

ZHCSYD4R - JUNE 2001 - REVISED JUNE 2025

SN74LVC1G66 单路双边模拟开关

1 特性

- 采用德州仪器 (TI) NanoFree[™] 封装
- 1.65V 至 5.5V V_{CC} 运行
- 允许接受输入电压 5.5V
- t_{pd} 最大值为 0.8ns (3.3V 时)
- 高开关输出电压比
- 高度线性
- 高速,典型值为 0.5ns(V_{CC} = 3V, C_L = 50pF)
- 低导通状态电阻,典型值约为 5.5Ω (V_{CC} = 4.5V)
- 闩锁性能超过 100mA,符合 JESD 78 II 类规范的 要求
- ESD 保护性能超过 JESD 22 规范要求
 - 2000V 人体放电模型 (A114-A)
 - 200V 机器放电模型 (A115-A)
 - 1000V 充电器件模型 (C101)

2 应用

- 无线器件
- 音频和视频信号路由
- 便携式计算
- 可穿戴设备
- 信号门控、斩波、调制或解调(调制解调器)
- 适用于模数和数模转换系统的信号多路复用

逻辑图(正逻辑)

3 说明

SN74LVC1G66 单路、双边模拟开关专为 1.65V 至 5.5V V_{CC} 运行而设计,并支持模拟和数字信号。 SN74LVC1G66 允许双向传输振幅高达 5.5V(峰值)的信号。通过将裸片用作封装,NanoFree 封装技术代表了 IC 封装概念的一项重大进步。

器件型号	封装 ⁽¹⁾	封装尺寸 ⁽²⁾
SN74LVC1G66DBV	DBV(SOT-23,5)	2.90mm × 2.80mm
SN74LVC1G66DCK	DCK(SC70,5)	2.00mm × 2.10mm
SN74LVC1G66DRL	DRL(SOT,5)	1.60mm × 1.60mm
SN74LVC1G66DRY	DRY (SON, 6)	1.45mm × 1.00mm
SN74LVC1G66YZP	YZP(DSBGA,5)	1.39mm × 0.89mm
SN74LVC1G66DSF	DSF (SON, 6)	1.00mm x 1.00mm

- (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附
- 录。(2) 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。

Table of Contents

1	特性	1
2	应用	1
3	说明	1
4	Pin Configuration and Functions	3
	Pin Functions	4
	Pin Functions	4
5	Specifications	5
	5.1 Absolute Maximum Ratings	5
	5.2 ESD Ratings	5
	5.3 Recommended Operating Conditions	6
	5.4 Thermal Information	6
	5.5 Electrical Characteristics	7
	5.6 Switching Characteristics	7
	5.7 Analog Switch Characteristics	8
	5.8 Operating Characteristics	8
	5.9 Typical Characteristics	9
6	Parameter Measurement Information1	0
7	Detailed Description1	4
	7.1 Overview1	4

7.2 Functional Block Diagram	14
7.3 Feature Description.	14
7.4 Device Functional Modes	14
8 Application and Implementation	15
8.1 Application Information	15
8.2 Typical Application	15
8.3 Power Supply Recommendations	1 <mark>6</mark>
8.4 Layout	17
9 Device and Documentation Support	18
9.1 Documentation Support	
9.2 接收文档更新通知	
9.3 支持资源	18
9.4 Trademarks	18
9.5 静电放电警告	
9.6 术语表	
10 Revision History	19
11 Mechanical, Packaging, and Orderable	
Information	

4 Pin Configuration and Functions

图 4-1. DBV Package 5-Pin SOT-23 (Top View)

图 4-2. DCK Package 5-Pin SC70 (Top View)

图 4-4. DSF Package 6-Pin X2SON (Top View)

图 4-5. DRY Package 6-Pin USON (Top View)

Pin Functions

PIN							
NAME	SOT NO.	USON, X2SON NO.	Type ⁽¹⁾	DESCRIPTION			
A	1	1	I/O	Bidirectional signal to be switched			
В	2	2	I/O	Bidirectional signal to be switched			
С	4	4	I	Controls the switch (L = OFF, H = ON)			
GND	3	3	—	Ground pin			
NC	—	5	—	Do not connect			
V _{CC}	5	6	_	Power pin			

(1) I = input; O = output; I/O = input or output

Pin Functions

Р	IN		DESCRIPTION
NAME	DSBGA NO.	Type	DESCRIPTION
A	A1	I/O	Bidirectional signal to be switched
В	B1	I/O	Bidirectional signal to be switched
С	C2	I	Controls the switch (L = OFF, H = ON)
GND	C1	—	Ground pin
V _{CC}	A2	—	Power pin

(1) I = input; O = output; I/O = input or output

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾		- 0.5	6	V
VI	Input voltage ^{(2) (3)}		- 0.5	6	V
V _{I/O}	Switch I/O voltage ^{(2) (3) (4)}		- 0.5	V _{CC} + 0.5	V
I _{IK}	Control input clamp current	V ₁ < 0		- 50	mA
I _{IOK}	I/O port diode current	$V_{I/O} < 0$ or $V_{I/O} > V_{CC}$		±50	mA
IT	ON-state switch current	$V_{I/O}$ < 0 to V_{CC}		±50	mA
	Continuous current through V_{CC} or GND		±100	mA	
T _{stg}	Storage Temperature		- 65	150	°C
Tj	Junction Temperature			150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) All voltages are with respect to ground, unless otherwise specified.

(3) The input and output negative-voltage ratings can be exceeded if the input and output clamp-current ratings are observed.

(4) This value is limited to 5.5V maximum.

5.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	+2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	+1000	V

(1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage		1.65	5.5	V
V _{I/O}	I/O port voltage.		0	V _{CC}	V
		V _{CC} = 1.65V to 1.95V	V _{CC} × 0.65		
V	High lovel input voltage, control input	V _{CC} = 2.3V to 2.7V	V _{CC} × 0.7		
[∨] IH	righ-level input voltage, control input	V_{CC} = 3V to 3.6V	V _{CC} × 0.7		
		V _{CC} = 4.5V to 5.5V	V _{CC} × 0.7		
		V _{CC} = 1.65V to 1.95V		V _{CC} × 0.35	
	Low-level input voltage, control input	V _{CC} = 2.3V to 2.7V		V _{CC} × 0.3	
[∨] IL		V_{CC} = 3V to 3.6V		V _{CC} × 0.3	v
		V _{CC} = 4.5V to 5.5V		V _{CC} × 0.3	
VI	Control input voltage		0	5.5	V
		V _{CC} = 1.65V to 1.95V		20	
∆ t/	Control input transition rise and fall time	V _{CC} = 2.3V to 2.7V		20	
$\Delta \mathbf{v}$	Control input transition rise and fall time	V_{CC} = 3V to 3.6V		10	115/ V
		V _{CC} = 4.5V to 5.5V		10	
T _A	Operating free-air temperature		- 40	125	°C

(1) All unused inputs of the device must be held at V_{CC} or GND to provide proper device operation. See also, the *Implications of Slow or Floating CMOS Inputs* application note.

5.4 Thermal Information

		SN74LVC1G66						
THERMAL METRIC ⁽¹⁾		DBV (SOT-23)	DCK (SC70)	DRL (SOT)	DRY (USON)	DSF (X2SON)	YZP (DSBGA)	UNIT
		5 PINS	5 PINS	5 PINS	6 PINS	6 PINS	5 PINS	
R _{0 JA}	Junction-to-ambient thermal resistance	262	313	142	355	348	132	°C/W
R _θ JC(top)	Junction-to-case (top) thermal resistance	198	203	—	250	215	_	°C/W
R _{0 JB}	Junction-to-board thermal resistance	142	195	_	222	211	_	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	123	120	—	78	35	_	°C/W
ΨJB	Junction-to-board characterization parameter	142	194		221	210	_	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application note.

5.5 Electrical Characteristics

	PARAMETER	TEST CONDIT	IONS	Vcc	MIN TYP ⁽¹⁾	MAX	UNIT
			I _S = 4mA	1.65V	12	30	
r _{on}		$V_{I} = V_{CC}$ or GND,	I _S = 8mA	2.3V	9	20	
	ON-State Switch resistance	(see 图 6-1 and 图 5-1)	I _S = 24mA	3V	7.5	15	Ω
			I _S = 32mA	4.5V	5.5	10	
			I _S = 4mA	1.65V	125	200	
r .	Peak on resistance	$V_{I} = V_{CC}$ to GND, $V_{O} = V_{UU}$	I _S = 8mA	2.3V	35	60	0
on(p)		(see 图 6-1 and 图 5-1)	I _S = 24mA	3V	11.5	25	52
			I _S = 32mA	4.5V	7.5	15	
I _{S(off)}	OFF-state switch leakage current					±1	μA
			T _A = 25°C	5.5V		±0.1	
		$V_{I} = V_{CC}$ or GND, $V_{C} = V_{IH}$,				±1	
I _{S(on)}	ON-state switch leakage current	V _O = Open (see 图 6-3)	T _A = 25°C	5.5V		±0.1	μA
L	Control input current	Vo = Voo or GND		5 5\/		±1	Π Δ
Ч 			T _A = 25°C	0.07		±0.1	٣٨
1	Supply current	Va = Vaa or GND		5 5\/		10	
CC	Supply current		T _A = 25°C	5.50		1	μA
ΔI_{CC}	Supply current change	$V_{\rm C} = V_{\rm CC} - 0.6V$		5.5V		500	μA
C _{ic}	Control input capacitance			5V	2		pF
C _{io(off)}	Switch input and output capacitance			5V	6		pF
C _{io(on)}	Switch input and output capacitance			5V	15		pF

over recommended operating free-air temperature range (unless otherwise noted)

(1) T_A = 25°C

5.6 Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see 8 6-4)

PARAMETER			V _{CC} = ± 0.1	1.8V 5V	V _{cc} = ± 0.	2.5V 2V	V _{CC} = ± 0.	3.3V 3V	V _{CC} = ± 0.	: 5V 5V	UNIT
	(INFOT)		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t _{pd} ⁽¹⁾	A or B	B or A		2.2		1.2		0.8		0.6	ns
t _{en} ⁽²⁾	С	A or B	2.5	12	1.9	6.5	1.8	5	1.5	4.2	ns
t _{dis} ⁽³⁾	С	A or B	2.2	11.5	1.4	6.9	2	6.5	1.4	6	ns

(1) t_{PLH} and t_{PHL} are the same as t_{pd}. The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

(2) t_{PZL} and t_{PZH} are the same as t_{en} .

(3) t_{PLZ} and t_{PHZ} are the same as t_{dis} .

5.7 Analog Switch Characteristics

T_A = 25°C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	V _{cc}	ТҮР	UNIT
				1.65V	35	
			$C_L = 50 \text{pF}, R_L = 600 \Omega,$	2.3V	120	
			(see 图 6-5)	3V	175	
PARAMETER Frequency response ⁽¹⁾ (switch ON) Crosstalk (control input to signal output) Feedthrough attenuation ⁽²⁾ (switch OFF) Sine-wave distortion	A or P	P or A		4.5V	195	M⊔⇒
	AUB	DUIA		1.65V	>300	IVITIZ
			$C_L = 5pF, R_L = 50\Omega,$	2.3V	>300	
			(see 图 6-5)	3V	>300	
		$ \begin{array}{ c c c c c } \hline \mbox{(NPUT)} & \mbox{(OUTPUT)} & \mbox{(See [$] 6-5)} & \mbox{(See [$] 6-6)} & \mbox{(See [$] 6-7)} & \mbox{(See [$] 6-8)} & \mbox{(See [$] 6-8]} & \mbox{(See [$] 6-8]} & \mbox{(See [$] 6-8]} & (S$				
				1.65V	35	
Crosstalk	C	A or B	$C_L = 50 \text{pF}, R_L = 600 \Omega,$	2.3V	50	m\/
(control input to signal output)	$C_{L} = 50 \text{pF}, \text{R}_{L} = 600 \Omega,$	AUD	$(\text{see } \boxtimes 6-6)$	3V	70	mv
		4.5V	100			
		B or A		1.65V	- 58	- - - dB
			$C_L = 50 \text{pF}, R_L = 600 \Omega,$	2.3V	- 58	
			$T_{in} = TMHZ (sine wave)$ (see \mathbb{K} 6-7)	3V	- 58	
Feedthrough attenuation ⁽²⁾				4.5V	- 58	
(switch OFF)	A or B			1.65V	- 42	
			$C_L = 5pF, R_L = 50\Omega,$	2.3V	- 42	
			f _{in} = 1MHz (sine wave) (see ⊠ 6-7)	3V	- 42	
				4.5V	- 42	
				1.65V	0.5%	
			$C_L = 50 \text{pF}, R_L = 10 \text{k}\Omega,$	2.3V	0.025%	
			lin = 1kHZ (sine wave)	3V	0.015%	
Cine ways distantian	A	DerA		4.5V	0.01%	
Sine-wave distortion	A OL R	B OF A		1.65V	0.15%	
			$C_L = 50 \text{pF}, R_L = 10 \text{k}\Omega,$	2.3V	0.025%	
			lin − luk⊓z (sine wave) (see 图 6-8)	3V	0.015%	
	$\begin{array}{c c} \text{pnse}^{(1)} & \text{A or B} & \text{B or A} \\ \hline & & \\ \hline & \\ \text{Signal output} \\ \text{enuation}^{(2)} & \text{A or B} \\ \hline & \\ \text{A or B} & \text{B or A} \\ \hline & \\ \hline & \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{see } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{See } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{See } 12 \\ \text{See } 12 \\ \text{See } 12 \\ \text{CL} = 5 \\ f_{\text{in}} = 11 \\ (\text{See } 12 \\ \text{See } 12 \\ Se$		4.5V	0.01%		

 $\begin{array}{ll} \mbox{(1)} & \mbox{Adjust } f_{in} \mbox{ voltage to obtain 0dBm at output. Increase } f_{in} \mbox{ frequency untildB meter reads } - 3dB. \\ \mbox{(2)} & \mbox{Adjust } f_{in} \mbox{ voltage to obtain 0dBm at input.} \end{array}$

5.8 Operating Characteristics

T_A = 25°C

PARAMETER		TEST	V _{CC} = 1.8V	V _{CC} = 2.5V	V _{CC} = 3.3V	V _{CC} = 5V		
		CONDITIONS	ТҮР	ТҮР	TYP	ТҮР		
C _{pd}	Power dissipation capacitance	f = 10MHz	8	9	9	11	pF	

5.9 Typical Characteristics

T_A = 25°C

图 5-1. Typical r_{on} as a Function of Input Voltage (V_I) for V_I = 0 to V_{CC}

6 Parameter Measurement Information

图 6-1. ON-State Resistance Test Circuit

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

图 6-4. Load Circuit and Voltage Waveforms

图 6-6. Crosstalk (Control Input - Switch Output)

7 Detailed Description

7.1 Overview

The SN74LVC1G66 single, bilateral analog switch is designed for 1.65V to 5.5V V_{CC} operation, and supports both analog and digital signals. SN74LVC1G66 permits bidirectional transmission of signals with amplitudes of up to 5.5V (peak). By using the die as the package, NanoFree package technology represents a significant advancement in IC packaging concepts.

7.2 Functional Block Diagram

Logic Diagram (Positive Logic)

7.3 Feature Description

The TI NanoFree package is one of TI's smallest packages, which enables customers to save board space. The solder bumps enable easy testing. The SN74LVC1G66 has a wide V_{CC} range, enabling rail-to-rail operation of signals anywhere from a 1.8V to a 5V system. In addition, the control input (C Pin) tolerates up to 5.5V, enabling higher-voltage logic to interface to the switch control system.

7.4 Device Functional Modes

CONTROL INPUT (C)	SWITCH					
L	OFF					
Н	ON					

表 7-1. Function Table

8 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The SN74LVC1G66 can be used in any application where an SPST switch is used and a solid-state, voltagecontrolled version is preferred.

8.2 Typical Application

图 8-1. Typical Application Schematic

8.2.1 Design Requirements

The SN74LVC1G66 enables on and off control of analog and digital signals with a digital control signal. All input signals must remain between 0V and V_{CC} for optimal operation.

8.2.2 Detailed Design Procedure

- 1. Recommended Input Conditions:
 - For rise time and fall time specifications, see $\Delta t / \Delta v$ in $\frac{# 5.3}{}$.
 - For specified high and low levels, see V_{IH} and V_{IL} in # 5.3.
 - Inputs and outputs are overvoltage tolerant allowing them to go as high as 5.5V at any valid V_{CC}.
- 2. Recommended Output Conditions:
 - Load currents must not exceed ±50mA.
- 3. Frequency Selection Criterion:
 - Maximum frequency tested is 150MHz.
 - Added trace resistance/capacitance can reduce maximum frequency capability; use layout practices as directed in *#* 8.4.

8.2.3 Application Curve

图 8-2. r_{on} vsV_I,V_{CC} = 2.5V (SN74LVC1G66)

8.3 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in # 5.3.

Each V_{CC} terminal must have a bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1 μ F bypass capacitor is recommended. If there are multiple pins labeled V_{CC}, then a 0.01 μ F or 0.022 μ F capacitor is recommended for each V_{CC} because the V_{CC} pins are connected internally. For devices with dual supply pins operating at different voltages (for example V_{CC} and V_{DD}), a 0.1 μ F bypass capacitor is recommended for each supply pin. Having parallel multiple bypass capacitors is acceptable to reject different frequencies of noise. 0.1 μ F and 1 μ F capacitors are commonly used in parallel. The bypass capacitor must be installed as close to the power terminal as possible for best results.

8.4 Layout

8.4.1 Layout Guidelines

Reflections and matching are closely related to loop antenna theory, but different enough to warrant a separate discussion. When a PCB trace turns a corner at a 90 degree angle, a reflection can occur. This occurs primarily due to the change of width of the trace. At the apex of the turn, the trace width is increased to 1.414 times the width. This upsets the transmission line characteristics — especially the distributed capacitance and self – inductance of the trace — resulting in the reflection.

备注

Not all PCB traces can be straight, and so can require turning corners. 🕅 8-3 shows progressively better techniques of rounding corners. Only the last example maintains constant trace width and minimizes reflections.

8.4.2 Layout Example

图 8-3. Trace Example

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

• Texas Instruments, Implications of Slow or Floating CMOS Inputs

9.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知*进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

9.3 支持资源

TI E2E[™] 中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

9.4 Trademarks

NanoFree[™] and TI E2E[™] are trademarks of Texas Instruments. 所有商标均为其各自所有者的财产。

9.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

9.6 术语表

TI术语表 本术语表列出并解释了术语、首字母缩略词和定义。

10 Revision History

注:以前版本的页码可能与当前版本的页码不同

С	hanges from Revision Q (March 2017) to Revision R (June 2025)	Page
•	更新了整个文档中的表格、图和交叉参考的编号格式	1
•	Updated Thermal Information	6
•	Updated resistance range in ^{††} 5.5	7
•	Updated switching timing in 📅 5.6	7
•	Updated Sine-wave distortion in ^{††} 5.7	8
•	Added Receiving Notifications of Documentation Updates, Support Resources, Electrostatic Discharge Caution, and Glossary the sections	18

CI	hanges from Revision P (March 2016) to Revision Q (March 2017)	Page
•	Changed the YZP package pin out graphic	4

С	hanges from Revision O (March 2015) to Revision P (March 2016) Page						
•	Added Junction temperature specification to Absolute Maximum Ratings table	5					
•	Added "Control" to "Input transition rise and fall time" in Recommended Operating Conditions table	6					

CI	hanges from Revision N (December 2012) to Revision O (March 2015)	Page
•	添加了 <i>引脚配置和功能</i> 部分、ESD <i>等级</i> 表、特性说明部分、器件功能模式、应用和实施部分、	<i>电源相关建议</i> 部
	分、 <i>布局</i> 部分、器件和文档支持部分以及机械、封装和可订购信息部分	1
•	删除了 <i>订购信息</i> 表	1
•	添加了 <i>器件信息</i> 表	1

Cł	hanges from Revision M (January 2012) to Revision N (December 2012)	Page
•	向 <i>订购信息</i> 表中添加了大型卷带	1

CI	hanges from Revision L (January 2007) to Revision M (January 2012)	Page
•	Added DSF and DRY package to pin out graphic	3

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	(3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74LVC1G66DBVR	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	(4) NIPDAU SN NIPDAU	Level-1-260C-UNLIM	-40 to 85	(C665, C66J, C66R, C66T)
SN74LVC1G66DBVR.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(C665, C66J, C66R, C66T)
SN74LVC1G66DBVR.B	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(C665, C66J, C66R, C66T)
SN74LVC1G66DBVT	Obsolete	Production	SOT-23 (DBV) 5	-	-	Call TI	Call TI	-40 to 85	(C665, C66J, C66R)
SN74LVC1G66DCKR	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU SN NIPDAU	Level-1-260C-UNLIM	-40 to 85	(C65, C6F, C6J, C6 K, C6O, C6R, C 6T)
SN74LVC1G66DCKR.A	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(C65, C6F, C6J, C6 K, C6O, C6R, C 6T)
SN74LVC1G66DCKR.B	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	(C65, C6F, C6J, C6 K, C6O, C6R, C 6T)
SN74LVC1G66DCKT	Obsolete	Production	SC70 (DCK) 5	-	-	Call TI	Call TI	-40 to 85	(C65, C6J, C6R, C6 T)
SN74LVC1G66DRLR	Active	Production	SOT-5X3 (DRL) 5	4000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(C67, C6R)
SN74LVC1G66DRLR.A	Active	Production	SOT-5X3 (DRL) 5	4000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(C67, C6R)
SN74LVC1G66DRLR.B	Active	Production	SOT-5X3 (DRL) 5	4000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 85	(C67, C6R)
SN74LVC1G66DRYR	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	C6
SN74LVC1G66DRYR.A	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	C6
SN74LVC1G66DRYR.B	Active	Production	SON (DRY) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	C6
SN74LVC1G66DSF2	Obsolete	Production	SON (DSF) 6	-	-	Call TI	Call TI	-40 to 85	C6
SN74LVC1G66DSFR	Active	Production	SON (DSF) 6	5000 LARGE T&R	Yes	NIPDAU NIPDAU	Level-1-260C-UNLIM	-40 to 85	C6
SN74LVC1G66DSFR.A	Active	Production	SON (DSF) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	C6
SN74LVC1G66DSFR.B	Active	Production	SON (DSF) 6	5000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	C6
SN74LVC1G66YZPR	Active	Production	DSBGA (YZP) 5	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	C6N
SN74LVC1G66YZPR.B	Active	Production	DSBGA (YZP) 5	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 85	C6N

www.ti.com

10-Jun-2025

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVC1G66 :

• Automotive : SN74LVC1G66-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

Texas

STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

All dimensions are nominal												
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVC1G66DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
SN74LVC1G66DCKR	SC70	DCK	5	3000	178.0	9.0	2.4	2.5	1.2	4.0	8.0	Q3
SN74LVC1G66DRLR	SOT-5X3	DRL	5	4000	180.0	8.4	1.98	1.78	0.69	4.0	8.0	Q3
SN74LVC1G66DRYR	SON	DRY	6	5000	180.0	9.5	1.15	1.6	0.75	4.0	8.0	Q1
SN74LVC1G66DSFR	SON	DSF	6	5000	180.0	8.4	1.16	1.16	0.5	4.0	8.0	Q2
SN74LVC1G66YZPR	DSBGA	YZP	5	3000	178.0	9.2	1.02	1.52	0.63	4.0	8.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

10-Jun-2025

Device	Package Ty
*All dimensions are nominal	

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVC1G66DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
SN74LVC1G66DCKR	SC70	DCK	5	3000	180.0	180.0	18.0
SN74LVC1G66DRLR	SOT-5X3	DRL	5	4000	202.0	201.0	28.0
SN74LVC1G66DRYR	SON	DRY	6	5000	184.0	184.0	19.0
SN74LVC1G66DSFR	SON	DSF	6	5000	210.0	185.0	35.0
SN74LVC1G66YZPR	DSBGA	YZP	5	3000	220.0	220.0	35.0

Т

Т

Т

Т

YZP0005

PACKAGE OUTLINE

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

YZP0005

EXAMPLE BOARD LAYOUT

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).

YZP0005

EXAMPLE STENCIL DESIGN

DSBGA - 0.5 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

DCK0005A

PACKAGE OUTLINE

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-203.

- 4. Support pin may differ or may not be present.5. Lead width does not comply with JEDEC.
- 6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side

DCK0005A

EXAMPLE BOARD LAYOUT

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

Publication IPC-7351 may have alternate designs.
 Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DCK0005A

EXAMPLE STENCIL DESIGN

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

10. Board assembly site may have different recommendations for stencil design.

DBV0005A

PACKAGE OUTLINE

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
- 5. Support pin may differ or may not be present.

DBV0005A

EXAMPLE BOARD LAYOUT

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DBV0005A

EXAMPLE STENCIL DESIGN

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

GENERIC PACKAGE VIEW

USON - 0.6 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4207181/G

DRY0006A

PACKAGE OUTLINE

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice.

DRY0006A

EXAMPLE BOARD LAYOUT

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

3. For more information, see QFN/SON PCB application report in literature No. SLUA271 (www.ti.com/lit/slua271).

DRY0006A

EXAMPLE STENCIL DESIGN

USON - 0.6 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DSF0006A

PACKAGE OUTLINE

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing Per ASME Y14.5M.
 This drawing is subject to change without notice.
 Reference JEDEC registration MO-287, variation X2AAF.

DSF0006A

EXAMPLE BOARD LAYOUT

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

DSF0006A

EXAMPLE STENCIL DESIGN

X2SON - 0.4 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DRL0005A

PACKAGE OUTLINE

SOT - 0.6 mm max height

PLASTIC SMALL OUTLINE

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-293 Variation UAAD-1

DRL0005A

EXAMPLE BOARD LAYOUT

SOT - 0.6 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

DRL0005A

EXAMPLE STENCIL DESIGN

SOT - 0.6 mm max height

PLASTIC SMALL OUTLINE

NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

8. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行 复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索 赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司