www.ti.com

SN74GTLPH1655 16-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE UNIVERSAL BUS TRANSCEIVER

SCES294C-OCTOBER 1999-REVISED MAY 2005

FEATURES

- Member of Texas Instruments' Widebus™
 Family
- UBT[™] Transceiver Combines D-Type Latches and D-Type Flip-Flops for Operation in Transparent, Latched, or Clocked Modes
- TI-OPC[™] Circuitry Limits Ringing on Unevenly Loaded Backplanes
- OEC[™] Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
- Partitioned as Two 8-Bit Transceivers With Individual Latch Timing and Output Control, but With a Common Clock
- LVTTL Interfaces Are 5-V Tolerant
- High-Drive GTLP Outputs (100 mA)
- LVTTL Outputs (–24 mA/24 mA)
- Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
- I_{off}, Power-Up 3-State, and BIAS V_{CC} Support Live Insertion
- Bus Hold on A-Port Data Inputs
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DGG PACKAGE (TOP VIEW)

	_	$\overline{}$	\neg	
1 OEAB [1	\cup	64	CLK
1 OEBA [2		63	1LEAB
v _{cc} [3		62	1LEBA
1A1 [61	ERC
GND [5		60	GND
1A2 [6		59	1B1
1A3 [7		58	1B2
GND [8		57	GND
1A4 [9		56	1B3
GND [10		55	1B4
1A5 [54	1B5
GND [12			GND
1A6 [13		52	1B6
_	14			1B7
v _{cc} [15		50	V_{CC}
1A8 [49	1B8
2A1 [17		48	2B1
GND [47	GND
2A2 [19			2B2
2A3 [20			2B3
GND [GND
2A4 [22			2B4
2A5 [23		42	2B5
GND [24		41	V_{REF}
2A6 [25		40	2B6
GND [26			GND
2A7 [27			
V _{CC} [28			2B8
2A8 [1			$BIAS\;V_{CC}$
GND [1			2LEAB
2OEAB	31		34	2LEBA
2OEBA	32		33	ŌĒ

DESCRIPTION

The SN74GTLPH1655 is a high-drive, 16-bit UBTTM transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It is partitioned as two 8-bit transceivers and allows for transparent, latched, and clocked modes of data transfer. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OECTM circuitry, and TI-OPCTM circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus, UBT, TI-OPC, OEC, TI are trademarks of Texas Instruments.

SCES294C-OCTOBER 1999-REVISED MAY 2005

DESCRIPTION (CONTINUED)

GTLP is the Texas Instruments (TITM) derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLPH1655 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2 \text{ V}$ and $V_{REF} = 0.8 \text{ V}$) or GTLP ($V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$) signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. V_{REF} is the B-port differential input reference voltage.

This device is fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between GND and V_{CC} adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

Active bus-hold circuitry holds unused or undriven LVTTL data inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

ORDERING INFORMATION

T _A	PACKAGE ⁽¹⁾		ORDERABLE PART NUMBER	TOP-SIDE MARKING	
-40°C to 85°C	TSSOP - DGG	Tape and reel	SN74GTLPH1655DGGR	GTLPH1655	

⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTIONAL DESCRIPTION

The SN74GTLPH1655 is a high-drive (100 mA), 16-bit UBT transceiver containing D-type latches and D-type flip-flops for data-path operation in transparent, latched, or clocked modes. The device is uniquely partitioned as two 8-bit transceivers with individual latch timing and output signals and a common clock for both transceiver words. It can replace any of the functions shown in Table 1. Data polarity is noninverting.

Table 1. SN74GTLPH1655 UBT Transceiver Replacement Functions

FUNCTION	8 BIT	9 BIT	10 BIT	16 BIT				
Transceiver	'245, '623, '645	'863	'861	'16245, '16623				
Buffer/driver	'241, '244, '541		'827	'16241, '16244, '16541				
Latched transceiver	'543			'16543				
Latch	'373, '573	'843	'841	'16373				
Registered transceiver	'646, '652			'16646, '16652				
Flip-flop	'374, '574		'821	'16374				
SN740	SN74GTLPH1655 UBT transceiver replaces all above functions							

SCES294C-OCTOBER 1999-REVISED MAY 2005

FUNCTIONAL DESCRIPTION (CONTINUED)

Data flow for each word is determined by the respective latch enables (xLEAB and xLEBA), output enables (xOEAB and xOEBA), and clock (CLK). The output enables (1OEAB, 1OEBA, 2OEAB, and 2OEBA) control byte 1 and byte 2 data for the A-to-B and B-to-A directions, respectively. Note that CLK is common to both directions and both 8-bit words. OE also is common and disables all I/O ports simultaneously.

For A-to-B data flow, the devices operate in the transparent mode when LEAB is high. When LEAB transitions low, the A data is latched independent of CLK high or low. If LEAB is low, the A data is registered on the CLK low-to-high transition. When \overline{OEAB} is low, the outputs are active. With \overline{OEAB} high, the outputs are in the high-impedance state.

The data flow for the B-to-A direction is identical, except OEBA, LEBA, and CLK are used.

FUNCTION TABLES

FUNCTION(1)

	INPUTS			OUTPUT	MODE
OEAB	LEAB	CLK	Α	В	MODE
Н	Χ	Χ	Χ	Z	Isolation
L	L	Н	Χ	B ₀ ⁽²⁾	Latahad starage of A data
L	L	L	Χ	B ₀ ⁽³⁾	Latched storage of A data
L	Н	Χ	L	L	True transparent
L	Н	Χ	Н	Н	True transparent
L	L	1	L	L	Clasked starons of A data
L	L	1	Н	Н	Clocked storage of A data

- (1) A-to-B data flow is shown. B-to-A flow is similar, but uses $\overline{\text{OEBA}}$, LEBA, and CLK. The condition when $\overline{\text{OEAB}}$ and $\overline{\text{OEBA}}$ are both low at the same time is not recommended.
- (2) Output level before the indicated steady-state input conditions were established, provided that CLK was high before LEAB went low
- (3) Output level before the indicated steady-state input conditions were established

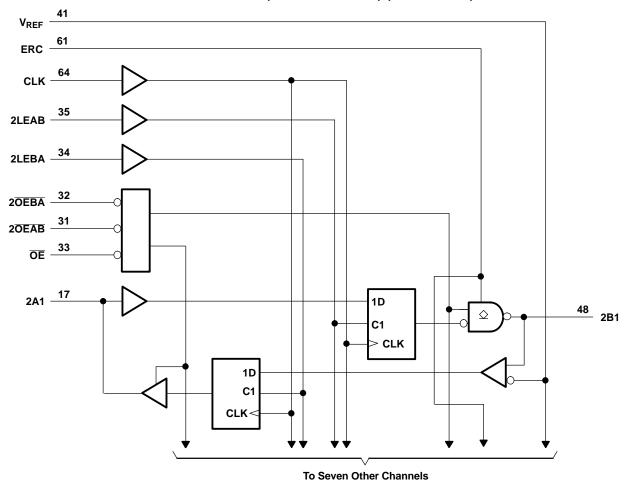
OUTPUT ENABLE

INPUTS			OUT	PUTS
ŌĒ	OEAB	OEBA	A PORT	B PORT
L	L	L	Active	Active ⁽¹⁾
L	L	Н	Z	Active
L	Н	L	Active	Z
L	Н	Н	Z	Z
Н	X	X	Z	Z

(1) This condition is not recommended.

B-PORT EDGE-RATE CONTROL (ERC)

INPU'	Γ ERC	OUTPUT
LOGIC LEVEL	NOMINAL VOLTAGE	B-PORT EDGE RATE
Н	V _{CC}	Slow
L	GND	Fast


LOGIC DIAGRAM (POSITIVE LOGIC)

SCES294C-OCTOBER 1999-REVISED MAY 2005

LOGIC DIAGRAM (POSITIVE LOGIC) (CONTINUED)

SCES294C-OCTOBER 1999-REVISED MAY 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V_{CC} BIAS V_{CC}	Supply voltage range		-0.5	4.6	V	
V	Input voltage range (2)	A port, ERC, and control inputs	-0.5	7	V	
VI	input voitage range	B port and V _{REF}	-0.5	4.6	V	
M	Voltage range applied to any output	A port	-0.5	7	7 V	
V _O	in the high-impedance or power-off state ⁽²⁾	B port	-0.5	4.6	V	
	Current into any output in the low state	A port		48	A	
Io		B port		200	mA	
Io	Current into any A-port output in the high state (3)			48	mA	
	Continuous current through each V _{CC} or GND			±100	mA	
I _{IK}	Input clamp current	V _I < 0		-50	mA	
I _{OK}	Output clamp current	V _O < 0		-50	mA	
θ_{JA}	Package thermal impedance ⁽⁴⁾			55	°C/W	
T _{stg}	Storage temperature range		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

 ⁽³⁾ This current flows only when the output is in the high state and V_O > V_{CC}.
 (4) The package thermal impedance is calculated in accordance with JESD 51-7.

SCES294C-OCTOBER 1999-REVISED MAY 2005

Recommended Operating Conditions (1)(2)(3)(4)

			MIN	NOM	MAX	UNIT
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V
W	Termination voltage	GTL	1.14	1.2	1.26	V
V_{TT}	Termination voltage	GTLP	1.35	1.5	1.65	V
1/	Defended with the	GTL	0.74	8.0	0.87	V
V_{REF}	Reference voltage	GTLP	0.87	1	1.1	V
	lanut valta sa	B port			V_{TT}	V
V _I	Input voltage	Except B port		V _{CC}	5.5	V
		B port	V _{REF} + 0.05			
V_{IH}	High-level input voltage	ERC	V _{CC} - 0.6	V _{CC}	5.5	V
		Except B port and ERC	2			
		B port			V _{REF} - 0.05	
V_{IL}	Low-level input voltage	ERC		GND	0.6	V
		Except B port and ERC			0.8	
I _{IK}	Input clamp current				-18	mA
I _{OH}	High-level output current	A port			-24	mA
	I am land antant amount	A port			24	A
l _{OL}	Low-level output current	B port			100	mA
Δt/Δν	Input transition rise or fall rate	Outputs enabled			10	ns/V
$\Delta t/\Delta V_{CC}$	Power-up ramp rate		20			μs/V
T _A	Operating free-air temperature		-40		85	°C

(1) All unused control and B-port inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI

application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS $V_{CC} = 3.3 \text{ V}$ first, I/O second, and $V_{CC} = 3.3 \text{ V}$ last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected any unique, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable, but generally, GND is connected first.

 V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded. V_{REF} can be adjusted to optimize noise margins, but normally is two-thirds V_{TT} . TI-OPC circuitry is enabled in the A-to-B direction and is activated when $V_{TT} > 0.7$ V above V_{REF} . If operated in the A-to-B direction, V_{REF} should be set to within 0.6 V of V_{TT} to minimize current

SCES294C-OCTOBER 1999-REVISED MAY 2005

Electrical Characteristics

over recommended operating free-air temperature range for GTLP (unless otherwise noted)

P	ARAMETER	TEST CONDITIONS		MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}		V _{CC} = 3.15 V,	$I_1 = -18 \text{ mA}$			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	$I_{OH} = -100 \mu A$	V _{CC} - 0.2			
V _{OH}	A port	A port	I _{OH} = -12 mA	2.4			V
		V _{CC} = 3.15 V	$I_{OH} = -24 \text{ mA}$	2			
		$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	$I_{OL} = 100 \mu A$			0.2	
	A port	V 2.45 V	I _{OL} = 12 mA			0.4	
V		V _{CC} = 3.15 V	I _{OL} = 24 mA			0.5	V
V_{OL}			I _{OL} = 10 mA			0.2	V
	B port	V _{CC} = 3.15 V	$I_{OL} = 64 \text{ mA}$			0.4	
	Control inputs		$I_{OL} = 100 \text{ mA}$			0.55	
I _I	Control inputs	$V_{CC} = 3.45 \text{ V},$	$V_{I} = 0 \text{ or } 5.5 \text{ V}$			±10	μΑ
1 (2)	A port	V 2.45 V	$V_O = V_{CC}$			10	^
I _{OZH} ⁽²⁾	B port	V _{CC} = 3.45 V	V _O = 1.5 V			10	μΑ
I _{OZL} ⁽²⁾	A and B ports	V _{CC} = 3.45 V,	V _O = GND			-10	μΑ
I _{BHL} ⁽³⁾	A port	$V_{CC} = 3.15 \text{ V},$	$V_{I} = 0.8 \ V$	75			μΑ
I _{BHH} ⁽⁴⁾	A port	V _{CC} = 3.15 V,	$V_I = 2 V$	-75			μΑ
I _{BHLO} ⁽⁵⁾	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	500			μΑ
I _{BHHO} ⁽⁶⁾	A port	V _{CC} = 3.45 V,	$V_I = 0$ to V_{CC}	-500			μΑ
		V _{CC} = 3.45 V, I _O = 0,	Outputs high			40	
I _{CC}	A or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			40	mA
		V_{I} (B port) = V_{TT} or GND	Outputs disabled			40	
Δl _{CC} ⁽⁷⁾		V_{CC} = 3.45 V, One A-port or control input at Other A-port or control inputs at V_{CC} or GNI				1.5	mA
C _i	Control inputs	V _I = 3.15 V or 0			4.5	6.5	pF
C	A port	V _O = 3.15 V or 0			6.5	7.5	~F
C_{io}	B port	V _O = 1.5 V or 0			8.5	10.5	pF

- All typical values are at V_{CC} = 3.3 V, T_A = 25°C.
 For I/O ports, the parameters I_{OZH} and I_{OZL} include the input leakage current.
 The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL}max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.
- The bus-hold circuit can source at least the minimum high sustaining current at V_{IH}min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to $V_{IH}min$.
- An external driver must source at least I_{BHLO} to switch this node from low to high. An external driver must sink at least I_{BHHO} to switch this node from high to low.
- This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

Hot-Insertion Specifications for A Port

over operating free-air temperature range

PARAMETER		TEST CONDITIONS				UNIT
l _{off}	$V_{CC} = 0$,	BIAS $V_{CC} = 0$,	V_I or $V_O = 0$ to 5.5 V		10	μΑ
I _{OZPU}	$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	$V_0 = 0.5 \text{ V to 3 V},$	OE = 0		±30	μΑ
I _{OZPD}	$V_{CC} = 1.5 \text{ V to } 0,$	$V_0 = 0.5 \text{ V to 3 V},$	OE = 0		±30	μΑ

SCES294C-OCTOBER 1999-REVISED MAY 2005

Live-Insertion Specifications for B Port

over operating free-air temperature range

PARAMETER		TEST CONDITIONS		MIN	MAX	UNIT
I _{off}	$V_{CC} = 0$,	BIAS $V_{CC} = 0$,	V_I or $V_O = 0$ to 1.5 V		10	μΑ
I _{OZPU}	$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	BIAS $V_{CC} = 0$,	$V_O = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μΑ
I _{OZPD}	$V_{CC} = 1.5 \text{ V to } 0,$	BIAS $V_{CC} = 0$,	$V_O = 0.5 \text{ V to } 1.5 \text{ V}, \overline{OE} = 0$		±30	μΑ
I (DIAC)/)	$V_{CC} = 0 \text{ to } 3.15 \text{ V}$	PIAC V = 2.15 V to 2.45 V	V _O (B port) = 0 to 1.5 V	5		mA
I _{CC} (BIAS V _{CC})	$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V}$	BIAS $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	V _O (В роп) = 0 to 1.5 V	0.95 -1	10	μΑ
Vo	$V_{CC} = 0$,	BIAS $V_{CC} = 3.3 \text{ V}$	I _O = 0	0.95	1.05	٧
Io	$V_{CC} = 0$,	BIAS $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	V _O (B port) = 0.6 V	-1		μΑ

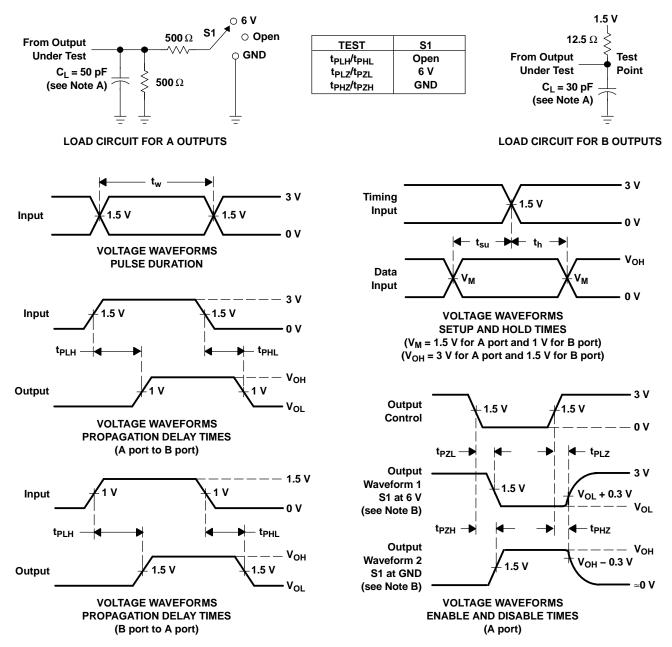
Timing Requirements

over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted)

			MIN	MAX	UNIT
f _{clock}	Clock frequency			175	MHz
	Dulas direction	LEAB or LEBA high	3		
t _w	, Pulse duration	CLK high or low	3		ns
		A before CLK	3		
	B before CLK	3			
t _{su}	<u> </u>	A before LEAB↓, CLK = don't care	2.5		ns
		B before LEBA↓, CLK = don't care	3 3 3 3 care 2.5 care 2.5 0.5 0.5 0.5 are 0.5		
		A after CLK	0.5		
		B after CLK	0.5		
h Hold time	A after LEAB↓, CLK = don't care	0.5		ns	
		B after LEBA↓, CLK = don't care	0.5		

SCES294C-OCTOBER 1999-REVISED MAY 2005

Switching Characteristics


over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE(1)	MIN TYP(2	MAX	UNIT	
f _{max}				175		MHz	
t _{PLH}	Α	В	Slow	3.5	7.7	ns	
t _{PHL}	Α	В	Slow	2.4	6.3	115	
t _{PLH}	Α	В	Fast	2	6.3	ns	
t _{PHL}	Λ	В	i asi	2	5.9	113	
t _{PLH}	LEAB	В	Slow	3.5	7.8	ns	
t _{PHL}	LLAD	5	Olow	2.7	6.4	113	
t _{PLH}	LEAB	В	Fast	2	6.4	ns	
t _{PHL}	LLAD	<i>D</i>	i ast	2	6	113	
t _{PLH}	CLK	В	Slow	4.7	8	ns	
t _{PHL}	CLN	В	Slow	2.7	6.4	115	
t _{PLH}	CLK	В	Fast	3.6	6.8	ns	
t _{PHL}	CLN	В	rasi	2	6.1	115	
t _{en}	ŌĒ	В	Slow	3.5	7.3	ne	
t _{dis}	OE	Ь	SIOW	3.5	7	ns	
t _{en}	ŌĒ	В	Fast	2	6	no	
t _{dis}	OL	В	rasi	2	6.6	ns	
t _{en}	<u>OEAB</u>	В	Slow	3.5	7.4	ns	
t _{dis}	OLAB	В	Slow	3.5	7	115	
t _{en}	<u>OEAB</u>	В	Fast	2	6.1	ns	
t _{dis}	OLAB	В	rasi	2	6.3	115	
t _r	Dica tima B auto	uts (20% to 80%)	Slow	175 3.5 7. 2.4 6. 2 6. 2 5. 3.5 7. 2.7 6. 2 6. 2 4.7 2.7 6. 3.6 6. 2 6. 3.5 7. 3.5 2 6. 3.5 7. 3.5 2 6. 2 6. 3.5 7. 3.5 3.5 2 6. 1.5 3 2.2 1.5 5. 5. 1.5 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	3	ns	
·r	Rise time, b outp	dis (20% to 60%)	Fast	1.5	5	115	
	Fall time P outp	uts (80% to 20%)	Slow	;	3	no	
t _f	raii time, b outpo	uts (60 % to 20 %)	Fast	2.2	2	ns	
t _{PLH}	В	А		1.5	5.5	ns	
t _{PHL}	ь	^		1.5	5.5	115	
t _{PLH}	LEBA	А		1.3	5.2	no	
t _{PHL}	LEDA	A		1	5	ns	
t _{PLH}	CLK	А		1.2	6.3	20	
t _{PHL}	CLK	A		1	5	ns	
t _{en}	ŌĒ	А		1.5	5.6	no	
t _{dis}	<u>UE</u>	A		1.5	6.1	ns	
t _{en}	ŌĒBĀ	Δ.		1.2	5.4	no	
t _{dis}	OEBA	А		2	6.1	ns	

⁽¹⁾ Slow (ERC = V_{CC}) and Fast (ERC = GND) (2) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SCES294C-OCTOBER 1999-REVISED MAY 2005

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, $Z_O = 50~\Omega$, $t_r \approx 2$ ns, $t_f \approx 2$ ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application probably is a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be approximated closely to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

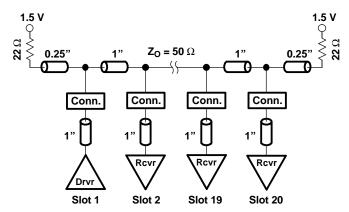


Figure 2. High-Drive Test Backplane

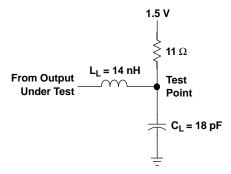


Figure 3. High-Drive RLC Network

SCES294C-OCTOBER 1999-REVISED MAY 2005

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$ for GTLP (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATE(1)	TYP ⁽²⁾	UNIT
t _{PLH}	А	В	Slow	5	nc
t _{PHL}	A	Б	Slow	5	ns
t _{PLH}	А	В	Fact	3.8	ns
t _{PHL}	^	В	i asi	3.8	
t _{PLH}	LEAB	В	Slow	4.9	ns
t _{PHL}	LLAD	Б	Slow Fast	4.9	113
t _{PLH}	LEAB	В	Fact	3.9	ns
t _{PHL}	LLAD	Б	i asi	3.9	113
t _{PLH}	CLK	В	Slow	4.8	ns
t _{PHL}	OLK	В	Slow	4.8	
t _{PLH}	CLK	В	Fact	3.7	ns
t _{PHL}	OLIX	Б	i asi	3.7	113
t _{en}	OEAB or OE	В	Slow	4.9	ns
t _{dis}	OLAD OI OL	В	Slow	4.7	113
t _{en}	OEAB or OE	В	Fact	3.5	ns
t _{dis}	OLAB OF OL	В	rasi	4.1	115
+	Pico timo. P outr	outs (20% to 80%)	Slow	2	ns
t _r	Nise time, b outp	7413 (20 /0 10 00 /0)	Fast	1.2	119
+.	Fall time Pouts	utc (90% to 20%)	Slow	2.5	ne
t _f	raii tiirie, b outpi	uts (80% to 20%)	Fast	1.8	ns

Slow (ERC = V_{CC}) and Fast (ERC = GND) All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

www.ti.com 23-May-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74GTLPH1655DGGR	Active	Production	TSSOP (DGG) 64	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GTLPH1655
SN74GTLPH1655DGGR.B	Active	Production	TSSOP (DGG) 64	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	GTLPH1655

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

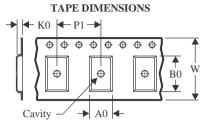
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

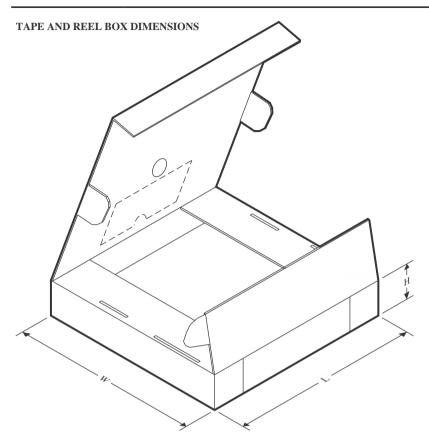
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

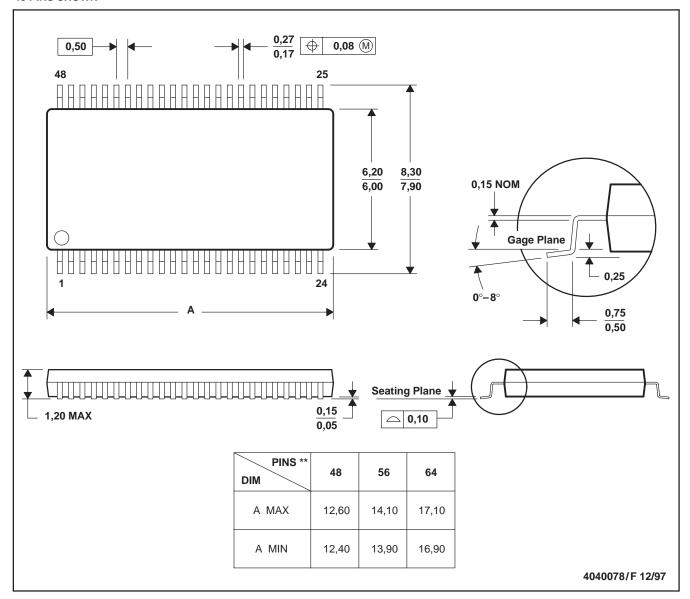


*All dimensions are nominal

Device	U	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74GTLPH1655DGGR	TSSOP	DGG	64	2000	330.0	24.4	8.4	17.3	1.7	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74GTLPH1655DGGR	TSSOP	DGG	64	2000	356.0	356.0	45.0

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated