
# SN74LVC138A-Q1 3-LINE TO 8-LINE DECODER/DEMULTIPLEXER

SCAS708B-SEPTEMBER 2003-REVISED FEBRUARY 2008

#### **FEATURES**

- Qualified for Automotive Applications
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Operates From 2 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t<sub>pd</sub> of 5.8 ns at 3.3 V
- Typical V<sub>OLP</sub> (Output Ground Bounce) < 0.8 V at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C
- Typical V<sub>OHV</sub> (Output V<sub>OH</sub> Undershoot) > 2 V at V<sub>CC</sub> = 3.3 V, T<sub>A</sub> = 25°C



## **DESCRIPTION/ORDERING INFORMATION**

The SN74LVC138A 3-line to 8-line decoder/demultiplexer is designed for 2.7-V to 3.6-V  $V_{CC}$  operation.

The device is designed for high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, this decoder minimizes the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, delay times of this decoder and the enable time of the memory usually are less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.

The conditions at the binary-select inputs and the three enable inputs select one of eight output lines. Two active-low enable inputs and one active-high enable input reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

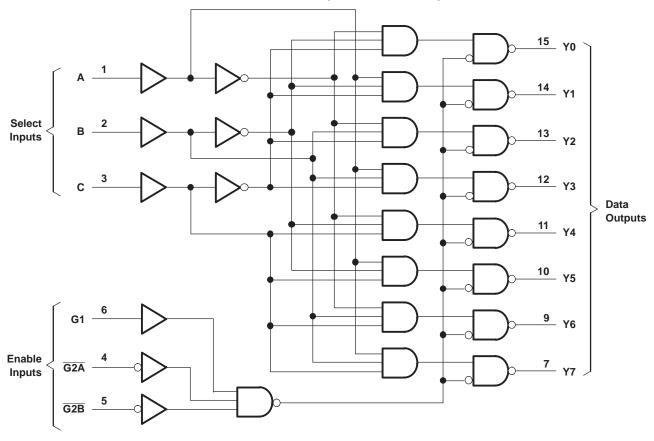
## ORDERING INFORMATION(1)

| T <sub>A</sub> | PACKAGE    | (2)          | ORDERABLE PART NUMBER | TOP-SIDE MARKING |  |  |
|----------------|------------|--------------|-----------------------|------------------|--|--|
| 40°C to 425°C  | SOIC - D   | Reel of 2500 | SN74LVC138AQDRQ1      | L138AQ1          |  |  |
| –40°C to 125°C | TSSOP – PW | Reel of 2000 | SN74LVC138AQPWRQ1     | L138AQ1          |  |  |

<sup>(1)</sup> For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.




Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



## **FUNCTION TABLE**

| ENA | BLE IN | PUTS | SELECT INPUTS |   |   | OUTPUTS |    |    |    |    |    |    |    |
|-----|--------|------|---------------|---|---|---------|----|----|----|----|----|----|----|
| G1  | G2A    | G2B  | С             | В | Α | Y0      | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 |
| Х   | Н      | Χ    | Х             | Х | Χ | Н       | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| Х   | X      | Н    | Χ             | Χ | Χ | Н       | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| L   | X      | Χ    | Χ             | Χ | Χ | Н       | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| Н   | L      | L    | L             | L | L | L       | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| Н   | L      | L    | L             | L | Н | Н       | L  | Н  | Н  | Н  | Н  | Н  | Н  |
| Н   | L      | L    | L             | Н | L | Н       | Н  | L  | Н  | Н  | Н  | Н  | Н  |
| Н   | L      | L    | L             | Н | Н | Н       | Н  | Н  | L  | Н  | Н  | Н  | Н  |
| Н   | L      | L    | Н             | L | L | Н       | Н  | Н  | Н  | L  | Н  | Н  | Н  |
| Н   | L      | L    | Н             | L | Н | Н       | Н  | Н  | Н  | Н  | L  | Н  | Н  |
| Н   | L      | L    | Н             | Н | L | Н       | Н  | Н  | Н  | Н  | Н  | L  | Н  |
| Н   | L      | L    | Н             | Н | Н | Н       | Н  | Н  | Н  | Н  | Н  | Н  | L  |

# LOGIC DIAGRAM (POSITIVE LOGIC)



SCAS708B-SEPTEMBER 2003-REVISED FEBRUARY 2008

# Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

|                  |                                                   |                    | MIN  | MAX                   | UNIT |
|------------------|---------------------------------------------------|--------------------|------|-----------------------|------|
| $V_{CC}$         | Supply voltage range                              |                    | -0.5 | 6.5                   | V    |
| VI               | Input voltage range <sup>(2)</sup>                |                    | -0.5 | 6.5                   | V    |
| Vo               | Output voltage range (2)(3)                       |                    | -0.5 | V <sub>CC</sub> + 0.5 | V    |
| I <sub>IK</sub>  | Input clamp current                               | V <sub>I</sub> < 0 |      | <b>–</b> 50           | mA   |
| I <sub>OK</sub>  | Output clamp current                              | V <sub>O</sub> < 0 |      | -50                   | mA   |
| Io               | Continuous output current                         |                    |      | ±50                   | mA   |
|                  | Continuous current through V <sub>CC</sub> or GND |                    |      | ±100                  | mA   |
| 0                | Deckers thermal impedance (4)                     | D package          |      | 73                    | °C/W |
| $\theta_{JA}$    | Package thermal impedance (4)                     | PW package         |      | 108                   |      |
| T <sub>stg</sub> | Storage temperature range                         |                    | -65  | 150                   | °C   |

<sup>(1)</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

# Recommended Operating Conditions(1)

|                 |                                    |                                  | MIN | MAX      | UNIT |  |
|-----------------|------------------------------------|----------------------------------|-----|----------|------|--|
| \/              | Cumply voltage                     | Operating                        | 2   | 3.6      | V    |  |
| V <sub>CC</sub> | Supply voltage                     | Data retention only              | 1.5 |          | V    |  |
| V <sub>IH</sub> | High-level input voltage           | V <sub>CC</sub> = 2.7 V to 3.6 V | 2   |          | V    |  |
| $V_{IL}$        | Low-level input voltage            | V <sub>CC</sub> = 2.7 V to 3.6 V |     | 0.8      | V    |  |
| VI              | Input voltage                      |                                  | 0   | 5.5      | V    |  |
| Vo              | Output voltage                     |                                  | 0   | $V_{CC}$ | V    |  |
|                 | High level output ourrent          | V <sub>CC</sub> = 2.7 V          |     | -12      | A    |  |
| I <sub>OH</sub> | High-level output current          | V <sub>CC</sub> = 3 V            |     | -24      | mA   |  |
|                 | Low level cutout current           | V <sub>CC</sub> = 2.7 V          |     | 12       | mA   |  |
| I <sub>OL</sub> | Low-level output current           | V <sub>CC</sub> = 3 V            |     | 24       | IIIA |  |
| Δt/Δν           | Input transition rise or fall rate |                                  |     | 10       | ns/V |  |
| T <sub>A</sub>  | Operating free-air temperature     |                                  | -40 | 125      | °C   |  |

<sup>(1)</sup> All unused inputs of the device must be held at V<sub>CC</sub> or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

<sup>(2)</sup> The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

<sup>(3)</sup> The value of V<sub>CC</sub> is provided in the recommended operating conditions table.

<sup>(4)</sup> The package thermal impedance is calculated in accordance with JESD 51-7.

SCAS708B-SEPTEMBER 2003-REVISED FEBRUARY 2008



## **Electrical Characteristics**

over recommended operating free-air temperature range (unless otherwise noted)

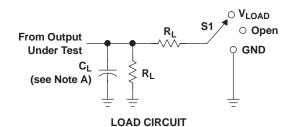
| PARAMETER       | TEST CONDITIONS                                                         | V <sub>CC</sub> | MIN TYP <sup>(1)</sup> MAX | UNIT |  |  |
|-----------------|-------------------------------------------------------------------------|-----------------|----------------------------|------|--|--|
|                 | $I_{OH} = -100 \mu A$                                                   | 2.7 V to 3.6 V  | V <sub>CC</sub> - 0.2      |      |  |  |
| \/              | I <sub>OH</sub> = -12 mA                                                | 2.7 V           | 2.2                        | V    |  |  |
| V <sub>OH</sub> | 10H = -12 IIIA                                                          | 3 V             | 2.4                        | V    |  |  |
|                 | $I_{OH} = -24 \text{ mA}$                                               | 3 V             | 2.2                        |      |  |  |
|                 | $I_{OL} = 100 \mu\text{A}$                                              | 2.7 V to 3.6 V  | 0.2                        |      |  |  |
| V <sub>OL</sub> | I <sub>OL</sub> = 12 mA                                                 | 2.7 V           | 0.4                        | V    |  |  |
|                 | I <sub>OL</sub> = 24 mA                                                 | 3 V             | 0.55                       |      |  |  |
| I <sub>I</sub>  | V <sub>I</sub> = 5.5 V or GND                                           | 3.6 V           | ±5                         | μΑ   |  |  |
| I <sub>CC</sub> | $V_I = V_{CC}$ or GND, $I_O = 0$                                        | 3.6 V           | 10                         | μΑ   |  |  |
| $\Delta I_{CC}$ | One input at $V_{CC} - 0.6 \text{ V}$ , Other inputs at $V_{CC}$ or GND | 2.7 V to 3.6 V  | 500                        | μΑ   |  |  |
| C <sub>i</sub>  | $V_I = V_{CC}$ or GND                                                   | 3.3 V           | 5                          | pF   |  |  |

<sup>(1)</sup> All typical values are at  $V_{CC}$  = 3.3 V,  $T_A$  = 25°C.

# **Switching Characteristics**

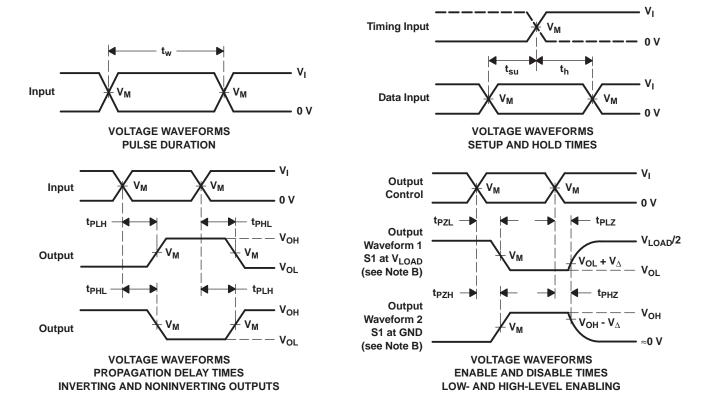
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

| PARAMETER       | FROM<br>(INPUT) | TO<br>(OUTPUT) | V <sub>CC</sub> = 2.7 V | V <sub>CC</sub> = 3.3 V<br>± 0.3 V |     | UNIT |
|-----------------|-----------------|----------------|-------------------------|------------------------------------|-----|------|
|                 | (INPOT)         | (001701)       | MIN MAX                 | MIN                                | MAX |      |
|                 | A or B or C     |                | 7.9                     | 1                                  | 6.7 |      |
| t <sub>pd</sub> | G2A or G2B      | Υ              | 7.4                     | 1                                  | 6.5 | ns   |
|                 | G1              |                | 6.4                     | 1                                  | 5.8 |      |


# **Operating Characteristics**

 $T_A = 25^{\circ}C$ 

|          | PARAMETER                     | TEST<br>CONDITIONS | V <sub>CC</sub> = 2.5 V<br>TYP | V <sub>CC</sub> = 3.3 V<br>TYP | UNIT |
|----------|-------------------------------|--------------------|--------------------------------|--------------------------------|------|
| $C_{pd}$ | Power dissipation capacitance | f = 10 MHz         | 26                             | 27                             | pF   |




### PARAMETER MEASUREMENT INFORMATION



| TEST                               | S1                |
|------------------------------------|-------------------|
| t <sub>PLH</sub> /t <sub>PHL</sub> | Open              |
| t <sub>PLZ</sub> /t <sub>PZL</sub> | V <sub>LOAD</sub> |
| t <sub>PHZ</sub> /t <sub>PZH</sub> | GND               |

| .,                 | INPUTS          |                                | .,                 | v                 |       | _            | V                       |
|--------------------|-----------------|--------------------------------|--------------------|-------------------|-------|--------------|-------------------------|
| V <sub>CC</sub>    | VI              | t <sub>r</sub> /t <sub>f</sub> | V <sub>M</sub>     | V <sub>LOAD</sub> | CL    | $R_L$        | $oldsymbol{V}_{\Delta}$ |
| 1.8 V $\pm$ 0.15 V | V <sub>CC</sub> | ≤2 ns                          | V <sub>CC</sub> /2 | 2×V <sub>CC</sub> | 30 pF | <b>1 k</b> Ω | 0.15 V                  |
| 2.5 V $\pm$ 0.2 V  | V <sub>CC</sub> | ≤2 ns                          | V <sub>CC</sub> /2 | 2×V <sub>CC</sub> | 30 pF | 500 $\Omega$ | 0.15 V                  |
| 2.7 V              | 2.7 V           | ≤2.5 ns                        | 1.5 V              | 6 V               | 50 pF | 500 $\Omega$ | 0.3 V                   |
| 3.3 V $\pm$ 0.3 V  | 2.7 V           | ≤2.5 ns                        | 1.5 V              | 6 V               | 50 pF | 500 $\Omega$ | 0.3 V                   |



NOTES: A. C<sub>L</sub> includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_O = 50 \Omega$ .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t<sub>PLZ</sub> and t<sub>PHZ</sub> are the same as t<sub>dis</sub>.
- F. t<sub>PZL</sub> and t<sub>PZH</sub> are the same as t<sub>en</sub>.
- G.  $t_{PLH}$  and  $t_{PHL}$  are the same as  $t_{pd}$ .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 11-Nov-2025

#### PACKAGING INFORMATION

| Orderable part number | Status | Material type | Package   Pins  | Package qty   Carrier | RoHS | Lead finish/  | MSL rating/        | Op temp (°C) | Part marking |
|-----------------------|--------|---------------|-----------------|-----------------------|------|---------------|--------------------|--------------|--------------|
|                       | (1)    | (2)           |                 |                       | (3)  | Ball material | Peak reflow        |              | (6)          |
|                       |        |               |                 |                       |      | (4)           | (5)                |              |              |
| CLVC138AQPWRG4Q1      | Active | Production    | TSSOP (PW)   16 | 2000   LARGE T&R      | Yes  | NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | L138AQ1      |
| CLVC138AQPWRG4Q1.B    | Active | Production    | TSSOP (PW)   16 | 2000   LARGE T&R      | Yes  | NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | L138AQ1      |
| SN74LVC138AQDRG4Q1    | Active | Production    | SOIC (D)   16   | 2500   LARGE T&R      | Yes  | NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | L138AQ1      |
| SN74LVC138AQDRG4Q1.B  | Active | Production    | SOIC (D)   16   | 2500   LARGE T&R      | Yes  | NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | L138AQ1      |
| SN74LVC138AQDRQ1      | Active | Production    | SOIC (D)   16   | 2500   LARGE T&R      | Yes  | NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | L138AQ1      |
| SN74LVC138AQDRQ1.B    | Active | Production    | SOIC (D)   16   | 2500   LARGE T&R      | Yes  | NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | L138AQ1      |
| SN74LVC138AQPWRQ1     | Active | Production    | TSSOP (PW)   16 | 2000   LARGE T&R      | Yes  | NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | L138AQ1      |
| SN74LVC138AQPWRQ1.A   | Active | Production    | TSSOP (PW)   16 | 2000   LARGE T&R      | Yes  | NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | L138AQ1      |
| SN74LVC138AQPWRQ1.B   | Active | Production    | TSSOP (PW)   16 | 2000   LARGE T&R      | Yes  | NIPDAU        | Level-1-260C-UNLIM | -40 to 125   | L138AQ1      |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.



# PACKAGE OPTION ADDENDUM

www.ti.com 11-Nov-2025

and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

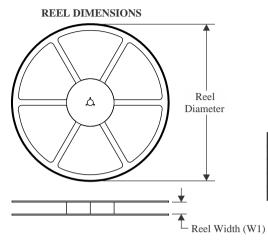
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

#### OTHER QUALIFIED VERSIONS OF SN74LVC138A-Q1:

Catalog: SN74LVC138A

● Enhanced Product : SN74LVC138A-EP

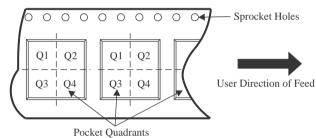
Military: SN54LVC138A


NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 24-Jul-2025

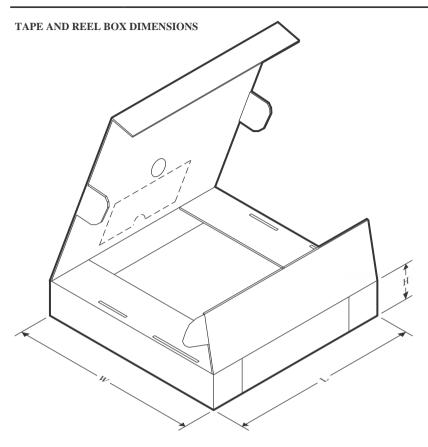

# TAPE AND REEL INFORMATION



# TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

|    | •                                                         |
|----|-----------------------------------------------------------|
| A0 | Dimension designed to accommodate the component width     |
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

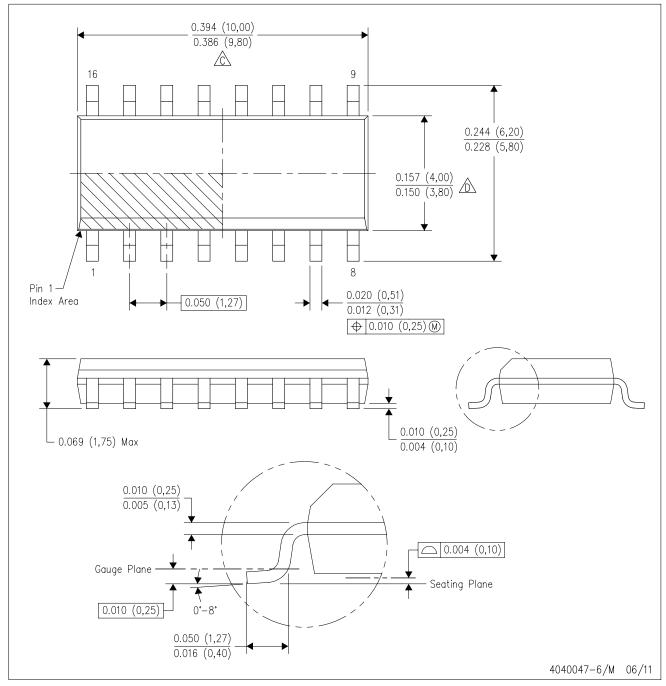



#### \*All dimensions are nominal

| Device            | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| CLVC138AQPWRG4Q1  | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |
| SN74LVC138AQPWRQ1 | TSSOP           | PW                 | 16 | 2000 | 330.0                    | 12.4                     | 6.9        | 5.6        | 1.6        | 8.0        | 12.0      | Q1               |

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 24-Jul-2025



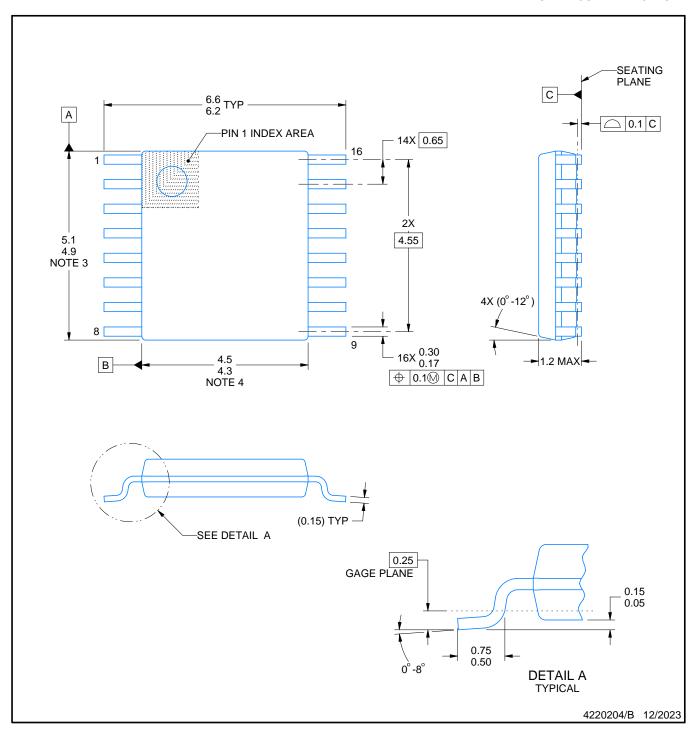

# \*All dimensions are nominal

| Device            | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| CLVC138AQPWRG4Q1  | TSSOP        | PW              | 16   | 2000 | 353.0       | 353.0      | 32.0        |
| SN74LVC138AQPWRQ1 | TSSOP        | PW              | 16   | 2000 | 353.0       | 353.0      | 32.0        |

# D (R-PDS0-G16)

# PLASTIC SMALL OUTLINE




NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

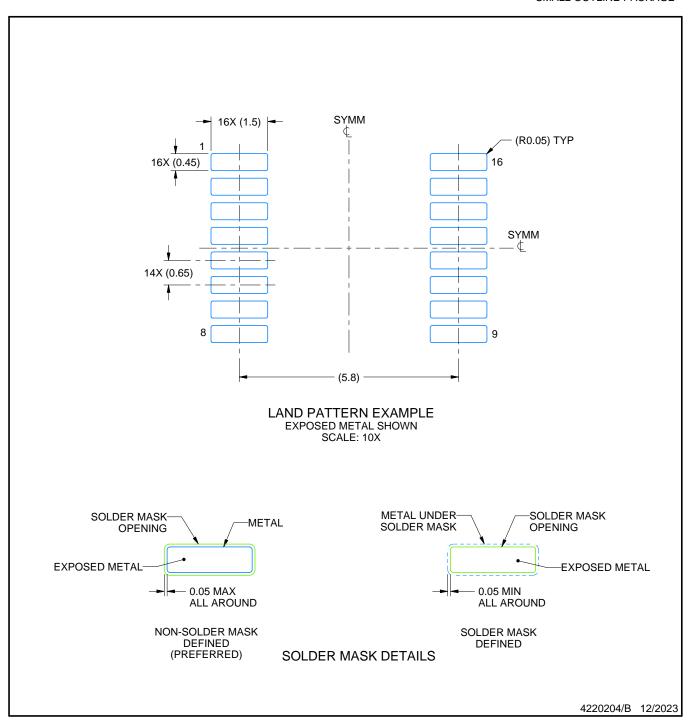




SMALL OUTLINE PACKAGE



## NOTES:

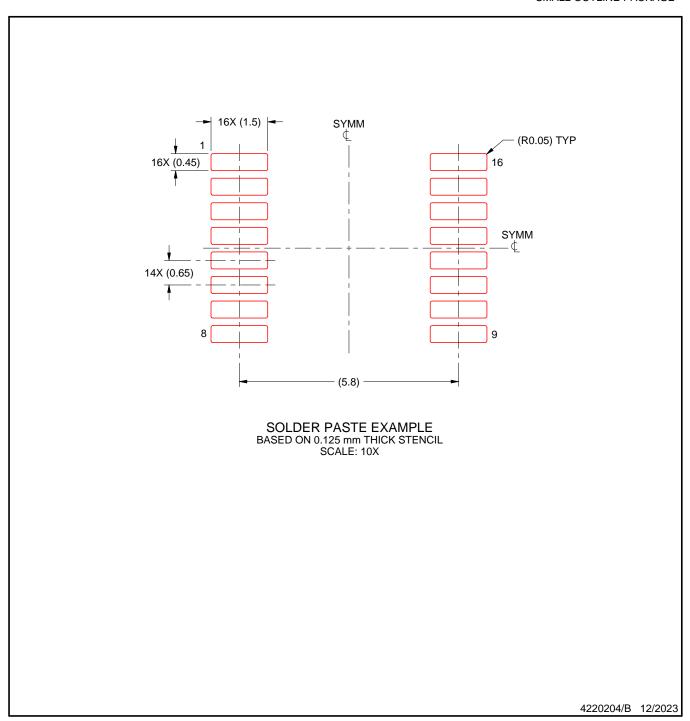

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

  2. This drawing is subject to change without notice.

  3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



SMALL OUTLINE PACKAGE




NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025