SN74LVTH273-EP 3.3-V ABT OCTAL D-TYPE FLIP-FLOP WITH CLEAR

SCBS769A - NOVEMBER 2003 - REVISED JUNE 2006

- Controlled Baseline

 One Assembly/Test Site, One Fabrication Site
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree[†]
- Supports Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V_{CC})
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$
- Supports Unregulated Battery Operation Down to 2.7 V
- Buffered Clock and Direct-Clear Inputs
- Individual Data Input to Each Flip-Flop
- I_{off} Supports Partial Power-Down-Mode Operation
- [†] Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

description/ordering information

- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)

CLR [1 20 V _{CC} 1Q [2 19 8Q 1D [3 18 8D 2D [4 17 7D 2Q [5 16 7Q 3Q [6 15 6Q 3D [7 14 6D		PW OR NS PACKAGE (TOP VIEW)											
4D 8 13 5D 4Q 9 12 5Q GND 10 11 CLK	1Q 1D 2D 2Q 3Q 3D 4D 4Q	3 4 5 6 7 8 9	σ	19 18 17 16 15 14 13	8D 7D 7Q 6Q 6D 5D								

This octal D-type flip-flop is designed specifically for low-voltage (3.3 V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

The SN74LVTH273 is a positive-edge-triggered flip-flop with a direct clear ($\overline{\text{CLR}}$) input. Information at the data (D) inputs meeting the setup-time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not related directly to the transition time of the positive-going pulse. When the clock (CLK) input is at either the high or low level, the D-input signal has no effect at the output.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

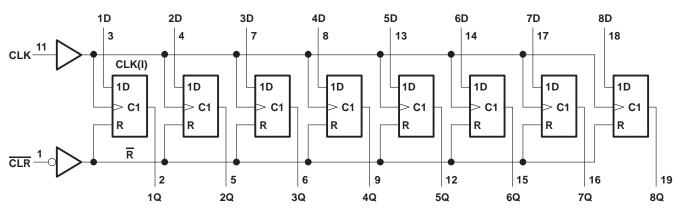
This device is fully specified for partial power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

TA	PACK	AGE [‡]	ORDERABLE PART NUMBER	TOP-SIDE MARKING									
–40°C to 85°C	TSSOP – PW	Tape and reel	SN74LVTH273IPWREP	LH273EP									
–55°C to 125°C	SOP – NS	Tape and reel	SN74LVTH273MNSREP	LVTH273EP									

ORDERING INFORMATION

[‡] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SN74LVTH273-EP 3.3-V ABT OCTAL D-TYPE FLIP-FLOP WITH CLEAR

SCBS769A - NOVEMBER 2003 - REVISED JUNE 2006

FUNCTION TABLE (each flip-flop)										
INPUTS OUTPUT										
CLR	CLK	Q								
L	Х	Х	L							
Н	\uparrow	н	н							
Н	\uparrow	L	L							
Н	H or L	Х	Q ₀							

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1) –0.5	
Voltage range applied to any output in the power-off state, V_O (see Note 1)	5 V to 7 V
Voltage range applied to any output in the high state, VO (see Note 1)0.5 V to VC	_C + 0.5 V
Current into any output in the low state, I _O	. 128 mA
Current into any output in the high state, I _O (see Note 2)	
Input clamp current, I _{IK} (V _I < 0)	. –50 mA
Output clamp current, I _{OK} (V _O < 0)	. –50 mA
Package thermal impedance, θ _{JA} (see Note 3): NS package	94.4°C/W
PW package	
Storage temperature range, T _{stg} 65°C	to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This current flows only when the output is in the high state and $V_O > V_{CC}$.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

4. Long-term high-temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction of overall device life. See http://www.ti.com/ep_quality for additional information on enhanced plastic packaging.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage		2.7	3.6	V
VIH	High-level input voltage		2		V
VIL	Low-level input voltage		0.8	V	
VI	Input voltage		5.5	V	
IOH	High-level output current		-32	mA	
IOL	Low-level output current			64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate			10	ns/V
т.	Operating free air temperature	SN74LVTH273I		85	°C
т _А	Operating free-air temperature	SN74LVTH273M	-55	125	°C

NOTE 5: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the TI application report, *Implications of Slow or Floating CMOS Inputs* (SCBA004).

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

_			SN74	LVTH27	31	SN74	LVTH273	M		
PARAMETER		TEST CONDIT	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT	
VIK		$V_{CC} = 2.7 \text{ V}, \text{ I}_{\text{I}} = -18 \text{ mA}$				-1.2			-1.2	V
		= –100 μA	V _{CC} -0.2			V _{CC} -0.2				
V _{OH} V _C		$V_{CC} = 2.7 \text{ V}, I_{OH} = -8 \text{ mA}$	L	2.4			2.4			V
		$V_{CC} = 3 V, I_{OH} = -32 mA$		2			2			
			I _{OL} = 100 μA			0.2			0.2	
		V _{CC} = 2.7 V	I _{OL} = 24 mA			0.5			0.5	
V _{OL}			I _{OL} = 16 mA			0.4			0.4	V
		V _{CC} = 3 V	I _{OL} = 32 mA			0.5			0.5	
			I _{OL} = 64 mA			0.55	0.5			<u> </u>
		$V_{CC} = 0 \text{ or } 3.6 \text{ V}, \text{ V}_{I} = 5.5$	V			10			12	
	1	$V_{CC} = 3.6 \text{ V}, \text{ V}_{I} = V_{CC} \text{ or }$			±1	±2			μA	
Ч		$V_{I} = V_{CC}$		1				1		
	Data inputs	V _{CC} = 3.6 V	$V_{I} = 0$			-5			-5	
loff		$V_{CC} = 0$, V_I or $V_O = 0$ to 4	.5 V			±100			±100	μΑ
			V _I = 0.8 V	75			75			
	Data inputs	V _{CC} = 3 V	V _I = 2 V	-75	-75 -75				μA	
II(hold) Data inputs	$V_{CC} = 3.6 V^{\ddagger}, V_{I} = 0 \text{ to } 3.6 V$		500 -750			500 –750				
$V_{CC} = 3.6 \text{ V}, \text{ I}_{O} = 0, \\ V_{I} = V_{CC} \text{ or GND}$		$V_{CC} = 3.6 V, I_{O} = 0,$	Outputs high			0.19			0.19	
		Outputs low			5			5	mA	
∆I _{CC} §		V_{CC} = 3 V to 3.6 V, One inp Other inputs at V_{CC} or GN				0.2			0.2	mA
Ci		$V_{I} = 3 V \text{ or } 0$			4			4		pF

[†] All typical values are at V_{CC} = 3.3 V, $T_A = 25^{\circ}$ C.

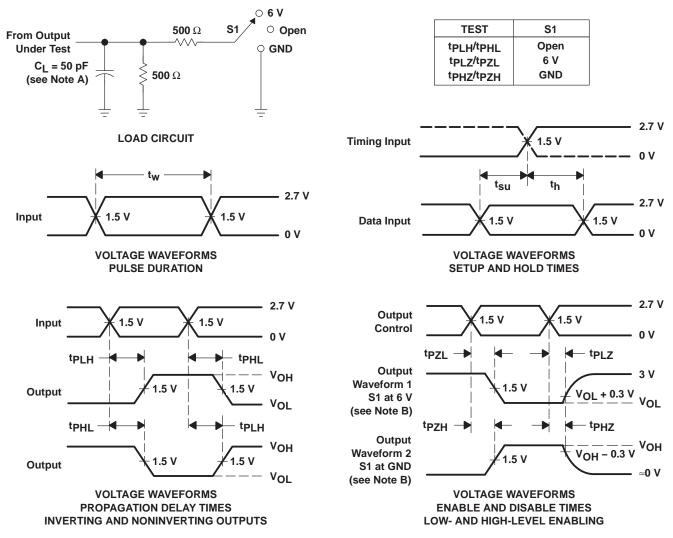
[‡]This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

§ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

			۷ _{CC} = ± 0.:	3.3 V 3 V	V _{CC} =	2.7 V	UNIT
			MIN	MAX	MIN	MAX	
fclock	Clock frequency			150			MHz
tw	Pulse duration	3.3		3.3		ns	
		Data high or low before CLK [↑]	2.3		2.7		
t _{su}	Setup time	CLR high before CLK↑	2.3		2.7		ns
t _h	Hold time, data high or low after $CLK\uparrow$		0		0		ns

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


						SN74LVT	H273I	SN74LVT	H273M	
PARAMETER	FROM (INPUT)	TO (OUTPUT)	VCC :	V _{CC} = 3.3 V ±0.3 V			V _{CC} = 2.7 V		V _{CC} = 2.7 V	
			MIN	TYP†	MAX	MIN	MAX	MIN	MAX	
f _{max}			150							MHz
^t PLH	<u>OLK</u>	AmirO	1.7	3.2	4.9		5.5		7	
^t PHL	CLK	Any Q	1.9	3.2	4.8		5.1		6.6	ns
^t PHL	CLR	Any Q	1.6	2.7	4.3		4.7		7	ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCBS769A - NOVEMBER 2003 - REVISED JUNE 2006

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2.5 ns. t_f ≤ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
CLVTH273MNSREPG4	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	LVTH273EP
SN74LVTH273MNSREP	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	LVTH273EP
V62/04674-02YE	Active	Production	SOP (NS) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	LVTH273EP

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

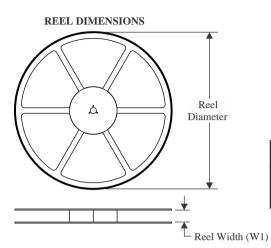
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

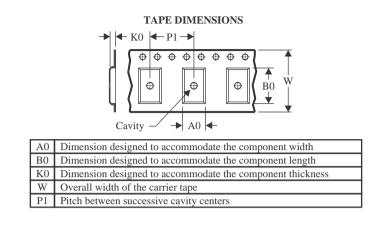
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

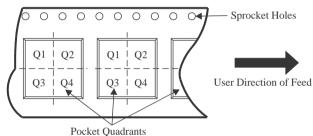
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVTH273-EP :

Catalog : SN74LVTH273

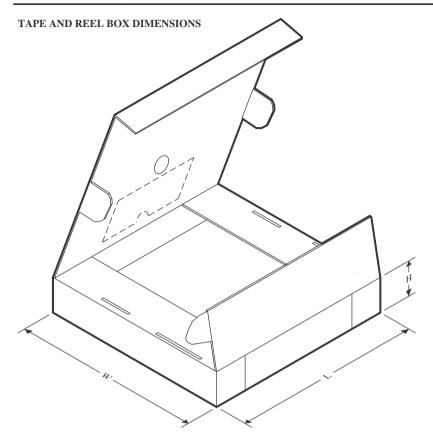

NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVTH273MNSREP	SOP	NS	20	2000	330.0	24.4	8.4	13.0	2.5	12.0	24.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

24-Jul-2025

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVTH273MNSREP	SOP	NS	20	2000	356.0	356.0	45.0

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated