

ZHCSY97 - MAY 2025

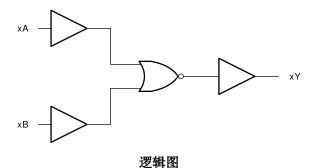
具有 TTL 兼容输入的 SN74ACT02-Q1 汽车级四通道双输入或非门

1 特性

- 符合面向汽车应用的 AEC-Q100 标准:
 - 器件温度等级 1:-40°C 至 +125°C
 - 器件 HBM ESD 分类等级 2
 - 器件 CDM ESD 分类等级 C4B
- 采用具有可湿性侧面的 QFN 封装
- 4.5V 至 5.5V 的工作电压范围
- TTL 兼容型输入
- 电压为 5V 时,为 ±24mA 的连续输出驱动
- 电压为 5V 时,支持高达 ±75mA 的 输出驱动 (短时突发)
- 驱动 50 Ω 传输线
- 快速运行,延迟为 12.2ns (最大值)

2 应用

- 警报或篡改检测电路
- S-R 锁存器


3 说明

SN74ACT02-Q1 包含四个独立的双输入与非门。每路 逻辑门执行布尔函数 $Y = \overline{A+B}$ 。

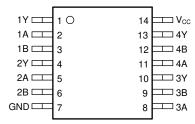
器件信息

器件型号	封装 ⁽¹⁾	封装尺寸 ⁽²⁾	本体尺寸 ⁽³⁾
SN74ACT02-Q1	BQA (WQFN , 14)	3mm x 2.5mm	3mm x 2.5mm
0117470102-01	PW (TSSOP , 14)	5mm x 6.4mm	5mm x 4.4mm

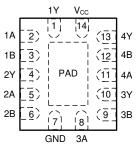
- (1) 如需了解更多信息,请参阅机械、封装和可订购信息。
- (2) 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。
- (3) 本体尺寸(长×宽)为标称值,不包括引脚。

SN74ACT02-Q1

ZHCSY97 - MAY 2025



内容


1 特性 1	7.3 特性说明	8
2 应用	7.4 器件功能模式	10
3 说明1	8 应用和实施	
4 引脚配置和功能	8.1 应用信息	
5 规格	8.2 典型应用	11
5.1 绝对最大额定值4	8.3 电源相关建议	
5.2 ESD 等级4	8.4 布局	15
5.3 建议运行条件4	9 器件和文档支持	17
5.4 热性能信息4	9.1 文档支持	17
5.5 电气特性5	9.2 接收文档更新通知	17
5.6 开关特性5	9.3 支持资源	17
5.7 典型特性6	9.4 商标	
6 参数测量信息7	9.5 静电放电警告	17
7 详细说明8	9.6 术语表	
7.1 概述8	10 修订历史记录	
7.2 功能方框图8	11 机械、封装和可订购信息	

4 引脚配置和功能

PW 封装, 14 引脚 TSSOP (顶视图)

BQA 封装, 14 引脚 WQFN (透明顶视图)

Ę	引脚	-¥&-∓ni (1)	NA HIE		
名称	编号	─ 类型 ⁽¹⁾	说明 ····································		
1Y	1	0	通道 1,输出 Y		
1A	2	I	通道 1,输入 A		
1B	3	I	通道 1, 输入 B		
2Y	4	0	通道 2,输出 Y		
2A	5	I	通道 2,输入 A		
2B	6	I	通道 2,输入 B		
GND	7	_	接地		
3A	8	I	通道3,输入A		
3B	9	I	通道3,输入B		
3Y	10	0	通道 3,输出 Y		
4A	11	I	通道 4,输入 A		
4B	12	I	通道 4,输入 B		
4Y	13	0	通道 4,输出 Y		
V _{CC}	14	Р	正电源		
散热焊盘(2)		_	散热焊盘可连接到 GND 或悬空。请勿连接到任何其他信号或电源		

- (1) 信号类型: I = 输入, O = 输出, G = 接地, P = 电源。
- (2) 仅限 BQA 封装。

ZHCSY97 - MAY 2025

5 规格

5.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

			最小值	最大值	单位
V _{CC}	电源电压范围		-0.5	7	V
VI	输入电压范围(2)		-0.5	V _{CC} + 0.5	V
Vo	输出电压范围(2)		-0.5	V _{CC} + 0.5	V
I _{IK}	输入钳位电流	V_{I} < -0.5V 或 V_{I} > V_{CC} + 0.5V		±20	mA
I _{OK}	输出钳位电流	V _O < -0.5V 或 V _O > V _{CC} + 0.5V		±50	mA
Io	持续输出电流	V _O = 0 至 V _{CC}		±50	mA
	通过 V _{CC} 或 GND 的持续电流			±200	mA
TJ	结温			150	°C
T _{stg}	贮存温度		-65	150	°C

⁽¹⁾ 在 *绝对最大额定值* 范围外运行可能会对器件造成永久损坏。绝对最大额定值并不表示器件在这些条件下或在*建议运行条件* 以外的任何 其他条件下能够正常运行。如果在*建议运行条件* 之外但在*绝对最大额定值* 范围内短暂运行,器件可能不会受到损坏,但可能无法完全正 常工作。以这种方式运行器件可能会影响器件的可靠性、功能和性能,并缩短器件寿命。

5.2 ESD 等级

			值	单位
V	\/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	人体放电模型 (HBM),符合 AEC Q100-002 HBM ESD 分类等级 2 ⁽¹⁾	±2000	V
V _(ESD) 静电放电		充电器件模型 (CDM),符合 AEC Q100-011 CDM ESD 分类等级 C4B	±1000	V

⁽¹⁾ AEC Q100-002 指示 HBM 应力测试应当符合 ANSI/ESDA/JEDEC JS-001 规范。

5.3 建议运行条件

在自然通风条件下的工作温度范围内测得 (除非另有说明)

规格	说明	条件	最小值	最大值	单位
V _{CC}	电源电压		4.5	5.5	V
V _{IH}	高电平输入电压		2		V
V _{IL}	低电平输入电压			0.8	V
V _I	输入电压		0	V _{CC}	V
Vo	输出电压		0	V _{CC}	V
I _{OH}	高电平输出电流		-24	mA	
I _{OL}	低电平输出电流		24	mA	
Δ t/ Δ v	输入转换上升或下降速率		20	ns/V	
T _A	自然通风条件下的工作温度范围	-40	125	°C	

5.4 热性能信息

:±x4d:	⊋i N±n		热指标 ⁽¹⁾				单位	
到表	封装 引脚		R _{θ JC(top)}	R _{0 JB}	Ψ_{JT}	Ψ_{JB}	R _{θ JC(bot)}	里 迎
PW (TSSOP)	14	145.7	76.5	102.0	18.8	100.7	不适用	°C/W

提交文档反馈 Copyright © 2025 Texas Instruments Incorporated

⁽²⁾ 如果遵守输入和输出电流额定值,输入和输出电压可超过额定值。

***	数指标 ⁽¹⁾					単位		
封装 引脚	R _{0 JA}	R _{θ JC(top)}	R _{0 JB}	Ψ_{JT}	Ψ_{JB}	R _{θ JC(bot)}	里 位	
BQA (WQFN)	14	91.3	99.4	61.0	14.5	60.8	37.0	°C/W

(1) 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标应用手册。

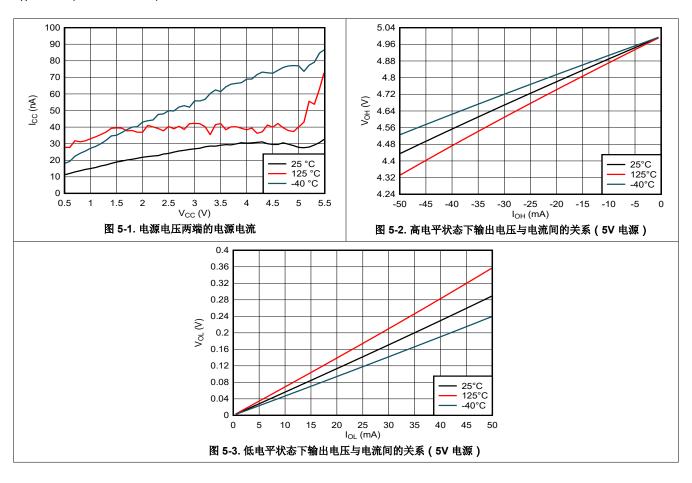
5.5 电气特性

在自然通风条件下的工作温度范围内测得(除非另有说明)

⇔ ₩.	\\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V	-40°C	至 125°C		** ***
参数	测试条件	V _{cc}	最小值	典型值	最大值	单位
	I - 50A	4.5V	4.4	4.499		
	$I_{OH} = -50\mu A$	5.5V	5.4	5.499		
M	I _{OH} = -24mA	4.5V	3.7	4.19		V
V_{OH}	I _{OH} = -24mA	5.5V	4.7	5.22		V
	I _{OH} = -50mA	5.5V	3.85	4.9		
	I _{OH} = -75mA	5.5V	3.85	4.57		
	I = 50A	4.5V		0.001	0.1	
	I _{OL} = 50μA	5.5V		0.001	0.1	
V	I _{OL} = 24mA	4.5V		0.16	0.5	V
V_{OL}	I _{OL} = 24mA	5.5V		0.14	0.5	V
	I _{OL} = 50mA	5.5V		0.3	1.65	
	I _{OL} = 75mA	5.5V		0.47	1.65	
I _I	V _I = 5.5V 或 GND	0V 至 5.5V		±0.008	±1	μA
I _{CC}	V _I = V _{CC} 或 GND,I _O = 0	5.5V		0.1	20	μA
ΔI _{CC}	V _I = V _{CC} - 2.1V;任意输入	4.5V 至 5.5V		0.1	1.5	mA
C _I	V _I = V _{CC} 或 GND	5V		2		pF
C _{PD}	C _L = 50pF , F = 1MHz	5V		63		pF

5.6 开关特性

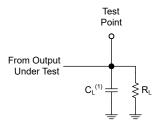
 $C_L = 50 pF$;在自然通风条件下的工作温度范围内;典型值在 $T_A = 25 ^{\circ} C$ 时测得(除非另有说明)。请参阅参数测量信息


参数	从(输入)	五 / 松山 \	/ #A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{cc}	-40°	单位	
少奴	//\ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	至(输出)	▼CC	最小值	典型值	最大值	平世
t _{PLH}	A或B	Υ	5V	3.1	5.8	12.2	ns
t _{PHL}	A或B	Υ	5V	3.1	4.2	12.2	ns
t _r		V	5V	1.8	3.1	4.6	ns
t _f		Ť	5V	1.9	2.9	4.2	ns

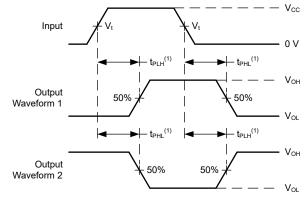
English Data Sheet: SLVSIQ7

5.7 典型特性

 $T_A = 25$ °C (除非另有说明)



6参数测量信息


对于下表中列出的示例,波形之间的相位关系是任意选择的。所有输入脉冲均由具有以下特性的发生器提供: $PRR \leq 1MHz$, $Z_O = 50\Omega$, $t_t < 2.5ns$, $V_t = 1.5V$ 。对于推挽输出, $R_L = 500\Omega$ 。

输出单独测量,每次测量一个输入转换。

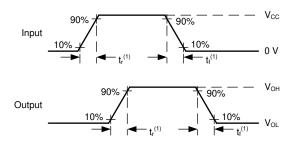

(1) CL 包括探头和测试夹具电容。

图 6-1. 推挽输出的负载电路

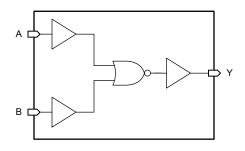
(1) t_{PLH} 和 t_{PHL} 之间的较大者与 t_{pd} 相同。

图 6-2. 电压波形传播延迟

(1) t_r 和 t_f 之间的较大值与 t_t 相同。

图 6-3. 电压波形,输入和输出转换时间

Product Folder Links: SN74ACT02-Q1



7详细说明

7.1 概述

该器件为双输入或非门,以正逻辑执行布尔函数 $Y = \overline{A + B}$ 。

7.2 功能方框图

7.3 特性说明

7.3.1 平衡 CMOS 推挽式输出

该器件包括平衡 CMOS 推挽输出。术语*平衡* 表示器件可以灌入和拉出相似的电流。此器件的驱动能力可能在轻负载时产生快速边沿,因此应考虑布线和负载条件以防止振铃。此外,该器件的输出能够驱动的电流比此器件能够承受的电流更大,而不会损坏器件。务必限制器件的输出功率,以避免因过流而损坏器件。必须始终遵守绝对最大额定值中规定的电气和热限值。

未使用的推挽 CMOS 输出必须保持断开状态。

7.3.2 TTL 兼容型 CMOS 输入

此器件包括 TTL 兼容型 CMOS 输入。这些输入专门设计为通过降低的输入电压阈值与 TTL 逻辑器件连接。

TTL 兼容型 CMOS 输入为高阻抗,通常建模为与输入电容并联的电阻器,如*电气特性*中所示。最坏情况下的电阻是根据*绝对最大额定值*中给出的最大输入电压和*电气特性*中给出的最大输入漏电流,使用欧姆定律 $(R = V \div I)$ 计算得出的。

TTL 兼容型 CMOS 输入要求输入信号在有效逻辑状态之间快速转换,如*建议的工作条件* 表中的输入转换时间或速率所定义。不符合此规范将导致功耗过大并可能导致振荡。有关更多详细信息,请参阅 *CMOS 输入缓慢变化或悬空的影响* 应用报告。

在运行期间,任何时候都不要让 TTL 兼容型 CMOS 输入悬空。未使用的输入必须在 V_{CC} 或 GND 端接。如果系统不会一直主动驱动输入,可以添加上拉或下拉电阻器,以在这些时间段提供有效的输入电压。电阻值将取决于多种因素:但建议使用 $10k\Omega$ 电阻器,这通常可以满足所有要求。

7.3.3 可润湿侧翼

该器件采用至少一种具有可润湿侧翼的封装。请参阅数据表首页上的特性部分,了解哪些封装包含此特性。

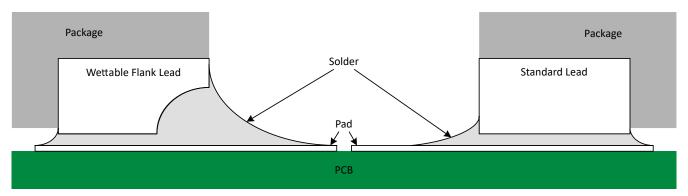


图 7-1. 焊接后具有可润湿侧翼的 QFN 封装和标准 QFN 封装的简化剖面图

可润湿侧翼有助于改善焊接后的侧翼润湿性,从而使 QFN 封装可通过自动光学检测 (AOI) 轻松检测。如图 7-1 所示,可润湿侧翼可做出凹陷或进行阶梯切割,为焊接粘附提供额外的表面积,有助于可靠创建侧面填角。有关其他详细信息,请参阅机械图。

7.3.4 钳位二极管结构

该器件的输入和输出同时具有正和负钳位二极管,如图 7-2 所示。

小心

电压超出绝对最大额定值表中规定的值可能会损坏器件。如果遵守输入和输出钳制电流额定值,输入和输出电压可超过额定值。

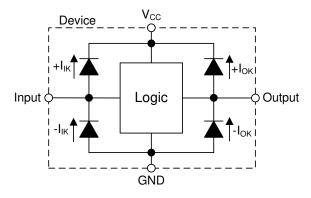


图 7-2. 每个输入和输出的钳位二极管的电气布置

Product Folder Links: SN74ACT02-Q1

7.4 器件功能模式

表 7-1 列出了 SN74ACT02-Q1 的功能模式。

表 7-1. 功能表

输入	(1)	输出
Α	В	Y
L	L	Н
Н	Х	L
X	Н	L

(1) H = 高电压电平, L = 低电压 电平, X = 不用考虑

8应用和实施

备注

以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

8.1 应用信息

在该应用中,使用一对双输入或非门来创建 SR 锁存器,如图 8-1 所示。

SN74ACT02-Q1 用于驱动篡改指示灯 LED 并为系统控制器提供一位数据。当防拆开关输出高电平时,输出 Q 变为高电平。此输出保持高电平,直到系统控制器处理该事件并向 R 输入发送高电平信号,使 Q 输出恢复至低电平。

8.2 典型应用

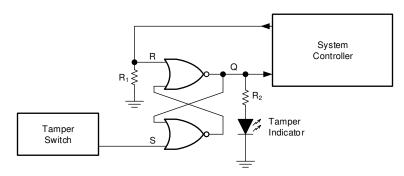


图 8-1. 典型应用框图

English Data Sheet: SLVSIQ7

8.2.1 设计要求

8.2.1.1 电源注意事项

确保所需电源电压在建议运行条件中规定的范围内。电源电压按照电气特性部分中所述设置器件的电气特性。

正电压电源必须能够提供的电流等于 SN74ACT02-Q1 所有输出端拉出的总电流加上最大静态电源电流 I_{CC} (在 电气特性 中列出)以及开关所需的任何瞬态电流之和。逻辑器件只能拉出与正电源提供的大小相同的电流。确保不要超过绝对最大额定值 中列出的通过 V_{CC} 的最大总电流。

地必须能够灌入的电流等于 SN74ACT02-Q1 所有输出端灌入的总电流加上最大电源电流 I_{CC} (在 电气特性 中列出)以及开关所需的任何瞬态电流之和。逻辑器件只能灌入其所接的地可灌入的大小相同的电流。确保不要超过 *绝对最大额定值* 中列出的通过 GND 的最大总电流。

SN74ACT02-Q1 可以驱动总电容小于或等于 50pF 的负载,同时仍满足所有数据表规格。可以施加更大的容性负载;但建议不要超过 50pF。

SN74ACT02-Q1 可以驱动由 $R_L \geqslant V_O/I_O$ 描述的总电阻负载,输出电压和电流在 e 气特性 表中用 V_{OH} 和 V_{OL} 定义。在高电平状态下输出时,公式中的输出电压定义为测量的输出电压与 V_{CC} 引脚处的电源电压之间的差值。

总功耗可以使用 CMOS 功耗与 Cpd 计算中提供的信息进行计算。

可以使用标准线性和逻辑 (SLL) 封装和器件的热特性 中提供的信息计算热增量。

小心

绝对最大额定值中列出的最高结温 $T_{J(max)}$ 是防止损坏器件的附加限制。请勿违反绝对最大额定值中列出的任何值。提供这些限制是为了防止损坏器件。

8.2.1.2 输入注意事项

输入信号必须超过 $V_{\text{IL}(max)}$ 才能被视为逻辑低电平,超过 $V_{\text{IH}(min)}$ 才能被视为逻辑高电平。不要超过*绝对最大额定值* 中的最大输入电压范围。

未使用的输入必须端接至 V_{CC} 或地。如果输入完全不使用,则可以直接端接未使用的输入,如果有时要使用输入,但并非始终使用,则可以使用上拉或下拉电阻器连接输入。上拉电阻用于默认高电平状态,下拉电阻用于默认低电平状态。控制器的驱动电流、进入 SN74ACT02-Q1 的漏电流(如*电气特性* 中所规定)以及所需输入转换率会限制电阻值。由于这些因素,通常使用 10kΩ 的电阻值。

SN74ACT02-Q1 具有 CMOS 输入,因此需要进行快速输入转换才能正常工作,如*建议运行条件* 表中所定义。缓慢的输入转换会导致振荡、额外的功耗以及器件可靠性下降。

有关此器件输入的其他信息,请参阅特性说明部分。

8.2.1.3 输出注意事项

正电源电压用于产生高电平输出电压。根据 电气特性 中 V_{OH} 规格所示,从输出端汲取电流将降低输出电压。接地电压用于产生低电平输出电压。根据 电气特性 中 V_{OL} 规格所示,向输出端灌入电流将提高输出电压。

可能处于相反状态的推挽输出始终不应直接连接在一起,即使时间很短也不例外。否则可能会导致电流过大并损坏器件。

同一器件内具有相同输入信号的两个通道可以并联,以获得额外的输出驱动强度。

未使用的输出可以保持悬空状态。不要将输出直接连接到 V_{CC} 或地。

有关此器件的输出的其他信息,请参阅特性说明部分。

English Data Sheet: SLVSIQ7

8.2.2 详细设计过程

- 1. 在 V_{CC} 至 GND 之间添加一个去耦电容器。此电容器需要在物理上靠近器件,在电气上靠近 V_{CC} 和 GND 引 脚。布局部分中展示了示例布局。
- 2. 确保输出端的容性负载 ≤ 50pF。这不是硬性限制;但是,根据设计,该限制将优化性能。这可以通过从 SN74ACT02-Q1 向一个或多个接收器件提供适当大小的短布线来实现。
- 3. 确保输出端的电阻负载大于 $(V_{CC}/I_{O(max)})\Omega$ 。这可防止超出绝对最大额定值中的最大输出电流。大多数 CMOS 输入具有以 $M\Omega$ 为单位的电阻负载;远大于之前计算的最小值。
- 4. 逻辑门很少关注热问题;然而,可以使用应用报告 CMOS 功耗与 Cpd 计算 中提供的步骤计算功耗和热增 量。

8.2.3 应用曲线

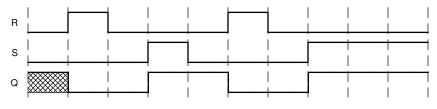


图 8-2. 应用时序图

Product Folder Links: SN74ACT02-Q1

8.3 电源相关建议

电源可以是*建议运行条件* 中最小和最大电源电压额定值之间的任何电压。每个 V_{CC} 端子均应具有一个良好的旁路电容器,以防止功率干扰。建议为该器件使用 $0.1\,\mu\,F$ 电容器。可以并联多个旁路电容器以抑制不同的噪声频率。 $0.1\,\mu\,F$ 和 $1\,\mu\,F$ 电容器通常并联使用。为了获得最佳效果,旁路电容器必须尽可能靠近电源端子安装。

8.4 布局

8.4.1 布局指南

- 旁路电容器的放置
 - 靠近器件的正电源端子放置
 - 提供电气短接地返回路径
 - 使用宽布线以最大限度减小阻抗
 - 尽可能将器件、电容器和布线保持在电路板的同一面
- 信号布线几何形状
 - 8mil 至 12mil 布线宽度
 - 布线长度小于 12cm 可最大限度减轻传输线路影响
 - 避免信号布线出现 90° 角
 - 在信号布线下方使用不间断的接地平面
 - 通过接地对信号布线周围的区域进行泛洪填充
 - 并行布线之间必须至少间隔 3 倍电介质厚度
 - 对于长度超过 12cm 的布线
 - 使用阻抗受控的布线
 - 在输出端附近使用串联阻尼电阻进行源端接
 - 避免分支;对必须单独分支的每条信号进行缓冲

8.4.2 布局示例

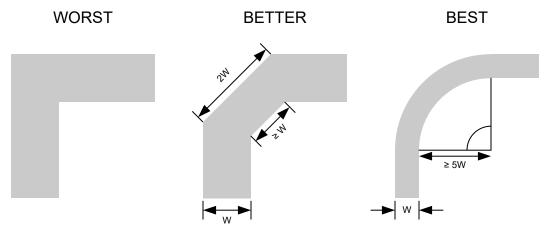


图 8-3. 可改善信号完整性的布线转角示例

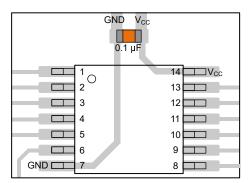


图 8-4. TSSOP 和类似封装的旁路电容器放置示例

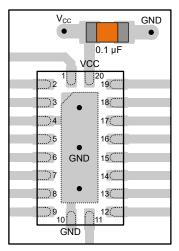


图 8-5. WQFN 和类似封装的旁路电容器放置示例

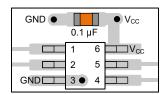


图 8-6. SOT、SC70 和类似封装的旁路电容器放置示例

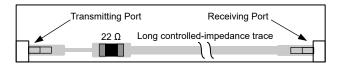


图 8-7. 可改善信号完整性的阻尼电阻放置示例

9 器件和文档支持

TI 提供大量的开发工具。下面列出了用于评估器件性能、生成代码和开发解决方案的工具和软件。

9.1 文档支持

9.1.1 相关文档

请参阅如下相关文档:

- 德州仪器 (TI), CMOS 功耗与 Cpd 计算应用报告
- 德州仪器 (TI), 使用逻辑器件进行设计应用报告
- 德州仪器 (TI), 标准线性和逻辑 (SLL) 封装和器件的热特性 应用报告

9.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

9.3 支持资源

TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

9.4 商标

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

9.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

9.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

10 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

日期	修订版本	注释
May 2025	*	初始发行版

Product Folder Links: SN74ACT02-Q1

English Data Sheet: SLVSIQ7

ZHCSY97 - MAY 2025

11 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知, 且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

Product Folder Links: SN74ACT02-Q1

www.ti.com 29-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SN74ACT02PWRQ1	Active	Production	TSSOP (PW) 14	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	ACT02Q
SN74ACT02WBQARQ1	Active	Production	WQFN (BQA) 14	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	AD02Q

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

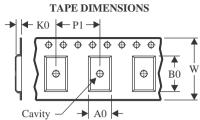
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

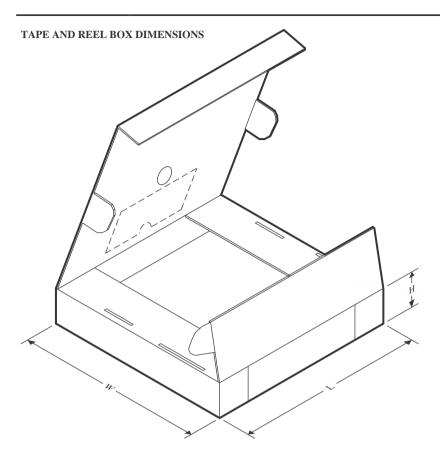
PACKAGE MATERIALS INFORMATION

www.ti.com 30-May-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

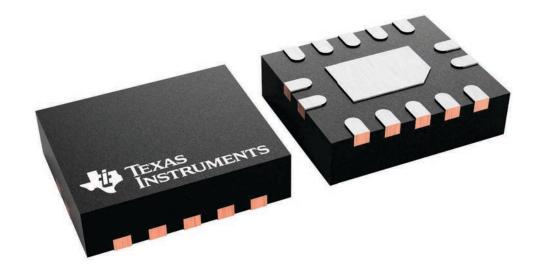


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ACT02PWRQ1	TSSOP	PW	14	3000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
SN74ACT02WBQARQ1	WQFN	BQA	14	3000	180.0	12.4	2.8	3.3	1.1	4.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

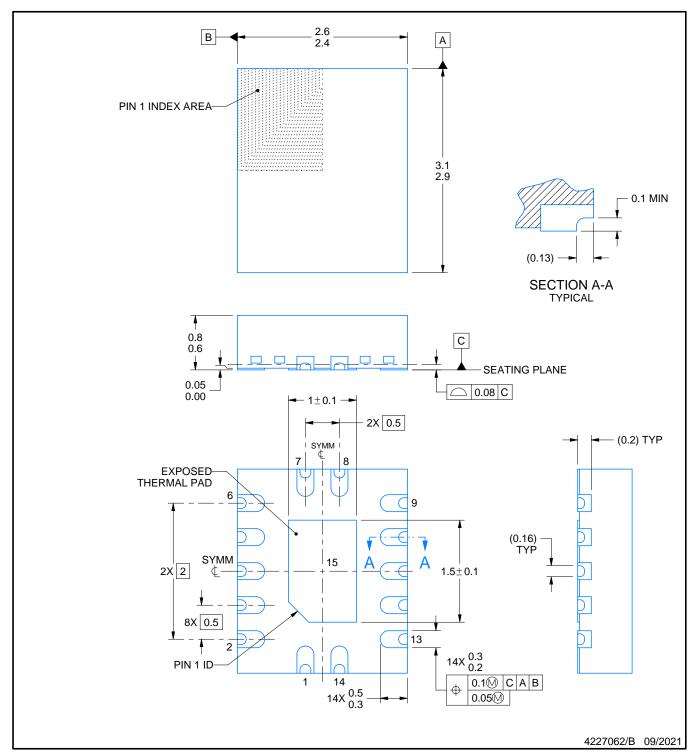
www.ti.com 30-May-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ACT02PWRQ1	TSSOP	PW	14	3000	353.0	353.0	32.0
SN74ACT02WBQARQ1	WQFN	BQA	14	3000	210.0	185.0	35.0

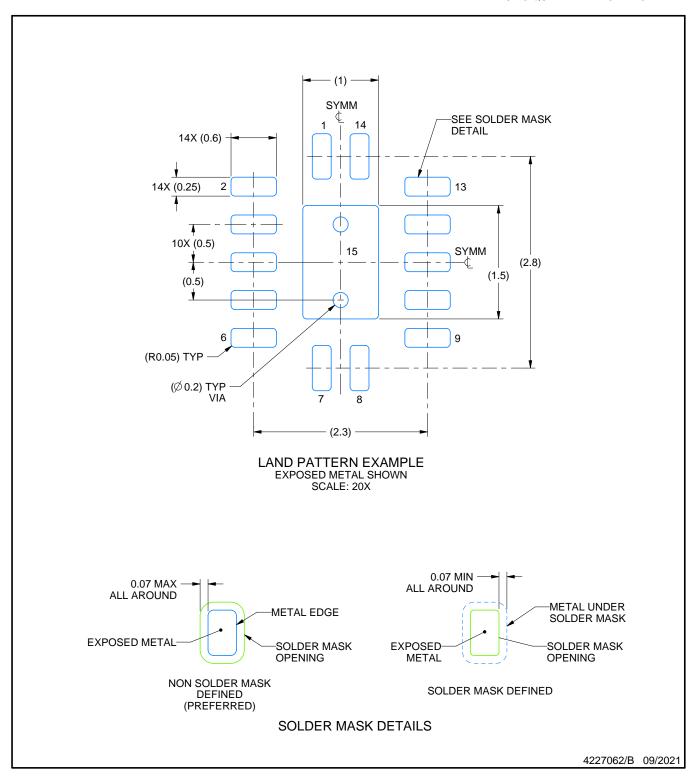
2.5 x 3, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

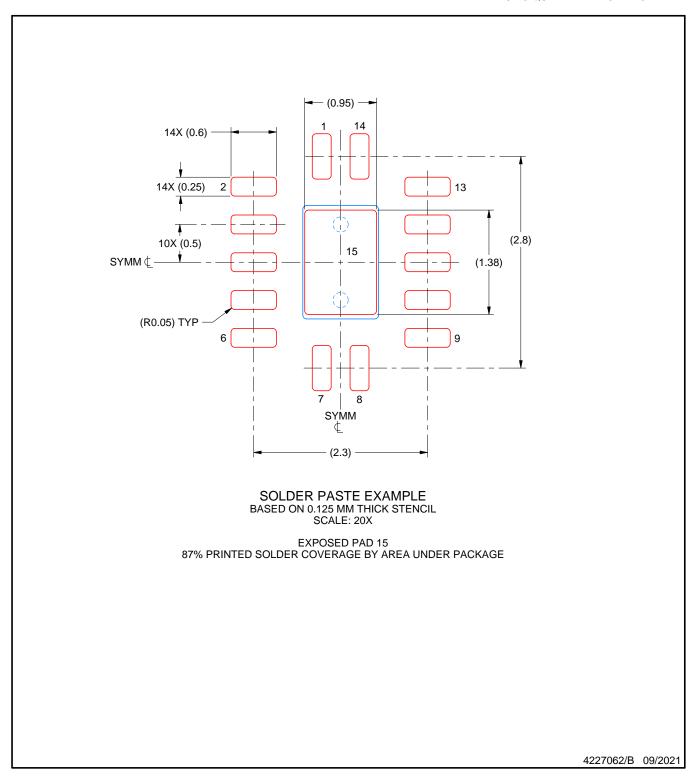
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

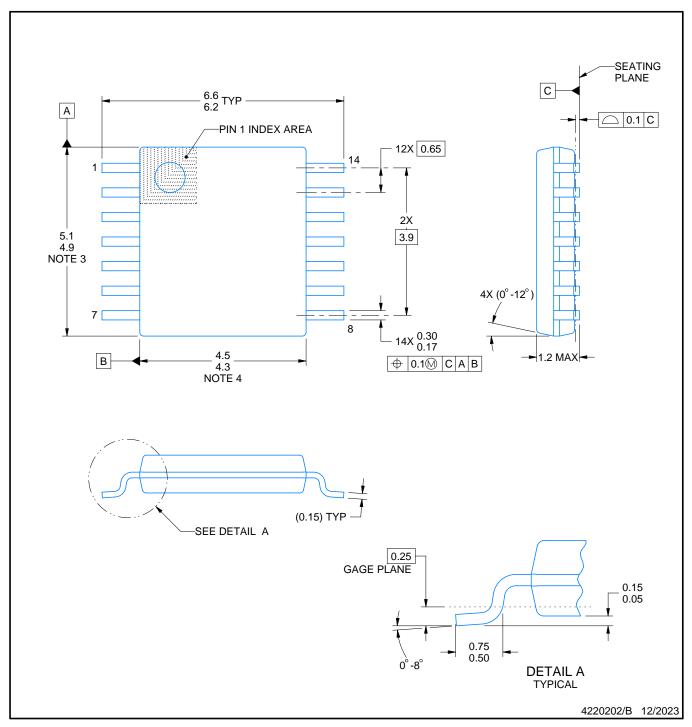
PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

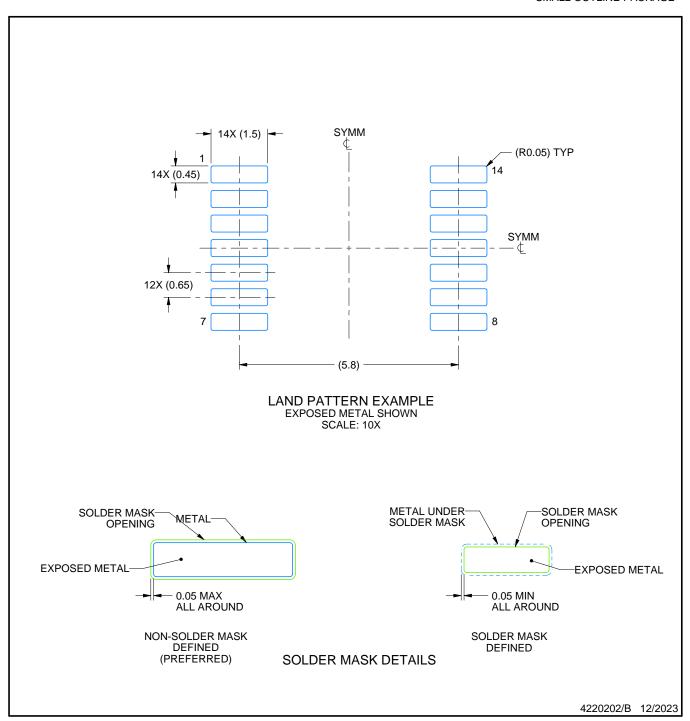
PLASTIC QUAD FLATPACK - NO LEAD


NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

SMALL OUTLINE PACKAGE

NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司