG	R/W	0x0	AREG SC 故障屏蔽。 0b = 不屏蔽 1b = 屏蔽
0	AREG_SC_FLAG_LTCH	R	0x0	AREG SC 故障(自行清零位)。 0b = 无 AREG 短路故障 1b = AREG 短路故障

7.2.32 INT_LTCH1 寄存器 (地址 = 0x3A) [复位 = 0x00]

图 7-134 中显示了 INT_LTCH1,表 7-136 中对此进行了介绍。

返回到汇总表。

锁存中断读回。

图 7-134. INT_LTCH1 寄存器

		•	· –				
7	6	5	4	3	2	1	0

139

图 7-134. INT_LTCH1 寄存器 (续)

| INT_LTCH1 |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| R-0b |

表 7-136. INT_LTCH1 寄存器字段说明

W. 1001111-2-10111 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
位	字段	类型	复位	说明					
7	INT_LTCH1	R	0x0	通道 1 INP 过压(自行清零位)。 Ob = 无 INP 过压故障 1b = 发生了 INP 过压故障					
6	6 INT_LTCH1 R		0x0	通道 1 INM 过压(自行清零位)。 Ob = 未发生 INM 过压故障 1b = 发生了 INM 过压故障					
5	INT_LTCH1	R	0x0	通道 2 INP 过压(自行清零位)。 0b = 无 INP 过压故障 1b = 发生了 INP 过压故障					
4	INT_LTCH1	R	0x0	通道 2 INM 过压(自行清零位)。 Ob = 未发生 INM 过压故障 1b = 发生了 INM 过压故障					
3	INT_LTCH1	R	0x0	由于耳机插入检测而中断(自行清零位)。 Ob = 无中断 1b = 中断					
2	INT_LTCH1	R	0x0	由于耳机移除检测而中断(自行清零位)。 Ob = 无中断 1b = 中断					
1	INT_LTCH1	R	0x0	由于耳机挂钩(按钮)而中断(自行清零位)。 Ob = 无中断 1b = 中断					
0	INT_LTCH1	R	0x0	MIPS 过载导致的中断(自行清零位) 0b = 无中断 1b =中断					

7.2.33 INT_LTCH2 寄存器 (地址 = 0x3B) [复位 = 0x00]

图 7-135 中显示了 INT_LTCH2,表 7-137 中对此进行了介绍。

返回到汇总表。

锁存中断读回。

图 7-135. INT_LTCH2 寄存器

7	6	5	4	3	2	1	0
INT_LTCH2							
R-0b							

表 7-137. INT_LTCH2 寄存器字段说明

位	字段	类型	复位	说明
7	INT_LTCH2	R	0x0	GPA 上阈值故障导致的中断(自行清零位)。
				0b = 无中断
				1b = 中断
6	INT_LTCH2	R	0x0	GPA 低阈值故障导致的中断(自行清零位)
				0b = 无中断
				1b = 中断

Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: TAC5411-Q1

表 7-137. INT LTCH2 寄存器字段说明 (续)

位	字段	类型	复位	说明		
5	INT_LTCH2	R	0x0	VAD 上电检测导致的中断(自行清零位)。 0b = 无中断 1b = 中断		
4	INT_LTCH2	R	0x0	VAD 断电检测导致的中断(自行清零位)。 0b = 无中断 1b = 中断		
3	INT_LTCH2	R	0x0	Micbias 短路情况导致的中断(自行清零位) 0b = 无中断 1b = 中断		
2	INT_LTCH2	R	0x0	Micbias 高电流故障导致的中断(自行清零位)。 0b = 无中断 1b = 中断		
1	INT_LTCH2	R	0x0	Micbias 低电流故障导致的中断 (自行清零位) 0b = 无中断 1b = 中断		
0	INT_LTCH2	R	0x0	Micbias 过压故障导致的中断(自行清零位)。 0b = 无中断 1b = 中断		

7.2.34 INT_LIVEO 寄存器 (地址 = 0x3C) [复位 = 0x00]

图 7-136 中显示了 INT_LIVEO,表 7-138 中对此进行了介绍。

返回到汇总表。

锁存中断读回。

图 7-136. INT_LIVEO 寄存器

7	6	5	4	3	2	1	0
INT_LIVE0	INT_LIVE0	INT_LIVE0	INT_LIVE0	INT_LIVE0	RESERVED	RESERVED	RESERVED
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 7-138. INT LIVEO 寄存器字段说明

	1					
位	字段	类型	复位	说明		
7	INT_LIVE0	R	0x0	时钟错误导致的中断。 0b = 无中断 1b = 中断		
6	INT_LIVE0	R	0x0	PLL 锁定导致的中断 0b = 无中断 1b = 中断		
5	INT_LIVE0	R	0x0	升压过热导致的中断。 0b = 无中断 1b = 中断		
4	INT_LIVE0	R	0x0	升压过流导致的中断。 0b = 无中断 1b = 中断		
3	INT_LIVE0	R	0x0	升压 MO 导致的中断。 0b = 无中断 1b = 中断		
2	RESERVED	R	0x0	保留位;仅写入复位值		
1	RESERVED	R	0x0	保留位;仅写入复位值		

Copyright © 2024 Texas Instruments Incorporated

141 提交文档反馈

Product Folder Links: TAC5411-Q1 English Data Sheet: SLASF34

表 7-138. INT_LIVEO 寄存器字段说明 (续)

位	字段	类型	复位	说明
0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.35 CHx_LIVE 寄存器 (地址 = 0x3D) [复位 = 0x00]

图 7-137 中显示了 CHx_LIVE,表 7-139 中对此进行了介绍。

返回到汇总表。

通道级诊断实时状态

图 7-137. CHx_LIVE 寄存器

7	6	5	4	3	2	1	0
STS_CHx_LIVE	STS_CHx_LIVE	STS_CHx_LIVE	STS_CHx_LIVE	STS_CHx_LIVE	RESERVED	RESERVED	RESERVED
R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b	R-0b

表 7-139. CHx_LIVE 寄存器字段说明

位	字段	类型	复位	说明
7	STS_CHx_LIVE	R	0x0	输入 CH1_LIVE 的状态。 0b = 输入通道 1 中未发生故障 1b = 输入通道 1 中发生故障
6	STS_CHx_LIVE	R	0x0	输入 CH2_LIVE 的状态。 0b = 输入通道 2 中未发生故障 1b = 输入通道 2 中发生故障
5	STS_CHx_LIVE	R	0x0	输出 CH1_LIVE 的状态。 0b = 输出通道 1 中未发生故障 1b = 输出通道 1 中发生故障
4	STS_CHx_LIVE	R	0x0	输出 CH2_LIVE 的状态。 0b = 输出通道 2 中未发生故障 1b = 输出通道 2 中发生故障
3	STS_CHx_LIVE	R	0x0	"当 VBAT_IN 低于 MICBIAS 时,检测到'短接至 VBAT_IN'故障"的故障状态 0b = 当 VBAT_IN 低于 MICBIAS 时,任何通道中均未出现短接至 VBAT_IN 故障 1b = 当 VBAT_IN 低于 MICBIAS 时,至少一个通道出现短接至 VBAT_IN 故障
2	RESERVED	R	0x0	保留位;仅写入复位值
1	RESERVED	R	0x0	保留位;仅写入复位值
0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.36 IN_CH1_LIVE 寄存器 (地址 = 0x3E) [复位 = 0x00]

图 7-138 中显示了 IN_CH1_LIVE,表 7-140 中对此进行了介绍。

返回到汇总表。

图 7-138. IN_CH1_LIVE 寄存器

7	6	5	4	3	2	1	0
IN_CH1_LIVE							
R-0b							

Product Folder Links: TAC5411-Q1

表 7-140. IN_CH1_LIVE 寄存器字段说明

位	字段	类型	复位	说明
7	IN_CH1_LIVE	R	0x0	输入通道 1 开路输入。 0b = 无开路输入 1b = 开路输入
6	IN_CH1_LIVE	R	0x0	输入通道 1 输入短路。 0b = 无输入短路 1b = 输入相互短接
5	IN_CH1_LIVE	R	0x0	输入通道 1 INP 短接至 GND。 0b = INP 未短接至 GND 1b = INP 短接至 GND
4	IN_CH1_LIVE	R	0x0	输入通道 1 INM 短接至 GND。 0b = INM 未短接至 GND 1b = INM 短接至 GND
3	IN_CH1_LIVE	R	0x0	输入通道 1 INP 短接至 MICBIAS。 0b = INP 未短接至 MICBIAS 1b = INP 短接至 MICBIAS
2	IN_CH1_LIVE	R	0x0	输入通道 1 INM 短接至 MICBIAS。 0b = INM 未短接至 MICBIAS 1b = INM 短接至 MICBIAS
1	IN_CH1_LIVE	R	0x0	输入通道 1 INP 短接至 VBAT_IN。 0b = INP 未短接至 VBAT_IN 1b = INP 短接至 VBAT_IN
0	IN_CH1_LIVE	R	0x0	输入通道 1 INM 短接至 VBAT_IN。 0b = INM 未短接至 VBAT_IN 1b = INM 短接至 VBAT_IN

7.2.37 IN_CH2_LIVE 寄存器 (地址 = 0x3F) [复位 = 0x00]

图 7-139 中显示了 IN_CH2_LIVE,表 7-141 中对此进行了介绍。

返回到汇总表。

图 7-139. IN_CH2_LIVE 寄存器

7	6	5	4	3	2	1	0
IN_CH2_LIVE							
R-0b							

表 7-141. IN_CH2_LIVE 寄存器字段说明

位	字段	类型	复位	说明
7	IN_CH2_LIVE	R	0x0	输入通道 2 开路输入。 0b = 无开路输入 1b = 开路输入
6	IN_CH2_LIVE	R	0x0	输入通道 2 输入短路。 Ob = 无输入短路 1b = 输入相互短接
5	IN_CH2_LIVE	R	0x0	输入通道 2 INP 短接至 GND。 0b = INP 未短接至 GND 1b = INP 短接至 GND
4	IN_CH2_LIVE	R	0x0	输入通道 2 INM 短接至 GND。 0b = INM 未短接至 GND 1b = INM 短接至 GND

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

143

表 7-141. IN_CH2_LIVE 寄存器字段说明 (续)

位	字段	类型	复位	说明
3	IN_CH2_LIVE	R	0x0	输入通道 2 INP 短接至 MICBIAS。 0b = INP 未短接至 MICBIAS 1b = INP 短接至 MICBIAS
2	IN_CH2_LIVE	R	0x0	输入通道 2 INM 短接至 MICBIAS。 0b = INM 未短接至 MICBIAS 1b = INM 短接至 MICBIAS
1	IN_CH2_LIVE	R	0x0	输入通道 2 INP 短接至 VBAT_IN。 0b = INP 未短接至 VBAT_IN 1b = INP 短接至 VBAT_IN
0	IN_CH2_LIVE	R	0x0	输入通道 2 INM 短接至 VBAT_IN。 0b = INM 未短接至 VBAT_IN 1b = INM 短接至 VBAT_IN

7.2.38 OUT_CH1_LIVE 寄存器 (地址 = 0x40) [复位 = 0x00]

图 7-140 中显示了 OUT_CH1_LIVE,表 7-142 中对此进行了介绍。

返回到汇总表。

图 7-140. OUT_CH1_LIVE 寄存器

				_			
7	6	5	4	3	2	1	0
OUT_CH1_LIV E	OUT_CH1_LIV E	OUT_CH1_LIV E	OUT_CH1_LIV E		RESEF	RVED	
R-0b	R-0b	R-0b	R-0b		R-00	00b	

表 7-142. OUT_CH1_LIVE 寄存器字段说明

位	字段	类型	复位	说明
7	OUT_CH1_LIVE	R	0x0	OUT1P 短路故障。 0b = 无短路故障 1b = 短路故障
6	OUT_CH1_LIVE	R	0x0	OUT1M 短路故障。 0b = 无短路故障 1b = 短路故障
5	OUT_CH1_LIVE	R	0x0	通道 1 DRVRP 虚拟接地故障。 0b = 无虚拟接地故障 1b = 虚拟接地故障
4	OUT_CH1_LIVE	R	0x0	通道 1 DRVRM 虚拟接地故障。 0b = 无虚拟接地故障 1b = 虚拟接地故障
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.39 OUT_CH2_LIVE 寄存器 (地址 = 0x41) [复位 = 0x00]

图 7-141 中显示了 OUT_CH2_LIVE,表 7-143 中对此进行了介绍。

返回到汇总表。

图 7-141. OUT_CH2_LIVE 寄存器

	7	6	5	4	3	2	1	0
Ol	JT_CH2_LIV E	OUT_CH2_LIV E	OUT_CH2_LIV E	OUT_CH2_LIV E		RESERVED		AREG_SC_FLA G_LIVE
	R-0b	R-0b	R-0b	R-0b		R-000b		R-0b

Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: TAC5411-Q1

图 7-141. OUT_CH2_LIVE 寄存器 (续)

表 7-143. OUT_CH2_LIVE 寄存器字段说明

₽ ₄	⇒ cπ.	iczak		N 11 HH 1 1/2 00 /1
位	字段	类型	复位	说明
7	OUT_CH2_LIVE	R	0x0	OUT2P 短路故障。 0b = 无短路故障 1b = 短路故障
6	OUT_CH2_LIVE	R	0x0	OUT2M 短路故障。 0b = 无短路故障 1b = 短路故障
5	OUT_CH2_LIVE	R	0x0	通道 2 DRVRP 虚拟接地故障。 0b = 无虚拟接地故障 1b = 虚拟接地故障
4	OUT_CH2_LIVE	R	0x0	通道 2 DRVRM 虚拟接地故障。 0b = 无虚拟接地故障 1b = 虚拟接地故障
3-1	RESERVED	R	0x0	保留位;仅写入复位值
0	AREG_SC_FLAG_LIVE	R	0x0	AREG SC 故障。 0b = 无 AREG 短路故障 1b = AREG 短路故障

7.2.40 INT_LIVE1 寄存器 (地址 = 0x42) [复位 = 0x00]

图 7-142 中显示了 INT_LIVE1,表 7-144 中对此进行了介绍。

返回到汇总表。

实时中断读回。

图 7-142. INT_LIVE1 寄存器

			-				
7	6	5	4	3	2	1	0
INT_LIVE1	RESERVED						
R-0b	R-0b						

表 7-144. INT_LIVE1 寄存器字段说明

位	字段	类型	复位	说明
7	INT_LIVE1	R	0x0	通道 1 INP 过压。 Ob = 无 INP 过压故障 1b = 发生了 INP 过压故障
6	INT_LIVE1	R	0x0	通道 1 INM 过压。 Ob = 未发生 INM 过压故障 1b = 发生了 INM 过压故障
5	INT_LIVE1	R	0x0	通道 2 INP 过压。 0b = 无 INP 过压故障 1b = 发生了 INP 过压故障
4	INT_LIVE1	R	0x0	通道 2 INM 过压。 0b = 未发生 INM 过压故障 1b = 发生了 INM 过压故障
3	INT_LIVE1	R	0x0	由于耳机插入检测而中断。 0b = 无中断 1b = 中断
2	INT_LIVE1	R	0x0	由于耳机移除检测而中断。 0b = 无中断 1b = 中断

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

145

表 7-144. INT_LIVE1 寄存器字段说明 (续)

位	字段	类型	复位	说明
2	INT_LIVE1	R		由于耳机挂钩(按钮)而中断。 0b = 无中断 1b = 中断
1	INT_LIVE1	R		MIPS 过载导致的中断 0b = 无中断 1b = 中断
0	RESERVED	R	0x0	

7.2.41 INT_LIVE2 寄存器 (地址 = 0x43) [复位 = 0x00]

图 7-143 中显示了 INT_LIVE2,表 7-145 中对此进行了介绍。

返回到汇总表。

实时中断读回。

图 7-143. INT_LIVE2 寄存器

7	6	5	4	3	2	1	0
INT_LIVE2							
R-0b							

表 7-145. INT LIVE2 寄存器字段说明

ベルド・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・								
位	字段	类型	复位	说明				
7	INT_LIVE2	R	0x0	GPA 上阈值故障导致的中断。 0b = 无中断 1b = 中断				
6	INT_LIVE2	R	0x0	GPA 低阈值故障导致的中断 0b = 无中断 1b = 中断				
5	INT_LIVE2	R	0x0	VAD 上电检测导致的中断。 0b = 无中断 1b = 中断				
4	INT_LIVE2	R	0x0	VAD 断电检测导致的中断。 0b = 无中断 1b = 中断				
3	INT_LIVE2	R	0x0	Micbias 短路情况导致的中断 0b = 无中断 1b = 中断				
2	INT_LIVE2	R	0x0	Micbias 高电流故障导致的中断。 0b = 无中断 1b = 中断				
1	INT_LIVE2	R	0x0	Micbias 低电流故障导致的中断 0b = 无中断 1b = 中断				
0	INT_LIVE2	R	0x0	Micbias 过压故障导致的中断。 0b = 无中断 1b = 中断				

7.2.42 DIAG_CFG0 寄存器 (地址 = 0x46) [复位 = 0x00]

图 7-144 中显示了 DIAG_CFG0,表 7-146 中对此进行了介绍。

Copyright © 2024 Texas Instruments Incorporated

返回到汇总表。

图 7-144. DIAG_CFG0 寄存器

7	6	5	4	3	2	1	0
IN_CH1_DIAG_	IN_CH2_DIAG_	INCL_SE_INM	INCL_AC_COU		OUT1M_DIAG_	OUT2P_DIAG_	OUT2M_DIAG_
EN	EN		Р	EN	EN	EN	EN
R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-146. DIAG_CFG0 寄存器字段说明

次7-140. blac_01 cd 明明福 1 次起列								
位	字段	类型	复位	说明				
7	IN_CH1_DIAG_EN	R/W	0x0	通道 1 输入 (IN1P 和 IN1M) 诊断扫描 0b = 禁用诊断 1b = 启用诊断				
6	IN_CH2_DIAG_EN	R/W	0x0	通道 2 输入 (IN2P 和 IN2M) 诊断扫描 0b = 禁用诊断 1b = 启用诊断				
5	INCL_SE_INM	R/W	0x0	单端配置的 INxM 引脚诊断扫描选择 Ob = 诊断不包括单端通道的 INxM 引脚 1b = 诊断包括单端通道的 INxM 引脚				
4	INCL_AC_COUP	R/W	0x0	交流耦合通道引脚诊断扫描选择 0b = 诊断不包括交流耦合通道的 INxP 和 INxM 引脚 1b = 诊断包括交流耦合通道的 INxP 和 INxM 引脚				
3	OUT1P_DIAG_EN	R/W	0x0	通道 1 输出 OUT1P 诊断扫描 0b = 禁用诊断 1b = 启用诊断				
2	OUT1M_DIAG_EN	R/W	0x0	通道 1 输出 OUT1M 诊断扫描 0b = 禁用诊断 1b = 启用诊断				
1	OUT2P_DIAG_EN	R/W	0x0	通道 2 输出 OUT2P 诊断扫描 0b = 禁用诊断 1b = 启用诊断				
0	OUT2M_DIAG_EN	R/W	0x0	通道 2 输出 OUT2M 诊断扫描 0b = 禁用诊断 1b = 启用诊断				

7.2.43 DIAG_CFG1 寄存器 (地址 = 0x47) [复位 = 0x37]

图 7-145 中显示了 DIAG_CFG1,表 7-147 中对此进行了介绍。

返回到汇总表。

图 7-145. DIAG CFG1 寄存器

			,					
7	6	5	4	3	2	1	0	
	DIAG_SHT	_TERM[3:0]		DIAG_SHT_VBAT_IN[3:0]				
R/W-0011b					R/W-	0111b		

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 147

English Data Sheet: SLASF34

表 7-147. DIAG CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_SHT_TERM[3:0]	R/W	0x3	INXP 和 INXM 端子短路检测阈值 Od = INXP 和 INXM 端子短路检测阈值为 0mV 1d = INXP 和 INXM 端子短路检测阈值为 30mV 2d = INXP 和 INXM 端子短路检测阈值为 60mV 10d 至 13d = INXP 和 INXM 端子短路检测阈值根据配置确定 14d = INXP 和 INXM 端子短路检测阈值为 420mV 15d = INXP 和 INXM 端子短路检测阈值为 450mV
3-0	DIAG_SHT_VBAT_IN[3:0]	R/W	0x7	短接至 VBAT_IN 检测阈值 0d = 短接至 VBAT_IN 检测阈值为 0mV 1d = 短接至 VBAT_IN 检测阈值为 30mV 2d = 短接至 VBAT_IN 检测阈值为 60mV 10d 至 13d = 短接至 VBAT_IN 检测阈值根据配置确定 14d = 短接至 VBAT_IN 检测阈值为 420mV 15d = 短接至 VBAT_IN 检测阈值为 450mV

7.2.44 DIAG_CFG2 寄存器 (地址 = 0x48) [复位 = 0x87]

图 7-146 中显示了 DIAG_CFG2,表 7-148 中对此进行了介绍。

返回到汇总表。

图 7-146. DIAG_CFG2 寄存器

7	6	5	4	3	2	1	0	
DIAG_SHT_GND[3:0]				DIAG_SHT_MICBIAS[3:0]				
R/W-1000b				R/W-0)111b			

表 7-148. DIAG_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_SHT_GND[3:0]	R/W	0x8	短接至 GND 检测阈值 0d = 短接至 GND 检测阈值为 0mV 1d = 短接至 GND 检测阈值为 60mV 2d = 短接至 GND 检测阈值为 120mV 10d 至 13d = 短接至 GND 检测阈值根据配置确定 14d = 短接至 GND 检测阈值为 840mV 15d = 短接至 GND 检测阈值为 900mV
3-0	DIAG_SHT_MICBIAS[3:0]	R/W	0x7	短接至 MICBIAS 检测阈值 0d = 短接至 MICBIAS 检测阈值为 0mV 1d = 短接至 MICBIAS 检测阈值为 30mV 2d = 短接至 MICBIAS 检测阈值为 60mV 10d 至 13d = 短接至 MICBIAS 检测阈值根据配置确定 14d = 短接至 MICBIAS 检测阈值为 420mV 15d = 短接至 MICBIAS 检测阈值为 450mV

7.2.45 DIAG_CFG4 寄存器 (地址 = 0x4A) [复位 = 0xB8]

图 7-147 中显示了 DIAG_CFG4,表 7-149 中对此进行了介绍。

返回到汇总表。

图 7-147. DIAG CFG4 寄存器

	H1.141.50.62-01.04 4/11 m								
7	6	5	4	3	2	1	0		
RESE	RESERVED RESERVED		FAULT_DBNCE_SEL[1:0]		VSHORT_DBN CE	DIAG_2X_THR ES			
R-0	00b	R-00b		R/V	R/W-10b		R/W-0b		

Copyright © 2024 Texas Instruments Incorporated

图 7-147. DIAG_CFG4 寄存器 (续)

表 7-149. DIAG CFG4 寄存器字段说明

	W: ::0: 2:: (0 - 1) iii 1 / (2/2)									
位	字段	类型	复位	说明						
7-6	RESERVED	R	0x0	保留位;仅写入复位值						
5-4	RESERVED	R	0x0	保留位;仅写入复位值						
3-2	FAULT_DBNCE_SEL[1:0]	R/W	0x2	所有故障的去抖计数 (当 VBAT_IN < MicBias 时的 VBAT_IN 短接除外) 0b = 使用 16 次去抖来滤除错误故障检测 1b = 使用 8 次去抖来滤除错误故障检测 2b = 使用 4 次去抖来滤除错误故障检测 3b = 无去抖计数						
1	VSHORT_DBNCE	R/W	0x0	VBAT_IN 短接去抖计数 0b = 使用 16 次去抖来滤除错误故障检测 1b = 使用 8 次去抖来滤除错误故障检测						
0	DIAG_2X_THRES	R/W	0x0	诊断阈值范围缩放 0d = 阈值与配置的阈值相同 1d = 所有配置的阈值都放大 2 倍						

7.2.46 DIAG_CFG5 寄存器 (地址 = 0x4B) [复位 = 0x00]

图 7-148 中显示了 DIAG_CFG5,表 7-150 中对此进行了介绍。

返回到汇总表。

图 7-148. DIAG_CFG5 寄存器

7	6	5	4	3	2	1	0
DIAG_MOV_A	VG_CFG[1:0]	MOV_AVG_DIS _MBIAS_LOAD	MOV_AVG_DIS _TEMP_SENS	MOV_AVG_DIS _GPA		RESERVED	
R/W-	00b	R/W-0b	R/W-0b	R/W-0b		R-000b	

表 7-150. DIAG_CFG5 寄存器字段说明

位	字段	类型	复位	说明
7-6	DIAG_MOV_AVG_CFG[1: 0]	R/W	0x0	移动平均值配置 0d = 禁用移动平均值 1d = 启用移动平均值,新旧数据权重均为 0.5 2d = 启用移动平均值,旧数据权重为 0.75,新数据权重为 0.25 3d = 保留
5	MOV_AVG_DIS_MBIAS_L OAD	R/W	0x0	Micbias 负载通道的移动平均值配置 Ob = 为 Micbias 负载通道启用移动平均值 1b = 为 Micbias 负载通道禁用移动平均值
4	MOV_AVG_DIS_TEMP_S ENS	R/W	0x0	温度检测通道的移动平均配置 Ob = 为温度检测通道启用移动平均值 1b = 为温度检测通道禁用移动平均值
3	MOV_AVG_DIS_GPA	R/W	0x0	GPA 通道的移动平均值配置 0b = 为 GPA 通道启用移动平均值 1b = 为 GPA 通道禁用移动平均值
2-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.47 DIAG_CFG6 寄存器 (地址 = 0x4C) [复位 = 0xA2]

图 7-149 中显示了 DIAG_CFG6,表 7-151 中对此进行了介绍。

English Data Sheet: SLASF34

返回到汇总表。

图 7-149. DIAG_CFG6 寄存器

7	6	5	4	3	2	1	0	
MBIAS_HIGH_CURR_THRS[7:0]								
	R/W-10100010b							

表 7-151. DIAG_CFG6 寄存器字段说明

位	字段	类型	复位	说明
7-0	MBIAS_HIGH_CURR_TH RS[7:0]	R/W		Micbias 高电流故障诊断的阈值 默认值 = ~27mA Nd = ((0.9×(N*16)/4095)-0·2)x72.83237 (mA)

7.2.48 DIAG_CFG7 寄存器 (地址 = 0x4D) [复位 = 0x48]

图 7-150 中显示了 DIAG CFG7,表 7-152 中对此进行了介绍。

返回到汇总表。

图 7-150. DIAG_CFG7 寄存器

7	6	5	4	3	2	1	0	
MBIAS_LOW_CURR_THRS[7:0]								
	R/W-01001000b							

表 7-152. DIAG_CFG7 寄存器字段说明

位	字段	类型	复位	说明
7-0	MBIAS_LOW_CURR_TH RS[7:0]	R/W		Micbias 低电流故障诊断的阈值 默认值 = ~4mA Nd = ((0.9×(N*16)/4095)-0·2)x72.83237 (mA)

7.2.49 DIAG_CFG8 寄存器 (地址 = 0x4E) [复位 = 0xBA]

图 7-151 中显示了 DIAG_CFG8,表 7-153 中对此进行了介绍。

返回到汇总表。

图 7-151. DIAG_CFG8 寄存器

					•		
7	6	5	4	3	2	1	0
GPA_UP_THRS_FLT_THRES[7:0]							
R/W-10111010b							

表 7-153. DIAG_CFG8 寄存器字段说明

位	字段	类型	复位	说明
7-0	GPA_UP_THRS_FLT_TH RES[7:0]	R/W	0xBA	通用模拟高阈值 默认值 = ~ 2.6V nd = ((0.9×(N*16)/4095)-0·225)x6 (V)

7.2.50 DIAG_CFG9 寄存器 (地址 = 0x4F) [复位 = 0x4B]

图 7-152 中显示了 DIAG_CFG9,表 7-154 中对此进行了介绍。

返回到汇总表。

提交文档反馈

150

Copyright © 2024 Texas Instruments Incorporated

图 7-152. DIAG CFG9 寄存器

7	6	5	4	3	2	1	0
GPA_LOW_THRS_FLT_THRES[7:0]							
R/W-01001011b							

表 7-154. DIAG_CFG9 寄存器字段说明

位	字段	类型	复位	说明
7-0	GPA_LOW_THRS_FLT_T HRES[7:0]	R/W	0x4B	通用模拟低阈值 默认值 = ~ 0.2V nd = ((0.9×(N*16)/4095)-0·225)x6 (V)

7.2.51 DIAG_CFG10 寄存器 (地址 = 0x50) [复位 = 0x88]

图 7-153 中显示了 DIAG_CFG10,表 7-155 中对此进行了介绍。

返回到汇总表。

图 7-153. DIAG_CFG10 寄存器

7	6	5	4	3	2	1	0
PD_MBIAS_SH RT_CKT_FLT	PD_MBIAS_HI GH_CURR_FLT	PD_MBIAS_LO W_CURR_FLT	PD_MBIAS_OV _FLT	PD_MBIAS_OT _FLT	MAN_RCV_PD _FLT_CHK	MBIAS_FLT_A UTO_REC_EN	MICBIAS_SHR T_CKT_DET_D IS
R/W-1b	R/W-0b	R/W-0b	R/W-0b	R/W-1b	R/W-0b	R/W-0b	R/W-0b

表 7-155. DIAG_CFG10 寄存器字段说明

位	字段	类型	复位	说明
7	PD_MBIAS_SHRT_CKT_ FLT	R/W	0x1	短路故障期间 Micbias 的断电配置 0b = 发生故障时无变化 1b = 发生故障时禁用 Micbias
6	PD_MBIAS_HIGH_CURR _FLT	R/W	0x0	高电流故障期间 Micbias 的断电配置 0b = 发生故障时无变化 1b = 发生故障时禁用 Micbias
5	PD_MBIAS_LOW_CURR_ FLT	R/W	0x0	低电流故障期间 Micbias 的断电配置 0b = 发生故障时无变化 1b = 发生故障时禁用 Micbias
4	PD_MBIAS_OV_FLT	R/W	0x0	高电压故障期间 Micbias 的断电配置 0b = 发生故障时无变化 1b = 发生故障时禁用 Micbias
3	PD_MBIAS_OT_FLT	R/W	0x1	过热故障期间 Micbias 的断电配置 0b = 发生故障时无变化 1b = 发生故障时禁用 Micbias
2	MAN_RCV_PD_FLT_CHK	R/W	0x0	手动恢复(自行清零位) 0b = 无效 1b = 重新检查故障状态并在通道没有任何故障时对其重新上电
1	MBIAS_FLT_AUTO_REC_ EN	R/W	0x0	出现故障时 Micbias PD 自动恢复的启用情况 0d = 禁用在发生 Micbias 故障时自动恢复 1d = 启用自动恢复
0	MICBIAS_SHRT_CKT_DE T_DIS	R/W	0x0	Micbias 短路故障检测配置 0b = 启用 1b = 禁用

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

151

7.2.52 DIAG_CFG11 寄存器 (地址 = 0x51) [复位 = 0x40]

图 7-154 中显示了 DIAG_CFG11,表 7-156 中对此进行了介绍。

返回到汇总表。

图 7-154. DIAG_CFG11 寄存器

7	6	5	4	3	2	1	0	
SAFEBAND_MBIAS_OV_FLT[2:0]			RESERVED					
R/W-010b					R-00000b			

表 7-156. DIAG_CFG11 寄存器字段说明

位	字段	类型	复位	说明
	SAFEBAND_MBIAS_OV_ FLT[2:0]	R/W		Micbias 过压故障的安全带配置下限 0 = 无安全带 1 = 30mV 安全带 (9b 级别时为 1LSb) 2 = 60mV 安全带 (9b 级别时为 2LSb) 3-7 = N*30mV
4-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.53 DIAG_CFG12 寄存器 (地址 = 0x52) [复位 = 0x44]

图 7-155 中显示了 DIAG CFG12,表 7-157 中对此进行了介绍。

返回到汇总表。

图 7-155. DIAG_CFG12 寄存器

7	6	5	4	3	2	1	0	
SAFE	SAFEBAND_INx_MBIAS_FLT[2:0]			BAND_INx_OV_F	RESERVED			
	R/W-010b			R/W-001b		R-00b		

表 7-157. DIAG_CFG12 寄存器字段说明

位	字段	类型	复位	说明
7-5	SAFEBAND_INx_MBIAS_ FLT[2:0]	R/W	0x2	INX 短接至 Mbias 故障的安全带 cfgn 上限 0 = 无安全带 1 = 30mV 安全带 (9b 级别时为 1LSb) 2 = 60mV 安全带 (9b 级别时为 2LSb) 3-7 = N*30mV
4-2	SAFEBAND_INx_OV_FL T[2:0]	R/W	0x1	INx 过压故障的安全带 cfgn 下限 0 = 无安全带 1 = 30mV 安全带 (9b 级别时为 1LSb) 2-7 = N*30mV 不使用
1-0	RESERVED	R	0x0	保留位;仅写入复位值

7.2.54 DIAG_CFG13 寄存器 (地址 = 0x53) [复位 = 0x00]

图 7-156 中显示了 DIAG_CFG13,表 7-158 中对此进行了介绍。

返回到汇总表。

提交文档反馈

152

图 7-156. DIAG_CFG13 寄存器

7	6	5	4	3	2	1	0
DIAG_FORCE_	DIAG_EN_MIC	DIAG_EN_MIC	DIAG_EN_VBA	DIAG_EN_TEM	DIAG_EN_AVD	DIAG_EN_GPA	RESERVED
EN	BIAS_LOAD	BIAS	I	P_SENSE	ט		

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SLASF34

图 7-156. DIAG_CFG13 寄存器 (续)

R/W-0b R/W-0b R/W-0b R/W-0b R/W-0b R/W-0b R-0b R/W-0b

表 7-158. DIAG CFG13 寄存器字段说明

	次1 100.21/10_01 010 刊刊出 1 校記 分										
位	字段	类型	复位	说明							
7	DIAG_FORCE_EN	R/W	0x0	诊断 VBAT、micbias、micbias 负载、温度的自动/手动启用配置 0b = 自动启用(如果在 DIAG_CFG0 中启用了至少一个输入通道诊断,则自动启用) 1b = 基于 DIAG_CFG13 寄存器手动启用/禁用							
6	DIAG_EN_MICBIAS_LOA	R/W	0x0	Micbias 电流/负载通道的诊断启用,DIAG_FORCE_EN = 1 时有效 0b = 禁用诊断 1b = 启用诊断							
5	DIAG_EN_MICBIAS	R/W	0x0	Micbias 通道的诊断启用,DIAG_FORCE_EN = 1 时有效 0b = 禁用诊断 1b = 启用诊断							
4	DIAG_EN_VBAT	R/W	0x0	VBAT 通道的诊断启用,DIAG_FORCE_EN = 1 时有效 0b = 禁用诊断 1b = 启用诊断							
3	DIAG_EN_TEMP_SENSE	R/W	0x0	温度检测通道的诊断启用,DIAG_FORCE_EN = 1 时有效 0b = 禁用诊断 1b = 启用诊断							
2	DIAG_EN_AVDD	R/W	0x0	AVDD 通道的诊断启用 0b = 禁用诊断 1b = 启用诊断							
1	DIAG_EN_GPA	R/W	0x0	GPA 通道的诊断启用 0b = 禁用诊断 1b = 启用诊断							
0	RESERVED	R	0x0	保留位;仅写入复位值							

7.2.55 DIAG_CFG14 寄存器 (地址 = 0x54) [复位 = 0x48]

图 7-157 中显示了 DIAG_CFG14,表 7-159 中对此进行了介绍。

返回到汇总表。

图 7-157. DIAG_CFG14 寄存器

7	6	5	4	3	2	1	0
RESERVED	AVDD_FILT	_SEL[1:0]	RESERVED	VBAT_FIL	T_SEL[1:0]	RESERVED	VBAT_SHRT_F LT
R-0b	R/W-	10b	R-0b	R/W	-10b	R-0b	R/W-0b

表 7-159. DIAG_CFG14 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	AVDD_FILT_SEL[1:0]	R/W		AVDD 滤波器选择 0d = 3.5MHz 1d = 200kHz 2d = 100kHz 3d = 无滤波器
4	RESERVED	R	0x0	保留位;仅写入复位值

English Data Sheet: SLASF34

154

表 7-159. DIAG CFG14 寄存器字段说明 (续)

	*** *** *** *** *** *** *** *** *** **									
位	字段	类型	复位	说明						
3-2	VBAT_FILT_SEL[1:0]	R/W	0x2	VBAT 滤波器选择 0d = 3.5MHz 1d = 200kHz 2d = 100kHz 3d = 无滤波器						
1	RESERVED	R	0x0	保留位;仅写入复位值						
0	VBAT_SHRT_FLT	R/W	0x0	有关 INx 短接至 VBAT 的配置 0 = INx 过压和 INx 短接至 VBAT 是分开的 1 = INx 过压和 INx 短接至 VBAT 合并定义为 VBAT 短路故障						

7.2.56 DIAG_MON_MSB_VBAT 寄存器 (地址 = 0x56) [复位 = 0x00]

图 7-158 中显示了 DIAG_MON_MSB_VBAT,表 7-160 中对此进行了介绍。 返回到汇总表。

图 7-158. DIAG_MON_MSB_VBAT 寄存器

7	6	5	3	2	1	0			
DIAG_MON_MSB_VBAT[7:0]									
	R-00000000b								

表 7-160. DIAG_MON_MSB_VBAT 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_VBAT[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节

7.2.57 DIAG_MON_LSB_VBAT 寄存器 (地址 = 0x57) [复位 = 0x00]

图 **7-159** 中显示了 **DIAG_MON_LSB_VBAT**,表 **7-161** 中对此进行了介绍。 返回到汇总表。

图 7-159. DIAG_MON_LSB_VBAT 寄存器

7	6	5	4	3	2	1	0	
	DIAG_MON_L	SB_VBAT[3:0]		Channel[3:0]				
	R-00	000b		R-0000b				

表 7-161. DIAG_MON_LSB_VBAT 寄存器字段说明

位	位字段类型		复位	说明
7-4	DIAG_MON_LSB_VBAT[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0x0	通道 ID

7.2.58 DIAG_MON_MSB_MBIAS 寄存器 (地址 = 0x58) [复位 = 0x00]

图 **7-160** 中显示了 **DIAG_MON_MSB_MBIAS**,表 **7-162** 中对此进行了介绍。 返回到汇总表。

图 7-160. DIAG_MON_MSB_MBIAS 寄存器

					* * * * * * * * * * * * * * * * * * * *		
7	6	5	4	3	2	1	0

Copyright © 2024 Texas Instruments Incorporated

图 7-160. DIAG MON MSB MBIAS 寄存器 (续)

DIAG_MON_MSB_MBIAS[7:0]

R-00000000b

表 7-162. DIAG_MON_MSB_MBIAS 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_MBIA S[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节

7.2.59 DIAG_MON_LSB_MBIAS 寄存器(地址 = 0x59)[复位 = 0x01]

图 7-161 中显示了 DIAG_MON_LSB_MBIAS,表 7-163 中对此进行了介绍。 返回到汇总表。

图 7-161. DIAG_MON_LSB_MBIAS 寄存器

7	6	5	4	3	2	1	0	
	DIAG_MON_LS	SB_MBIAS[3:0]		Channel[3:0]				
	R-00	000b		R-0001b				

表 7-163. DIAG_MON_LSB_MBIAS 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_MON_LSB_MBIAS[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0x1	通道 ID

7.2.60 DIAG_MON_MSB_IN1P 寄存器 (地址 = 0x5A) [复位 = 0x00]

图 7-162 中显示了 DIAG_MON_MSB_IN1P,表 7-164 中对此进行了介绍。

返回到汇总表。

图 7-162. DIAG_MON_MSB_IN1P 寄存器

7	6	5	4	3	2	1	0		
DIAG_MON_MSB_IN_CH1P[7:0]									
R-00000000b									

表 7-164. DIAG_MON_MSB_IN1P 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_IN_CH 1P[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节

7.2.61 DIAG_MON_LSB_IN1P 寄存器 (地址 = 0x5B) [复位 = 0x02]

图 7-163 中显示了 DIAG_MON_LSB_IN1P,表 7-165 中对此进行了介绍。

返回到汇总表。

图 7-163. DIAG_MON_LSB_IN1P 寄存器

7	6	5	4	3	2	1	0	
	DIAG_MON_LS	B_IN_CH1P[3:0]		Channel[3:0]				
	R-00	000b		R-0010b				

图 7-163. DIAG_MON_LSB_IN1P 寄存器 (续)

表 7-165. DIAG_MON_LSB_IN1P 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_MON_LSB_IN_CH1 P[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0x2	通道 ID

7.2.62 DIAG_MON_MSB_IN1M 寄存器 (地址 = 0x5C) [复位 = 0x00]

图 7-164 中显示了 DIAG_MON_MSB_IN1M,表 7-166 中对此进行了介绍。

返回到汇总表。

图 7-164. DIAG_MON_MSB_IN1M 寄存器

7 6 5 4 3 2 1 0									
DIAG_MON_MSB_IN_CH1N[7:0]									
R-00000000b									

表 7-166. DIAG_MON_MSB_IN1M 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_IN_CH 1N[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节

7.2.63 DIAG_MON_LSB_IN1M 寄存器 (地址 = 0x5D) [复位 = 0x03]

图 7-165 中显示了 DIAG_MON_LSB_IN1M,表 7-167 中对此进行了介绍。

返回到汇总表。

图 7-165. DIAG MON LSB IN1M 寄存器

7	6	5	4	3	2	1	0	
	DIAG_MON_LS	B_IN_CH1N[3:0]		Channel[3:0]				
	R-00	000b		R-0011b				

表 7-167. DIAG_MON_LSB_IN1M 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_MON_LSB_IN_CH1 N[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0x3	通道 ID

7.2.64 DIAG_MON_MSB_IN2P 寄存器 (地址 = 0x5E) [复位 = 0x00]

图 7-166 中显示了 DIAG_MON_MSB_IN2P,表 7-168 中对此进行了介绍。

返回到汇总表。

图 7-166. DIAG MON MSB IN2P 寄存器

7 6 5 4 3 2 1 0												
	DIAG_MON_MSB_IN_CH2P[7:0]											
	R-00000000b											

Copyright © 2024 Texas Instruments Incorporated

表 7-168. DIAG_MON_MSB_IN2P 寄存器字段说明

位	<u>t</u>	字段	类型	复位	说明		
7-0	U	DIAG_MON_MSB_IN_CH 2P[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节		

7.2.65 DIAG_MON_LSB_IN2P 寄存器 (地址 = 0x5F) [复位 = 0x04]

图 7-167 中显示了 DIAG_MON_LSB_IN2P,表 7-169 中对此进行了介绍。

返回到汇总表。

图 7-167. DIAG_MON_LSB_IN2P 寄存器

7	6	5	4	3	2	1	0	
	DIAG_MON_LS	B_IN_CH2P[3:0]		Channel[3:0]				
	R-00	000b		R-0100b				

表 7-169. DIAG_MON_LSB_IN2P 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_MON_LSB_IN_CH2 P[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0x4	通道 ID

7.2.66 DIAG_MON_MSB_IN2M 寄存器 (地址 = 0x60) [复位 = 0x00]

图 7-168 中显示了 DIAG MON MSB IN2M,表 7-170 中对此进行了介绍。

返回到汇总表。

图 7-168. DIAG_MON_MSB_IN2M 寄存器

7	6	5	4	3	2	1	0				
	DIAG_MON_MSB_IN_CH2N[7:0]										
	R-00000000b										

表 7-170. DIAG_MON_MSB_IN2M 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_IN_CH 2N[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节

7.2.67 DIAG_MON_LSB_IN2M 寄存器 (地址 = 0x61) [复位 = 0x05]

图 7-169 中显示了 DIAG_MON_LSB_IN2M,表 7-171 中对此进行了介绍。

返回到汇总表。

图 7-169. DIAG_MON_LSB_IN2M 寄存器

	7	6	5	4	3	2	1	0	
Г		DIAG_MON_LSI	B_IN_CH2N[3:0]		Channel[3:0]				
		R-00	000b		R-0101b				

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 157

表 7-171. DIAG MON LSB IN2M 寄存器字段说明

位	字段 类型 复		复位	说明
7-4	DIAG_MON_LSB_IN_CH2 N[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0x5	通道 ID

7.2.68 DIAG_MON_MSB_OUT1P 寄存器 (地址 = 0x62) [复位 = 0x00]

图 7-170 中显示了 DIAG_MON_MSB_OUT1P,表 7-172 中对此进行了介绍。 返回到汇总表。

图 7-170. DIAG_MON_MSB_OUT1P 寄存器

7	6	5	4	3	2	1	0		
DIAG_MON_MSB_OUT_CH1P[7:0]									
R-00000000b									

表 7-172. DIAG_MON_MSB_OUT1P 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_OUT_ CH1P[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节

7.2.69 DIAG_MON_LSB_OUT1P 寄存器 (地址 = 0x63) [复位 = 0x06]

图 7-171 中显示了 DIAG_MON_LSB_OUT1P,表 7-173 中对此进行了介绍。

返回到汇总表。

图 7-171. DIAG_MON_LSB_OUT1P 寄存器

7	6	5	4	3	2	1	0	
	DIAG_MON_LSB_	OUT_CH1P[3:0]		Channel[3:0]				
	R-00	00b			R-0′	110b		

表 7-173. DIAG_MON_LSB_OUT1P 寄存器字段说明

位	字段	类型	复位	说明
	DIAG_MON_LSB_OUT_C H1P[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0x6	通道 ID

7.2.70 DIAG_MON_MSB_OUT1M 寄存器 (地址 = 0x64) [复位 = 0x00]

图 **7-172** 中显示了 **DIAG_MON_MSB_OUT1M**,表 **7-174** 中对此进行了介绍。 返回到汇总表。

图 7-172. DIAG_MON_MSB_OUT1M 寄存器

7	6	5	4	3	2	1	0			
DIAG_MON_MSB_OUT_CH1N[7:0]										
	R-00000000b									

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

158 提交文档反馈

表 7-174. DIAG MON MSB OUT1M 寄存器字段说明

位	字段	类型	复位	说明		
7-0	DIAG_MON_MSB_OUT_	R	0x0	诊断 SAR 监控数据 MSB 字节		
	CH1N[7:0]					

7.2.71 DIAG_MON_LSB_OUT1M 寄存器(地址 = 0x65)[复位 = 0x07]

图 **7-173** 中显示了 **DIAG_MON_LSB_OUT1M**,表 **7-175** 中对此进行了介绍。 返回到汇总表。

图 7-173. DIAG_MON_LSB_OUT1M 寄存器

7	6	5	4	3	2	1	0	
	DIAG_MON_LSB	_OUT_CH1N[3:0]		Channel[3:0]				
	R-00	000b		R-0111b				

表 7-175. DIAG_MON_LSB_OUT1M 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_MON_LSB_OUT_C H1N[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0x7	通道 ID

7.2.72 DIAG_MON_MSB_OUT2P 寄存器 (地址 = 0x66) [复位 = 0x00]

图 7-174 中显示了 DIAG_MON_MSB_OUT2P,表 7-176 中对此进行了介绍。

返回到汇总表。

图 7-174. DIAG_MON_MSB_OUT2P 寄存器

7	6	5	4	3	2	1	0			
DIAG_MON_MSB_OUT_CH2P[7:0]										
R-00000000b										

表 7-176. DIAG_MON_MSB_OUT2P 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_OUT_ CH2P[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节

7.2.73 DIAG_MON_LSB_OUT2P 寄存器(地址 = 0x67) [复位 = 0x08]

图 7-175 中显示了 DIAG_MON_LSB_OUT2P,表 7-177 中对此进行了介绍。返回到汇总表。

图 7-175. DIAG_MON_LSB_OUT2P 寄存器

7	6	5	4	3	2	1	0	
	DIAG_MON_LSB	_OUT_CH2P[3:0]		Channel[3:0]				
	R-00	00b		R-1000b				

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

159

表 7-177. DIAG_MON_LSB_OUT2P 寄存器字段说明

位	字段	类型	复位	说明
	DIAG_MON_LSB_OUT_C H2P[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0x8	通道 ID

7.2.74 DIAG_MON_MSB_OUT2M 寄存器 (地址 = 0x68) [复位 = 0x00]

图 7-176 中显示了 DIAG_MON_MSB_OUT2M,表 7-178 中对此进行了介绍。 返回到汇总表。

图 7-176. DIAG_MON_MSB_OUT2M 寄存器

7	6	5	4	3	2	1	0		
DIAG_MON_MSB_OUT_CH2N[7:0]									
R-00000000b									

表 7-178. DIAG_MON_MSB_OUT2M 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_OUT_ CH2N[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节

7.2.75 DIAG_MON_LSB_OUT2M 寄存器(地址 = 0x69)[复位 = 0x09]

图 7-177 中显示了 DIAG_MON_LSB_OUT2M,表 7-179 中对此进行了介绍。

返回到汇总表。

图 7-177. DIAG_MON_LSB_OUT2M 寄存器

7	6	5	4	3	2	1	0	
	DIAG_MON_LSB_	OUT_CH2N[3:0]		Channel[3:0]				
	R-000	00b			R-10	001b		

表 7-179. DIAG_MON_LSB_OUT2M 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_MON_LSB_OUT_C H2N[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0x9	通道 ID

7.2.76 DIAG_MON_MSB_TEMP 寄存器 (地址 = 0x6A) [复位 = 0x00]

图 **7-178** 中显示了 **DIAG_MON_MSB_TEMP**,表 **7-180** 中对此进行了介绍。 返回到汇总表。

图 7-178. DIAG_MON_MSB_TEMP 寄存器

7	6	5	4	3	2	1	0			
DIAG_MON_MSB_TEMP[7:0]										
	R-00000000b									

Copyright © 2024 Texas Instruments Incorporated

English Data Sheet: SLASF34

160 提交文档反馈

表 7-180. DIAG MON MSB TEMP 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_TEMP[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节

7.2.77 DIAG_MON_LSB_TEMP 寄存器 (地址 = 0x6B) [复位 = 0x0A]

图 **7-179** 中显示了 **DIAG_MON_LSB_TEMP**,表 **7-181** 中对此进行了介绍。 返回到汇总表。

图 7-179. DIAG_MON_LSB_TEMP 寄存器

7	6	5	4	3	2	1	0	
	DIAG_MON_L	SB_TEMP[3:0]		Channel[3:0]				
	R-00	000b		R-1010b				

表 7-181. DIAG_MON_LSB_TEMP 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_MON_LSB_TEMP[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0xA	通道 ID

7.2.78 DIAG_MON_MSB_MBIAS_LOAD 寄存器 (地址 = 0x6C) [复位 = 0x00]

图 7-180 中显示了 DIAG_MON_MSB_MBIAS_LOAD,表 7-182 中对此进行了介绍。返回到汇总表。

图 7-180. DIAG_MON_MSB_MBIAS_LOAD 寄存器

7	6	5	4	3	2	1	0			
DIAG_MON_MSB_MBIAS_LOAD[7:0]										
	R-00000000b									

表 7-182. DIAG_MON_MSB_MBIAS_LOAD 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_MBIAS _LOAD[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节

7.2.79 DIAG_MON_LSB_MBIAS_LOAD 寄存器 (地址 = 0x6D) [复位 = 0x0B]

图 7-181 中显示了 DIAG_MON_LSB_MBIAS_LOAD,表 7-183 中对此进行了介绍。返回到汇总表。

图 7-181. DIAG_MON_LSB_MBIAS_LOAD 寄存器

	7	6	5	4	3	2	1	0	
Γ		DIAG_MON_LSB_	MBIAS_LOAD[3:0)]	Channel[3:0]				
Ī		R-00	000b		R-1011b				

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

161

表 7-183. DIAG_MON_LSB_MBIAS_LOAD 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_MON_LSB_MBIAS _LOAD[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0xB	通道 ID

7.2.80 DIAG_MON_MSB_AVDD 寄存器 (地址 = 0x6E) [复位 = 0x00]

图 **7-182** 中显示了 **DIAG_MON_MSB_AVDD**,表 **7-184** 中对此进行了介绍。 返回到汇总表。

图 7-182. DIAG_MON_MSB_AVDD 寄存器

7	6	5	4	3	2	1	0			
DIAG_MON_MSB_AVDD[7:0]										
	R-00000000b									

表 7-184. DIAG_MON_MSB_AVDD 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_AVDD[7:0]	R	0x0	诊断 SAR 监控数据 MSB 字节

7.2.81 DIAG_MON_LSB_AVDD 寄存器 (地址 = 0x6F) [复位 = 0x0C]

图 7-183 中显示了 DIAG_MON_LSB_AVDD,表 7-185 中对此进行了介绍。

返回到汇总表。

图 7-183. DIAG_MON_LSB_AVDD 寄存器

7	6	5	4	3	2	1	0	
DIAG_MON_LSB_AVDD[3:0]				Channel[3:0]				
R-0000b					R-11	00b		

表 7-185. DIAG_MON_LSB_AVDD 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_MON_LSB_AVDD[3:0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0xC	通道 ID

7.2.82 DIAG_MON_MSB_GPA 寄存器 (地址 = 0x70) [复位 = 0x00]

图 **7-184** 中显示了 **DIAG_MON_MSB_GPA**,表 **7-186** 中对此进行了介绍。 返回到汇总表。

图 7-184. DIAG_MON_MSB_GPA 寄存器

7	6	5	4	3	2	1	0
DIAG_MON_MSB_GPA[7:0]							
			R-0000	00000b			

Copyright © 2024 Texas Instruments Incorporated

162 *提交文档反馈* Product Folder Links: *TAC5411-Q1*

表 7-186. DIAG_MON_MSB_GPA 寄存器字段说明

位	字段	类型	复位	说明
7-0	DIAG_MON_MSB_GPA[7:	R	0x0	诊断 SAR 监控数据 MSB 字节
	0]			

7.2.83 DIAG_MON_LSB_GPA 寄存器 (地址 = 0x71) [复位 = 0x0D]

图 7-185 中显示了 DIAG_MON_LSB_GPA,表 7-187 中对此进行了介绍。

返回到汇总表。

图 7-185. DIAG_MON_LSB_GPA 寄存器

7	6	5	4	3	2	1	0	
	DIAG_MON_I	LSB_GPA[3:0]		Channel[3:0]				
	R-00	000b			R-11	01b		

表 7-187. DIAG_MON_LSB_GPA 寄存器字段说明

位	字段	类型	复位	说明
7-4	DIAG_MON_LSB_GPA[3: 0]	R	0x0	诊断 SAR 监控数据 LSB 半字节
3-0	Channel[3:0]	R	0xD	通道 ID

7.2.84 BOOST_CFG 寄存器 (地址 = 0x72) [复位 = 0x00]

图 7-186 中显示了 BOOST_CFG,表 7-188 中对此进行了介绍。

返回到汇总表。

图 7-186. BOOST_CFG 寄存器

7	6	5	4	3	2	1	0
BOOST_DIS	BOOST_OCPE N	BOOST_PDz_F LT	RESERVED	RESERVED		RESERVED	
R/W-0b	R/W-0b	R/W-0b	R-0b	R-0b		R-000b	

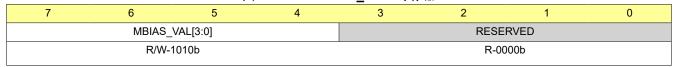
表 7-188. BOOST_CFG 寄存器字段说明

位	字段	类型	复位	说明	
7	BOOST_DIS	R/W	0x0	升压启用/禁用 0d = 内部升压启用 1d = 内部升压禁用/旁路	
6	BOOST_OCPEN	R/W	0x0	升压过流保护启用/禁用 0d = 升压 OCP 启用 1d = 升压 OCP 禁用	
5	BOOST_PDz_FLT	R/W	0x0	升压 PD 配置 Od = 如果 Micbias 由于故障而断电,升压断电 1d = 如果 Micbias 由于故障而断电,升压不断电	
4	RESERVED	R	0x0	保留位;仅写入复位值	
3	RESERVED	R	0x0	保留位;仅写入复位值	
2-0	RESERVED	R	0x0	保留位;仅写入复位值	

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈

163



7.2.85 MICBIAS_CFG 寄存器 (地址 = 0x73) [复位 = 0xA0]

图 7-187 中显示了 MICBIAS_CFG,表 7-189 中对此进行了介绍。

返回到汇总表。

图 7-187. MICBIAS_CFG 寄存器

表 7-189. MICBIAS_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-4	MBIAS_VAL[3:0]	R/W	0xA	MicBias 值
				0d = 麦克风偏置输出旁路至 BSTOUT/HVDD
				1d = 麦克风偏置设置为 3.0V
				2d = 麦克风偏置设置为 3.5V
				3d = 麦克风偏置设置为 4.0V
				4d = 麦克风偏置设置为 4.5V
				5d = 麦克风偏置设置为 5V
				6d = 麦克风偏置设置为 5.5V
				7d = 麦克风偏置设置为 6V
				8d = 麦克风偏置设置为 6.5V
				9d = 麦克风偏置设置为 7V
				10d = 麦克风偏置设置为 7.5V
				11d = 麦克风偏置设置为 8V
				12d = 麦克风偏置设置为 8.5V
				13d = 麦克风偏置设置为 9V
				14d = 麦克风偏置设置为 9.5V
				15d = 麦克风偏置设置为 10V
3-0	RESERVED	R	0x0	保留位;仅写入复位值

提交文档反馈 Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: TAC5411-Q1

164

7.3 Page_3 寄存器

表 7-190 列出了 Page_3 寄存器的存储器映射寄存器。表 7-190 中未列出的所有寄存器偏移地址都应视为保留的位置,并且不应修改寄存器内容。

表 7-190. PAGE_3 寄存器

地址	首字母缩写词	寄存器名称	复位值	部分
0x0	PAGE_CFG	器件页寄存器	0x00	节 7.3.1
0x1A	SASI_CFG0	辅助 ASI 配置寄存器 0	0x30	节 7.3.2
0x1B	SASI_TX_CFG0	SASI TX 配置寄存器 0	0x00	节 7.3.3
0x1C	SASI_TX_CFG1	SASI TX 配置寄存器 1	0x00	节 7.3.4
0x1D	SASI_TX_CFG2	SASI TX 配置寄存器 2	0x00	节 7.3.5
0x1E	SASI_TX_CH1_CFG	SASI TX 通道 1 配置寄存器	0x00	节 7.3.6
0x1F	SASI_TX_CH2_CFG	SASI TX 通道 2 配置寄存器	0x01	节 7.3.7
0x20	SASI_TX_CH3_CFG	SASI TX 通道 3 配置寄存器	0x02	节 7.3.8
0x21	SASI_TX_CH4_CFG	SASI TX 通道 4 配置寄存器	0x03	节 7.3.9
0x22	SASI_TX_CH5_CFG	SASI TX 通道 5 配置寄存器	0x04	节 7.3.10
0x23	SASI_TX_CH6_CFG	SASI TX 通道 6 配置寄存器	0x05	节 7.3.11
0x24	SASI_TX_CH7_CFG	SASI TX 通道 7 配置寄存器	0x06	节 7.3.12
0x25	SASI_TX_CH8_CFG	SASI TX 通道 8 配置寄存器	0x07	节 7.3.13
0x26	SASI_RX_CFG0	SASI RX 配置寄存器 0	0x00	节 7.3.14
0x27	SASI_RX_CFG1	SASI RX 配置寄存器 1	0x00	节 7.3.15
0x28	SASI_RX_CH1_CFG	SASI RX 通道 1 配置寄存器	0x00	节 7.3.16
0x29	SASI_RX_CH2_CFG	SASI RX 通道 2 配置寄存器	0x01	节 7.3.17
0x2A	SASI_RX_CH3_CFG	SASI RX 通道 3 配置寄存器	0x02	节 7.3.18
0x2B	SASI_RX_CH4_CFG	SASI RX 通道 4 配置寄存器	0x03	节 7.3.19
0x2C	SASI_RX_CH5_CFG	SASI RX 通道 5 配置寄存器	0x04	节 7.3.20
0x2D	SASI_RX_CH6_CFG	SASI RX 通道 6 配置寄存器	0x05	节 7.3.21
0x2E	SASI_RX_CH7_CFG	SASI RX 通道 7 配置寄存器	0x06	节 7.3.22
0x2F	SASI_RX_CH8_CFG	SASI RX 通道 8 配置寄存器	0x07	节 7.3.23
0x32	CLK_CFG12	时钟配置寄存器 12	0x00	节 7.3.24
0x33	CLK_CFG13		0x00	节 7.3.25
0x34	CLK_CFG14	时钟配置寄存器 14	0x10	节 7.3.26
0x35	CLK_CFG15	时钟配置寄存器 15	0x01	节 7.3.27
0x36	CLK_CFG16	时钟配置寄存器 16	0x00	节 7.3.28
0x37	CLK_CFG17	时钟配置寄存器 17	0x00	节 7.3.29
0x38	CLK_CFG18	时钟配置寄存器 18	80x0	节 7.3.30
0x39	CLK_CFG19	时钟配置寄存器 19	0x20	节 7.3.31
0x3A	CLK_CFG20	时钟配置寄存器 20	0x04	节 7.3.32
0x3B	CLK_CFG21	时钟配置寄存器 21	0x00	节 7.3.33
0x3C	CLK_CFG22	时钟配置寄存器 18	0x01	节 7.3.34
0x3D	CLK_CFG23	时钟配置寄存器 18	0x01	节 7.3.35
0x3E	CLK_CFG24	时钟配置寄存器 21	0x01	节 7.3.36
0x44	CLK_CFG30		0x00	节 7.3.37
0x45	CLK_CFG31		0x00	节 7.3.38

English Data Sheet: SLASF34

表 7-190. PAGE 3 寄存器 (续)

地址	首字母缩写词	寄存器名称	复位值	部分
0x46	CLKOUT_CFG1	CLKOUT 配置寄存器 1	0x00	节 7.3.39
0x47	CLKOUT_CFG2	CLKOUT 配置寄存器 2	0x01	节 7.3.40
0x48	BSTCLK_CFG1	升压时钟配置寄存器 1	0x00	节 7.3.41
0x49	SARCLK_CFG1	SAR 时钟配置寄存器 1	0x00	节 7.3.42
0x5B	ADC_OVRLD_FLAG		0x00	节 7.3.43

7.3.1 PAGE_CFG 寄存器 (地址 = 0x0) [复位 = 0x00]

图 7-188 中显示了 PAGE_CFG,表 7-191 中对此进行了介绍。

返回到汇总表。

器件存储器映射分为多个页面。该寄存器设置页。

图 7-188. PAGE_CFG 寄存器

7	6	5	4	3	2	1	0		
	PAGE[7:0]								
	R/W-00000000b								

表 7-191. PAGE_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-0	PAGE[7:0]	R/W		这些位设置器件页。 Od = 第 0 页
				1d = 第 1 页 2d 至 254d = 第 2 页至第 254 页 255d = 第 255 页

7.3.2 SASI_CFG0 寄存器 (地址 = 0x1A) [复位 = 0x30]

图 7-189 中显示了 SASI_CFG0,表 7-192 中对此进行了介绍。

返回到汇总表。

该寄存器是 ASI 配置寄存器 0。

图 7-189. SASI_CFG0 寄存器

7	6	5	4	3	2	1	0
SASI_FOR	RMAT[1:0]	SASI_WL	EN[1:0]	SASI_FSYNC_ POL	SASI_BCLK_P OL	SASI_BUS_ER R	SASI_BUS_ER R_RCOV
R/W	-00b	R/W-	11b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-192. SASI_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7-6	SASI_FORMAT[1:0]	R/W	0x0	辅助 ASI 协议格式。
				0d = TDM 模式
				1d = I ² S 模式
				2d = LJ (左平衡) 模式
				3d = 保留; 不使用

Copyright © 2024 Texas Instruments Incorporated

166

表 7-192. SASI_CFG0 寄存器字段说明 (续)

位	字段	类型	复位	说明
5-4	SASI_WLEN[1:0]	R/W	0x3	辅助 ASI 字长或时隙长度。 0d = 16 位 (建议将此设置与 10k Ω 输入阻抗配置一起使用) 1d = 20 位 2d = 24 位 3d = 32 位
3	SASI_FSYNC_POL	R/W	0x0	ASI FSYNC 极性(仅适用于 SASI 协议)。 Od = 符合标准协议的默认极性 1d = 相对于标准协议的反向极性
2	SASI_BCLK_POL	R/W	0x0	ASI BCLK 极性(仅适用于 SASI 协议)。 0d = 符合标准协议的默认极性 1d = 相对于标准协议的反向极性
1	SASI_BUS_ERR	R/W	0x0	ASI 总线错误检测。 0d = 启用总线错误检测 1d = 禁用总线错误检测
0	SASI_BUS_ERR_RCOV	R/W	0x0	ASI 总线错误自动恢复。 0d = 启用总线错误恢复后自动恢复 1d = 禁用总线错误恢复后自动恢复,并在主机配置器件之前保持断电状态

7.3.3 SASI_TX_CFG0 寄存器 (地址 = 0x1B) [复位 = 0x00]

图 7-190 中显示了 SASI_TX_CFG0,表 7-193 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI TX 配置寄存器 0。

图 7-190. SASI_TX_CFG0 寄存器

7	6	5	4	3	2	1	0
SASI_TX_EDG E	SASI_TX_FILL	SASI_TX_LSB	SASI_TX_KE	EPER[1:0]	SASI_TX_USE _INT_FSYNC	SASI_TX_USE _INT_BCLK	SASI_TDM_PU LSE_WIDTH
R/W-0b	R/W-0b	R/W-0b	R/W-0	00b	R/W-0b	R/W-0b	R/W-0b

表 7-193. SASI TX CFG0 寄存器字段说明

	次: 100: 07:01_17 <u></u>								
位	字段	类型	复位	说明					
7	SASI_TX_EDGE	R/W	0x0	辅助 ASI 数据输出(在主要和辅助数据引脚上)发送边沿。 0d = 基于 SASI_BCLK_POL 中协议配置设置的默认边沿 1d = 相对于默认边沿设置的反相随后边沿(半个周期延迟)					
6	SASI_TX_FILL	R/W	0x0	任何未使用周期的辅助 ASI 数据输出(在主要和辅助数据引脚上) 0d = 针对未使用周期始终发送 0 1d = 针对未使用周期始终使用高阻态					
5	SASI_TX_LSB	R/W	0x0	用于 LSB 传输的辅助 ASI 数据输出(在主要和辅助数据引脚上)。 0d =在一个完整周期内发送 LSB 1d = 在前半个周期内发送 LSB,在后半个周期内发送高阻态					
4-3	SASI_TX_KEEPER[1:0]	R/W	0x0	辅助 ASI 数据输出(在主要和辅助数据引脚上)总线保持器。 0d = 始终禁用总线保持器 1d = 始终启用总线保持器 2d = 总线保持器仅在 LSB 传输期间启用一个周期 3d = 总线保持器仅在 LSB 传输期间启用一个半周期					
2	SASI_TX_USE_INT_FSY NC	R/W	0x0	辅助 ASI 使用内部 FSYNC 在控制器模式配置中根据情况生成输出数据。 Od = 使用外部 FSYNC 进行 ASI 协议数据生成 1d = 使用内部 FSYNC 进行 ASI 协议数据生成					

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 167

表 7-193. SASI_TX_CFG0 寄存器字段说明 (续)

位	字段	类型	复位	说明
1	SASI_TX_USE_INT_BCL K	R/W		辅助 ASI 使用内部 BCLK 在控制器模式配置中生成输出数据。 0d = 使用外部 BCLK 进行 ASI 协议数据生成 1d = 使用内部 BCLK 进行 ASI 协议数据生成
0	SASI_TDM_PULSE_WID TH	R/W	0x0	TDM 格式的辅助 ASI fsync 脉冲宽度。 0d = Fsync 脉冲为 1 个 bclk 周期宽度 1d = Fsync 脉冲为 2 个 bclk 周期宽度

7.3.4 SASI_TX_CFG1 寄存器 (地址 = 0x1C) [复位 = 0x00]

图 7-191 中显示了 SASI_TX_CFG1,表 7-194 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI TX 配置寄存器 1。

图 7-191. SASI_TX_CFG1 寄存器

_								
	7	6	5	4	3	2	1	0
		RESERVED			SA	SI_TX_OFFSET[4	:0]	
		R-000b				R/W-00000b		

表 7-194. SASI_TX_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-5	RESERVED	R	0x0	保留位;仅写入复位值
4-0	SASI_TX_OFFSET[4:0]	R/W	0x0	辅助 ASI 输出数据 MSB 时隙 0 偏移 (在主要和辅助数据引脚上)。 0d = ASI 数据 MSB 位置没有偏移,并符合标准协议 1d = 一个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0) 偏移 2d = 两个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0) 的偏移 3d 至 30d = 根据配置分配的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0) 偏移 31d = 31 个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I ² S,LJ 模式是左侧和右侧时隙 0) 偏移

7.3.5 SASI_TX_CFG2 寄存器(地址 = 0x1D)[复位 = 0x00]

图 7-192 中显示了 SASI_TX_CFG2,表 7-195 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI TX 配置寄存器 2。

图 7-192. SASI_TX_CFG2 寄存器

			_				
7	6	5	4	3	2	1	0
SASI_TX_CH8_ SEL	SASI_TX_CH7_ SEL	SASI_TX_CH6_ SEL	SASI_TX_CH5_ SEL	SASI_TX_CH4_ SEL	SASI_TX_CH3_ SEL	SASI_TX_CH2_ SEL	SASI_TX_CH1_ SEL
R/W-0b							

表 7-195. SASI_TX_CFG2 寄存器字段说明

仓	Ì	字段	类型	复位	说明
7	7	SASI_TX_CH8_SEL	R/W		辅助 ASI 输出通道 8 选择。 0d = 辅助 ASI 通道 8 输出在 DOUT 上 1d = 辅助 ASI 通道 8 输出在 DOUT2 上

Copyright © 2024 Texas Instruments Incorporated

表 7-195. SASI_TX_CFG2 寄存器字段说明 (续)

位	字段	类型	复位	说明
6	SASI_TX_CH7_SEL	R/W	0x0	辅助 ASI 输出通道 7 选择。 0d = 辅助 ASI 通道 7 输出在 DOUT 上 1d = 辅助 ASI 通道 7 输出在 DOUT2 上
5	SASI_TX_CH6_SEL	R/W	0x0	辅助 ASI 输出通道 6 选择。 0d = 辅助 ASI 通道 6 输出在 DOUT 上 1d = 辅助 ASI 通道 6 输出在 DOUT2 上
4	SASI_TX_CH5_SEL	R/W	0x0	辅助 ASI 输出通道 5 选择。 0d = 辅助 ASI 通道 5 输出在 DOUT 上 1d = 辅助 ASI 通道 5 输出在 DOUT2 上
3	SASI_TX_CH4_SEL	R/W	0x0	辅助 ASI 输出通道 4 选择。 0d = 辅助 ASI 通道 4 输出在 DOUT 上 1d = 辅助 ASI 通道 4 输出在 DOUT2 上
2	SASI_TX_CH3_SEL	R/W	0x0	辅助 ASI 输出通道 3 选择。 0d = 辅助 ASI 通道 3 输出在 DOUT 上 1d = 辅助 ASI 通道 3 输出在 DOUT2 上
1	SASI_TX_CH2_SEL	R/W	0x0	辅助 ASI 输出通道 2 选择。 0d = 辅助 ASI 通道 2 输出在 DOUT 上 1d = 辅助 ASI 通道 2 输出在 DOUT2 上
0	SASI_TX_CH1_SEL	R/W	0x0	辅助 ASI 输出通道 1 选择。 0d = 辅助 ASI 通道 1 输出在 DOUT 上 1d = 辅助 ASI 通道 1 输出在 DOUT2 上

7.3.6 SASI_TX_CH1_CFG 寄存器 (地址 = 0x1E) [复位 = 0x00]

图 7-193 中显示了 SASI_TX_CH1_CFG,表 7-196 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI TX 通道 1 配置寄存器。

图 7-193. SASI_TX_CH1_CFG 寄存器

7	6	5	4	3	2	1	0
RESE	RVED	SASI_TX_CH1_ CFG		SASI_T	X_CH1_SLOT_N	UM[4:0]	
R-	00b	R/W-0b			R/W-00000b		

表 7-196. SASI_TX_CH1_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5	SASI_TX_CH1_CFG	R/W	0x0	辅助 ASI 输出通道 1 配置。 0d = 辅助 ASI 通道 1 输出处于三态条件 1d = 辅助 ASI 通道 1 输出对应于 ADC 通道 1 数据
4-0	SASI_TX_CH1_SLOT_NU M[4:0]	R/W	0x0	辅助 ASI 输出通道 1 时隙分配。 0d = TDM 是时隙 0 或 I ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S , LJ 是右侧时隙 15

7.3.7 SASI_TX_CH2_CFG 寄存器 (地址 = 0x1F) [复位 = 0x01]

图 7-194 中显示了 SASI_TX_CH2_CFG,表 7-197 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI TX 通道 2 配置寄存器。

图 7-194. SASI TX CH2 CFG 寄存器

7	6	5	4	3	2	1	0
RESE	RVED	SASI_TX_CH2_ CFG		SASI_1	TX_CH2_SLOT_N	UM[4:0]	
R-0	00b	R/W-0b			R/W-00001b		

表 7-197. SASI_TX_CH2_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5	SASI_TX_CH2_CFG	R/W	0x0	辅助 ASI 输出通道 2 配置。 0d = 辅助 ASI 通道 2 输出处于三态条件 1d = 辅助 ASI 通道 2 输出对应于 ADC 通道 2 数据
4-0	SASI_TX_CH2_SLOT_NU M[4:0]	R/W	0x1	辅助 ASI 输出通道 2 时隙分配。 Od = TDM 是时隙 0 或 I ² S, LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S, LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S, LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S, LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S, LJ 是右侧时隙 15

7.3.8 SASI_TX_CH3_CFG 寄存器(地址 = 0x20)[复位 = 0x02]

图 7-195 中显示了 SASI_TX_CH3_CFG,表 7-198 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI TX 通道 3 配置寄存器。

图 7-195. SASI TX CH3 CFG 寄存器

				_			
7	6	5	4	3	2	1	0
RESERVED	SASI_TX_C	:H3_CFG[1:0]		SASI_T	X_CH3_SLOT_N	UM[4:0]	
R-0b	R/V	V-00b			R/W-00010b		

表 7-198. SASI_TX_CH3_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	SASI_TX_CH3_CFG[1:0]	R/W		辅助 ASI 输出通道 3 配置。 0d = 辅助 ASI 通道 3 输出处于三态条件 1d = 辅助 ASI 通道 3 输出对应于 ADC 通道 3 数据 2d = 辅助 ASI 通道 3 输出对应于 VBAT 数据 3d = 保留

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAC5411-Q1*

表 7-198. SASI TX CH3 CFG 寄存器字段说明 (续)

	• •			
位	字段	类型	复位	说明
4-0	SASI_TX_CH3_SLOT_NU M[4:0]	R/W		辅助 ASI 输出通道 3 时隙分配。 0d = TDM 是时隙 0 或 I ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S , LJ 是右侧时隙 1

7.3.9 SASI_TX_CH4_CFG 寄存器 (地址 = 0x21) [复位 = 0x03]

图 7-196 中显示了 SASI_TX_CH4_CFG,表 7-199 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI TX 通道 4 配置寄存器。

图 7-196. SASI_TX_CH4_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	SASI_TX_C	H4_CFG[1:0]		SASI_T	X_CH4_SLOT_N	JM[4:0]	
R-0b	R/W	/-00b			R/W-00011b		

表 7-199. SASI_TX_CH4_CFG 寄存器字段说明

位	字段	类型	复位	一 说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	SASI_TX_CH4_CFG[1:0]	R/W	0x0	辅助 ASI 输出通道 4 配置。 0d = 辅助 ASI 通道 4 输出处于三态条件 1d = 辅助 ASI 通道 4 输出对应于 ADC 通道 4 数据 2d = 辅助 ASI 通道 4 输出对应于 TEMP 数据 3d = 保留
4-0	SASI_TX_CH4_SLOT_NU M[4:0]	R/W	0x3	辅助 ASI 输出通道 4 时隙分配。 0d = TDM 是时隙 0 或 l ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S , LJ 是右侧时隙 15

7.3.10 SASI_TX_CH5_CFG 寄存器 (地址 = 0x22) [复位 = 0x04]

图 7-197 中显示了 SASI_TX_CH5_CFG,表 7-200 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI TX 通道 5 配置寄存器。

图 7-197. SASI TX CH5 CFG 寄存器

				_			
7	6	5	4	3	2	1	0
RESERVED	SASI_TX_C	H5_CFG[1:0]		SASI_	TX_CH5_SLOT_NU	JM[4:0]	
R-0b	R/W	/-00b			R/W-00100b		

表 7-200. SASI_TX_CH5_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	SASI_TX_CH5_CFG[1:0]	R/W	0x0	辅助 ASI 输出通道 5 配置。 0d = 辅助 ASI 通道 5 输出处于三态条件 1d = 辅助 ASI 通道 5 输出对应于 ASI 输入通道 1 环回数据 2d = 辅助 ASI 通道 5 输出对应于回声基准通道 1 数据 3d = 保留
4-0	SASI_TX_CH5_SLOT_NU M[4:0]	R/W	0x4	辅助 ASI 输出通道 5 时隙分配。 Od = TDM 是时隙 0 或 I ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S , LJ 是右侧时隙 15

7.3.11 SASI_TX_CH6_CFG 寄存器 (地址 = 0x23) [复位 = 0x05]

图 7-198 中显示了 SASI_TX_CH6_CFG,表 7-201 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI TX 通道 6 配置寄存器。

图 7-198. SASI_TX_CH6_CFG 寄存器

7	6	5	4	3	2	1	0		
RESERVED	SASI_TX_CH6_CFG[1:0]			SASI_TX_CH6_SLOT_NUM[4:0]					
R-0b	R/W	/-00b			R/W-00101b				

表 7-201. SASI_TX_CH6_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	SASI_TX_CH6_CFG[1:0]	R/W	0x0	辅助 ASI 输出通道 6 配置。 0d = 辅助 ASI 通道 6 输出处于三态条件 1d = 辅助 ASI 通道 6 输出对应于 ASI 输入通道 2 环回数据 2d = 辅助 ASI 通道 6 输出对应于回声基准通道 2 数据 3d = 保留
4-0	SASI_TX_CH6_SLOT_NU M[4:0]	R/W	0x5	辅助 ASI 输出通道 6 时隙分配。 0d = TDM 是时隙 0 或 I ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S , LJ 是右侧时隙 15

7.3.12 SASI_TX_CH7_CFG 寄存器 (地址 = 0x24) [复位 = 0x06]

图 7-199 中显示了 SASI_TX_CH7_CFG,表 7-202 中对此进行了介绍。

返回到汇总表。

Copyright © 2024 Texas Instruments Incorporated

172 *提交文档反馈* Product Folder Links: *TAC5411-Q1*

该寄存器是 SASI TX 通道 7 配置寄存器。

图 7-199. SASI_TX_CH7_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	SASI_TX_C	H7_CFG[1:0]		SASI_T	X_CH7_SLOT_N	UM[4:0]	
R-0b	R/W	/-00b			R/W-00110b		

表 7-202. SASI TX CH7 CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	SASI_TX_CH7_CFG[1:0]	R/W	0x0	辅助 ASI 输出通道 7 配置。 0d = 辅助 ASI 通道 7 输出处于三态条件 1d = 辅助 ASI 通道 7 输出对应于 {VBAT_WLby2, TEMP_WLby2} 2d = 辅助 ASI 通道 7 输出对应于 {echo_ref_ch1_wlby2, echo_ref_ch2_wlby2} 3d = 保留
4-0	SASI_TX_CH7_SLOT_NU M[4:0]	R/W	0x6	辅助 ASI 输出通道 7 时隙分配。 0d = TDM 是时隙 0 或 I ² S, LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S, LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S, LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S, LJ 是左侧时隙 0 17d = TDM 是时隙 17 或 I ² S, LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S, LJ 是右侧时隙 15

7.3.13 SASI_TX_CH8_CFG 寄存器 (地址 = 0x25) [复位 = 0x07]

图 7-200 中显示了 SASI_TX_CH8_CFG,表 7-203 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI TX 通道 8 配置寄存器。

图 7-200. SASI TX CH8 CFG 寄存器

	<u> </u>									
7	6	5	4	3	2	1	0			
RESERVED		SASI_TX_CH8_ CFG		SASI_T	X_CH8_SLOT_N	UM[4:0]				
R-00b		R/W-0b			R/W-00111b					

表 7-203. SASI_TX_CH8_CFG 寄存器字段说明

位	字段	类型	复位	说明		
7-6	RESERVED	RVED R 0x0		保留位;仅写入复位值		
5	SASI_TX_CH8_CFG	R/W		辅助 ASI 输出通道 8 配置。 0d = 辅助 ASI 通道 8 输出处于三态条件 1d = 辅助 ASI 通道 8 输出对应于 ICLA 数据		

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 173

表 7-203. SASI TX CH8 CFG 寄存器字段说明 (续)

位	字段	类型	复位	说明
4-0	SASI_TX_CH8_SLOT_NU M[4:0]	R/W		辅助 ASI 输出通道 8 时隙分配。 0d = TDM 是时隙 0 或 I ² S , LJ 是左侧时隙 0
				1d = TDM 是时隙 1 或 l ² S, LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定
				15d = TDM 是时隙 15 或 I ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S , LJ 是右侧时隙 0
				17d = TDM 是时隙 17 或 I ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S , LJ 是右侧时隙 15

7.3.14 SASI_RX_CFG0 寄存器 (地址 = 0x26) [复位 = 0x00]

图 7-201 中显示了 SASI_RX_CFG0,表 7-204 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI RX 配置寄存器 0。

图 7-201. SASI_RX_CFG0 寄存器

7	6	5	4	3	2	1	0
SASI_RX_EDG E	SASI_RX_USE _INT_FSYNC	SASI_RX_USE _INT_BCLK		SA	ASI_RX_OFFSET[4:0]	
R/W-0b	R/W-0b	R/W-0b			R/W-00000b		

表 7-204. SASI_RX_CFG0 寄存器字段说明

位	字段	类型	复位	说明
7	SASI_RX_EDGE	R/W	0x0	辅助 ASI 数据输入(在主要和辅助数据引脚上)接收边沿。 Od = 基于位 2 (BCLK_POL) 中协议配置设置的默认边沿 1d = 相对于默认边沿设置的反相随后边沿(半个周期延迟)
6	SASI_RX_USE_INT_FSY NC	R/W	0x0	辅助 ASI 使用内部 FSYNC 在控制器模式配置中根据情况锁存输入数据。 Od = 使用外部 FSYNC 进行 ASI 协议数据锁存 1d = 使用内部 FSYNC 进行 ASI 协议数据锁存
5	SASI_RX_USE_INT_BCL K	R/W	0x0	辅助 ASI 使用内部 BCLK 在控制器模式配置中锁存输入数据。 Od = 使用外部 BCLK 进行 ASI 协议数据锁存 1d = 使用内部 BCLK 进行 ASI 协议数据锁存
4-0	SASI_RX_OFFSET[4:0]	R/W	0x0	辅助 ASI 输入数据 MSB 时隙 0 偏移 (在主要和辅助数据引脚上)。 0d = ASI 数据 MSB 位置没有偏移,并符合标准协议 1d = 一个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I^2 S , LJ 模式是左侧和右侧时隙 0) 偏移 2d = 两个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I^2 S , LJ 模式是左侧和右侧时隙 0) 的偏移 3d 至 30d = 根据配置分配的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I^2 S , LJ 模式是左侧和右侧时隙 0) 偏移 31d = 31 个 BCLK 周期相对于标准协议的 ASI 数据 MSB 位置 (TDM 模式是时隙 0 或 I^2 S , LJ 模式是左侧和右侧时隙 0) 偏移

7.3.15 SASI_RX_CFG1 寄存器 (地址 = 0x27) [复位 = 0x00]

图 7-202 中显示了 SASI_RX_CFG1,表 7-205 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI RX 配置寄存器 1。

Copyright © 2024 Texas Instruments Incorporated

图 7-202. SASI RX CFG1 寄存器

7	6	5	4	3	2	1	0
SASI_RX_CH8 _SEL	SASI_RX_CH7 _SEL	SASI_RX_CH6 _SEL	SASI_RX_CH5 _SEL	SASI_RX_CH4 _SEL	SASI_RX_CH3 _SEL	SASI_RX_CH2 _SEL	SASI_RX_CH1 _SEL
R/W-0b							

表 7-205. SASI RX CFG1 寄存器字段说明

		·p¢00	,	OIOI #11#1 X W Y		
位	字段	类型	复位	说明		
7	SASI_RX_CH8_SEL	R/W	0x0	辅助 ASI 输入通道 8 选择。 0d = 辅助 ASI 通道 8 输入在 DIN 上 1d = 辅助 ASI 通道 8 输入在 DIN2 上		
6	SASI_RX_CH7_SEL	R/W	0x0	辅助 ASI 输入通道 7 选择。 0d = 辅助 ASI 通道 7 输入在 DIN 上 1d = 辅助 ASI 通道 7 输入在 DIN2 上		
5	SASI_RX_CH6_SEL	R/W	0x0	辅助 ASI 输入通道 6 选择。 0d = 辅助 ASI 通道 6 输入在 DIN 上 1d = 辅助 ASI 通道 6 输入在 DIN2 上		
4	SASI_RX_CH5_SEL	R/W	0x0	辅助 ASI 输入通道 5 选择。 0d = 辅助 ASI 通道 5 输入在 DIN 上 1d = 辅助 ASI 通道 5 输入在 DIN2 上		
3	SASI_RX_CH4_SEL	R/W	0x0	辅助 ASI 输入通道 4 选择。 0d = 辅助 ASI 通道 4 输入在 DIN 上 1d = 辅助 ASI 通道 4 输入在 DIN2 上		
2	SASI_RX_CH3_SEL	R/W	0x0	辅助 ASI 输入通道 3 选择。 0d = 辅助 ASI 通道 3 输入在 DIN 上 1d = 辅助 ASI 通道 3 输入在 DIN2 上		
1	SASI_RX_CH2_SEL	R/W	0x0	辅助 ASI 输入通道 2 选择。 0d = 辅助 ASI 通道 2 输入在 DIN 上 1d = 辅助 ASI 通道 2 输入在 DIN2 上		
0	SASI_RX_CH1_SEL	R/W	0x0	辅助 ASI 输入通道 1 选择。 0d = 辅助 ASI 通道 1 输入在 DIN 上 1d = 辅助 ASI 通道 1 输入在 DIN2 上		

7.3.16 SASI_RX_CH1_CFG 寄存器 (地址 = 0x28) [复位 = 0x00]

图 7-203 中显示了 SASI_RX_CH1_CFG,表 7-206 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI RX 通道 1 配置寄存器。

图 7-203. SASI_RX_CH1_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED		SASI_RX_CH1 _CFG		SASI_R	X_CH1_SLOT_N	UM[4:0]	
R-0	00b	R/W-0b			R/W-00000b		

表 7-206. SASI_RX_CH1_CFG 寄存器字段说明

位	字段	类型	复位	说明	
7-6	RESERVED	R	0x0	0x0 保留位;仅写入复位值	
5	SASI_RX_CH1_CFG	R/W		辅助 ASI 输入通道 1 配置。 0d = 禁用辅助 ASI 通道 1 输入 1d = 辅助 ASI 通道 1 输入对应于 DAC 通道 1 数据	

表 7-206. SASI_RX_CH1_CFG 寄存器字段说明 (续)

位	字段	类型	复位	说明
4-0	SASI_RX_CH1_SLOT_N	R/W	0x0	辅助 ASI 输入通道 1 时隙分配。
	UM[4:0]			0d = TDM 是时隙 0 或 I ² S, LJ 是左侧时隙 0
				1d = TDM 是时隙 1 或 I ² S, LJ 是左侧时隙 1
				2d 至 14d = 分配的时隙视配置而定
				15d = TDM 是时隙 15 或 I ² S,LJ 是左侧时隙 15
				16d = TDM 是时隙 16 或 I ² S, LJ 是右侧时隙 0
				17d = TDM 是时隙 17 或 I ² S, LJ 是右侧时隙 1
				18d 至 30d = 分配的时隙视配置而定
				31d = TDM 是时隙 31 或 I ² S,LJ 是右侧时隙 15

7.3.17 SASI_RX_CH2_CFG 寄存器 (地址 = 0x29) [复位 = 0x01]

图 7-204 中显示了 SASI_RX_CH2_CFG,表 7-207 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI RX 通道 2 配置寄存器。

图 7-204. SASI_RX_CH2_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED		SASI_RX_CH2 _CFG		SASI_R	X_CH2_SLOT_N	UM[4:0]	
R-	00b	R/W-0b			R/W-00001b		

表 7-207. SASI_RX_CH2_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5	SASI_RX_CH2_CFG	R/W 0x0 辅助 ASI 输入通道 2 配置。 0d = 禁用辅助 ASI 通道 2 输入 1d = 辅助 ASI 通道 2 输入对应于 DAC 通道 2 数据		· · · · · · · · · · · · · · · · · ·
4-0	SASI_RX_CH2_SLOT_N UM[4:0]	R/W	0x1	輔助 ASI 输入通道 2 时隙分配。 0d = TDM 是时隙 0 或 l ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S , LJ 是右侧时隙 15

7.3.18 SASI_RX_CH3_CFG 寄存器 (地址 = 0x2A) [复位 = 0x02]

图 7-205 中显示了 SASI_RX_CH3_CFG,表 7-208 中对此进行了介绍。

返回到汇总表。

176

该寄存器是 SASI RX 通道 3 配置寄存器。

图 7-205. SASI RX CH3 CFG 寄存器

		* *		-	• • • • • • • • • • • • • • • • • • • •		
7	6	5	4	3	2	1	0
RESE	RVED	SASI_RX_CH3 _CFG		SASI_F	RX_CH3_SLOT_N	UM[4:0]	
R-0	00b	R/W-0b			R/W-00010b		

Copyright © 2024 Texas Instruments Incorporated

表 7-208. SASI RX CH3 CFG 寄存器字段说明

		•		10_01 0 14 14 14 10 00 14		
位	字段	类型	复位	说明		
7-6	RESERVED	R	0x0	保留位;仅写入复位值		
5	SASI_RX_CH3_CFG	R/W	0x0	辅助 ASI 输入通道 3 配置。 0d = 禁用辅助 ASI 通道 3 输入 1d = 辅助 ASI 通道 3 输入对应于 DAC 通道 3 数据		
4-0	SASI_RX_CH3_SLOT_N UM[4:0]	R/W	0x2	辅助 ASI 输入通道 3 时隙分配。 0d = TDM 是时隙 0 或 I ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S , LJ 是右侧时隙 15		

7.3.19 SASI_RX_CH4_CFG 寄存器 (地址 = 0x2B) [复位 = 0x03]

图 7-206 中显示了 SASI_RX_CH4_CFG,表 7-209 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI RX 通道 4 配置寄存器。

图 7-206. SASI_RX_CH4_CFG 寄存器

			_				
7	6	5	4	3	2	1	0
RESI	RESERVED			SASI_R	RX_CH4_SLOT_N	UM[4:0]	
R-	·00b	R/W-0b			R/W-00011b		

表 7-209. SASI_RX_CH4_CFG 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5	SASI_RX_CH4_CFG	R/W	R/W 0x0 辅助 ASI 输入通道 4 配置。 0d = 禁用辅助 ASI 通道 4 输入 1d = 辅助 ASI 通道 4 输入对应于 DAC 通道 4 数据	
4-0	SASI_RX_CH4_SLOT_N UM[4:0]	R/W	0x3	輔助 ASI 输入通道 4 时隙分配。 0d = TDM 是时隙 0 或 l ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S , LJ 是右侧时隙 15

7.3.20 SASI_RX_CH5_CFG 寄存器 (地址 = 0x2C) [复位 = 0x04]

图 7-207 中显示了 SASI_RX_CH5_CFG,表 7-210 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI RX 通道 5 配置寄存器。

图 7-207. SASI_RX_CH5_CFG 寄存器

7	6	5	4	3	2	1	0

图 7-207. SASI_RX_CH5_CFG 寄存器 (续)

RESERV	ED SASI_RX_CH5_CFG[1:0]	SASI_RX_CH5_SLOT_NUM[4:0]
R-0b	R/W-00b	R/W-00100b

表 7-210. SASI_RX_CH5_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	RVED R 0x0		保留位;仅写入复位值
6-5	SASI_RX_CH5_CFG[1:0] R/W 0x0		0x0	辅助 ASI 输入通道 5 配置。 0d = 禁用辅助 ASI 通道 5 输入 1d = 辅助 ASI 通道 5 输入对应于 DAC 通道 5 数据 2d = 辅助 ASI 通道 5 输入对应于 ADC 通道 1 输出环回 3d = 保留
4-0	SASI_RX_CH5_SLOT_N UM[4:0]	R/W	0x4	輔助 ASI 输入通道 5 时隙分配。

7.3.21 SASI_RX_CH6_CFG 寄存器 (地址 = 0x2D) [复位 = 0x05]

图 7-208 中显示了 SASI_RX_CH6_CFG,表 7-211 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI RX 通道 6 配置寄存器。

图 7-208. SASI RX CH6 CFG 寄存器

				_	• • • • • • • • • • • • • • • • • • • •		
7	6	5	4	3	2	1	0
RESERVED	SASI_RX_C	H6_CFG[1:0]		SASI_F	RX_CH6_SLOT_N	UM[4:0]	
R-0b	R/W	/-00b	R/W-00101b				

表 7-211. SASI_RX_CH6_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	SASI_RX_CH6_CFG[1:0]	R/W	0x0	辅助 ASI 输入通道 6 配置。 0d = 禁用辅助 ASI 通道 6 输入 1d = 辅助 ASI 通道 6 输入对应于 DAC 通道 6 数据 2d = 辅助 ASI 通道 6 输入对应于 ADC 通道 2 输出环回 3d = 辅助 ASI 通道 6 输入对应于 ICLA 器件 1 数据
4-0	SASI_RX_CH6_SLOT_N UM[4:0]	R/W	0x5	辅助 ASI 输入通道 6 时隙分配。 Od = TDM 是时隙 0 或 l ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 l ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 l ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 l ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 l ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 l ² S , LJ 是右侧时隙 15

Copyright © 2024 Texas Instruments Incorporated

7.3.22 SASI_RX_CH7_CFG 寄存器 (地址 = 0x2E) [复位 = 0x06]

图 7-209 中显示了 SASI_RX_CH7_CFG,表 7-212 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI RX 通道 7 配置寄存器。

图 7-209. SASI RX CH7 CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	SASI_RX_C	:H7_CFG[1:0]	SASI_RX_CH7_SLOT_NUM[4:0]				
R-0b	R/W	/-00b			R/W-00110b		

表 7-212. SASI_RX_CH7_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	SASI_RX_CH7_CFG[1:0]	R/W	0x0	辅助 ASI 输入通道 7 配置。 0d = 禁用辅助 ASI 通道 7 输入 1d = 辅助 ASI 通道 7 输入对应于 DAC 通道 7 数据 2d = 辅助 ASI 通道 7 输入对应于 ADC 通道 3 输出环回 3d = 辅助 ASI 通道 7 输入对应于 ICLA 器件 2 数据
4-0	SASI_RX_CH7_SLOT_N UM[4:0]	R/W	0x6	辅助 ASI 输入通道 7 时隙分配。 Od = TDM 是时隙 0 或 I ² S , LJ 是左侧时隙 0 1d = TDM 是时隙 1 或 I ² S , LJ 是左侧时隙 1 2d 至 14d = 分配的时隙视配置而定 15d = TDM 是时隙 15 或 I ² S , LJ 是左侧时隙 15 16d = TDM 是时隙 16 或 I ² S , LJ 是右侧时隙 0 17d = TDM 是时隙 17 或 I ² S , LJ 是右侧时隙 1 18d 至 30d = 分配的时隙视配置而定 31d = TDM 是时隙 31 或 I ² S , LJ 是右侧时隙 15

7.3.23 SASI_RX_CH8_CFG 寄存器 (地址 = 0x2F) [复位 = 0x07]

图 7-210 中显示了 SASI_RX_CH8_CFG,表 7-213 中对此进行了介绍。

返回到汇总表。

该寄存器是 SASI RX 通道 8 配置寄存器。

图 7-210. SASI_RX_CH8_CFG 寄存器

7	6	5	4	3	2	1	0
RESERVED	SASI_RX_C	H8_CFG[1:0]	SASI_RX_CH8_SLOT_NUM[4:0]				
R-0b	R/W	V-00b			R/W-00111b		

表 7-213. SASI_RX_CH8_CFG 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-5	SASI_RX_CH8_CFG[1:0]	R/W		辅助 ASI 输入通道 8 配置。 0d = 禁用辅助 ASI 通道 8 输入 1d = 辅助 ASI 通道 8 输入对应于 DAC 通道 8 数据 2d = 辅助 ASI 通道 8 输入对应于 ADC 通道 4 输出环回 3d = 辅助 ASI 通道 8 输入对应于 ICLA 器件 3 数据

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 179

表 7-213. SASI_RX_CH8_CFG 寄存器字段说明 (续)

位	字段	类型	复位	说明
4-0	SASI_RX_CH8_SLOT_N	R/W	0x7	辅助 ASI 输入通道 8 时隙分配。
	UM[4:0]			0d = TDM 是时隙 0 或 I ² S, LJ 是左侧时隙 0
				1d = TDM 是时隙 1 或 I ² S , LJ 是左侧时隙 1
				2d 至 14d = 分配的时隙视配置而定
				15d = TDM 是时隙 15 或 I ² S,LJ 是左侧时隙 15
				16d = TDM 是时隙 16 或 I ² S,LJ 是右侧时隙 0
				17d = TDM 是时隙 17 或 I ² S,LJ 是右侧时隙 1
				18d 至 30d = 分配的时隙视配置而定
				31d = TDM 是时隙 31 或 I ² S, LJ 是右侧时隙 15

7.3.24 CLK_CFG12 寄存器 (地址 = 0x32) [复位 = 0x00]

图 7-211 中显示了 CLK_CFG12,表 7-214 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 12。

图 7-211. CLK_CFG12 寄存器

7	6	5	4	3	2	1	0	
PDIV_CLKS	RC_SEL[1:0]	PASI_B	CLK_DIV_CLK_S	EL[2:0]	RESERVED			
R/W-00b R/W-000b					R-000b			

表 7-214. CLK_CFG12 寄存器字段说明

位	字段	类型	复位	说明
7-6	PDIV_CLKSRC_SEL[1:0]	R/W	0x0	PLL PDIV 分频器的源时钟选择。 0d = PLL_PDIV_IN_CLK 是主要 ASI BCLK 1d = PLL_PDIV_IN_CLK 是辅助 ASI BCLK 2d = PLL_PDIV_IN_CLK 是 CCLK 3d = PLL_PDIV_IN_CLK 是内部振荡器时钟
5-3	PASI_BCLK_DIV_CLK_S EL[2:0]	R/W	0x0	主要 ASI BCLK 分频器时钟源选择。 Od = 主要 ASI BCLK 分频器时钟源是 PLL 输出 1d = 保留 2d = 主要 ASI BCLK 分频器时钟源是辅助 ASI BCLK 3d = 主要 ASI BCLK 分频器时钟源是 CCLK 4d = 主要 ASI BCLK 分频器时钟源是内部振荡器时钟 5d = 主要 ASI BCLK 分频器时钟源是 DSP 时钟 6d 至 7d = 保留
2-0	RESERVED	R	0x0	保留位;仅写入复位值

7.3.25 CLK_CFG13 寄存器 (地址 = 0x33) [复位 = 0x00]

图 7-212 中显示了 CLK_CFG13,表 7-215 中对此进行了介绍。

返回到汇总表。

180

图 7-212. CLK_CFG13 寄存器

7	6	5	4	3	2	1	0	
RESERVED	SASI_B	CLK_DIV_CLK_S	SEL[2:0]	RESERVED				
R-0b	R/W-000b			R-0000b				

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAC5411-Q1*

表 7-215. CLK_CFG13 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6-4	SASI_BCLK_DIV_CLK_S EL[2:0]	R/W	0x0	輔助 ASI BCLK 分频器时钟源选择。 0d = 辅助 ASI BCLK 分频器时钟源是 PLL 输出 1d = 辅助 ASI BCLK 分频器时钟源是主要 ASI BCLK 2d = 保留 3d = 辅助 ASI BCLK 分频器时钟源是 CCLK 4d = 辅助 ASI BCLK 分频器时钟源是内部振荡器时钟 5d = 辅助 ASI BCLK 分频器时钟源是 DSP 时钟 6d 至 7d = 保留
3-0	RESERVED	R	0x0	保留位;仅写入复位值

7.3.26 CLK_CFG14 寄存器 (地址 = 0x34) [复位 = 0x10]

图 7-213 中显示了 CLK_CFG14,表 7-216 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 14。

图 7-213. CLK CFG14 寄存器

		· · · · · · · · · · · · · · · · · · ·	· -				
7	6	5	4	3	2	1	0
DIG_NM_DIV_CI	_K_SRC_SEL[1:]	ANA_NM_DIV_C :0	. – – ۱	RESE	RVED	RESE	RVED
R/W-	·00b	R/W-	01b	R-0	00b	R-0	00b

表 7-216. CLK_CFG14 寄存器字段说明

位	字段	类型	复位	说明	
7-6	DIG_NM_DIV_CLK_SRC_ SEL[1:0]	R/W	Od = DIG NM 分频器输入时钟是主要 ASI BCLK 1d = DIG NM 分频器输入时钟是辅助 ASI BCLK 2d = DIG NM 分频器输入时钟是 CCLK 3d = DIG NM 分频器输入时钟是内部振荡器时钟		
5-4	ANA_NM_DIV_CLK_SRC _SEL[1:0]	R/W	0x1	NMDIV CLK 时钟的源时钟选择。 0d = NM 分频器输入时钟是 PLL 输出 1d = NM 分频器输入时钟是 PLL 输出 2d = NM 分频器输入时钟是 DIG NM 分频器时钟源 3d = NM 分频器输入时钟是主要 ASI BCLK (低抖动路径)	
3-2	RESERVED	R	0x0	保留位;仅写入复位值	
1-0	RESERVED	R	0x0	保留位;仅写入复位值	

7.3.27 CLK_CFG15 寄存器 (地址 = 0x35) [复位 = 0x01]

图 7-214 中显示了 CLK CFG15,表 7-217 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 15。

图 7-214. CLK CFG15 寄存器

7	6	5	4	3	2	1	0			
	PLL_PDIV[7:0]									
	R/W-00000001b									

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 181

表 7-217. CLK CFG15 寄存器字段说明

位	字段	类型	复位	说明
7-0	PLL_PDIV[7:0]	R/W		PLL 预分频器 P 分频器值(启用自动检测时不用考虑) 0d = PLL PDIV 值为 256 1d = PLL PDIV 值为 1 2d = PLL PDIV 值为 2 3d 至 254d = PLL PDIV 值根据配置来确定 255d = PLL PDIV 值为 255

7.3.28 CLK_CFG16 寄存器 (地址 = 0x36) [复位 = 0x00]

图 7-215 中显示了 CLK CFG16,表 7-218 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 16。

图 7-215. CLK_CFG16 寄存器

7	6	5	4	3	2	1	0
PLL_JMUL_MS B	PLL_DIV_CLK_ DIG_BY_2			PLL_DMU	JL_MSB[5:0]		
R/W-0b	R/W-0b			R/W-0	00000b		

表 7-218. CLK_CFG16 寄存器字段说明

位	字段	类型	复位	说明
7	PLL_JMUL_MSB	R/W	0x0	PLL 整数部分 J 乘法器值 MSB 位。(启用自动检测时不用考虑)
6	PLL_DIV_CLK_DIG_BY_2	R/W		PLL DIV 时钟 2 分频配置 0d = PLL 内无 2 分频 1d = PLL 进行 2 分频
5-0	PLL_DMUL_MSB[5:0]	R/W	0x0	PLL 小数部分 D 乘法器值 MSB 位。(启用自动检测时不用考虑)

7.3.29 CLK_CFG17 寄存器 (地址 = 0x37) [复位 = 0x00]

图 7-216 中显示了 CLK_CFG17,表 7-219 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 17。

图 7-216. CLK_CFG17 寄存器

7	6	5	4	3	2	1	0			
PLL_DMUL_LSB[7:0]										
	R/W-00000000b									

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAC5411-Q1*

English Data Sheet: SLASF34

表 7-219. CLK CFG17 寄存器字段说明

位	字段	类型	复位	说明
7-0	PLL_DMUL_LSB[7:0]	R/W		PLL 小数部分 D 乘法器值 LSB 字节。上述 D 乘法器值 MSB 位
				(PLL_DMUL_MSB) 与此 LSB 字节 (PLL_DMUL_LSB) 连在一起来确
				定最终的 D 乘法器值。(启用自动检测时不用考虑)
				0d = PLL DMUL 值为 0
				1d = PLL DMUL 值为 1
				2d = PLL DMUL 值为 2
				3d 至 9998d = PLL JMUL 值根据配置来确定
				9999d = PLL JMUL 值为 9999
				10000d 至 16383d = 保留;不使用
				100000 上 100000

7.3.30 CLK_CFG18 寄存器 (地址 = 0x38) [复位 = 0x08]

图 7-217 中显示了 CLK_CFG18,表 7-220 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 18。

图 7-217. CLK_CFG18 寄存器

7	6	5	4	3	2	1	0			
PLL_JMUL_LSB[7:0]										
	R/W-00001000b									

表 7-220. CLK_CFG18 寄存器字段说明

位	字段	类型	复位	说明
7-0	PLL_JMUL_LSB[7:0]	R/W		PLL 整数部分 J 乘法器值 LSB 字节。上述 J 乘法器值 MSB 位 (PLL_JMUL_MSB) 与此 LSB 字节 (PLL_JMUL_LSB) 连在一起来确 定最终的 J 乘法器值。 (启用自动检测时不用考虑) 0d = 保留; 不使用 1d = PLL JMUL 值为 1 2d = PLL JMUL 值为 2 3d 至 510d = PLL JMUL 值根据配置来确定 511d = PLL JMUL 值为 511

7.3.31 CLK_CFG19 寄存器 (地址 = 0x39) [复位 = 0x20]

图 7-218 中显示了 CLK_CFG19,表 7-221 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 19。

图 7-218. CLK CFG19 寄存器

7	6	5	4	3	2	1	0
	NDIV[2:0]			PDM_DIV[2:0]	RESERVED		
	R/W-001b			R/W-000b		R-00b	

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 183

表 7-221. CLK CFG19 寄存器字段说明

位	字段	类型	复位	说明
7-5	NDIV[2:0]	R/W	0x1	NDIV 分频器值。(启用自动检测时不用考虑) 0d = NDIV 值为 8 1d = NDIV 值为 1 2d = NDIV 值为 2 3d 至 6d = NDIV 值根据配置来确定 7d = NDIV 值为 7
4-2	PDM_DIV[2:0]	R/W	0x0	PDM 分频器值。(启用自动检测时不用考虑) 0d = PDM_DIV 值为 1 1d = PDM_DIV 值为 2 2d = PDM_DIV 值为 4 3d = PDM_DIV 值为 8 4d = PDM_DIV 值为 16 5d-7d 保留
1-0	RESERVED	R	0x0	保留位;仅写入复位值

7.3.32 CLK_CFG20 寄存器 (地址 = 0x3A) [复位 = 0x04]

图 7-219 中显示了 CLK_CFG20,表 7-222 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 20。

图 7-219. CLK_CFG20 寄存器

0
MODCLK_DIV[1:0]
R/W-00b
_

表 7-222. CLK_CFG20 寄存器字段说明

位	字段	类型	复位	说明
7-2	MDIV[5:0]	R/W	0x1	MDIV 分频器值。(启用自动检测时不用考虑) 0d = MDIV 值为 64 1d = MDIV 值为 1 2d = MDIV 值为 2 3d 至 62d = MDIV 值根据配置来确定 63d = MDIV 值为 63
1-0	DIG_ADC_MODCLK_DIV[1:0]	R/W	0x0	ADC 调制器时钟分频器值。(启用自动检测时不用考虑) Od = DIG_ADC_MODCLK_DIV 值为 1 Id = DIG_ADC_MODCLK_DIV 值为 2 2d = DIG_ADC_MODCLK_DIV 值为 4 3d = 保留

7.3.33 CLK_CFG21 寄存器 (地址 = 0x3B) [复位 = 0x00]

图 7-220 中显示了 CLK_CFG21,表 7-223 中对此进行了介绍。

返回到汇总表。

184

该寄存器是时钟配置寄存器 21。

图 7-220. CLK_CFG21 寄存器

7	6	5	4	3	2	1	0
RESE	RVED	DIG_DAC_MO	DCLK_DIV[1:0]	RESERVED	PASI_BDIV_MS B	SASI_BDIV_MS B	RESERVED

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 Product Folder Links: *TAC5411-Q1*

图 7-220. CLK_CFG21 寄存器 (续)

R-00b R/W-00b R/W-0b R-0b R-0b R/W-0b

表 7-223. CLK CFG21 寄存器字段说明

位	字段	类型	复位	说明				
7-6	RESERVED	R	0x0	保留位;仅写入复位值				
5-4	DIG_DAC_MODCLK_DIV[1:0]	R/W	0x0	DAC 调制器时钟分频器值。(启用自动检测时不用考虑) Od = DIG_DAC_MODCLK_DIV 值为 1 1d = DIG_DAC_MODCLK_DIV 值为 2 2d = DIG_DAC_MODCLK_DIV 值为 4 3d = 保留				
3	RESERVED	R	0x0	保留位;仅写入复位值				
2	PASI_BDIV_MSB	R/W	0x0	主要 ASI BCLK 分频器值 MSB 位。(启用自动检测时不用考虑)				
1	SASI_BDIV_MSB	R/W	0x0	辅助 ASI BCLK 分频器值 MSB 位。(启用自动检测时不用考虑)				
0	RESERVED	R	0x0	保留位;仅写入复位值				

7.3.34 CLK_CFG22 寄存器 (地址 = 0x3C) [复位 = 0x01]

图 7-221 中显示了 CLK_CFG22,表 7-224 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 18。

图 7-221. CLK_CFG22 寄存器

7	6	5	4	3	2	1	0		
PASI_BDIV_LSB[7:0]									
			R/W-000	000001b					

表 7-224. CLK_CFG22 寄存器字段说明

位	字段	类型	复位	说明
7-0	PASI_BDIV_LSB[7:0]	R/W		辅助 ASI BCLK 分频器值。(启用自动检测时不用考虑) 0d = SASI BCLK 分频器值为 512 1d = SASI BCLK 分频器值为 1 2d = SASI BCLK 分频器值为 2 3d 至 62d = SASI BCLK 分频器值根据配置来确定 63d = SASI BCLK 分频器值为 511

7.3.35 CLK_CFG23 寄存器 (地址 = 0x3D) [复位 = 0x01]

图 7-222 中显示了 CLK_CFG23,表 7-225 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 18。

图 7-222. CLK_CFG23 寄存器

7	6	5	4	3	2	1	0			
	SASI_BDIV_LSB[7:0]									
R/W-00000001b										

Product Folder Links: TAC5411-Q1

表 7-225. CLK CFG23 寄存器字段说明

			_	
位	字段	类型	复位	说明
7-0	SASI_BDIV_LSB[7:0]	R/W	0x1	辅助 ASI BCLK 分频器值。(启用自动检测时不用考虑) 0d = SASI BCLK 分频器值为 512 1d = SASI BCLK 分频器值为 1
				2d = SASI BCLK 分频器值为 2 3d 至 62d = SASI BCLK 分频器值根据配置来确定

7.3.36 CLK_CFG24 寄存器 (地址 = 0x3E) [复位 = 0x01]

图 7-223 中显示了 CLK CFG24,表 7-226 中对此进行了介绍。

返回到汇总表。

该寄存器是时钟配置寄存器 21。

图 7-223. CLK_CFG24 寄存器

7	6	5	4	3	2	1	0
RESE	RVED			ANA_NM	I_DIV[5:0]		
R-	00b			R/W-00	00001b		

表 7-226. CLK_CFG24 寄存器字段说明

位	字段	类型	复位	说明
7-6	RESERVED	R	0x0	保留位;仅写入复位值
5-0	ANA_NM_DIV[5:0]	R/W		模拟 N-M DIV 分频器值。(启用自动检测时不用考虑) 0d = ANA_NM_DIV 值为 64 1d = ANA_NM_DIV 值为 1 2d = ANA_NM_DIV 值为 2 3d 至 62d = ANA_NM_DIV 值根据配置来确定 63d = ANA_NM_DIV 值为 63

7.3.37 CLK_CFG30 寄存器 (地址 = 0x44) [复位 = 0x00]

图 7-224 中显示了 CLK_CFG30,表 7-227 中对此进行了介绍。

返回到汇总表。

图 7-224. CLK_CFG30 寄存器

7	6	5	4	3	2	1	0
		RESERVED	NDIV_EN	MDIV_EN	PDM_DIV_EN		
		R-00000b			R/W-0b	R/W-0b	R/W-0b

表 7-227. CLK_CFG30 寄存器字段说明

位	字段	类型	复位	说明
7-3	RESERVED	R	0x0	保留位;仅写入复位值
2	NDIV_EN	R/W		NDIV 分频器启用 Od = 分频器禁用 1d = 分频器启用
1	MDIV_EN	R/W		MDIV 分频器启用 Od = 分频器禁用 1d = 分频器启用

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAC5411-Q1*

表 7-227. CLK_CFG30 寄存器字段说明 (续)

位	字段	类型	复位	说明
0	PDM_DIV_EN	R/W		PDM 分频器启用 0d = 分频器禁用 1d = 分频器启用

7.3.38 CLK_CFG31 寄存器 (地址 = 0x45) [复位 = 0x00]

图 7-225 中显示了 CLK_CFG31,表 7-228 中对此进行了介绍。

返回到汇总表。

图 7-225. CLK CFG31 寄存器

					* *		
7	6	5	4	3	2	1	0
DIG_ADC_DEM _DIV_EN	DIG_ADC_MO DCLK_DIV_EN	DIG_DAC_DEM _DIV_EN	DIG_DAC_MO DCLK_DIV_EN	PASI_BDIV_EN	SASI_BDIV_EN	PASI_FSYNC_ DIV_EN	SASI_FSYNC_ DIV_EN
R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-0b

表 7-228. CLK_CFG31 寄存器字段说明

位	字段	类型	复位	说明
7	DIG_ADC_DEM_DIV_EN	R/W	0x0	ADC DEM 分频器启用 0d = 分频器禁用 1d = 分频器启用
6	DIG_ADC_MODCLK_DIV _EN	R/W	0x0	ADC MODCLK 分频器启用 0d = 分频器禁用 1d = 分频器启用
5	DIG_DAC_DEM_DIV_EN	R/W	0x0	DAC DEM 分频器启用 0d = 分频器禁用 1d = 分频器启用
4	DIG_DAC_MODCLK_DIV _EN	R/W	0x0	DAC MODCLK 分频器启用 0d = 分频器禁用 1d = 分频器启用
3	PASI_BDIV_EN	R/W	0x0	PASI BDIV 分频器启用 0d = 分频器禁用 1d = 分频器启用
2	SASI_BDIV_EN	R/W	0x0	SASI BDIV 分频器启用 0d = 分频器禁用 1d = 分频器启用
1	PASI_FSYNC_DIV_EN	R/W	0x0	PASI FSYNC DIV 分频器启用 0d = 分频器禁用 1d = 分频器启用
0	SASI_FSYNC_DIV_EN	R/W	0x0	SASI FSYNC DIV 分频器启用 0d = 分频器禁用 1d = 分频器启用

7.3.39 CLKOUT_CFG1 寄存器 (地址 = 0x46) [复位 = 0x00]

图 7-226 中显示了 CLKOUT_CFG1,表 7-229 中对此进行了介绍。

返回到汇总表。

该寄存器是 CLKOUT 配置寄存器 1。

English Data Sheet: SLASF34

图 7-226. CLKOUT CFG1 寄存器

	7	6	5	4	3	2	1	0
Ī			RESERVED		CLKOUT_CLK_SEL[2:0]			
			R-00000b				R/W-000b	

表 7-229. CLKOUT_CFG1 寄存器字段说明

位	字段	类型	复位	说明
7-3	RESERVED	R	0x0	保留位;仅写入复位值
2-0	CLKOUT_CLK_SEL[2:0]	R/W	0x0	通用 CLKOUT 分频器时钟源选择。 Od = 源时钟是 PLL 输出 1d = 源时钟是主要 ASI BCLK 2d = 源时钟是辅助 ASI BCLK 3d = 源时钟是 CCLK 4d = 源时钟是内部振荡器时钟 5d = 源时钟是 DSP 时钟 6d 至 7d = 保留

7.3.40 CLKOUT_CFG2 寄存器 (地址 = 0x47) [复位 = 0x01]

图 7-227 中显示了 CLKOUT_CFG2,表 7-230 中对此进行了介绍。

返回到汇总表。

该寄存器是 CLKOUT 配置寄存器 2。

图 7-227. CLKOUT_CFG2 寄存器

7	6	5	4	3	2	1	0
CLKOUT_DIV_ EN				CLKOUT_DIV[6:0]			
R/W-0b				R/W-0000001b			

表 7-230. CLKOUT_CFG2 寄存器字段说明

位	字段	类型	复位	说明
7	CLKOUT_DIV_EN	R/W	0x0	CLKOUT 分频器使能。
				0d = CLKOUT 分频器禁用
				1d = CLKOUT 分频器启用
6-0	CLKOUT_DIV[6:0]	R/W	0x1	CLKOUT DIV 分频器值。
				0d = CLKOUT_DIV 值为 128
				1d = CLKOUT_DIV 值为 1
				2d = CLKOUT_DIV 值为 2
				3d 至 126d = CLKOUT_DIV 值根据配置来确定
				127d = CLKOUT_DIV 值为 127

7.3.41 BSTCLK_CFG1 寄存器 (地址 = 0x48) [复位 = 0x00]

图 7-228 中显示了 BSTCLK_CFG1,表 7-231 中对此进行了介绍。

返回到汇总表。

该寄存器是升压时钟配置寄存器 1

图 7-228. BSTCLK_CFG1 寄存器

	7	6	5	4	3	2	1	0
ĺ	RESERVED	BST_CLK_FRE	BST_CLK_SRC		BST_CLK_EN_	BST_CLK_MAN	BST_CLK_MAN	NUAL_DIV[1:0]
		Q_SEL	_AUTO_DIS	_MANUAL_SEL	AUTO_DIS	UAL_EN		

Copyright © 2024 Texas Instruments Incorporated

提交文档反馈 Product Folder Links: *TAC5411-Q1*

图 7-228. BSTCLK_CFG1 寄存器 (续)

R/W-0b R/W-0b R/W-0b R/W-0b R/W-0b R/W-00b R-0b

表 7-231. BSTCLK CFG1 寄存器字段说明

位	字段	类型	复位	说明
7	RESERVED	R	0x0	保留位;仅写入复位值
6	BST_CLK_FREQ_SEL	R/W	0x0	升压时钟频率模式 0d = 升压时钟频率为 ~6MHz 1d = 升压时钟频率为 ~3MHz
5	BST_CLK_SRC_AUTO_D IS	R/W	0x0	升压分频器源时钟自动选择禁用 Od = 根据时钟检测方案来确定升压分频器源时钟自动选择 1d = 根据 BST_CLK_SRC_SEL 来禁用和选择升压分频器源时钟自动选择
4	BST_CLK_SRC_MANUAL _SEL	R/W	0x0	升压时钟源手动选择(在自动模式下不用考虑) 0d = 根据可用于 ADC/DAC 的音频时钟生成升压时钟 1d = 根据内部振荡器时钟生成升压时钟
3	BST_CLK_EN_AUTO_DI S	R/W	0x0	升压分频器源时钟自动选择禁用 0d = 升压分频器自动启用 1d = 根据使用 BST_CLK_MANUAL_EN 进行的手动控制来启用/禁用 升压分频器
2	BST_CLK_MANUAL_EN	R/W	0x0	升压分频器手动启用(在自动模式下不用考虑) 0d = 禁用升压分频器 1d = 启用升压分频器
1-0	BST_CLK_MANUAL_DIV[1:0]	R/W	0x0	升压分频器值(在自动模式下不用考虑) 0d = 升压分频器值为 1 1d = 升压分频器值为 2 2d = 升压分频器值为 4 3d = 升压分频器值为 8

7.3.42 SARCLK_CFG1 寄存器 (地址 = 0x49) [复位 = 0x00]

图 7-229 中显示了 SARCLK_CFG1,表 7-232 中对此进行了介绍。

返回到汇总表。

该寄存器是 SAR 时钟配置寄存器 1

图 7-229. SARCLK_CFG1 寄存器

7	6	5	4	3	2	1	0
SAR_CLK_FREG	Q_SEL[1:0]	SAR_CLK_SRC AUTO DIS	SAR_CLK_SRC MANUAL SEL		SAR_CLK_MA NUAL EN	SAR_CLK_MANU	JAL_DIV[1:0]
R/W-00)b	R/W-0b	R/W-0b	R/W-0b	R/W-0b	R/W-00	Db

表 7-232. SARCLK_CFG1 寄存器字段说明

		•				
位	字段	类型	复位	说明		
7-6	SAR_CLK_FREQ_SEL[1: 0]	R/W	0x0	SAR 时钟频率模式 0d = SAR 时钟频率为 ~6MHz 1d = SAR 时钟频率为 ~3MHz 2d = SAR 时钟频率为 ~1.5MHz 3d = SAR 时钟频率为 ~12MHz (仅当 SAR 时钟直接使用内部振荡器时钟生成时有效)		
5	SAR_CLK_SRC_AUTO_D IS	R/W	0x0	SAR 分频器源时钟自动选择禁用 Od = 根据时钟检测方案来确定 SAR 分频器源时钟自动选择 1d = 根据 BST_CLK_SRC_SEL 来禁用和选择 SAR 分频器源时钟自动选择		

English Data Sheet: SLASF34

表 7-232. SARCLK_CFG1 寄存器字段说明 (续)

位	字段	类型	复位	说明
4	SAR_CLK_SRC_MANUA L_SEL	R/W	0x0	SAR 时钟源手动选择(在自动模式下不用考虑) 0d = 根据可用于 ADC/DAC 的音频时钟生成 SAR 时钟 1d = 根据内部振荡器时钟生成 SAR 时钟
3	SAR_CLK_EN_AUTO_DI S	R/W	0x0	SAR 分频器源时钟自动选择禁用 0d = SAR 分频器自动启用 1d = 根据使用 BST_CLK_EN 进行的手动控制来启用/禁用 SAR 分频器
2	SAR_CLK_MANUAL_EN	R/W	0x0	SAR 分频器手动启用 (在自动模式下不用考虑) 0d = 禁用 SAR 分频器 1d = 启用 SAR 分频器
1-0	SAR_CLK_MANUAL_DIV[1:0]	R/W	0x0	SAR 分频器值 (在自动模式下不用考虑) 0d = SAR 分频器值为 1 1d = SAR 分频器值为 2 2d = SAR 分频器值为 4 3d = SAR 分频器值为 8

7.3.43 ADC_OVRLD_FLAG 寄存器 (地址 = 0x5B) [复位 = 0x00]

图 7-230 中显示了 ADC_OVRLD_FLAG,表 7-233 中对此进行了介绍。

返回到汇总表。

图 7-230. ADC_OVRLD_FLAG 寄存器

7	6	5	4	3	2	1	0
ADC_CH1_OV RLD_LTCH	ADC_CH2_OV RLD_LTCH	ADC_CH1_OV RLD_LIVE	ADC_CH2_OV RLD_LIVE		RESE	RVED	
R-0b	R-0b	R-0b	R-0b		R-00	00b	

表 7-233. ADC_OVRLD_FLAG 寄存器字段说明

位	字段	类型	复位	说明
7	ADC_CH1_OVRLD_LTCH	R	0x0	ADC CH1 OVRLD 故障(自行清零位)。 0b = 无 ADC CH1 OVRLD 故障 1b = ADC CH1 OVRLD 故障
6	ADC_CH2_OVRLD_LTCH	R	0x0	ADC CH2 OVRLD 故障(自行清零位)。 0b = 无 ADC CH2 OVRLD 故障 1b = ADC CH2 OVRLD 故障
5	ADC_CH1_OVRLD_LIVE	R	0x0	ADC CH1 OVRLD 故障(自行清零位)。 0b = 无 ADC CH1 OVRLD 故障 1b = ADC CH1 OVRLD 故障
4	ADC_CH2_OVRLD_LIVE	R	0x0	ADC CH2 OVRLD 故障(自行清零位)。 0b = 无 ADC CH2 OVRLD 故障 1b = ADC CH2 OVRLD 故障
3-0	RESERVED	R	0x0	保留位;仅写入复位值

Copyright © 2024 Texas Instruments Incorporated Product Folder Links: *TAC5411-Q1*

8 应用和实施

备注

以下应用部分中的信息不属于 TI 元件规格,TI 不担保其准确性和完整性。TI 的客户负责确定元件是否适合其用途,以及验证和测试其设计实现以确认系统功能。

8.1 应用信息

TAC5411-Q1 是一款立体声、高性能音频编解码器,支持高达 768kHz 的采样速率。该器件总共支持 4 个麦克风进行同时录制,可以从多达 2 个模拟麦克风或 4 个数字脉冲密度调制 (PDM) 麦克风中进行选择。该器件还支持最多 4 通道同时回放,它们可配置为 2 通道差分或伪差分输出或最多 4 通道单端输出,并提供耳机和线路输出驱动功能选项。

TAC5411-Q1 支持使用 I^2 C 或 SPI 接口与进行通信以进行控制寄存器配置。该器件支持高度灵活的音频串行接口 (TDM、 I^2 S 和 LJ),可在系统中跨设备无缝传输音频数据。

8.2 典型应用

8.2.1 应用

图 8-1 展示了典型的 TAC5411-Q1 应用配置,该配置使用两个模拟 ECM 麦克风,通过 I²C 控制接口和时分多路 复用 (TDM) 音频数据目标接口进行同步录音和两通道线路输出操作。为了获得出色的失真性能,请使用具有低电压系数的输入交流耦合电容器。

191

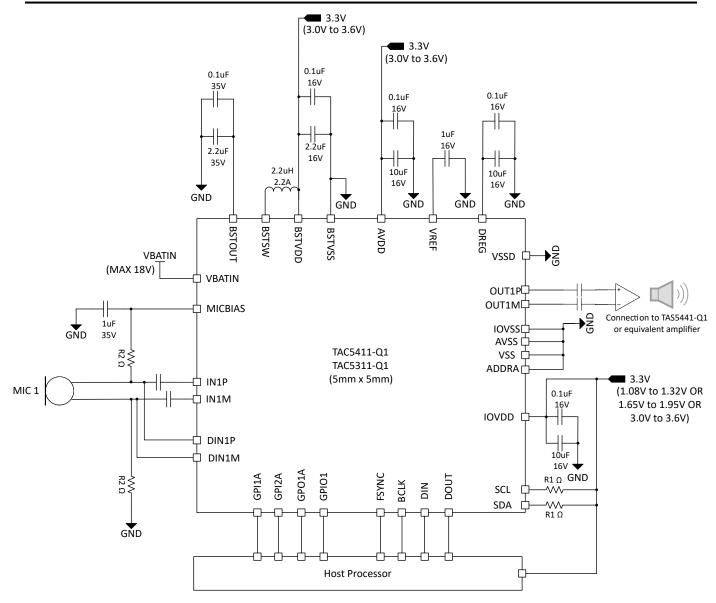


图 8-1. 具有单声道线路输出的单声道麦克风方框图

8.2.2 设计要求

表 8-1 列出了此应用的设计参数。

表 8-1. 设计参数

参数	值
AVDD	3.3V
BSTVDD	3.3V
IOVDD	1.2V、1.8V 或 3.3V
AVDD 电源电流消耗	待定
BSTVDD 电源电流消耗	待定
IOVDD 电源电流消耗	待定
最大 MICBIAS 电流	30mA
OUT1M、OUT1P、OUT2M、OUT2P 上的负载	>600 Ω

Copyright © 2024 Texas Instruments Incorporated

192 提交文档反馈

8.2.3 详细设计过程

本节介绍了为此特定应用配置 TAC5411-Q1 的必要步骤。以下步骤提供了从器件上电到从器件读取数据或从一种工作模式转换到另一种工作模式之间必须执行的一系列项。

- 1. 为器件通电:
 - a. 为 IOVDD、BSTVDD 和 AVDD 电源上电
 - b. 等待至少 1ms, 让器件初始化内部寄存器。
 - c. 器件现在进入睡眠模式 (低功耗模式 < 10µA)
- 2. 每次操作需要时,从睡眠模式切换到工作模式:
 - a. 通过写入 P0 R2 以禁用睡眠模式来唤醒器件
 - b. 等待至少 1ms, 让器件完成内部唤醒序列
 - c. 根据需要覆盖默认配置寄存器或可编程系数值(这一步是可选操作)
 - d. 通过写入 PO R118 来启用所有需要的输入通道
 - e. 通过写入 DAC 的 P0_R40 至 P0_R47 和 ADC 的 P0_R30 至 P0_R37 来启用所有需要的音频串行接口输入/输出通道
 - f. 通过写入 PO R120 来为 ADC、DAC 和 MICBIAS 上电
 - g. 施加具有所需输出采样速率和 BCLK 与 FSYNC 之比的 FSYNC 和 BCLK

该特定步骤可以在步骤 a 后序列的任意时间点完成。

有关支持的采样速率和 BCLK 与 FSYNC 之比,请参阅 # 6.3.3 一节。

- h. 现在使用 TDM 音频串行数据总线将器件记录数据发送到主机处理器,并且来自 TDM 的回放数据现在通过线路输出进行播放
- 3. 根据系统的低功耗运行要求,从工作模式(再次)转换到睡眠模式:
 - a. 通过写入 P0 R2 以启用睡眠模式来进入睡眠模式
 - b. 等待至少 6ms (FSYNC = 48kHz 时),让音量下降并让所有模块断电
 - c. 读取 P0 R122 以检查器件关断和睡眠模式状态
 - d. 如果器件 P0 R122 D[7:5] 状态位为 3'b100,则停止系统中的 FSYNC 和 BCLK
 - e. 器件现在进入睡眠模式 (低功耗模式 < 10µA)并保留所有寄存器值
- 4. 根据录音操作需要,从睡眠模式(再次)转换到工作模式:
 - a. 通过写入 P0 R2 以禁用睡眠模式来唤醒器件
 - b. 等待至少 1ms, 让器件完成内部唤醒序列
 - c. 施加具有所需输出采样速率和 BCLK 与 FSYNC 之比的 FSYNC 和 BCLK
 - d. 现在使用 TDM 音频串行数据总线将器件记录数据发送到主机处理器,并且来自 TDM 的回放数据现在通过线路输出进行播放
- 5. 根据模式转换要求,重复步骤4和步骤5

9 电源相关建议

IOVDD、BSTVDD 和 AVDD 电源轨之间的电源序列可以按任何顺序应用。然而,在所有电源稳定后,只能启动 I²C 或 SPI 事务来初始化器件。

对于电源上电要求, t₁、t₂ 和 t₃ 必须至少为 2ms 才能让器件初始化内部寄存器。对于电源断电要求, t₄、t₅ 和 t₆ 必须至少为 10ms。该时序 (如图 9-1 所示) 让器件可以慢慢降低录音数据的音量,关闭模拟和数字块,以及将器 件置于关断模式。还可以通过降低电源电压来立即将器件置于关断模式,但这样会导致突然关断。

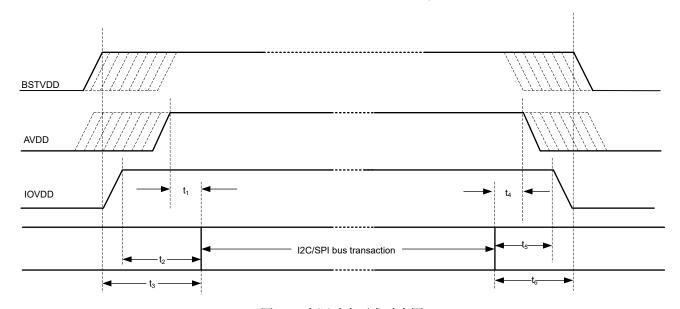


图 9-1. 电源时序要求时序图

确保电源斜坡速率低于 0.1V/μs,并且断电和上电事件之间的等待时间至少为 100ms。对于低于 0.1V/ms 的电源 斜坡速率,主机器件必须在进行任何器件配置之前将软件复位作为第一个事务应用。确保所有数字输入引脚均处 于有效的输入电平,并且在电源时序控制期间不会进行切换。

Product Folder Links: TAC5411-Q1

TAC5411-Q1 通过集成片上数字稳压器 DREG 和模拟稳压器 AREG,支持单 AVDD 电源运行。

Copyright © 2024 Texas Instruments Incorporated

10 器件和文档支持

TI 提供广泛的开发工具。下面列出了用于评估器件性能、生成代码和开发解决方案的工具和软件。

10.1 文档支持

10.1.1 相关文档

10.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

10.3 支持资源

TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

10.4 商标

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

10.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

10.6 术语表

TI术语表

本术语表列出并解释了术语、首字母缩略词和定义。

11 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

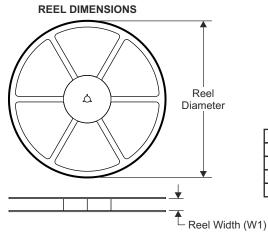
日期	修订版本	注释
January 2024	*	初始发行版

12 机械、封装和可订购信息

下述页面包含机械、封装和订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

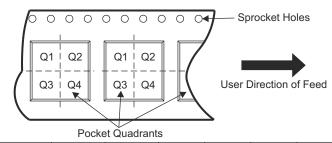
Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated


提交文档反馈

195

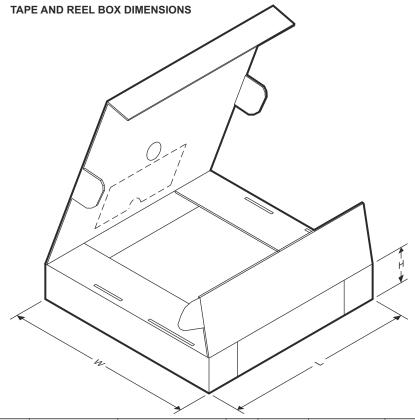
延义又197


12.1 卷带包装信息

TAPE DIMENSIONS KO P1 BO W Cavity A0

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



器件	封装 类型	封装图	引脚数	SPQ	卷带 直径 (mm)	卷带 宽度 W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 象限
XC5411WQRTVRQ1	WQFN	RTV	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q1

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated

器件	封装类型	封装图	引脚 数	SPQ	长度 (mm)	宽度 (mm)	高度 (mm)
XC5411WQRTVRQ1	WQFN	RTV	32	3000	367.0	367.0	35.0

Product Folder Links: TAC5411-Q1

197

PACKAGE OUTLINE

RTV0032U

WQFN - 0.8 mm max height

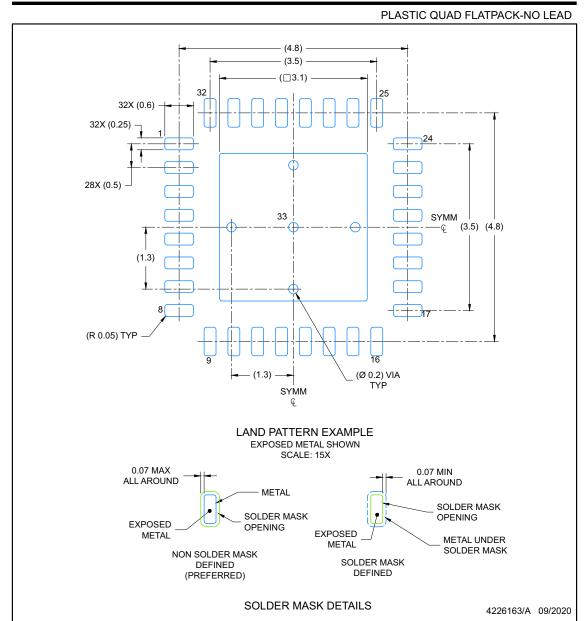
PLASTIC QUAD FLATPACK-NO LEAD 0.100 MIN PIN 1 INDEX AREA (0.130)**SECTION A-A** TYPICAL С 0.8 MAX SEATING PLANE △ 0.08 C 0.05 0.00 2X 3.5 (0.2) TYP 16 28X 0.5 **17** SYMM 2X 3.5 33 25 PIN 1 ID SYMM 0.1M C A B (OPTIONAL) 0.05M C

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.
- The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

Product Folder Links: TAC5411-Q1

Copyright © 2024 Texas Instruments Incorporated


4226163/A 09/2020

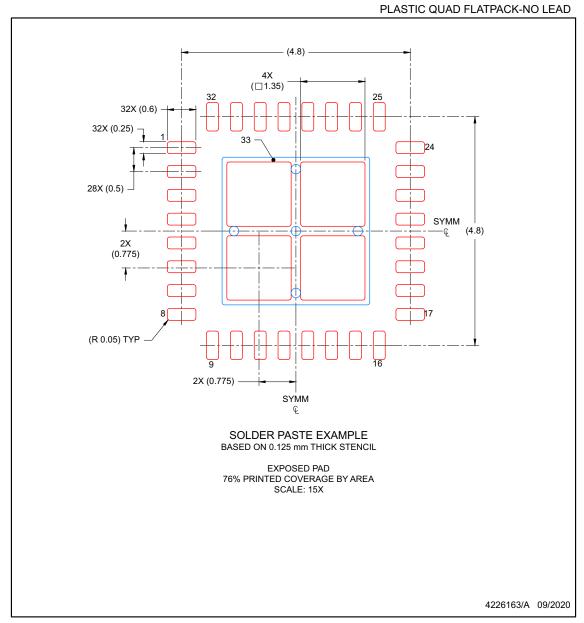
EXAMPLE BOARD LAYOUT

RTV0032U

WQFN - 0.8 mm max height

NOTES: (continued)

- This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.


English Data Sheet: SLASF34

EXAMPLE STENCIL DESIGN

RTV0032U

WQFN - 0.8 mm max height

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

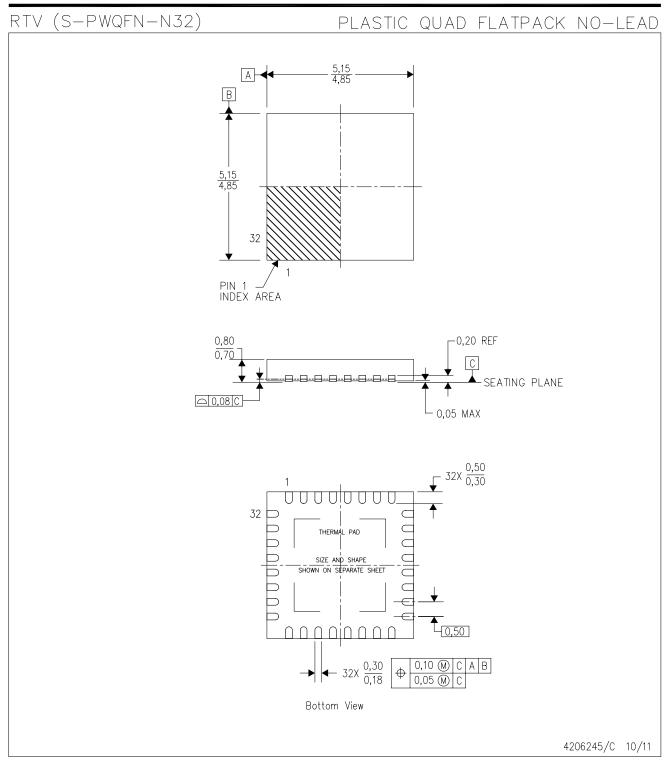
提交文档反馈

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
XC5411WQRTVRQ1.A	Active	Preproduction	WQFN (RTV) 32	3000 LARGE T&R	-	Call TI	Call TI	-40 to 125	

⁽¹⁾ Status: For more details on status, see our product life cycle.

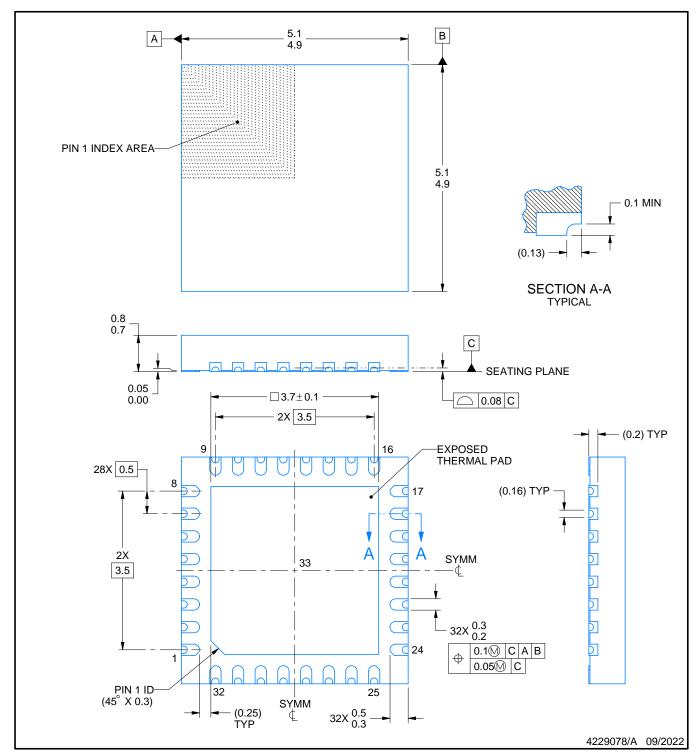

- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

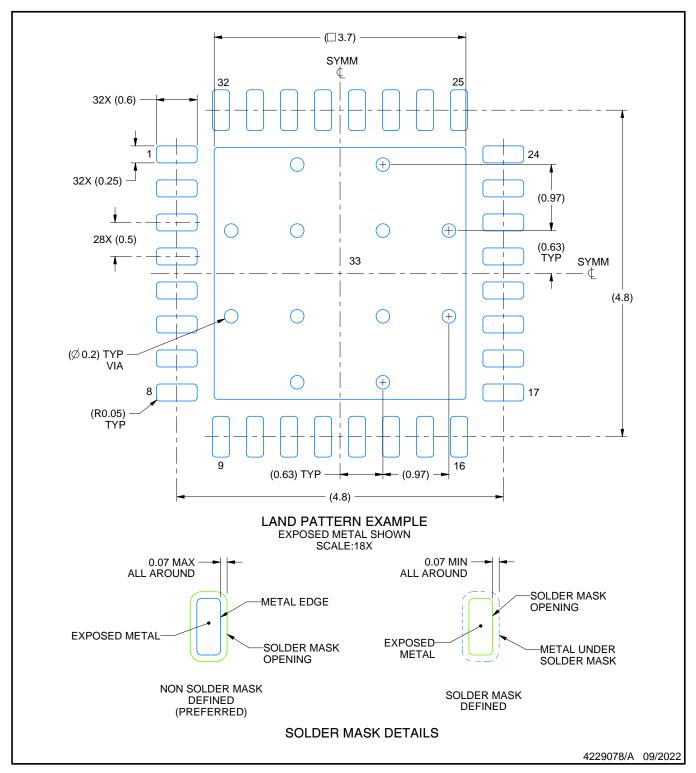
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.



- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.
 - B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-Leads (QFN) package configuration.
 - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
 - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
 - F. Falls within JEDEC MO-220.

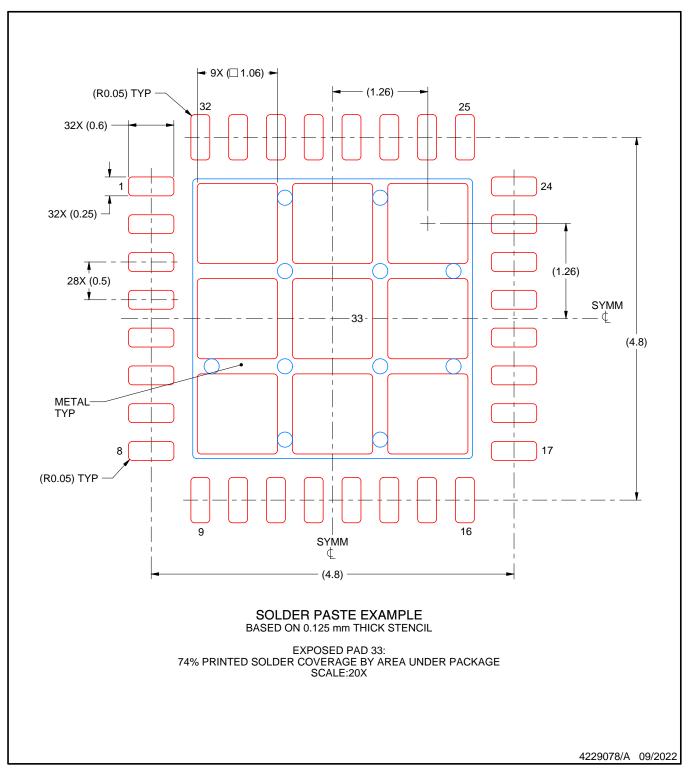
PLASTIC QUAD FLATPACK - NO LEAD


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月