

FEATURES

SCBS143R-MAY 1992-REVISED NOVEMBER 2006

F	EATURES	SN54LVTH16245A WD PACKAGE
•	Members of the Texas Instruments Widebus™ Family	SN74LVTH16245A DGG, DGV, OR DL PACKAGE (TOP VIEW)
•	State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation	1DIR 1 48 10E 1B1 2 47 1A1
•	Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V _{CC})	1B2 3 46 1A2 GND 4 45 GND 1B3 5 44 1A3
•	Support Unregulated Battery Operation Down to 2.7 V	$1B3 [3 +4] [73] 1B4 [6 +3] 1A4 V_{CC} [7 +2] V_{CC}$
•	Typical V _{OLP} (Output Ground Bounce) <0.8 V at V _{CC} = 3.3 V, T _A = 25°C	1B5 [] 8 41 [] 1A5 1B6 [] 9 40 [] 1A6
•	Distributed V _{CC} and GND Pins Minimize High-Speed Switching Noise	GND [] 10 39 [] GND 1B7 [] 11 38 [] 1A7
•	Flow-Through Architecture Optimizes PCB Layout	1B8 🛛 12 37 🗍 1A8 2B1 🖸 13 36 🖸 2A1
•	l _{off} and Power-Up 3-State Support Hot Insertion	2B2 14 35 2A2 GND 15 34 GND
•	Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors	2B3 0 16 33 0 2A3 2B4 0 17 32 0 2A4
•	Latch-Up Performance Exceeds 500 mA Per JESD 17	V _{CC} [] 18 31 [] V _{CC} 2B5 [] 19 30 [] 2A5 2B6 [] 20 29 [] 2A6
•	ESD Protection Exceeds JESD 22	GND 21 28 GND
	 2000-V Human-Body Model (A114-A) 	2B7 🛛 22 27 🗍 2A7
	 200-V Machine Model (A115-A) 	
		2DIR 24 25 20E

DESCRIPTION/ORDERING INFORMATION

The 'LVTH16245A devices are 16-bit (dual-octal) noninverting 3-state transceivers designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

The devices are designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input and the output-enable (OE) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level applied to prevent excess I_{CC} and I_{CCZ} .

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V. \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

SN54LVTH16245A, SN74LVTH16245A 3.3-V ABT 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS143R-MAY 1992-REVISED NOVEMBER 2006

T _A	PACKAG	E ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	FBGA – GRD	Real of 1000	SN74LVTH16245AGRDR	- LL245A	
	FBGA – ZRD (Pb-free)	Reel of 1000	SN74LVTH16245AZRDR	LL245A	
		Tube of 25	74LVTH16245ADL		
	SSOP – DL	Tube of 25	74LVTH16245ADLG4	LVTH16245A	
	550P - DL	Reel of 1000	74LVTH16245ADLR	LV10243A	
		Reel of 1000	74LVTH16245ADLRG4		
–40°C to 85°C			SN74LVTH16245ADGGR		
	TSSOP – DGG	74LVTH16245ADLRG SN74LVTH16245ADGG Reel of 2000 74LVTH16245ADGGF	74LVTH16245ADGGRE4	LVTH16245A	
			74LVTH16245ADGGRG4		
	TVSOP – DGV	Reel of 2000	SN74LVTH16245ADGVR	- LL245A	
	TVSOP – DGV	Reel 01 2000	74LVTH16245ADGVRE4	- LL243A	
	VFBGA – GQL	Reel of 1000	SN74LVTH16245AGQLR	LL245A	
	VFBGA – ZQL (Pb-free)		74LVTH16245AZQLR	LL240A	
–55°C to 125°C	CFP – WD	Tube	SNJ54LVTH16245AWD	SNJ54LVTH16245AWD	

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

GQL OR ZQL PACKAGE (TOP VIEW) 1 2 3 4 5 6 000000 Α 000000 в С 000000 D ()OOЕ F ()()G 0000000 0000000 Н 000000 J

000000

κ

TERMINAL ASSIGNMENTS⁽¹⁾ (56-Ball GQL/ZQL Package)

	1	2	3	4	5	6
Α	1DIR	NC	NC	NC	NC	1 0E
В	1B2	1B1	GND	GND	1A1	1A2
С	1B4	1B3	V _{CC}	V _{CC}	1A3	1A4
D	1B6	1B5	GND	GND	1A5	1A6
Е	1B8	1B7			1A7	1A8
F	2B1	2B2			2A2	2A1
G	2B3	2B4	GND	GND	2A4	2A3
н	2B5	2B6	V _{CC}	V _{CC}	2A6	2A5
J	2B7	2B8	GND	GND	2A8	2A7
κ	2DIR	NC	NC	NC	NC	2 0E

(1) NC – No internal connection

Texas INS TRUMENTS www.ti.com

Α

В

С

D

Е

F

G

н

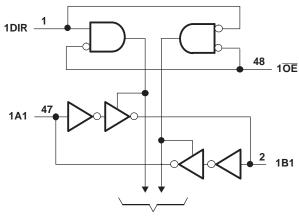
J

SN54LVTH16245A, SN74LVTH16245A 3.3-V ABT 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS143R-MAY 1992-REVISED NOVEMBER 2006

TERMINAL ASSIGNMENTS⁽¹⁾

	(54	-Ball G	RD/ZRL) Packa	ge)	
	1	2	3	4	5	6
Α	1B1	NC	1DIR	1 0E	NC	1A1
В	1B3	1B2	NC	NC	1A2	1A3
С	1B5	1B4	V _{CC}	V _{CC}	1A4	1A5
D	1B7	1B6	GND	GND	1A6	1A7
Е	2B1	1B8	GND	GND	1A8	2A1
F	2B3	2B2	GND	GND	2A2	2A3
G	2B5	2B4	V _{CC}	V _{CC}	2A4	2A5
Н	2B7	2B6	NC	NC	2A6	2A7
J	2B8	NC	2DIR	2 <mark>0E</mark>	NC	2A8


(1) NC - No internal connection

FUNCTION TABLE⁽¹⁾ (EACH 8-BIT SECTION)

	TROL UTS	OUTPUT	CIRCUITS	OPERATION
ŌĒ	DIR A PORT		B PORT	
L	L	Enabled	Hi-Z	B data to A bus
L	н	Hi-Z	Enabled	A data to B bus
н	Х	Hi-Z	Hi-Z	Isolation

(1) Input circuits of the data I/Os always are active.

LOGIC DIAGRAM (POSITIVE LOGIC)

GRD OR ZRD PACKAGE (TOP VIEW) 2 3 4 5 6

000000

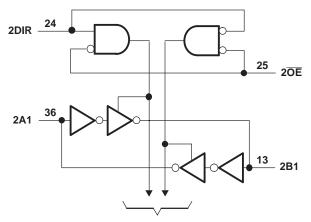
000000

000000

000000

000000

000000


000000

0000000

000000

1

To Seven Other Channels

To Seven Other Channels

SCBS143R-MAY 1992-REVISED NOVEMBER 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	4.6	V
VI	Input voltage range ⁽²⁾		-0.5	7	V
Vo	Voltage range applied to any output in the high-ir	npedance or power-off state ⁽²⁾	-0.5	7	V
Vo	Voltage range applied to any output in the high s	tate ⁽²⁾	-0.5	V _{CC} + 0.5	V
	Comment into any output in the law state	SN54LVTH16245A		96	A
I _O	Current into any output in the low state	SN74LVTH16245A		128	mA
	Querrant in the birth state (3)	SN54LVTH16245A		48	
I _O	Current into any output in the high state ⁽³⁾	SN74LVTH16245A		64	mA
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
		DGG package		70	
		DGV package		58	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DL package		63	°C/W
		GQL/ZQL package		42	
		GRD/ZRD package		36	
T _{stg}	Storage temperature range	·	-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) This current flows only when the output is in the high state and $V_O > V_{CC}$. (4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			SN54LVTH	16245A	SN74LVTH1	6245A	
			MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
V _{IH}	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage			5.5		5.5	V
I _{OH}	High-level output current			-24		-32	mA
I _{OL}	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

(1) All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS143R-MAY 1992-REVISED NOVEMBER 2006

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	AMETER	TEOT OF		SN54L	VTH16245A		SN74L	VTH1624	5A	
PAR	AWEIER	TEST CC	ONDITIONS	MIN	TYP ⁽¹⁾	MAX	MIN	TYP ⁽¹⁾	MAX	UNI
V _{IK}		V _{CC} = 2.7 V,	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$	I _{OH} = −100 μA	V _{CC} - 0.2			$V_{CC} - 0.2$			
		V _{CC} = 2.7 V,	I _{OH} = -8 mA	2.4			2.4			
V _{ОН}		N 2.1	I _{OH} = -24 mA	2						V
		$V_{CC} = 3 V$	I _{OH} = -32 mA				2			
		N/ 0.7.\/	I _{OL} = 100 μA			0.2			0.2	
		$V_{CC} = 2.7 V$	I _{OL} = 24 mA			0.5			0.5	
			I _{OL} = 16 mA			0.4			0.4	V
V _{OL}		N 2.1	I _{OL} = 32 mA			0.5			0.5	V
		$V_{CC} = 3 V$	I _{OL} = 48 mA			0.55				
			I _{OL} = 64 mA						0.55	
	Control	V _{CC} = 3.6 V,	$V_{I} = V_{CC}$ or GND			±1			±1	
	inputs	V _{CC} = 0 or 3.6 V,	V _I = 5.5 V			10			10	
1			V _I = 5.5 V			20			20	μA
	A or B port ⁽²⁾	V _{CC} = 3.6 V	$V_{I} = V_{CC}$			5			5	
	pont		V ₁ = 0			-5			-5	
off		V _{CC} = 0,	$V_{\rm I}$ or $V_{\rm O}$ = 0 to 4.5 V						±100	μA
		V 2)/	V _I = 0.8 V	75			75			
I(hold)	A or B	$V_{CC} = 3 V$	V _I = 2 V	-75			-75			μA
(noia)	port	$V_{CC} = 3.6 V,^{(3)}$	$V_{I} = 0 \text{ to } 3.6 \text{ V}$						500 -750	μι
OZPU		$\frac{V_{CC}}{OE} = 0$ to 1.5 V, V _O = $\overline{OE} = $ don't care	0.5 V to 3 V,		±1	00 ⁽⁴⁾			±100	μA
OZPD		$\frac{V_{CC}}{OE}$ = 1.5 V to 0, V _O = \overline{OE} = don't care	0.5 V to 3 V,		±1	00 ⁽⁴⁾			±100	μA
		V _{CC} = 3.6 V,	Outputs high			0.19			0.19	
сс		$I_{O} = 0,$	Outputs low			5			5	mA
		$V_{I} = V_{CC}$ or GND	Outputs disabled			0.19			0.19	
∆I _{CC} ⁽⁵⁾		V_{CC} = 3 V to 3.6 V, Or Other inputs at V _{CC} or	ne input at V _{CC} – 0.6 V, GND			0.2			0.2	mA
Ci		$V_1 = 3 V \text{ or } 0$			4			4		pF
C _{io}		$V_0 = 3 V \text{ or } 0$			10			10		pF

 All typical values are at V_{CC} = 3.3 V, T_A = 25°C.
 Unused pins at V_{CC} or GND
 This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

(4)

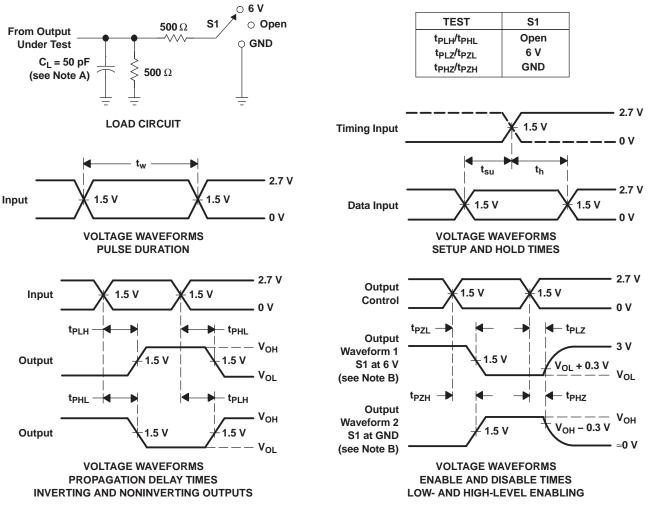
On products compliant to MIL-PRF-38535, this parameter is not production tested. This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND. (5)

SN54LVTH16245A, SN74LVTH16245A 3.3-V ABT 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS143R-MAY 1992-REVISED NOVEMBER 2006

Switching Characteristics

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)


			SN5	64LVTH	16245	4		SN74L	VTH16	245A		
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 3 ± 0.3	V _{CC} = 3.3 V ± 0.3 V		V_{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V			$V_{CC} = 2.7 V$	
			MIN	MAX	MIN	MAX	MIN	TYP ⁽¹⁾	MAX	MIN	MAX	
t _{PLH}	A or B	B or A	0.5	4.5		4.6	1.5	2.3	3.3		3.7	20
t _{PHL}	AOIB	BOFA	0.5	4.4		3.9	1.3	2.1	3.3		3.5	ns
t _{PZH}	ŌĒ	A or B	0.5	6.5		6.6	1.5	2.8	4.5		5.3	ns
t _{PZL}	OL	AUB	0.5	5.4		6.2	1.6	2.9	4.6		5.2	115
t _{PHZ}	OE	A or B	1	6.8		7	2.3	3.7	5.1		5.5	20
t _{PLZ}	UE	AUD	1	6.2		6.3	2.2	3.5	5.1		5.4	ns
t _{sk(LH)}									0.5		0.5	ns
t _{sk(HL)}									0.5		0.5	115

(1) All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

SN54LVTH16245A, SN74LVTH16245A 3.3-V ABT 16-BIT BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

SCBS143R-MAY 1992-REVISED NOVEMBER 2006

NOTES: A. C₁ includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
5962-9668601QXA	Active	Production	CFP (WD) 48	15 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9668601QX A SNJ54LVTH16245 AWD
5962-9668601VXA	Active	Production	CFP (WD) 48	15 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9668601VX A SNV54LVTH16245 AWD
74LVTH16245ADGGRE4	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16245A
74LVTH16245ADGGRG4	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16245A
74LVTH16245ADGVRG4.B	Active	Production	TVSOP (DGV) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LL245A
74LVTH16245ADLG4	Active	Production	SSOP (DL) 48	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16245A
74LVTH16245ADLRG4	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16245A
SN74LVTH16245ADGGR	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16245A
SN74LVTH16245ADGGR.B	Active	Production	TSSOP (DGG) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16245A
SN74LVTH16245ADGVR	Active	Production	TVSOP (DGV) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LL245A
SN74LVTH16245ADGVR.B	Active	Production	TVSOP (DGV) 48	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LL245A
SN74LVTH16245ADL	Active	Production	SSOP (DL) 48	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16245A
SN74LVTH16245ADL.B	Active	Production	SSOP (DL) 48	25 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16245A
SN74LVTH16245ADLR	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16245A
SN74LVTH16245ADLR.B	Active	Production	SSOP (DL) 48	1000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16245A
SNJ54LVTH16245AWD	Active	Production	CFP (WD) 48	15 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9668601QX A SNJ54LVTH16245 AWD

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

www.ti.com

23-May-2025

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

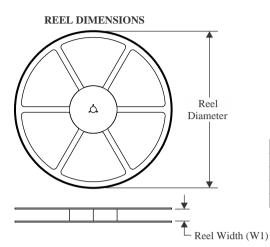
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

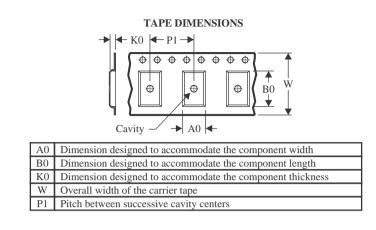
OTHER QUALIFIED VERSIONS OF SN54LVTH16245A, SN54LVTH16245A-SP, SN74LVTH16245A :

- Catalog : SN74LVTH16245A, SN54LVTH16245A
- Automotive : SN74LVTH16245A-Q1, SN74LVTH16245A-Q1
- Enhanced Product : SN74LVTH16245A-EP, SN74LVTH16245A-EP
- Military : SN54LVTH16245A
- Space : SN54LVTH16245A-SP

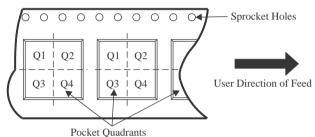
NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects


- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

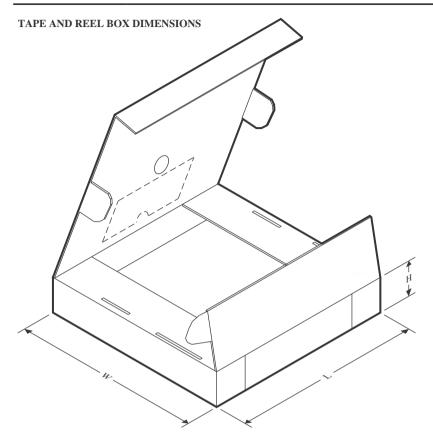

www.ti.com

Texas


STRUMENTS

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

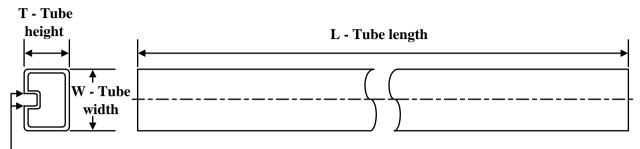

*All dimensions are nominal	All dimensions are nominal											
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVTH16245ADGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74LVTH16245ADGVR	TVSOP	DGV	48	2000	330.0	16.4	7.1	10.2	1.6	12.0	16.0	Q1
SN74LVTH16245ADLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

23-May-2025

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVTH16245ADGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74LVTH16245ADGVR	TVSOP	DGV	48	2000	356.0	356.0	35.0
SN74LVTH16245ADLR	SSOP	DL	48	1000	367.0	367.0	55.0

TEXAS INSTRUMENTS

www.ti.com

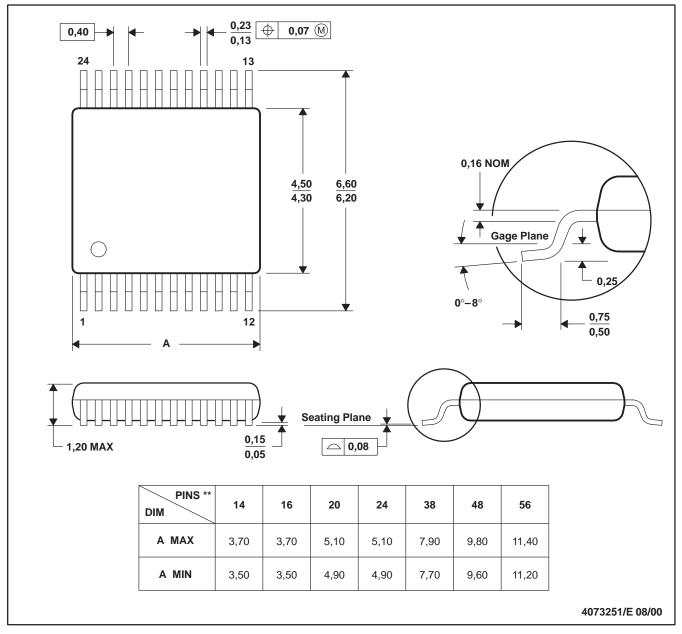
23-May-2025

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
74LVTH16245ADLG4	DL	SSOP	48	25	473.7	14.24	5110	7.87
SN74LVTH16245ADL	DL	SSOP	48	25	473.7	14.24	5110	7.87
SN74LVTH16245ADL.B	DL	SSOP	48	25	473.7	14.24	5110	7.87


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

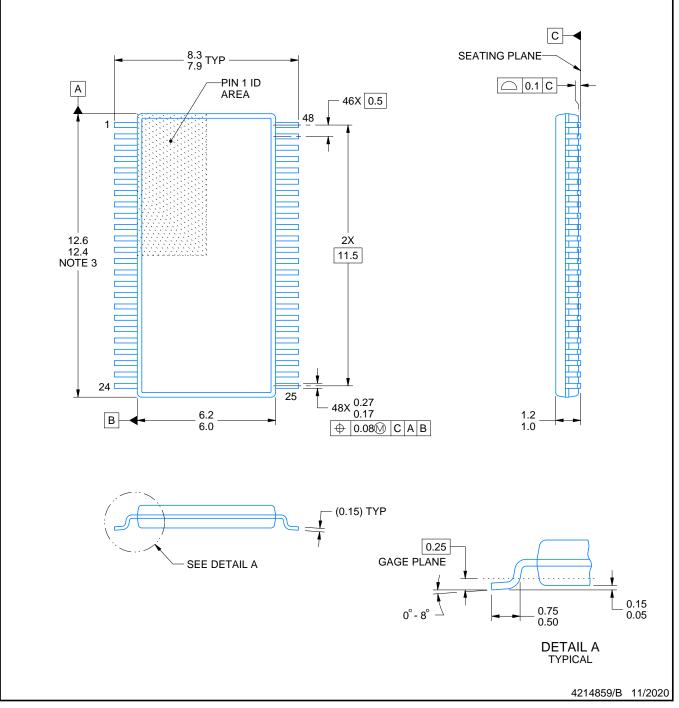
DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153


14/16/20/56 Pins – MO-194

PACKAGE OUTLINE

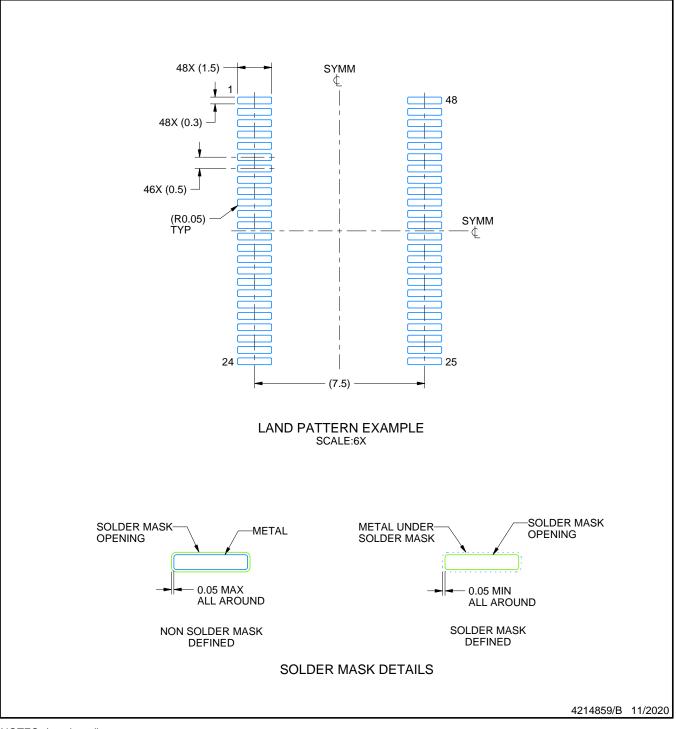
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153.


DGG0048A

DGG0048A

EXAMPLE BOARD LAYOUT

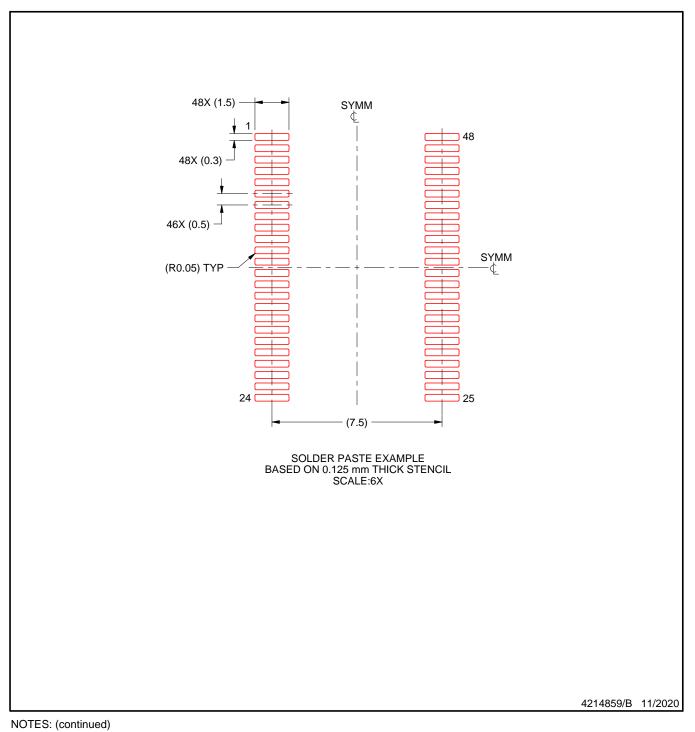
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGG0048A

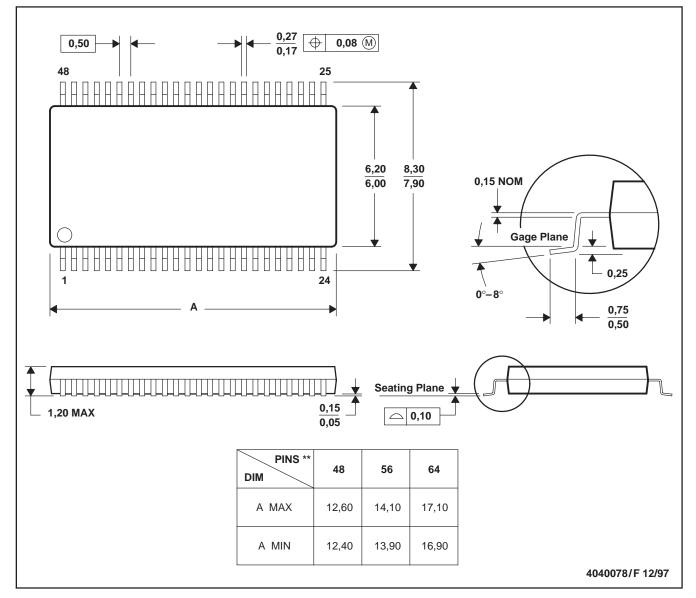
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate

design recommendations. 8. Board assembly site may have different recommendations for stencil design.


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

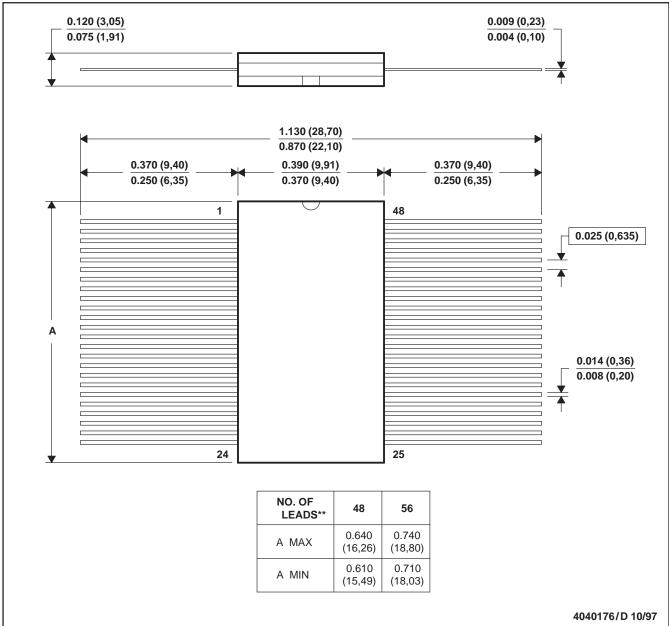
DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

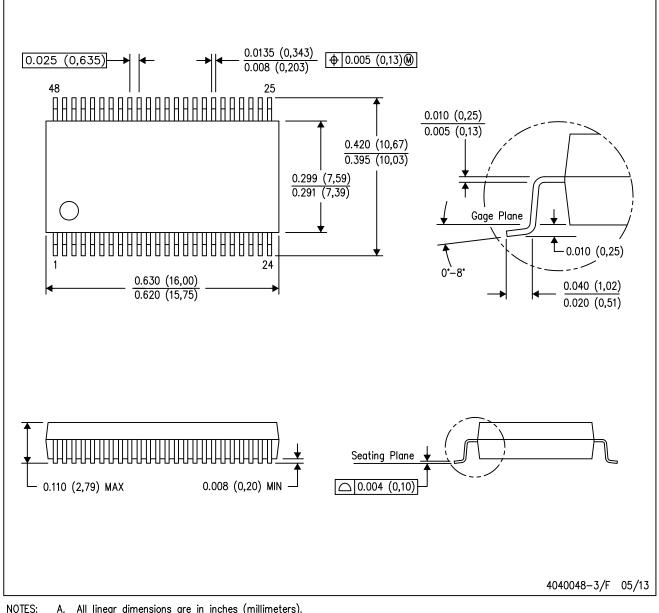

MECHANICAL DATA

MCFP010B - JANUARY 1995 - REVISED NOVEMBER 1997

CERAMIC DUAL FLATPACK

WD (R-GDFP-F**)

48 LEADS SHOWN



- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only
 - E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA
 - GDFP1-F56 and JEDEC MO-146AB

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

PowerPAD is a trademark of Texas Instruments.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated