SN54LV161A, SN74LV161A 4-BIT SYNCHRONOUS BINARY COUNTERS SCLS404F - APRIL 1998 - REVISED DECEMBER 2005 - 2-V to 5.5-V V_{CC} Operation - Max t_{pd} of 9.5 ns at 5 V - Typical V_{OLP} (Output Ground Bounce) <0.8 V at V_{CC} = 3.3 V, T_A = 25°C - Typical V_{OHV} (Output V_{OH} Undershoot) >2.3 V at V_{CC} = 3.3 V, T_A = 25°C - Support Mixed-Mode Voltage Operation on All Ports - Internal Look-Ahead for Fast Counting - Carry Output for n-Bit Cascading - Synchronous Counting - Synchronously Programmable - I_{off} Supports Partial-Power-Down Mode Operation - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) ### description/ordering information The 'LV161A devices are 4-bit synchronous binary counters designed for 2-V to 5.5-V $V_{\rm CC}$ operation. #### SN54LV161A . . . J OR W PACKAGE SN74LV161A . . . D, DB, DGV, NS, OR PW PACKAGE (TOP VIEW) # SN54LV161A . . . FK PACKAGE (TOP VIEW) NC - No internal connection #### ORDERING INFORMATION | TA | PACKA | GEŤ | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING | |----------------|----------------|--------------|--------------------------|---------------------| | | 0010 D | Tube of 40 | SN74LV161AD | 11/404 A | | | SOIC – D | Reel of 2500 | SN74LV161ADR | LV161A | | | SOP – NS | Reel of 2000 | SN74LV161ANSR | 74LV161A | | 4000 to 0500 | SSOP – DB | Reel of 2000 | SN74LV161ADBR | LV161A | | -40°C to 85°C | Tube of 90 SN7 | | SN74LV161APW | | | | TSSOP - PW | Reel of 2000 | SN74LV161APWR | LV161A | | | | Reel of 250 | SN74LV161APWT | | | | TVSOP - DGV | Reel of 2000 | SN74LV161ADGVR | LV161A | | | CDIP – J | Tube of 25 | SNJ54LV161AJ | SNJ54LV161AJ | | –55°C to 125°C | CFP – W | Tube of 150 | SNJ54LV161AW | SNJ54LV161AW | | | LCCC – FK | Tube of 55 | SNJ54LV161AFK | SNJ54LV161AFK | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ## SN54LV161A, SN74LV161A 4-BIT SYNCHRONOUS BINARY COUNTERS SCLS404F - APRIL 1998 - REVISED DECEMBER 2005 ### description/ordering information (continued) These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the output counting spikes that normally are associated with synchronous (ripple-clock) counters. A buffered clock (CLK) input triggers the four flip-flops on the rising (positive-going) edge of the clock waveform. These counters are fully programmable; that is, they can be preset to any number between 0 and 9 or 15. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse, regardless of the levels of the enable inputs. The clear function for the 'LV161A devices is asynchronous. A low level at the clear (CLR) input sets all four of the flip-flop outputs low, regardless of the levels of the CLK, load (LOAD), or enable inputs. The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are ENP, ENT, and a ripple-carry output (RCO). Both ENP and ENT must be high to count, and ENT is fed forward to enable RCO. Enabling RCO produces a high-level pulse while the count is maximum (9 or 15 with Q_A high). This high-level overflow ripple-carry pulse can be used to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK. These counters feature a fully independent clock circuit. Changes at control inputs (ENP, ENT, or $\overline{\text{LOAD}}$) that modify the operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the stable setup and hold times. These devices are fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. #### **FUNCTION TABLE** | | II | NPUTS | | | | OUTI | PUTS | | | | |-----|------|-------|-----|------------|------------------|---------------|-------|----|--------------|--| | CLR | LOAD | ENP | ENT | CLK | QA | QB | QC | QD | FUNCTION | | | L | Х | Х | Χ | Х | L | L | L | L | Reset to "0" | | | Н | L | X | Χ | \uparrow | A B C D Preset D | | | | Preset Data | | | Н | Н | X | L | \uparrow | | No Count | | | | | | Н | Н | L | Χ | \uparrow | | No Change N | | | | | | Н | Н | Н | Н | \uparrow | | Count up Coun | | | | | | Н | X | X | Χ | \uparrow | | No CI | hange | | No Count | | ## logic diagram (positive logic) [†] For simplicity, routing of complementary signals \overline{LD} and \overline{CK} is not shown on this overall logic diagram. The uses of these signals are shown on the logic diagram of the D/T flip-flops. Pin numbers shown are for the D, DB, DGV, J, NS, PW, and W packages. SCLS404F - APRIL 1998 - REVISED DECEMBER 2005 ## logic symbol, each D/T flip-flop ## logic diagram, each D/T flip-flop (positive logic) $^{^{\}dagger}$ The origins of $\overline{\text{LD}}$ and $\overline{\text{CK}}$ are shown in the overall logic diagram of the device. ## typical clear, preset, count, and inhibit sequence The following sequence is illustrated below: - 1. Clear outputs to zero (asynchronous) - 2. Preset to binary 12 - 3. Count to 13, 14, 15, 0, 1, and 2 - 4. Inhibit ## SN54LV161A, SN74LV161A 4-BIT SYNCHRONOUS BINARY COUNTERS SCLS404F - APRIL 1998 - REVISED DECEMBER 2005 ## absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage range, V _{CC} | | –0.5 V to 7 V | |--|---|---| | Input voltage range, V _I (see Note 1) | | 0.5 V to 7 V | | Output voltage range applied in high or low stat | te, VO (see Notes 1 and 2) . | \dots -0.5 V to V _{CC} + 0.5 V | | Voltage range applied to any output in the power | er-off state, V _O (see Note 1) | 0.5 V to 7 V | | Input clamp current, I_{IK} ($V_I < 0$) | | –20 mA | | Output clamp current, IOK (VO < 0) | | –50 mA | | Continuous output current, I_O ($V_O = 0$ to V_{CC}) | | ±25 mA | | Continuous current through V _{CC} or GND | | ±50 mA | | Package thermal impedance, θ _{JA} (see Note 3): | D package | 73°C/W | | | DB package | 82°C/W | | | DGV package | 120°C/W | | | NS package | 64°C/W | | | PW package | 108°C/W | | Storage temperature range, T _{stg} | | –65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. - 2. This value is limited to 5.5 V maximum. - 3. The package thermal impedance is calculated in accordance with JESD 51-7. ## recommended operating conditions (see Note 4) | | | | SN54LV | 161A | SN74L\ | /161A | | |----------|---|--|----------------------|-----------------|----------------------|--------|------| | | | | MIN | MAX | MIN | MAX | UNIT | | VCC | Supply voltage | | 2 | 5.5 | 2 | 5.5 | V | | | | V _{CC} = 2 V | 1.5 | | 1.5 | | | | | High level in a trade as | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | V _{CC} ×0.7 | | V _{CC} ×0.7 | | V | | VIH | High-level input voltage | $V_{CC} = 3 \text{ V to } 3.6 \text{ V}$ | $V_{CC} \times 0.7$ | | $V_{CC} \times 0.7$ | | V | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | $V_{CC} \times 0.7$ | | $V_{CC} \times 0.7$ | | | | | | V _{CC} = 2 V | | 0.5 | | 0.5 | | | V. | Low lovel input veltage | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | V | $CC \times 0.3$ | V | CC×0.3 | V | | V_{IL} | Low-level input voltage | V _{CC} = 3 V to 3.6 V | V | CC × 0.3 | V | CC×0.3 | V | | | | V _{CC} = 4.5 V to 5.5 V | V | CC × 0.3 | V | CC×0.3 | | | VI | Input voltage | | 0,0 | 5.5 | 0 | 5.5 | V | | Vo | Output voltage | | 00 | VCC | 0 | VCC | V | | | | V _{CC} = 2 V | Q. | -50 | | -50 | μΑ | | | Library and and an extended an extended | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | -2 | | -2 | | | ЮН | High-level output current | V _{CC} = 3 V to 3.6 V | | -6 | | -6 | mA | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | | -12 | | -12 | | | | | V _{CC} = 2 V | | 50 | | 50 | μΑ | | | Lavelaval autout aumant | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 2 | | 2 | | | lOL | Low-level output current | $V_{CC} = 3 V \text{ to } 3.6 V$ | | 6 | | 6 | mA | | | | $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$ | | 12 | | 12 | | | | | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | 0 | 200 | 0 | 200 | | | Δt/Δν | Input transition rise or fall rate | $V_{CC} = 3 V \text{ to } 3.6 V$ | 0 | 100 | 0 | 100 | ns/V | | | | V _{CC} = 4.5 V to 5.5 V | 0 | 20 | 0 | 20 | | | TA | Operating free-air temperature | | -55 | 125 | -40 | 85 | °C | NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | | | | SN54LV161A | SN74LV161A | | |------------------|---|--------------|----------------------|----------------------|------| | PARAMETER | TEST CONDITIONS | VCC | MIN TYP MAX | MIN TYP MAX | UNIT | | | I _{OH} = -50 μA | 2 V to 5.5 V | V _{CC} -0.1 | V _{CC} -0.1 | | | ., | $I_{OH} = -2 \text{ mA}$ | 2.3 V | 2 | 2 | V | | VOH | I _{OH} = -6 mA | 3 V | 2.48 | 2.48 | V | | | I _{OH} = -12 mA | 4.5 V | 3.8 | 3.8 | | | | I _{OL} = 50 μA | 2 V to 5.5 V | 0.1 | 0.1 | | | V | I _{OL} = 2 mA | 2.3 V | 0.4 | 0.4 | V | | VOL | I _{OL} = 6 mA | 3 V | 0.44 | 0.44 | V | | | I _{OL} = 12 mA | 4.5 V | 0.55 | 0.55 | | | lį | V _I = 5.5 V or GND | 0 to 5.5 V | ±1 | ±1 | μΑ | | Icc | $V_I = V_{CC}$ or GND, $I_O = 0$ | 5.5 V | 20 | 20 | μΑ | | l _{off} | V_I or $V_O = 0$ to 5.5 V | 0 | 5 | 5 | μΑ | | Ci | V _I = V _{CC} or GND | 3.3 V | 1.8 | 1.8 | pF | ## SN54LV161A, SN74LV161A 4-BIT SYNCHRONOUS BINARY COUNTERS SCLS404F - APRIL 1998 - REVISED DECEMBER 2005 # timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1) | | | | T _A = 1 | 25°C | SN54L | V161A | SN74L\ | /161A | | |----------------|--|-----------------------|--------------------|------|-------|-------|--------|-------|------| | | | | MIN | MAX | MIN | MAX | MIN | MAX | UNIT | | | Dulas duration | CLK high or low | 7 | | 7 | | 7 | | | | t _W | Pulse duration | CLR low | 7 | | 7 | 4 | 7 | | ns | | | | CLR | 4.5 | | 4.5 | 15.11 | 4.5 | | | | | 0 | Data (A, B, C, and D) | 7.5 | | 8.5 | 71. | 8.5 | | | | tsu | Setup time before CLK↑ | ENP, ENT | 9.5 | | 11 | | 11 | | ns | | | | LOAD low | 10 | | 11.5 | | 11.5 | | | | t _h | Hold time, all synchronous inputs after CLK↑ | | 1.5 | | 1.5 | | 1.5 | | ns | # timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1) | | | | $T_A = 2$ | 25°C | SN54L | V161A | SN74L\ | /161A | | |----------------|--|-----------------------|-----------|------|-------|-------|--------|-------|------| | | | | MIN | MAX | MIN | MAX | MIN | MAX | UNIT | | _ | Dulas direction | CLK high or low | 5 | | 5 | | 5 | | | | t _w | Pulse duration | CLR low | 5 | | 5 | 4 | 5 | | ns | | | | CLR | 2.5 | | 2.5 | 15.71 | 2.5 | | | | ١. | 0 | Data (A, B, C, and D) | 5.5 | | 6.5 | 71. | 6.5 | | | | tsu | Setup time before CLK↑ | ENP, ENT | 7.5 | | 9 | | 9 | | ns | | | | LOAD low | 8 | | 9.5 | | 9.5 | | | | t _h | Hold time, all synchronous inputs after CLK↑ | | 1 | | 1 | | 1 | | ns | # timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1) | | | | $T_A = 2$ | 25°C | SN54L | V161A | SN74L\ | /161A | | |-----------------|--|-----------------------|-----------|------|-------|-------|--------|-------|------| | | | | MIN | MAX | MIN | MAX | MIN | MAX | UNIT | | | Dulas duration | CLK high or low | 5 | | 5 | | 5 | | | | t _w | Pulse duration | CLR low | 5 | | 5 | 4 | 5 | | ns | | | | CLR | 1.5 | | 1.5 | 100 | 1.5 | | | | ١. | | Data (A, B, C, and D) | 4.5 | | 4.5 | 71. | 4.5 | | | | t _{su} | Setup time before CLK↑ | ENP, ENT | 5 | | 6 | | 6 | | ns | | | | LOAD low | 5 | | 6 | | 6 | | | | t _h | Hold time, all synchronous inputs after CLK↑ | | 1 | | 1 | | 1 | | ns | SCLS404F - APRIL 1998 - REVISED DECEMBER 2005 # switching characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1) | 242445752 | FROM | то | LOAD | T, | Δ = 25°C | ; | SN54L\ | /161A | SN74L | V161A | | |------------------|---------|----------------------|------------------------|-----|----------|-------|--------|-------|-------|-------|---------| | PARAMETER | (INPUT) | (OUTPUT) | CAPACITANCE | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | f | | | C _L = 15 pF | 50* | 125* | | 40* | | 40 | | MHz | | fmax | | | C _L = 50 pF | 30 | 95 | | 25 | | 25 | | IVII IZ | | | | Q | | | 7.9* | 16.2* | 1* | 19.5* | 1 | 19.5 | | | | CLK | RCO
(count mode) | | | 8.9* | 17* | 1* | 20.5* | 1 | 20.5 | | | ^t pd | | RCO
(preset mode) | C _L = 15 pF | | 11.9* | 20.6* | 1* | 24.5* | 1 | 24.5 | ns | | | ENT | RCO | | | 8.3* | 15.7* | 1* | 19* | 1 | 19 | | | | | Q | | | 8.8* | 17* | 1* 4 | 20.5* | 1 | 20.5 | | | ^t PHL | CLR | RCO | | | 9.8* | 16.6* | 1* | 20* | 1 | 20 | | | | | Q | | | 10.5 | 19.2 | 01 | 22.5 | 1 | 22.5 | | | | CLK | RCO
(count mode) | | | 11.7 | 20 | 1 | 23.5 | 1 | 23.5 | | | ^t pd | | RCO
(preset mode) | C _L = 50 pF | | 14.5 | 23.6 | 1 | 27.5 | 1 | 27.5 | ns | | | ENT | RCO | | | 11 | 18.7 | 1 | 22 | 1 | 22 | | | | CLD | Q | | | 11.4 | 20 | 1 | 23.5 | 1 | 23.5 | | | ^t PHL | CLR | RCO | | | 12.6 | 19.6 | 1 | 23 | 1 | 23 | | ^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested. # SN54LV161A, SN74LV161A 4-BIT SYNCHRONOUS BINARY COUNTERS SCLS404F - APRIL 1998 - REVISED DECEMBER 2005 # switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1) | | FROM | то | LOAD | T, | 4 = 25°C | ; | SN54L | V161A | SN74L | /161A | | |-------------------|---------|----------------------|-------------------------|-----|----------|------|-------|-------|-------|-------|-------| | PARAMETER | (INPUT) | (OUTPUT) | CAPACITANCE | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | f | | | C _L = 15 pF* | 80* | 165* | | 70* | | 70 | | MHz | | f _{max} | | | C _L = 50 pF | 55 | 125 | | 50 | | 50 | | IVITZ | | | | Q | | | 6 | 12.8 | 1* | 15* | 1 | 15 | | | | CLK | RCO
(count mode) | | | 6.7 | 13.6 | 1* | 16* | 1 | 16 | | | ^t pd* | | RCO
(preset mode) | C _L = 15 pF | | 8.6 | 17.2 | 1* | 20* | 1 | 20 | ns | | | ENT | RCO | | | 6.2 | 12.3 | 1* | 14.5* | 1 | 14.5 | | | | | Q | | | 6.5 | 13.6 | 1*,4 | 16* | 1 | 16 | | | ^t PHL* | CLR | RCO | | | 7.2 | 13.2 | 1* | 15.5* | 1 | 15.5 | | | | | Q | | | 7.8 | 16.3 | 01 | 18.5 | 1 | 18.5 | | | | CLK | RCO
(count mode) | | | 8.7 | 17.1 | 1 | 19.5 | 1 | 19.5 | | | ^t pd | | RCO
(preset mode) | C _L = 50 pF | | 10.6 | 20.7 | 1 | 23.5 | 1 | 23.5 | ns | | | ENT | RCO | | | 8.3 | 15.8 | 1 | 18 | 1 | 18 | | | 4 | CLD | Q | | | 8.4 | 17.1 | 1 | 19.5 | 1 | 19.5 | | | ^t PHL | CLR | RCO | | | 9.2 | 16.7 | 1 | 19 | 1 | 19 | | ^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested. # switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1) | | FROM | то | LOAD | T, | Δ = 25°C | ; | SN54L\ | /161A | SN74L | V161A | | |------------------|---------|----------------------|------------------------|------|----------|-------|--------|-------|-------|-------|-------| | PARAMETER | (INPUT) | (OUTPUT) | CAPACITANCE | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNIT | | f | | | C _L = 15 pF | 135* | 220 | | 115* | | 115 | | MHz | | f _{max} | | | C _L = 50 pF | 95 | 165 | | 85 | | 85 | | IVITZ | | | | Q | | | 4.5* | 8.1* | 1* | 9.5* | 1 | 9.5 | | | | CLK | RCO
(count mode) | | | 5.1* | 8.1* | 1* | 9.5* | 1 | 9.5 | | | ^t pd | | RCO
(preset mode) | C _L = 15 pF | | 6.3* | 10.3* | 1* | 12* | 1 | 12 | ns | | | ENT | RCO | | | 4.8* | 8.1* | 1* | 9.5* | 1 | 9.5 | | | | | Q | | | 4.9* | 9* | 1*,4 | 10.5* | 1 | 10.5 | | | ^t PHL | CLR | RCO | | | 5.5* | 8.6* | 1* | 10* | 1 | 10 | | | | | Q | | | 5.9 | 10.1 | 01 | 11.5 | 1 | 11.5 | | | | CLK | RCO
(count mode) | | | 6.6 | 10.1 | 1 | 11.5 | 1 | 11.5 | | | ^t pd | | RCO
(preset mode) | C _L = 50 pF | | 7.8 | 12.3 | 1 | 14 | 1 | 14 | ns | | | ENT | RCO | | | 6.1 | 10.1 | 1 | 11.5 | 1 | 11.5 | | | 4 | CLD | Q | | | 6.3 | 11 | 1 | 12.5 | 1 | 12.5 | | | tPHL | CLR | RCO | | | 6.9 | 10.6 | 1 | 12 | 1 | 12 | | ^{*} On products compliant to MIL-PRF-38535, this parameter is not production tested. # noise characteristics, V_{CC} = 3.3 V, C_L = 50 pF, T_A = 25°C (see Note 5) | | DADAMETED | SN | 74LV161 | Α | | |---------------------|---|------|---------------------------------|------|---| | | PARAMETER | MIN | 0.3 0.8 V
-0.2 -0.8 V
3 V | UNII | | | V _{OL(P)} | Quiet output, maximum dynamic V _{OL} | | 0.3 | 8.0 | V | | V _{OL} (V) | Quiet output, minimum dynamic VOL | | -0.2 | -0.8 | V | | VOH(V) | Quiet output, minimum dynamic VOH | | 3 | | V | | VIH(D) | High-level dynamic input voltage | 2.31 | | | V | | V _{IL(D)} | Low-level dynamic input voltage | | | 0.99 | V | NOTE 5: Characteristics are for surface-mount packages only. # operating characteristics, $T_A = 25^{\circ}C$ | | PARAMETER | TEST CONDITIONS | VCC | TYP | UNIT | |-----------------|-------------------------------|--|-------|------|------| | C _{pd} | Power dissipation capacitance | C. FO.D. 6 40 MU | 3.3 V | 23.6 | pF | | | | $C_L = 50 \text{ pF}, f = 10 \text{ MHz}$ | 5 V | 25.8 | | #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_I includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - All input pulses are supplied by generators having the following characteristics: $PRR \le 1 \text{ MHz}$, $Z_O = 50 \Omega$, $t_f \le 3 \text{ ns}$, $t_f \le 3 \text{ ns}$. - D. The outputs are measured one at a time, with one input transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - F. tpz and tpzH are the same as ten. - G. tpHL and tpLH are the same as tpd. - H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS (3) | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|----------|---------------|------------------|-----------------------|----------|-------------------------------|----------------------------|--------------|------------------| | | | | | | | (4) | (5) | | | | SN74LV161AD | Obsolete | Production | SOIC (D) 16 | - | - | Call TI | Call TI | -40 to 85 | LV161A | | SN74LV161ADBR | Active | Production | SSOP (DB) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161ADBR.A | Active | Production | SSOP (DB) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161ADGVR | Active | Production | TVSOP (DGV) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161ADGVR.A | Active | Production | TVSOP (DGV) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161ADR | Active | Production | SOIC (D) 16 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161ADR.A | Active | Production | SOIC (D) 16 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161ANSR | Active | Production | SOP (NS) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | 74LV161A | | SN74LV161ANSR.A | Active | Production | SOP (NS) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | 74LV161A | | SN74LV161APW | Obsolete | Production | TSSOP (PW) 16 | - | - | Call TI | Call TI | -40 to 85 | LV161A | | SN74LV161APWR | Active | Production | TSSOP (PW) 16 | 2000 LARGE T&R | Yes | NIPDAU SN | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161APWR.A | Active | Production | TSSOP (PW) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161APWRG4 | Active | Production | TSSOP (PW) 16 | 2000 LARGE T&R | No | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161APWRG4 | Active | Production | TSSOP (PW) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161APWRG4.A | Active | Production | TSSOP (PW) 16 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161APWRG4.A | Active | Production | TSSOP (PW) 16 | 2000 LARGE T&R | No | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | LV161A | | SN74LV161APWT | Obsolete | Production | TSSOP (PW) 16 | - | - | Call TI | Call TI | -40 to 85 | LV161A | ⁽¹⁾ Status: For more details on status, see our product life cycle. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ## **PACKAGE OPTION ADDENDUM** www.ti.com 23-May-2025 (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Jul-2025 ### TAPE AND REEL INFORMATION | | - | |----|---| | A0 | Dimension designed to accommodate the component width | | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74LV161ADBR | SSOP | DB | 16 | 2000 | 330.0 | 16.4 | 8.35 | 6.6 | 2.4 | 12.0 | 16.0 | Q1 | | SN74LV161ADGVR | TVSOP | DGV | 16 | 2000 | 330.0 | 12.4 | 6.8 | 4.0 | 1.6 | 8.0 | 12.0 | Q1 | | SN74LV161ADR | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | SN74LV161ANSR | SOP | NS | 16 | 2000 | 330.0 | 16.4 | 8.1 | 10.4 | 2.5 | 12.0 | 16.0 | Q1 | | SN74LV161APWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | SN74LV161APWRG4 | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | www.ti.com 24-Jul-2025 ### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-----------------|--------------|-----------------|------|------|-------------|------------|-------------| | SN74LV161ADBR | SSOP | DB | 16 | 2000 | 353.0 | 353.0 | 32.0 | | SN74LV161ADGVR | TVSOP | DGV | 16 | 2000 | 353.0 | 353.0 | 32.0 | | SN74LV161ADR | SOIC | D | 16 | 2500 | 353.0 | 353.0 | 32.0 | | SN74LV161ANSR | SOP | NS | 16 | 2000 | 353.0 | 353.0 | 32.0 | | SN74LV161APWR | TSSOP | PW | 16 | 2000 | 353.0 | 353.0 | 32.0 | | SN74LV161APWRG4 | TSSOP | PW | 16 | 2000 | 353.0 | 353.0 | 32.0 | SOP #### NOTES: - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing - per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side. SOF - 5. Publication IPC-7351 may have alternate designs. - 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SOF - 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 8. Board assembly site may have different recommendations for stencil design. # D (R-PDS0-G16) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. 4. Reference JEDEC registration MO-150. - 5. Publication IPC-7351 may have alternate designs. - 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 8. Board assembly site may have different recommendations for stencil design. ## **MECHANICAL DATA** ## NS (R-PDSO-G**) # 14-PINS SHOWN ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. ## DGV (R-PDSO-G**) ### 24 PINS SHOWN #### **PLASTIC SMALL-OUTLINE** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated