SGUS060A – DECEMBER 2007 – REVISED JULY 2009

- Highest Performance Floating-Point Digital Signal Processor (DSP) SMJ320C6701
 - 7-, 6-ns Instruction Cycle Time
 - 140-, 167-MHz Clock Rate
 - Eight 32-Bit Instructions/Cycle
 - Up to 1 GFLOPS Performance
 - Pin-Compatible With 'C6201 Fixed-Point DSP
- SMJ: QML Processing to MIL-PRF-38535
- SM: Standard Processing
- Operating Temperature Ranges
 - Extended (W) 55°C to 115°C
 - Extended (S) –40°C to 90°C
- VelociTI[™] Advanced Very Long Instruction Word (VLIW) 'C67x CPU Core
 - Eight Highly Independent Functional Units:
 - Four ALUs (Floating- and Fixed-Point)
 - Two ALUs (Fixed-Point)
 - Two Multipliers (Floating- and Fixed-Point)
 - Load-Store Architecture With 32 32-Bit General-Purpose Registers
 - Instruction Packing Reduces Code Size
 - All Instructions Conditional
- Instruction Set Features
 - Hardware Support for IEEE
 Single-Precision Instructions
 - Hardware Support for IEEE
 Double-Precision Instructions
 - Byte-Addressable (8-, 16-, 32-Bit Data)
 - 32-Bit Address Range
 - 8-Bit Overflow Protection
 - Saturation
 - Bit-Field Extract, Set, Clear
 - Bit-Counting
 - Normalization

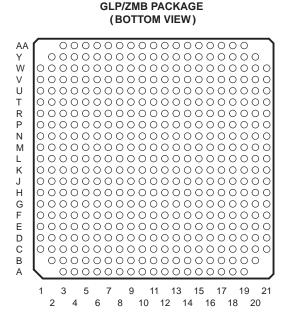
1M-Bit On-Chip SRAM

- 512K-Bit Internal Program/Cache (16K 32-Bit Instructions)
- 512K-Bit Dual-Access Internal Data (64K Bytes)
- 32-Bit External Memory Interface (EMIF)
 - Glueless Interface to Synchronous Memories: SDRAM and SBSRAM
 - Glueless Interface to Asynchronous Memories: SRAM and EPROM
- Four-Channel Bootloading Direct-Memory-Access (DMA) Controller With an Auxiliary Channel
- 16-Bit Host-Port Interface (HPI)
 Access to Entire Memory Map
- Two Multichannel Buffered Serial Ports (McBSPs)
 - Direct Interface to T1/E1, MVIP, SCSA Framers
 - ST-Bus-Switching Compatible
 - Up to 256 Channels Each
 - AC97-Compatible
 - Serial-Peripheral-Interface (SPI) Compatible (Motorola[™])
- Two 32-Bit General-Purpose Timers
- Flexible Phase-Locked-Loop (PLL) Clock Generator
- IEEE-1149.1 (JTAG[†]) Boundary-Scan-Compatible
- 429-Pin Ceramic Ball Grid Array (CBGA) Package (GLP Suffix) and Land Grid Array (CLGA) Package (ZMB Suffix)
- 0.18-µm/5-Level Metal Process
 CMOS Technology
- 3.3-V I/Os, 1.9-V Internal

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

VelociTI is a trademark of Texas Instruments Incorporated.

Motorola is a trademark of Motorola, Inc.


[†] IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright \circledast 2009, Texas Instruments Incorporated On products compliant to MIL-PRF-3853s, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

description

The SMJ320C67x DSPs are the floating-point DSP family in the SMJ320C6000 platform. The SMJ320C6701 ('C6701) device is based on the high-performance, advanced VelociTI very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI™), making this DSP an excellent choice for multichannel and multifunction applications. With performance of up to 1 giga floating-point operations per second (GFLOPS) at a clock rate of 167 MHz, the 'C6701 offers cost-effective solutions to high-performance DSP programming challenges. The 'C6701 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. This processor has 32 general-purpose registers of 32-bit word length and eight highly independent functional units. The eight functional units provide four floating-/fixed-point ALUs, two fixed-point ALUs, and two floating-/fixed-point multipliers. The 'C6701 can produce two multiply-accumulates (MACs) per cycle for a total of 334 million MACs per second (MMACS). The 'C6701 DSP also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals.

The 'C6701 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program memory consists of a 64K-byte block that is user-configurable as cache or memory-mapped program space. Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals.

The 'C6701 has a complete set of development tools which includes: a new C compiler, an assembly optimizer to simplify programming and scheduling, and a Windows[™] debugger interface for visibility into source code execution.

TI is a trademark of Texas Instruments Incorporated. Windows is a registered trademark of the Microsoft Corporation.

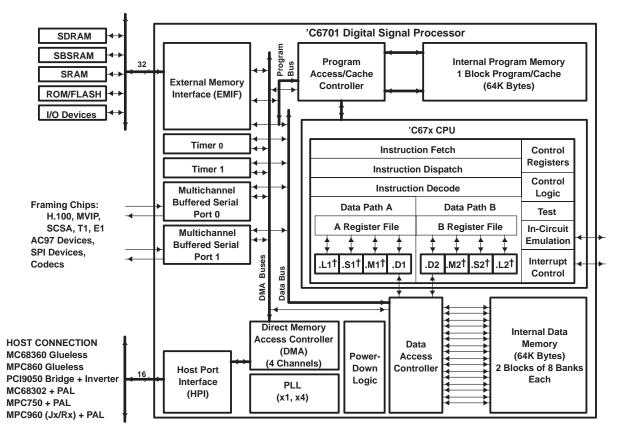

device characteristics

Table 1 provides an overview of the 'C6701 DSP. The table shows significant features of each device, including the capacity of on-chip RAM, the peripherals, the execution time, and the package type with pin count.

CHARACTERISTICS	DESCRIPTION
Device Number	SMJ320C6701
On-Chip Memory	512-Kbit Program Memory 512-Kbit Data Memory (organized as 2 blocks)
Peripherals	2 Mutichannel Buffered Serial Ports (McBSP) 2 General-Purpose Timers Host-Port Interface (HPI) External Memory Interface (EMIF)
Cycle Time	7 ns at 140 MHz, and 6 ns at 167 MHz
Package Type	27 mm \times 27 mm, 429–Pin BGA/LGA (GLP/ZMB)
Nominal Voltage	1.9 V Core 3.3 V I/O

Table 1. Characteristics of the 'C6701 Processors

functional and CPU block diagram

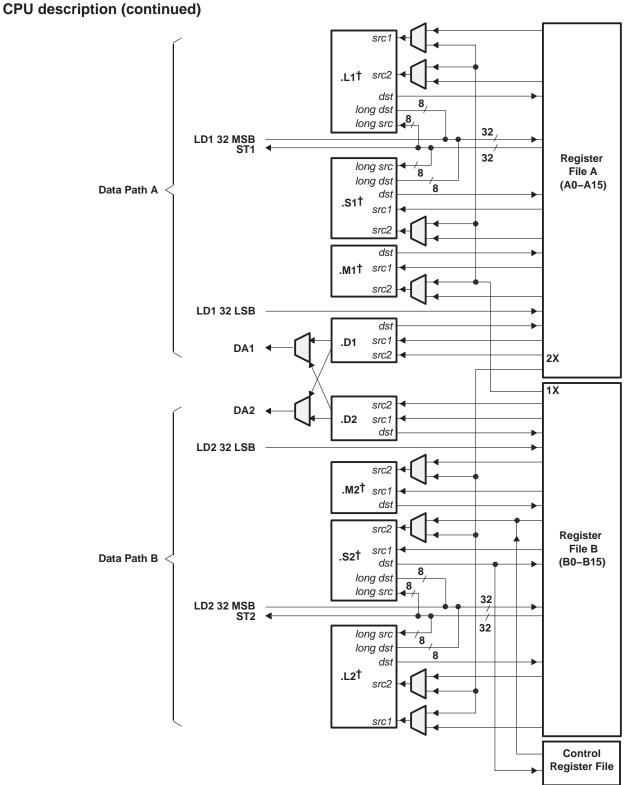
[†] These functional units execute floating-point instructions.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

CPU description

The CPU fetches VelociTI advanced very-long instruction words (VLIW) (256 bits wide) to supply up to eight 32-bit instructions to the eight functional units during every clock cycle. The VelociTI VLIW architecture features controls by which all eight units do not have to be supplied with instructions if they are not ready to execute. The first bit of every 32-bit instruction determines if the next instruction belongs to the same execute packet as the previous instruction, or whether it should be executed in the following clock as a part of the next execute packet. Fetch packets are always 256 bits wide; however, the execute packets can vary in size. The variable-length execute packets are a key memory-saving feature, distinguishing the 'C67x CPU from other VLIW architectures.

The CPU features two sets of functional units. Each set contains four units and a register file. One set contains functional units .L1, .S1, .M1, and .D1; the other set contains units .D2, .M2, .S2, and .L2. The two register files contain 16 32-bit registers each for the total of 32 general-purpose registers. The two sets of functional units, along with two register files, compose sides A and B of the CPU (see the functional and CPU block diagram and Figure 1). The four functional units on each side of the CPU can freely share the 16 registers belonging to that side. Additionally, each side features a single data bus connected to all registers on the other side, by which the two sets of functional units can access data from the register files on opposite sides. While register access by functional units on the same side of the CPU as the register file can service all the units in a single clock cycle, register access using the register file across the CPU supports one read and one write per cycle.


The 'C67x CPU executes all 'C62x instructions. In addition to 'C62x fixed-point instructions, the six out of eight functional units (.L1, .M1, .D1, .D2, .M2, and .L2) also execute floating-point instructions. The remaining two functional units (.S1 and .S2) also execute the new LDDW instruction which loads 64 bits per CPU side for a total of 128 bits per cycle.

Another key feature of the 'C67x CPU is the load/store architecture, where all instructions operate on registers (as opposed to data in memory). Two sets of data-addressing units (.D1 and .D2) are responsible for all data transfers between the register files and the memory. The data address driven by the .D units allows data addresses generated from one register file to be used to load or store data to or from the other register file. The 'C67x CPU supports a variety of indirect-addressing modes using either linear- or circular-addressing modes with 5- or 15-bit offsets. All instructions are conditional, and most can access any one of the 32 registers. Some registers, however, are singled out to support specific addressing or to hold the condition for conditional instructions (if the condition is not automatically "true"). The two .M functional units are dedicated for multiplies. The two .S and .L functional units perform a general set of arithmetic, logical, and branch functions with results available every clock cycle.

The processing flow begins when a 256-bit-wide instruction fetch packet is fetched from a program memory. The 32-bit instructions destined for the individual functional units are "linked" together by "1" bits in the least significant bit (LSB) position of the instructions. The instructions that are "chained" together for simultaneous execution (up to eight in total) compose an execute packet. A "0" in the LSB of an instruction breaks the chain, effectively placing the instructions that follow it in the next execute packet. If an execute packet crosses the fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet, while the remainder of the current fetch packet is padded with NOP instructions. The number of execute packets within a fetch packet can vary from one to eight. Execute packets are dispatched to their respective functional units at the rate of one per clock cycle and the next 256-bit fetch packet is not fetched until all the execute packets from the current fetch packet have been dispatched. After decoding, the instructions simultaneously drive all active functional units for a maximum execution rate of eight instructions every clock cycle. While most results are stored in 32-bit registers, they can be subsequently moved to memory as bytes or half-words as well. All load and store instructions are byte-, half-word, or word-addressable.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

[†] These functional units execute floating-point instructions.

Figure 1. SMJ320C67x CPU Data Paths

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

signal groups description

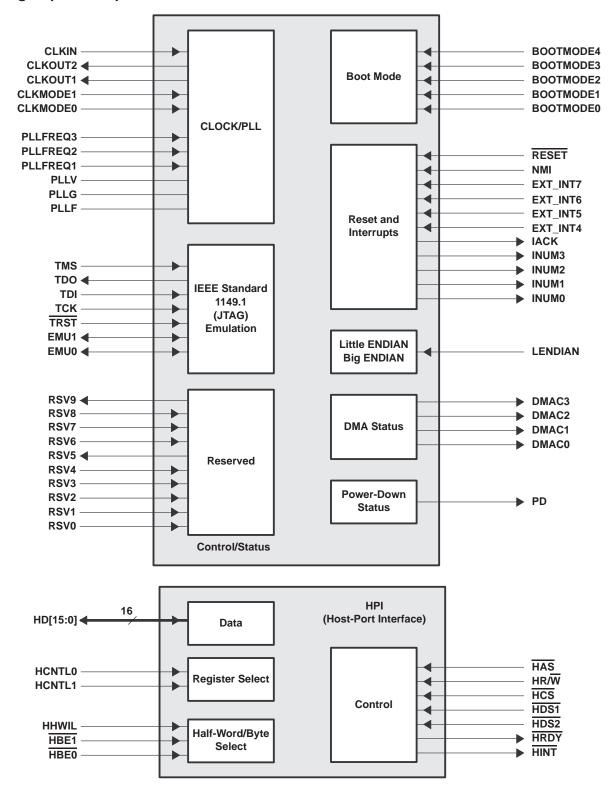
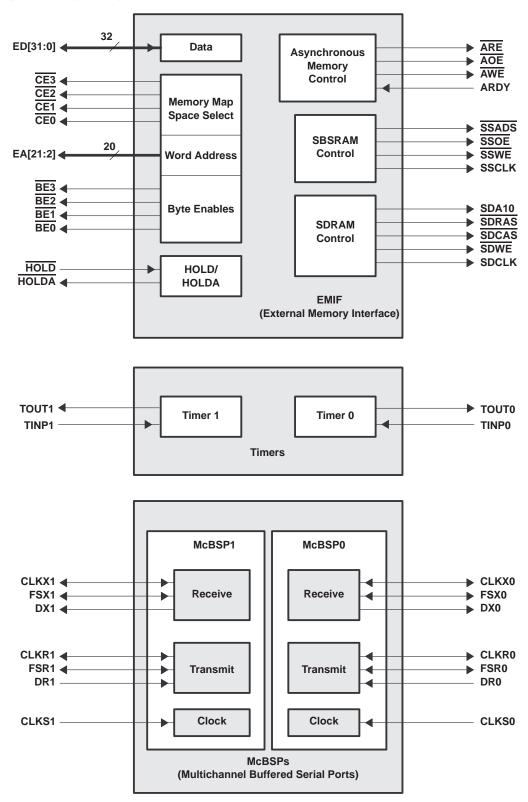



Figure 2. CPU and Peripheral Signals

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

signal groups description (continued)

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

	Signal Descriptions					
SIGNA	SIGNAL TYPET DESCRIPTION					
NAME	NO.	TTPET	DESCRIPTION			
			CLOCK/PLL			
CLKIN	A14	I	Clock Input			
CLKOUT1	Y6	0	Clock output at full device speed			
CLKOUT2	V9	0	Clock output at half of device speed			
CLKMODE1	B17		Clock mode select			
CLKMODE0	C17		 Selects whether the output clock frequency = input clock freq x4 or x1 			
PLLFREQ3	C13		PLL frequency range (3, 2, and 1)			
PLLFREQ2	G11	1	• The target range for CLKOUT1 frequency is determined by the 3-bit value of the PLLFREQ pins.			
PLLFREQ1	F11					
PLLV [‡]	D12	A§	PLL analog V _{CC} connection for the low-pass filter			
PLLG [‡]	G10	A§	PLL analog GND connection for the low-pass filter			
PLLF	C12	A§	PLL low-pass filter connection to external components and a bypass capacitor			
		1	JTAG EMULATION			
TMS	K19	I	JTAG test port mode select (features an internal pull-up)			
TDO	R12	O/Z	JTAG test port data out			
TDI	R13	I	JTAG test port data in (features an internal pull-up)			
ТСК	M20	I	JTAG test port clock			
TRST	N18	I	JTAG test port reset (features an internal pull-down)			
EMU1	R20	I/O/Z	Emulation pin 1, pull-up with a dedicated 20-k Ω resistor¶			
EMU0	T18	I/O/Z	Emulation pin 0, pull-up with a dedicated 20-k Ω resistor¶			
			RESET AND INTERRUPTS			
RESET	J20	I	Device reset			
NMI	K21	I	Nonmaskable interrupt • Edge-driven (rising edge)			
EXT_INT7	R16					
EXT_INT6	P20		External interrupts			
EXT_INT5	R15		Edge-driven (rising edge)			
EXT_INT4	R18					
IACK	R11	0	Interrupt acknowledge for all active interrupts serviced by the CPU			
INUM3	T19					
INUM2	T20		Active interrupt identification number			
INUM1	T14	0	 Valid during IACK for all active interrupts (not just external) Encoding order follows the interrupt service fetch packet ordering 			
INUM0	T16					
			LITTLE ENDIAN/BIG ENDIAN			
LENDIAN	G20	I	If high, selects little-endian byte/half-word addressing order within a word If low, selects big-endian addressing			
			POWER DOWN STATUS			
PD	D19	0	Power-down mode 2 or 3 (active if high)			
ti lanut O C		Lliah Imna	edance S = Supply Voltage GND = Ground			

[†]I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

[‡] PLLV and PLLG signals are not part of external voltage supply or ground. See the CLOCK/PLL documentation for information on how to connect those pins.

\$ A = Analog Signal (PLL Filter)

For emulation and normal operation, pull up EMU1 and EMU0 with a dedicated 20-kΩ resistor. For boundary scan, pull down EMU1 and EMU0 with a dedicated 20-kΩ resistor.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

	Signal Descriptions (Continued)				
SIGNAL		TYPE [†]	DESCRIPTION		
NAME	NO.				
			HOST PORT INTERFACE (HPI)		
HINT	H2	O/Z	Host interrupt (from DSP to host)		
HCNTL1	J6	I	Host control – selects between control, address or data registers		
HCNTL0	H6	I	Host control – selects between control, address or data registers		
HHWIL	E4	I	Host halfword select – first or second halfword (not necessarily high or low order)		
HBE1	G6	I	Host byte select within word or half-word		
HBE0	F6	I	Host byte select within word or half-word		
HR/W	D4	I	Host read or write select		
HD15	D11				
HD14	B11]			
HD13	A11	1			
HD12	G9	1			
HD11	D10	1			
HD10	A10	1			
HD9	C10	1	Host port data (used for transfer of data, address and control)		
HD8	B9	1			
HD7	F9	I/O/Z			
HD6	C9	1			
HD5	A9	1			
HD4	B8	1			
HD3	D9	1			
HD2	D8	1			
HD1	B7	1			
HD0	C7	1			
HAS	L6	I	Host address strobe		
HCS	C5	I	Host chip select		
HDS1	C4	I	Host data strobe 1		
HDS2	K6	I	Host data strobe 2		
HRDY	H3	0	Host ready (from DSP to host)		
			BOOT MODE		
BOOTMODE4	B16				
BOOTMODE3	G14	1			
BOOTMODE2	F15	1	Boot mode		
BOOTMODE1	C18	1			
BOOTMODE0	D17	1			
		High Imp	edance, S = Supply Voltage, GND = Ground		

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

SIGNA	AL.		
NAME	NO.	TYPE [†]	DESCRIPTION
		EN	MIF – CONTROL SIGNALS COMMON TO ALL TYPES OF MEMORY
CE3	Y5	O/Z	
CE2	V3	O/Z	Memory space enables
CE1	T6	O/Z	Enabled by bits 24 and 25 of the word address
CE0	U2	O/Z	Only one asserted during any external data access
BE3	R8	O/Z	Byte enable control
BE2	Т3	O/Z	Decoded from the two lowest bits of the internal address
BE1	T2	O/Z	Byte write enables for most types of memory
BE0	R2	O/Z	Can be directly connected to SDRAM read and write mask signal (SDQM)
			EMIF – ADDRESS
EA21	L4		
EA20	L3		
EA19	J2		
EA18	J1]	
EA17	K1]	
EA16	K2		
EA15	L2]	
EA14	L1]	
EA13	M1]	
EA12	M2		
EA11	M6	O/Z	External address (word address)
EA10	N4]	
EA9	N1]	
EA8	N2]	
EA7	N6]	
EA6	P4]	
EA5	P3]	
EA4	P2]	
EA3	P1]	
EA2	P6		

Signal Descriptions (Continued)

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

NAME NAMETYPEDESCRIPTIONEMIDESCRIPTIONED31U/8E030U/00E0291/10E028V/10E0241/10E0251/10E0261/10E0271/10E0281/10E0291/10E0211/10E0231/10E0241/10E0251/10E0261/10E0271/10E0281/10E0291/10E0291/10E0201/10E0211/10E		Signal Descriptions (Continued)					
No. EMIF - DATA ED31 U18 ED30 U20 ED29 T15 ED28 V18 ED27 V17 ED26 V18 ED27 V17 ED26 V18 ED27 V17 ED26 V18 ED27 V17 ED26 V18 ED27 T12 ED24 W17 ED25 T12 ED24 W17 ED25 T12 ED24 W17 ED25 T11 ED20 Y16 ED14 V13 ED15 Y14 ED14 V13 ED15 Y14 ED1 Y13 ED14 V13 ED15 Y14 ED1 Y13 ED1 Y13 ED1 Y13 ED2 Y10 ED5 Y10 <th>SIGNAL</th> <th></th> <th>TYPET</th> <th>DESCRIPTION</th>	SIGNAL		TYPET	DESCRIPTION			
ED31 U18 ED30 U20 ED29 T15 ED28 V18 ED27 V17 ED26 V18 ED27 V17 ED26 V18 ED27 V17 ED26 V18 ED27 V17 ED26 V18 ED27 T13 ED22 Y17 ED23 T13 ED24 W17 ED25 T11 ED20 Y16 ED18 V14 ED17 Y15 ED16 R9 ED14 V13 ED15 Y14 ED14 V13 ED15 Y14 ED11 Y13 ED10 W12 ED8 Y11 ED7 V10 ED8 Y11 ED4 W10 ED3 Y9 ED4 W10 <t< th=""><th>NAME</th><th>NO.</th><th>TIFET</th><th></th></t<>	NAME	NO.	TIFET				
ED30 U20 ED29 T15 ED28 V18 ED27 V17 ED26 V18 ED27 V17 ED26 V18 ED27 T12 ED24 W17 ED22 Y17 ED21 T11 ED22 Y17 ED21 T11 ED22 Y17 ED20 Y16 ED19 W15 ED16 R9 ED15 Y14 ED14 V13 ED15 Y14 ED14 V13 ED12 T10 ED14 V13 ED15 Y11 ED16 R91 ED1 Y13 ED11 Y13 ED12 Y10 ED5 Y11 ED7 V10 ED8 Y11 ED7 V10 ED8 Y11				EMIF – DATA			
ED29 T15 ED28 V18 ED27 V17 ED26 V16 ED25 T12 ED24 W17 ED23 T13 ED22 Y17 ED21 T11 ED20 Y17 ED21 T11 ED20 Y17 ED19 W15 ED18 V14 ED17 Y15 ED18 Y11 ED19 Y12 ED19 Y12 ED3 Y11 ED5 Y11 ED5 Y11 ED5 Y11 ED5 Y11	ED31	U18					
ED28 V18 ED27 V17 ED26 V16 ED25 T12 ED24 W17 ED22 T13 ED22 Y17 ED23 T13 ED22 Y17 ED23 T13 ED22 Y17 ED23 T13 ED12 T11 ED20 Y16 ED17 Y14 ED17 Y14 ED13 X143 ED12 T10 ED13 X413 ED12 T10 ED13 X413 ED12 T10 ED13 X413 ED12 T10 ED13 X413 ED14 Y13 ED5 Y10 ED5 Y10 ED5 Y10 ED5 Y10 ED5 Y10 ED4 W10 ED5 X10	ED30	U20					
ED27 V17 ED26 V16 ED26 V16 ED24 W17 ED23 T13 ED22 Y17 ED21 T11 ED20 Y16 ED19 W15 ED18 V14 ED17 Y15 ED16 R9 ED17 Y15 ED16 R9 ED17 Y13 ED13 AA13 ED14 V13 ED13 AA13 ED14 V13 ED15 Y14 ED14 V13 ED15 Y14 ED14 V13 ED15 Y10 ED14 V13 ED15 Y10 ED5 Y10 ED6 AA10 ED5 Y10 ED5 Y10 ED5 Y10 ED5 Y10 ED5 Y10	ED29	T15					
ED26 V16 ED26 T12 ED24 W17 ED23 T13 ED22 Y17 ED21 T11 ED20 Y16 ED19 W15 ED16 R9 ED15 Y14 ED17 Y15 ED16 R9 ED15 Y14 ED14 V13 ED13 AA13 ED12 T10 ED11 Y13 ED12 T10 ED13 AA13 ED14 V13 ED15 Y14 ED17 Y10 ED18 Y11 ED19 W12 ED8 Y11 ED7 V10 ED8 Y11 ED7 V10 ED8 Y11 ED7 V10 ED8 Y10 ED4 W10 ED5 Y10 <tr< td=""><td>ED28</td><td>V18</td><td></td><td></td></tr<>	ED28	V18					
ED25 T12 ED24 W17 ED23 T13 ED22 Y17 ED21 T11 ED20 Y16 ED19 W15 ED18 V14 ED17 Y15 ED16 R9 ED15 Y14 ED14 V13 ED15 Y14 ED17 Y13 ED10 W12 ED8 Y11 ED7 V10 ED6 AA10 ED5 Y10 ED2 AA9 ED1 Y8 ED2 Y9 ED2 AA9 ED1 Y8 ED2 A99	ED27	V17					
ED24 W17 ED23 T13 ED22 Y17 ED21 T11 ED20 Y16 ED19 W15 ED18 V14 ED17 Y15 ED16 R9 ED15 Y14 ED14 V13 ED13 AA13 ED12 T10 ED14 Y13 ED13 AA13 ED12 T10 ED14 Y13 ED15 Y14 ED17 Y13 ED18 V14 ED19 Y12 ED8 Y11 ED7 V10 ED6 AA10 ED3 Y10 ED4 W10 ED3 Y10 ED4 W10 ED3 Y10 ED4 W10 ED3 Y10 ED4 W10 ED5 Y10	ED26	V16					
ED23 T13 ED22 Y17 ED21 T11 ED20 Y16 ED19 W15 ED18 V14 ED17 Y15 ED16 R9 ED15 Y14 ED14 V13 ED12 T10 ED13 AA13 ED12 T10 ED13 AA13 ED12 T10 ED14 V13 ED10 W12 ED9 Y12 ED8 Y11 ED7 V10 ED6 AA10 ED3 Y10 ED4 W10 ED3 Y10 ED4 W10 ED3 Y10 ED4 W10 ED3 Y10 ED4 W10 ED3 Y9 ED2 AA3 ED1 Y8 ED0 W9	ED25	T12					
ED22 Y17 ED21 T11 ED20 Y16 ED19 W15 ED18 V14 ED17 Y15 ED16 R9 ED15 Y14 ED14 V13 ED15 Y14 ED14 V13 ED13 AA13 ED12 T10 ED11 Y13 ED10 W12 ED9 Y12 ED8 Y11 ED7 V10 ED5 Y10 ED4 A410 ED5 Y10 ED4 A410 ED5 Y10 ED4 W10 ED3 Y9 ED2 AA9 ED1 Y8 ED0 W9 ED1 Y8 ED0 W9 ED1 Y8 ED2 AA9 ED3 Y9	ED24	W17					
ED21 T11 ED20 Y16 ED19 W15 ED18 V14 ED17 Y15 ED16 R9 ED15 Y14 ED14 V13 ED13 AA13 ED12 T10 ED11 Y13 ED12 T10 ED11 Y13 ED12 T10 ED14 W12 ED9 Y12 ED8 Y11 ED7 V10 ED5 Y10 ED5 Y10 ED4 W10 ED3 Y9 ED2 AA9 ED1 Y8 ED0 W9 ED1 Y8 ED1 Y8 ED0 W9 ED1 Y8 ED1 Y8 ED0 W9 ED1 Y8 ED0 W9 ED1 <td>ED23</td> <td>T13</td> <td></td> <td></td>	ED23	T13					
ED20 Y16 ED19 W15 ED18 V14 ED17 Y15 ED16 R9 ED15 Y14 ED13 AA13 ED12 T10 ED11 Y13 ED12 T10 ED11 Y13 ED10 W12 ED9 Y12 ED8 Y11 ED7 V10 ED6 AA19 ED5 Y10 ED4 W10 ED3 Y9 ED2 AA9 ED1 Y8 ED0 W9 ED2 AA9 ED1 Y8 ED2 AA9 ED1 Y8 ED2 AA9 ED3 Y9 ED4 W10 ED5 Y0 ED6 A99 ED7 Y0 ARE R7 O/Z <t< td=""><td>ED22</td><td>Y17</td><td>]</td><td></td></t<>	ED22	Y17]				
ED19 W15 ED18 V14 ED17 Y15 ED16 R9 ED15 Y14 ED14 V13 ED12 T10 ED11 Y13 ED10 W12 ED9 Y12 ED8 Y11 ED7 V10 ED6 AA10 ED9 Y12 ED8 Y11 ED7 V10 ED6 AA10 ED5 Y10 ED6 AA10 ED7 V10 ED8 Y11 ED7 V10 ED8 Y11 ED7 V10 ED8 Y11 ED7 N010 ED3 Y9 ED2 AA9 ED1 Y8 ED0 W9 ED1 Y8 ED2 AA9 ED3 Y0/Z A	ED21	T11]				
ED18 V14 ED17 Y15 ED16 R9 ED15 Y14 ED14 V13 ED13 AA13 ED12 T10 ED11 Y13 ED10 W12 ED9 Y12 ED8 Y11 ED7 V10 ED6 AA10 ED5 Y10 ED4 W10 ED3 Y9 ED2 AA9 ED1 Y8 ED0 W10 ED2 AA9 ED1 Y8 ED0 W9 ED1 Y8 ED1 Y8 ED1 Y8 ED2 AA9 ED1 Y8 ED2 AS9 ED1 Y8 ED2 AS9 ED3 Y0 ZARE R7 O/Z Asynchronous memory read enable	ED20	Y16]				
ED17Y15ED16R9ED15Y14ED14V13ED13AA13ED12T10ED11Y13ED10W12ED9Y12ED8Y11ED7V10ED4M10ED5Y10ED2AA9ED1Y8ED0W9ED2AA9ED1Y8ED0W9ED1Y8ED2A9ED1Y8ED0W9ED1Y8ED0W9ED1Y8ED1Y3ED1Y8ED2A9ED1Y8ED3Y9ED4W10ED5Y10	ED19	W15					
ED16R9ED15Y14ED14V13ED13AA13ED12T10ED11Y13ED10W12ED9Y12ED8Y11ED7V10ED4A10ED5Y10ED1Y13ED10W12ED6AA10ED5Y10ED4W10ED2A9ED1Y8ED0W9EMIF - ASYNCHRONOUS MEMORY CONTROLARER7O/ZAsynchronous memory output enableAWEV5O/ZAsynchronous memory write enable	ED18	V14]				
ED15Y14ED14V13ED13AA13ED12T10ED12T10ED11Y13ED10W12ED9Y12ED8Y11ED7V10ED6AA10ED5Y10ED4W10ED3Y9ED2AA9ED1Y8ED0W9EMIF - ASYNCHRONOUS MEMORY CONTROLAsynchronous memory read enableAQET7O/ZAsynchronous memory output enableAWEV5O/ZAsynchronous memory write enable	ED17	Y15]				
ED15 Y14 ED14 Y13 ED13 AA13 ED12 T10 ED11 Y13 ED10 W12 ED9 Y12 ED8 Y11 ED7 V10 ED6 AA10 ED5 Y10 ED4 W10 ED2 AA9 ED1 Y8 ED0 W9 VU EMIF - ASYNCHRONOUS MEMORY CONTROL ARE R7 O/Z Asynchronous memory read enable Asynchronous memory output enable AWE V5 O/Z	ED16	R9					
ED13 AA13 ED12 T10 ED11 Y13 ED10 W12 ED9 Y12 ED8 Y11 ED7 V10 ED6 AA10 ED5 Y10 ED4 W10 ED2 AA9 ED1 Y8 ED0 W9 EMIF - ASYNCHRONOUS MEMORY CONTROL ASYnchronous memory read enable AQE T7 O/Z Asynchronous memory output enable AQE T7 O/Z Asynchronous memory write enable AWE V5 O/Z Asynchronous memory write enable	ED15	Y14	1/0/2	External data			
ED12T10ED11Y13ED10W12ED9Y12ED8Y11ED7V10ED6AA10ED5Y10ED4W10ED2AA9ED1Y8ED0W9EMIF - ASYNCHRONOUS MEMORY CONTROLARER7O/ZAsynchronous memory read enableAQET7O/ZAsynchronous memory output enableAWEV5O/ZAsynchronous memory write enable	ED14	V13	1				
ED11Y13ED10W12ED9Y12ED8Y11ED7V10ED6AA10ED5Y10ED4W10ED2AA9ED1Y8ED0W9EMIF - ASYNCHRONOUS MEMORY CONTROLAMYEAsynchronous memory read enableARER7O/ZAsynchronous memory write enableAWEV5O/ZAsynchronous memory write enable	ED13	AA13					
ED10W12ED9Y12ED8Y11ED7V10ED6AA10ED5Y10ED4W10ED2AA9ED1Y8ED0W9EMIF - ASYNCHRONOUS MEMORY CONTROLAREARER7O/ZAsynchronous memory read enableAWEV5O/ZAsynchronous memory write enable	ED12	T10					
ED9Y12ED8Y11ED7V10ED6AA10ED5Y10ED4W10ED3Y9ED2AA9ED1Y8ED0W9EMIF - ASYNCHRONOUS MEMORY CONTROLARER7O/ZAsynchronous memory read enableAWEV5O/ZAsynchronous memory write enable	ED11	Y13					
ED8Y11ED7V10ED6AA10ED5Y10ED4W10ED3Y9ED2AA9ED1Y8ED0W9EMIF - ASYNCHRONOUS MEMORY CONTROLARER7O/ZAsynchronous memory read enableAWEV5O/ZAsynchronous memory write enable	ED10	W12					
ED7V10ED6AA10ED5Y10ED4W10ED3Y9ED2AA9ED1Y8ED0W9EMIF - ASYNCHRONOUS MEMORY CONTROLEMIF - ASYNCHRONOUS MEMORY CONTROLARER7O/ZAsynchronous memory read enableAOET7O/ZAsynchronous memory output enableAWEV5O/ZAsynchronous memory write enable	ED9	Y12					
ED6AA10ED5Y10ED4W10ED3Y9ED2AA9ED1Y8ED0W9EMIF - ASYNCHRONOUS MEMORY CONTROLARER7O/ZAsynchronous memory read enableAOET7O/ZAsynchronous memory output enableAWEV5O/ZAsynchronous memory write enable	ED8	Y11	1				
ED5Y10ED4W10ED3Y9ED2AA9ED1Y8ED0W9EMIF - ASYNCHRONOUS MEMORY CONTROLARER7O/ZAsynchronous memory read enableAOET7O/ZAsynchronous memory output enableAWEV5O/ZAsynchronous memory write enable	ED7	V10]				
ED4W10ED3Y9ED2AA9ED1Y8ED0W9EMIF - ASYNCHRONOUS MEMORY CONTROLEMIF - ASYNCHRONOUS MEMORY CONTROLARER7O/ZAsynchronous memory read enableAOET7O/ZAsynchronous memory output enableAWEV5O/ZAsynchronous memory write enable	ED6	AA10	1				
ED3 Y9 ED2 AA9 ED1 Y8 ED0 W9 EMIF - ASYNCHRONOUS MEMORY CONTROL EMIF - ASYNCHRONOUS MEMORY CONTROL ARE R7 O/Z Asynchronous memory read enable AOE T7 O/Z Asynchronous memory output enable AWE V5 O/Z Asynchronous memory write enable	ED5	Y10	1				
ED2 AA9 ED1 Y8 ED0 W9 EMIF - ASYNCHRONOUS MEMORY CONTROL ARE R7 O/Z Asynchronous memory read enable AOE T7 O/Z Asynchronous memory output enable AWE V5 O/Z	ED4	W10	1				
ED1 Y8 ED0 W9 EMIF - ASYNCHRONOUS MEMORY CONTROL ARE R7 O/Z Asynchronous memory read enable AOE T7 O/Z Asynchronous memory output enable AWE V5 O/Z Asynchronous memory write enable	ED3	Y9	1				
ED0 W9 EMIF - ASYNCHRONOUS MEMORY CONTROL ARE R7 O/Z Asynchronous memory read enable AOE T7 O/Z Asynchronous memory output enable AWE V5 O/Z Asynchronous memory write enable	ED2	AA9	-				
ED0 W9 EMIF - ASYNCHRONOUS MEMORY CONTROL ARE R7 O/Z Asynchronous memory read enable AOE T7 O/Z Asynchronous memory output enable AWE V5 O/Z Asynchronous memory write enable	ED1	Y8					
ARER7O/ZAsynchronous memory read enableAOET7O/ZAsynchronous memory output enableAWEV5O/ZAsynchronous memory write enable	ED0						
AOE T7 O/Z Asynchronous memory output enable AWE V5 O/Z Asynchronous memory write enable			-	EMIF – ASYNCHRONOUS MEMORY CONTROL			
AOE T7 O/Z Asynchronous memory output enable AWE V5 O/Z Asynchronous memory write enable	ARE	R7	O/Z	Asynchronous memory read enable			
AWE V5 O/Z Asynchronous memory write enable	AOE	T7	O/Z				
	AWE	V5	O/Z				
	ARDY	R4		Asynchronous memory ready input			

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

Signal Descriptions (Continued)

L						
NO.	TYPET	DESCRIPTION				
EMIF – SYNCHRONOUS BURST SRAM CONTROL						
V8	O/Z	SBSRAM address strobe				
W7	O/Z	SBSRAM output enable				
Y7	O/Z	SBSRAM write enable				
AA8	O/Z	SBSRAM clock				
		EMIF – SYNCHRONOUS DRAM CONTROL				
V7	O/Z	SDRAM address 10 (separate for deactivate command)				
V6	O/Z	SDRAM row address strobe				
W5	O/Z	SDRAM column address strobe				
Т8	O/Z	SDRAM write enable				
Т9	O/Z	SDRAM clock				
	-	EMIF – BUS ARBITRATION				
R6	I	Hold request from the host				
B15	0	Hold request acknowledge to the host				
	-	TIMERS				
G2	O/Z	Timer 1 or general-purpose output				
K3	I	Timer 1 or general-purpose input				
M18	O/Z	Timer 0 or general-purpose output				
J18	I	Timer 0 or general-purpose input				
		DMA ACTION COMPLETE				
E18						
F19						
E20	0	DMA action complete				
G16						
		MULTICHANNEL BUFFERED SERIAL PORT 1 (McBSP1)				
F4	I	External clock source (as opposed to internal)				
H4	I/O/Z	Receive clock				
J4	I/O/Z	Transmit clock				
E2	I	Receive data				
G4	O/Z	Transmit data				
F3	I/O/Z	Receive frame sync				
F2	I/O/Z	Transmit frame sync				
	NO. V8 W7 Y7 AA8 V7 V6 W5 T8 T9 R6 B15 G2 K3 M18 J18 E18 F19 E20 G16 F4 H4 J4 E2 G4 F3	NO. TYPE† V8 O/Z W7 O/Z Y7 O/Z Y7 O/Z AA8 O/Z V7 O/Z V8 O/Z V7 O/Z V6 O/Z W5 O/Z T8 O/Z T9 O/Z R6 I B15 O G2 O/Z K3 I M18 O/Z J18 I E18 F19 E20 O G16 O F4 I H4 I/O/Z J4 I/O/Z F3 I/O/Z				

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

	Signal Descriptions (Continued)					
SIGN/ NAME	AL NO.	TYPE [†]	DESCRIPTION			
		•	MULTICHANNEL BUFFERED SERIAL PORT 0 (McBSP0)			
CLKS0	K18	I	External clock source (as opposed to internal)			
CLKR0	L21	I/O/Z	Receive clock			
CLKX0	K20	I/O/Z	Transmit clock			
DR0	J21	I	Receive data			
DX0	M21	O/Z	Transmit data			
FSR0	P16	I/O/Z	Receive frame sync			
FSX0	N16	I/O/Z	Transmit frame sync			
		•	RESERVED FOR TEST			
RSV0	N21	I	Reserved for testing, pull-up with a dedicated 20-k Ω resistor			
RSV1	K16	I	Reserved for testing, pull-up with a dedicated 20-k Ω resistor			
RSV2	B13	I	Reserved for testing, pull-up with a dedicated 20-k Ω resistor			
RSV3	B14	I	Reserved for testing, pull-up with a dedicated 20-k Ω resistor			
RSV4	F13	I	Reserved for testing, <i>pull-down</i> with a dedicated 20-k Ω resistor			
RSV5	C15	0	Reserved (leave unconnected, <i>do not</i> connect to power or ground)			
RSV6	F7	I	Reserved for testing, pull-up with a dedicated 20-k Ω resistor			
RSV7	D7	I	Reserved for testing, pull-up with a dedicated 20-k Ω resistor			
RSV8	B5	I	Reserved for testing, pull-up with a dedicated 20-k Ω resistor			
RSV9	F16	0	Reserved (leave unconnected, <i>do not</i> connect to power or ground)			
		•	SUPPLY VOLTAGE PINS			
	C14					
	C8					
	E19					
	E3					
	H11					
	H13					
	H9					
	J10					
	J12					
	J14					
DVDD	J19	S	3.3-V supply voltage			
	J3					
	J8					
	K11					
	K13					
	K15					
	K7					
	K9	ļ				
	L10					
	L12					
	L14					

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

	Signal Descriptions (Continued)						
	SIGNAL TYPET		DESCRIPTION				
NAME	NO.						
	L8		SUPPLY VOLTAGE PINS (CONTINUED)				
	L0 M11						
	M13						
	M15						
	M7						
	M9						
	N10						
	N12						
	N14						
DVDD	N19	S	3.3-V supply voltage				
	N3						
	N8						
	P11						
	P13						
	P9						
	U19						
	U3						
	W14						
	W8						
	A12						
	A13 B10						
	B10 B12						
	B12 B6						
	D15						
	D16	ĺ					
	F10						
	F14						
	F8						
CV _{DD}	G13	S	1.9-V supply voltage				
	G7						
	G8						
	K4						
	M3						
	M4						
	A3						
	A5						
	A7						
L	A16		dance S - Supply Voltage GND - Ground				

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

Signal Descriptions (Continued)						
SIGNA		TYPET	DESCRIPTION			
NAME	NO.					
	A18	1	SUPPLY VOLTAGE PINS (CONTINUED)			
	AA4					
	AA6					
	AA15	1				
	AA17					
	AA19					
	B2					
	B4					
	B19					
	C1					
	C3 C20					
	D2					
	D21					
	E1					
	E6					
0)/	E8					
CV _{DD}	E10	S	1.9-V supply voltage			
	E12					
	E14					
	E16					
	F5 F17					
	F21					
	G1					
	H5	1				
	H17]				
	K5					
	K17					
	M5					
	M17					
	P5					
	P17 R21					
t lanut O		l Lliah Imn	Ledance, S = Supply Voltage, GND = Ground			

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

Signal Descriptions (Continued)							
	SIGNAL TYPET		DESCRIPTION				
NAME	NO.		SUPPLY VOLTAGE PINS (CONTINUED)				
	T1						
	T5						
	T17						
	U6						
	U8						
	U10						
	U12						
	U14 U16						
	U21						
	V1						
	V20						
	W2						
	W19						
	W21						
	Y3 Y18	l					
	Y20						
CVDD	AA11	S	1.9-V supply voltage				
- 00	AA12						
	F20						
	G18						
	H16						
	H18 L18	l					
	L10						
	L20						
	N20	1					
	P18						
	P19						
	R10						
	R14 U4						
	V11						
	V12						
	V15	1					
	W13						

 † I = Input, O = Output, Z = High Impedance, S = Supply Voltage, GND = Ground

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

Signal Descriptions (Continued)						
SIGNA NAME	L NO.	TYPE [†]	DESCRIPTION			
NAME	NO.		GROUND PINS			
Vss	C11 C16 C6 D5 G3 H10 H12 H14 H7 H8 J11 J13 J7 J9 K8 L7 L9 M8 N7 R3 A4 A6 A8 A15 A17 A19 AA3 AA5 AA7 AA14 AA16 B3 B18 B20 C2 C19 C21 D1	GND	Ground pins			

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

Signal Descriptions (Continued)							
SIGNA		TYPET	DESCRIPTION				
NAME	NO.						
	D20		GROUND PINS (CONTINUED)				
	E5	1					
	E7						
	E9						
	E11						
	E13						
	E15						
	E17]					
	E21						
	F1						
	G5						
	G17						
	G21						
	H1	GND					
	J5 J17						
	L5						
VSS	L17		Ground pins				
*55	N5						
	N17						
	P21						
	R1]					
	R5]					
	R17						
	T21	-					
	U1						
	U5	4					
	U7 U9	1					
	U11	1					
	U13						
	U15	1					
	U17	1					
	V2	1					
	V21	1					

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

			Signal Descriptions (Continued)
SIGNAL		TYPET	DESCRIPTION
NAME	NO.		
	14/4	1	GROUND PINS (CONTINUED)
	W1		
	W3		
	W20		
	Y2		
	Y4		
	Y19 F18		
	G19		
	H15	-	
	J15	-	
	J16		
	K10		
	K12		
	K14		
	L11	1	
	L13		
	L15		
V _{SS}	M10	GND	Ground pins
- 33	M12		
	M14		
	N11		
	N13		
	N15	1	
	N9	1	
	P10]	
	P12]	
	P14]	
	P15]	
	P7		
	P8	ļ	
	R19		
	T4		
	W11		
	W16		
Ļ	W6		edance, S = Supply Voltage, GND = Ground

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

			Signal Descriptions (Continued)
SIGNAL NAME NO. TYPET		TYPET	DESCRIPTION
NAME	NO.	ITPEI	DESCRIPTION
			REMAINING UNCONNECTED PINS
	D13		
	D14		
	D18		
	D3		
	D6		
	F12		
	G12		
	G15		
NC	H19		Unconnected pins
NC	H20		
	H21		
	L16		
	M16		
	M19		
	V19		
	V4		
	W18		
	W4		

development support

Texas Instruments (TI) offers an extensive line of development tools for the 'C6x generation of DSPs, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules.

The following products support development of 'C6x-based applications:

Software-Development Tools:

Assembly optimizer Assembler/Linker Simulator Optimizing ANSI C compiler Application algorithms C/Assembly debugger and code profiler

Hardware-Development Tools:

Extended development system (XDS[™]) emulator (supports 'C6x multiprocessor system debug) EVM (Evaluation Module)

The *TMS320 DSP Development Support Reference Guide* (SPRU011) contains information about development-support products for all TMS320 family member devices, including documentation. See this document for further information on TMS320 documentation or any TMS320 support products from Texas Instruments. An additional document, the *TMS320 Third-Party Support Reference Guide* (SPRU052), contains information about TMS320-related products from other companies in the industry. To receive TMS320 literature, contact the Literature Response Center at 800/477-8924.

See Table 2 for a complete listing of development-support tools for the 'C6x. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor.

DEVELOPMENT TOOL	PLATFORM	PART NUMBER
	Software	
Ada 95 Compiler [†]	Sun Solaris 2.3™‡	AD0345AS8500RF - Single User AD0345BS8500RF - Multi-user
C Compiler/Assembler/Linker/Assembly Optimizer	Win32™	TMDX3246855-07
C Compiler/Assembler/Linker/Assembly Optimizer	SPARC [™] Solaris [™]	TMDX3246555-07
Simulator	Win32	TMDS3246851-07
Simulator	SPARC Solaris	TMDS3246551-07
XDS510 [™] Debugger/Emulation Software	Win32, Windows NT™	TMDX324016X-07
	Hardware	
XDS510 Emulator§	PC	TMDS00510
XDS510WS™ Emulator¶	SCSI	TMDS00510WS
	Software/Hardware	
EVM Evaluation Kit	PC/Win95/Windows NT	TMDX3260A6201
EVM Evaluation Kit (including TMDX3246855–07)	PC/Win95/Windows NT	TMDX326006201

Table 2. SMJ320C6x Development-Support Tools

[†] Contact IRVINE Compiler Corporation (949) 250-1366 to order.

[‡]NT support estimated availability 1Q00.

§ Includes XDS510 board and JTAG emulation cable. TMDX324016X-07 C-source Debugger/Emulation software is not included.

 \P Includes XDS510WS box, SCSI cable, power supply, and JTAG emulation cable.

XDS, XDS510, and XDS510WS are trademarks of Texas Instruments Incorporated.

Win32 and Windows NT are trademarks of Microsoft Corporation.

SPARC is a trademark of SPARC International, Inc.

Solaris is a trademark of Sun Microsystems, Inc.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

device and development-support tool nomenclature

To designate the stages in the product-development cycle, TI assigns prefixes to the part numbers of all SMJ320 devices and support tools. Each SMJ320 member has one of three prefixes: SMX, SM, or SMJ. Texas Instruments recommends two of three possible prefix designators for support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (SMX/TMDX) through fully qualified production devices/tools (SMJ/TMDS).

Device development evolutionary flow:

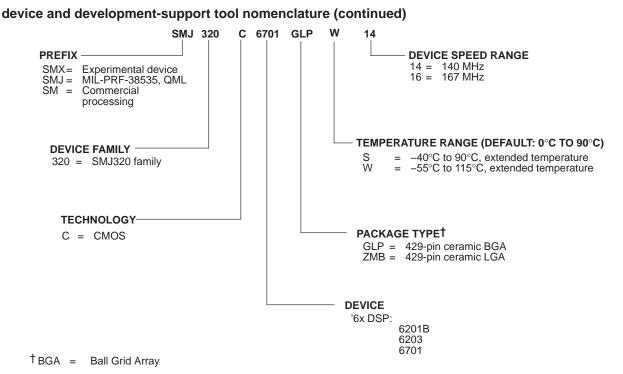
- **SMX** Experimental device that is not necessarily representative of the final device's electrical specifications
- **SM** Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification
- SMJ Fully qualified production device processed to MIL-PRF-38535

Support tool development evolutionary flow:

- **TMDX** Development-support product that has not yet completed Texas Instruments internal qualification testing.
- TMDS Fully qualified development-support product

SMX devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."


SMJ devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (SMX or SM) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, GLP), the temperature range, and the device speed range in megahertz (for example, 16 is 167 MHz). Figure 4 provides a legend for reading the complete device name for any SMJ320 family member.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

Figure 4. SMJ320 Device Nomenclature (Including SMJ320C6701)

documentation support

Extensive documentation supports all SMJ320 family generations of devices from product announcement through applications development. The types of documentation available include: data sheets, such as this document, with design specifications; complete user's reference guides for all devices; technical briefs; development-support tools; and hardware and software applications. The following is a brief, descriptive list of support documentation specific to the 'C6x devices:

The *TMS320C6000 CPU and Instruction Set Reference Guide* (literature number SPRU189) describes the 'C6000 CPU architecture, instruction set, pipeline, and associated interrupts.

The *TMS320C6000 Peripherals Reference Guide* (literature number SPRU190) describes the functionality of the peripherals available on 'C6x devices, such as the external memory interface (EMIF), host-port interface (HPI), multichannel buffered serial ports (McBSPs), direct-memory-access (DMA), enhanced direct-memory-access (EDMA) controller, expansion bus (XB), clocking and phase-locked loop (PLL); and power-down modes. This guide also includes information on internal data and program memories.

The *TMS320C6000 Programmer's Guide* (literature number SPRU198) describes ways to optimize C and assembly code for 'C6x devices and includes application program examples.

The *TMS320C6x C Source Debugger User's Guide* (literature number SPRU188) describes how to invoke the 'C6x simulator and emulator versions of the C source debugger interface and discusses various aspects of the debugger, including: command entry, code execution, data management, breakpoints, profiling, and analysis.

The *TMS320C6x Peripheral Support Library Programmer's Reference* (literature number SPRU273) describes the contents of the 'C6x peripheral support library of functions and macros. It lists functions and macros both by header file and alphabetically, provides a complete description of each, and gives code examples to show how they are used.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

documentation support (continued)

TMS320C6000 Assembly Language Tools User's Guide (literature number SPRU186) describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the 'C6000 generation of devices.

The *TMS320C6x Evaluation Module Reference Guide* (literature number SPRU269) provides instructions for installing and operating the 'C6x evaluation module. It also includes support software documentation, application programming interfaces, and technical reference material.

TMS320C6000 DSP/BIOS User's Guide (literature number SPRU303) describes how to use DSP/BIOS tools and APIs to analyze embedded real-time DSP applications.

Code Composer User's Guide (literature number SPRU296) explains how to use the Code Composer development environment to build and debug embedded real-time DSP applications.

Code Composer Studio Tutorial (literature number SPRU301) introduces the Code Composer Studio integrated development environment and software tools.

The *TMS320C6000 Technical Brief* (literature number SPRU197) gives an introduction to the 'C62x/C67x devices, associated development tools, and third-party support.

A series of DSP textbooks is published by Prentice-Hall and John Wiley & Sons to support DSP research and education. The TMS320 newsletter, *Details on Signal Processing*, is published quarterly and distributed to update SMJ320 customers on product information. The TMS320 DSP bulletin board service (BBS) provides access to information pertaining to the SMJ320 family, including documentation, source code, and object code for many DSP algorithms and utilities. The BBS can be reached at 281/274-2323.

Information regarding TI DSP products is also available on the Worldwide Web at http://www.ti.com uniform resource locator (URL).

clock PLL

All of the internal 'C67x clocks are generated from a single source through the CLKIN pin. This source clock either drives the PLL, which multiplies the source clock in frequency to generate the internal CPU clock, or bypasses the PLL to become the internal CPU clock.

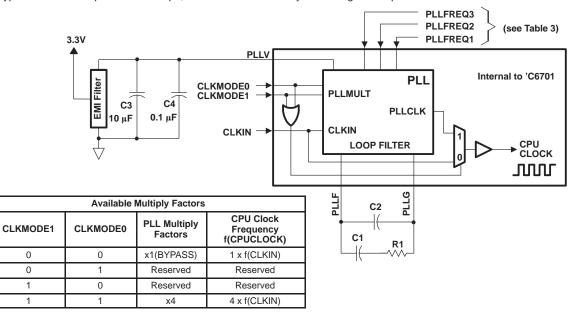
To use the PLL to generate the CPU clock, the external PLL filter circuit must be properly designed. Table 3, Table 4, and Figure 5 show the external PLL circuitry for either x1 (PLL bypass) or x4 PLL multiply modes. Table 3 and Figure 6 show the external PLL circuitry for a system with ONLY x1 (PLL bypass) mode.

To minimize the clock jitter, a single clean power supply should power both the 'C67x device and the external clock oscillator circuit. Noise coupling into PLLF will directly impact PLL clock jitter. The minimum CLKIN rise and fall times should also be observed. For the input clock timing requirements, see the *input and output clocks* electricals section. Guidelines for EMI filter selection are as follows: maximum attenuation frequency = 20-30 MHz, maximum dB attenuation = 45-50 dB, and minimum dB attenuation above 30 MHz = 20 dB.

PLLFREQ3 (C13)	PLLFREQ2 (G11)	PLLFREQ1 (F11)	CLKOUT1 Frequency Range (MHz)
0	0	0	50–140
0	0	1	65–167
0	1	0	130–167

Table 3. CLKOUT1 Frequency Ranges[†]

[†] Due to overlap of frequency ranges when choosing the PLLFREQ, more than one frequency range can contain the CLKOUT1 frequency. Choose the lowest frequency range that includes the desired frequency. For example, for CLKOUT1 = 133 MHz, choose PLLFREQ value of 000b. For CLKOUT1 = 167 MHz, choose PLLFREQ value of 001b. PLLFREQ values other than 000b, 001b, and 010b are reserved.



clock PLL (continued)

Table 4. 'C6701 P	LL Component	Selection Table
-------------------	--------------	------------------------

CLKMODE	CLKIN RANGE (MHz)	CPU CLOCK FREQUENCY (CLKOUT1) RANGE (MHz)	CLKOUT2 RANGE (MHz)	R1 (Ω)	C1 (nF)	C2 (pF)	TYPICAL LOCK TIME (μs) [‡]
x4	12.5–41.7	50–167	25-83.5	60.4	27	560	75

[‡] Under some operating conditions, the maximum PLL lock time may vary as much as 150% from the specified typical value. For example, if the typical lock time is specified as 100 μs, the maximum value may be as long as 250 μs.

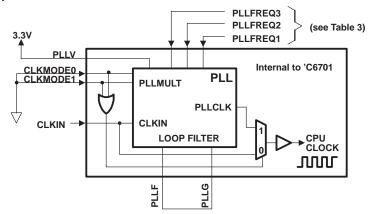

- NOTES: A. Keep the lead length and the number of vias between the PLLF pin, the PLLG pin, and R1, C1, and C2 to a minimum. In addition, place all PLL external components (R1, C1, C2, C3, C4, and the EMI Filter) as close to the 'C6000 device as possible. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than the ones shown.
 - B. For reduced PLL jitter, maximize the spacing between switching signals and the PLL external components (R1, C1, C2, C3, C4, and the EMI Filter).
 - C. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DV_{DD}.

Figure 5. External PLL Circuitry for Either PLL x4 Mode or x1 (Bypass) Mode

SGUS060A – DECEMBER 2007 – REVISED JULY 2009

clock PLL (continued)

- NOTES: A. For a system with ONLY PLL x1 (bypass) mode, short the PLLF terminal to the PLLG terminal.
 - B. The 3.3-V supply for the EMI filter must be from the same 3.3-V power plane supplying the I/O voltage, DVDD.

Figure 6. External PLL Circuitry for x1 (Bypass) Mode Only

power-supply sequencing

TI DSPs do not require specific power sequencing between the core supply and the I/O supply. However, systems should be designed to ensure that neither supply is powered up for extended periods of time if the other supply is below the proper operating voltage.

system-level design considerations

System-level design considerations, such as bus contention, may require supply sequencing to be implemented. In this case, the core supply should be powered up at the same time as, or prior to (and powered down after), the I/O buffers. This is to ensure that the I/O buffers receive valid inputs from the core before the output buffers are powered up, thus, preventing bus contention with other chips on the board.

power-supply design considerations

For systems using the C6000[™] DSP platform of devices, the core supply may be required to provide in excess of 2 A per DSP until the I/O supply is powered up. This extra current condition is a result of uninitialized logic within the DSP(s) and is corrected once the CPU sees an internal clock pulse. With the PLL enabled, as the I/O supply is powered on, a clock pulse is produced stopping the extra current draw from the supply. With the PLL disabled, an external clock pulse may be required to stop this extra current draw. A normal current state returns once the I/O power supply is turned on and the CPU sees a clock pulse. Decreasing the amount of time between the core supply power up and the I/O supply power up can minimize the effects of this current draw.

A dual-power supply with simultaneous sequencing, such as available with TPS563xx controllers or PT69xx plug-in power modules, can be used to eliminate the delay between core and I/O power up [see the *Using the TPS56300 to Power DSPs* application report (literature number SLVA088)]. A Schottky diode can also be used to tie the core rail to the I/O rail, effectively pulling up the I/O power supply to a level that can help initialize the logic within the DSP.

Core and I/O supply voltage regulators should be located close to the DSP (or DSP array) to minimize inductance and resistance in the power delivery path. Additionally, when designing for high-performance applications utilizing the C6000[™] platform of DSPs, the PC board should include separate power planes for core, I/O, and ground, all bypassed with high-quality low-ESL/ESR capacitors.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

absolute maximum ratings over operating case temperature range (unless otherwise noted)[†]

Supply voltage range, CV _{DD} (see Note 1)0.	3 V to 2.3 V
Supply voltage range, DV _{DD} (see Note 1) –	0.3 V to 4 V
Input voltage range	0.3 V to 4 V
Output voltage range –	0.3 V to 4 V
Operating case temperature range, T _C S suffix device)°C to 90°C
W suffix device	[°] C to 115°C
Storage temperature range, T _{stg} 55°	°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 NOTE 1: All voltage values are with respect to V_{SS}.

recommended operating conditions

			MIN	NOM	MAX	UNIT	
CVDD	Supply voltage		1.81	1.9	1.99	V	
DVDD	Supply voltage		3.14	3.30	3.46	V	
V _{SS}	Supply ground					V	
VIH	High-level input voltage					V	
VIL	Low-level input voltage				0.8	V	
IOH	High-level output current				-12	mA	
IOL	Low-level output current				12	mA	
То	Coop tomporatura	S suffix device	-40		90	°C	
тс	Case temperature	W suffix device	-55		115	C	

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

electrical characteristics over recommended ranges of supply voltage and operating case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	High-level output voltage	$DV_{DD} = MIN, \qquad I_{OH} = MAX$	2.4			V
VOL	Low-level output voltage	$DV_{DD} = MIN, \qquad I_{OL} = MAX$			0.6	V
I	Input current [†]	$V_I = V_{SS}$ to DV_{DD}			±10	uA
IOZ	Off-state output current	$V_{O} = DV_{DD} \text{ or } 0 V$			±10	uA
I _{DD2V}	Supply current, CPU + CPU memory access‡	CV _{DD} = NOM, CPU clock = 150 MHz		470		mA
I _{DD2V}	Supply current, peripherals§	CV _{DD} = NOM, CPU clock = 150 MHz		250		mA
I _{DD3V}	Supply current, I/O pins¶	DV _{DD} = NOM, CPU clock = 150 MHz		85		mA
Ci	Input capacitance				*15	pF
Co	Output capacitance				*15	pF

* This parameter is not tested.

[†]<u>TMS</u> and TDI are not included due to internal pullups.

TRST is not included due to internal pulldown.

[‡] Measured with average CPU activity:

50% of time: 8 instructions per cycle, 32-bit DMEM access per cycle

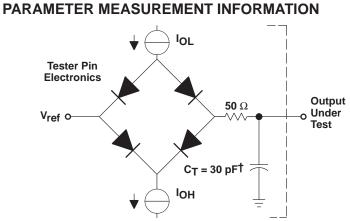
50% of time: 2 instructions per cycle, 16-bit DMEM access per cycle

§ Measured with average peripheral activity:

50% of time: Timers at max rate, McBSPs at E1 rate, and DMA burst transfer between DMEM and SDRAM

50% of time: Timers at max rate, McBSPs at E1 rate, and DMA servicing McBSPs

 \P Measured with average I/O activity (30-pF load, SDCLK on):


25% of time: Reads from external SDRAM

25% of time: Writes to external SDRAM

50% of time: No activity

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

[†] Typical distributed load circuit capacitance.

signal-transition levels

All input and output timing parameters are referenced to 1.5 V for both "0" and "1" logic levels.

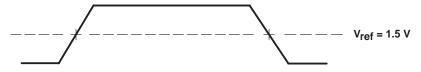
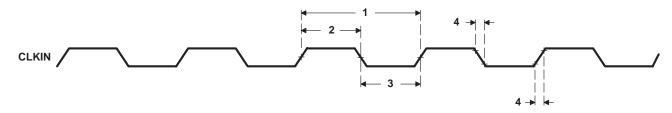


Figure 7. Input and Output Voltage Reference Levels for ac Timing Measurements

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

INPUT AND OUTPUT CLOCKS


timing requirements for CLKIN[†] (see Figure 8)

		'C6701-14				°C6701-16					
NO.			CLKMODE = x4		CLKMODE = x1		CLKMODE = x4		CLKMODE = x1		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
1	^t c(CLKIN)	Cycle time, CLKIN	28.4		7.1		24		6		ns
2	^t w(CLKINH)	Pulse duration, CLKIN high	*0.4C‡		*0.45C‡		*0.4C‡		*0.45C‡		ns
3	^t w(CLKINL)	Pulse duration, CLKIN low	*0.4C‡		*0.45C‡		*0.4C‡		*0.45C‡		ns
4	^t t(CLKIN)	Transition time, CLKIN		*5		*0.6		*5		*0.6	ns

 † The reference points for the rise and fall transitions are measured at 20% and 80%, respectively, of V_{IH}.

 \ddagger C = CLKIN cycle time in ns. For example, when CLKIN frequency is 10 MHz, use C = 100 ns.

*This parameter is not tested.

Figure 8. CLKIN Timings

switching characteristics for CLKOUT1^{‡§} (see Figure 9)

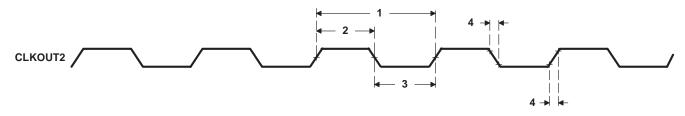
NO.				UNIT			
	PARAMETER				DE = x4	CLKMOI	
			MIN	MAX	MIN	MAX	
1	^t c(CKO1)	Cycle time, CLKOUT1	*P – 0.7	*P + 0.7	*P – 0.7	*P + 0.7	ns
2	^t w(CKO1H)	Pulse duration, CLKOUT1 high	*(P/2) - 0.5	*(P/2) + 0.5	*PH – 0.5	*PH + 0.5	ns
3	tw(CKO1L)	Pulse duration, CLKOUT1 low	*(P/2) - 0.5	*(P/2) + 0.5	*PL – 0.5	*PL + 0.5	ns
4	^t t(CKO1)	Transition time, CLKOUT1		*0.6		*0.6	ns

 $\ddagger P = 1/CPU$ clock frequency in nanoseconds (ns).

§ PH is the high period of CLKIN in ns and PL is the low period of CLKIN in ns.

*This parameter is not tested.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009


INPUT AND OUTPUT CLOCKS (CONTINUED)

switching characteristics for CLKOUT2[†] (see Figure 10)

NO.		PARAMETER	'C670 'C670	UNIT	
			MIN	MAX	
1	tc(CKO2)	Cycle time, CLKOUT2	*2P – 0.7	*2P + 0.7	ns
2	^t w(CKO2H)	Pulse duration, CLKOUT2 high	*P – 0.7	*P + 0.7	ns
3	^t w(CKO2L)	Pulse duration, CLKOUT2 low	*P – 0.7	*P + 0.7	ns
4	^t t(CKO2)	Transition time, CLKOUT2		*0.6	ns

 $\dagger P = 1/CPU$ clock frequency in ns.

*This parameter is not tested.

Figure 10. CLKOUT2 Timings

SDCLK, SSCLK timing parameters

SDCLK timing parameters are the same as CLKOUT2 parameters.

SSCLK timing parameters are the same as CLKOUT1 or CLKOUT2 parameters, depending on SSCLK configuration.

switching characteristics for the relation of SSCLK, SDCLK, and CLKOUT2 to CLKOUT1 (see Figure 11)

NO. PARAMETER			1-14 1-16	UNIT				
		MIN	MAX					
1	t _d (CKO1-SSCLK) Delay time, CLKOUT1 edge to SSCLK edge	-0.8	3.4	ns				
2	t _{d(CKO1-SSCLK1/2)} Delay time, CLKOUT1 edge to SSCLK edge (1/2 clock rate)	-1.0	3.0	ns				
3	t _d (CKO1-CKO2) Delay time, CLKOUT1 edge to CLKOUT2 edge	-1.5	2.5	ns				
4	td(CKO1-SDCLK) Delay time, CLKOUT1 edge to SDCLK edge	-1.5	1.9	ns				
	SSCLK (1/2rate)							
	Figure 11. Relation of CLKOUT2, SDCLK, and SSCLK to CLKOUT1							
	TEXAS							

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

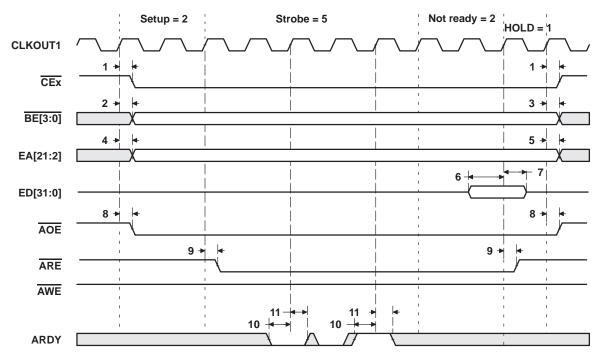
SGUS060A - DECEMBER 2007 - REVISED JULY 2009

ASYNCHRONOUS MEMORY TIMING

timing requirements for asynchronous memory cycles[†] (see Figure 12 and Figure 13)

NO.			'C6701-14 'C6701-16		UNIT
			MIN	MAX	
6	tsu(EDV-CKO1H)	Setup time, read EDx valid before CLKOUT1 high	4.8		ns
7	^t h(CKO1H-EDV)	Hold time, read EDx valid after CLKOUT1 high	1.5		ns
10	tsu(ARDY-CKO1H)	Setup time, ARDY valid before CLKOUT1 high	3.5		ns
11	^t h(CKO1H-ARDY)	Hold time, ARDY valid after CLKOUT1 high	1.5		ns

[†] To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does meet setup or hold time, it may be recognized in the current cycle or the next cycle. Thus, ARDY can be an asynchronous input.


switching characteristics for asynchronous memory cycles[‡] (see Figure 12 and Figure 13)

NO.		PARAMETER		°C6701-14 °C6701-16		
			MIN	MAX		
1	td(CKO1H-CEV)	Delay time, CLKOUT1 high to CEx valid	-1.0	4.5	ns	
2	td(CKO1H-BEV)	Delay time, CLKOUT1 high to BEx valid		4.5	ns	
3	td(CKO1H-BEIV)	Delay time, CLKOUT1 high to BEx invalid	-1.0		ns	
4	^t d(CKO1H-EAV)	Delay time, CLKOUT1 high to EAx valid		4.5	ns	
5	td(CKO1H-EAIV)	Delay time, CLKOUT1 high to EAx invalid	-1.0		ns	
8	td(CKO1H-AOEV)	Delay time, CLKOUT1 high to AOE valid	-1.0	4.5	ns	
9	td(CKO1H-AREV)	Delay time, CLKOUT1 high to ARE valid	-1.0	4.5	ns	
12	td(CKO1H-EDV)	Delay time, CLKOUT1 high to EDx valid		4.5	ns	
13	td(CKO1H-EDIV)	Delay time, CLKOUT1 high to EDx invalid	-1.0		ns	
14	td(CKO1H-AWEV)	Delay time, CLKOUT1 high to AWE valid	-1.0	4.5	ns	

[‡] The minimum delay is also the minimum output hold after CLKOUT1 high.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

ASYNCHRONOUS MEMORY TIMING (CONTINUED)

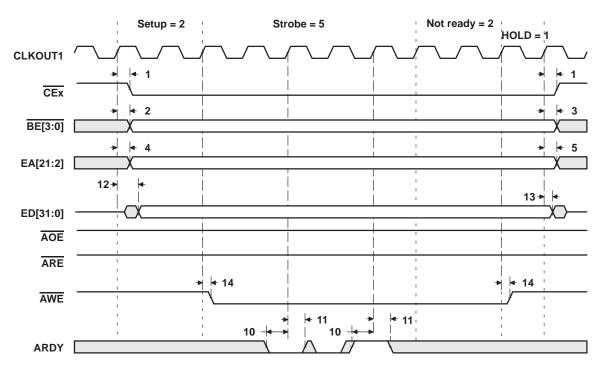


Figure 13. Asynchronous Memory Write Timing

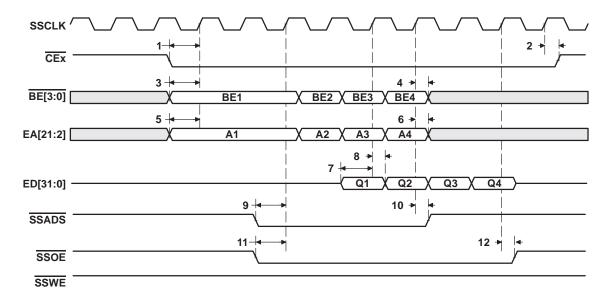
SGUS060A - DECEMBER 2007 - REVISED JULY 2009

SYNCHRONOUS-BURST MEMORY TIMING

timing requirements for synchronous-burst SRAM cycles (full-rate SSCLK) (see Figure 14)

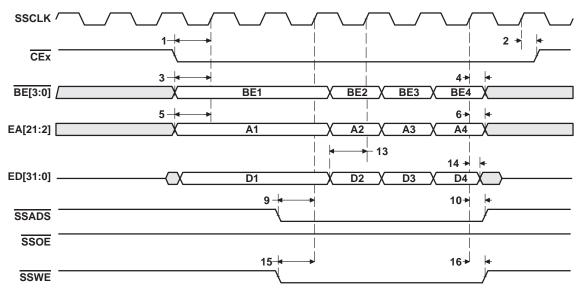
	NO		'C6701-14		'C6701-16		
NO.			MIN	MAX	MIN	MAX	UNIT
7	t _{su(EDV-SSCLKH)} Setup time, read E	Dx valid before SSCLK high	2.6		2.5		ns
8	th(SSCLKH-EDV) Hold time, read ED	valid after SSCLK high	1.5		1.5		ns

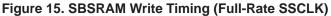
switching characteristics for synchronous-burst SRAM cycles[†] (full-rate SSCLK) (see Figure 14 and Figure 15)


	DADAMETED	'C6701-14		'C6701-16			
NO.	PARAMETER		MIN	MAX	MIN	MAX	UNIT
1	tosu(CEV-SSCLKH)	Output setup time, CEx valid before SSCLK high	0.5P – 1.5		0.5P – 1.3		ns
2	toh(SSCLKH-CEV)	Output hold time, CEx valid after SSCLK high	0.5P – 2.5		0.5P – 2.3		ns
3	tosu(BEV-SSCLKH)	Output setup time, BEx valid before SSCLK high	0.5P – 1.6		0.5P – 1.6		ns
4	toh(SSCLKH-BEIV)	Output hold time, BEx invalid after SSCLK high	0.5P – 2.5		0.5P – 2.3		ns
5	tosu(EAV-SSCLKH)	Output setup time, EAx valid before SSCLK high	0.5P – 1.7		0.5P – 1.7		ns
6	toh(SSCLKH-EAIV)	Output hold time, EAx invalid after SSCLK high	0.5P – 2.5		0.5P – 2.5		ns
9	tosu(ADSV-SSCLKH)	Output setup time, SSADS valid before SSCLK high	0.5P – 1.5		0.5P – 1.3		ns
10	^t oh(SSCLKH-ADSV)	Output hold time, SSADS valid after SSCLK high	0.5P – 2.5		0.5P – 2.3		ns
11	tosu(OEV-SSCLKH)	Output setup time, SSOE valid before SSCLK high	0.5P – 1.5		0.5P – 1.3		ns
12	toh(SSCLKH-OEV)	Output hold time, SSOE valid after SSCLK high	0.5P – 2.5		0.5P – 2.5		ns
13	tosu(EDV-SSCLKH)	Output setup time, EDx valid before SSCLK high	0.5P – 1.5		0.5P – 1.3		ns
14	^t oh(SSCLKH-EDIV)	Output hold time, EDx invalid after SSCLK high	0.5P – 2.5		0.5P – 2.5		ns
15	tosu(WEV-SSCLKH)	Output setup time, SSWE valid before SSCLK high	0.5P – 1.5		0.5P – 1.3		ns
16	^t oh(SSCLKH-WEV)	Output hold time, SSWE valid after SSCLK high	0.5P – 2.5		0.5P – 2.3		ns

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter.

When the PLL is used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns. For CLKMODE x1, 0.5P is defined as PH (pulse duration of CLKIN high) for all output setup times; 0.5P is defined as PL (pulse duration of CLKIN low) for all output hold times.




SGUS060A - DECEMBER 2007 - REVISED JULY 2009

SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)

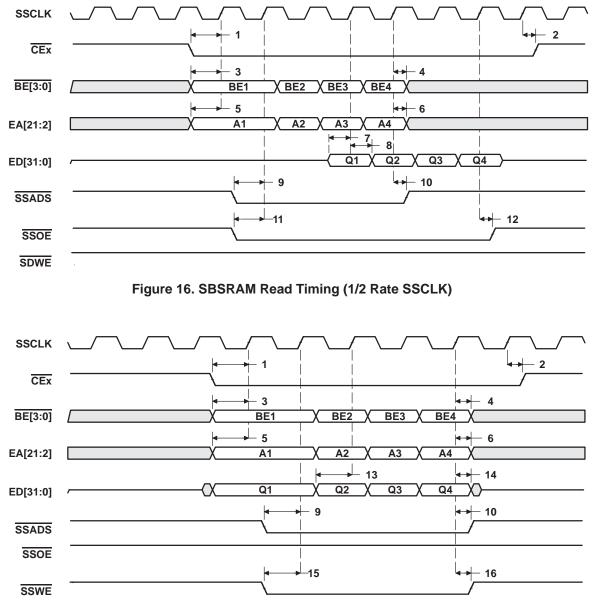
timing requirements for synchronous-burst SRAM cycles (half-rate SSCLK) (see Figure 16)

			'C6701-14		'C6701-16		
NO.			MIN	MAX	MIN	MAX	UNIT
7	t _{su} (EDV-SSCLKH)	Setup time, read EDx valid before SSCLK high	3.8		3.8		ns
8	^t h(SSCLKH-EDV)	Hold time, read EDx valid after SSCLK high	1.5		1.5		ns

switching characteristics for synchronous-burst SRAM cycles[†] (half-rate SSCLK) (see Figure 16 and Figure 17)

	BADAMETED	'C6701-14		'C6701-16			
NO.	PARAMETER		MIN	MAX	MIN	MAX	UNIT
1	tosu(CEV-SSCLKH)	Output setup time, CEx valid before SSCLK high	1.5P – 5.5		1.5P – 4.5		ns
2	toh(SSCLKH-CEV)	Output hold time, CEx valid after SSCLK high	0.5P – 2.3		0.5P – 2		ns
3	tosu(BEV-SSCLKH)	Output setup time, BEx valid before SSCLK high	1.5P – 5.5		1.5P – 4.5		ns
4	^t oh(SSCLKH-BEIV)	Output hold time, BEx invalid after SSCLK high	0.5P – 2.3		0.5P – 2		ns
5	tosu(EAV-SSCLKH)	Output setup time, EAx valid before SSCLK high	1.5P – 5.5		1.5P – 4.5		ns
6	toh(SSCLKH-EAIV)	Output hold time, EAx invalid after SSCLK high	0.5P – 2.3		0.5P – 2		ns
9	tosu(ADSV-SSCLKH)	Output setup time, SSADS valid before SSCLK high	1.5P – 5.5		1.5P – 4.5		ns
10	toh(SSCLKH-ADSV)	Output hold time, SSADS valid after SSCLK high	0.5P – 2.3		0.5P – 2		ns
11	tosu(OEV-SSCLKH)	Output setup time, SSOE valid before SSCLK high	1.5P – 5.5		1.5P – 4.5		ns
12	toh(SSCLKH-OEV)	Output hold time, SSOE valid after SSCLK high	0.5P – 2.3		0.5P – 2		ns
13	tosu(EDV-SSCLKH)	Output setup time, EDx valid before SSCLK high	1.5P – 5.5		1.5P – 4.5		ns
14	toh(SSCLKH-EDIV)	Output hold time, EDx invalid after SSCLK high	0.5P – 2.3		0.5P – 2.2		ns
15	tosu(WEV-SSCLKH)	Output setup time, SSWE valid before SSCLK high	1.5P – 5.5		1.5P – 4.5		ns
16	toh(SSCLKH-WEV)	Output hold time, SSWE valid after SSCLK high	0.5P – 2.3		0.5P – 2		ns

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter.


When the PLL is used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns. For CLKMODE x1:

1.5P = P + PH, where P = 1/CPU clock frequency, and PH = pulse duration of CLKIN high.

0.5P = PL, where PL = pulse duration of CLKIN low.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

SYNCHRONOUS-BURST MEMORY TIMING (CONTINUED)

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

SYNCHRONOUS DRAM TIMING

timing requirements for synchronous DRAM cycles (see Figure 18)

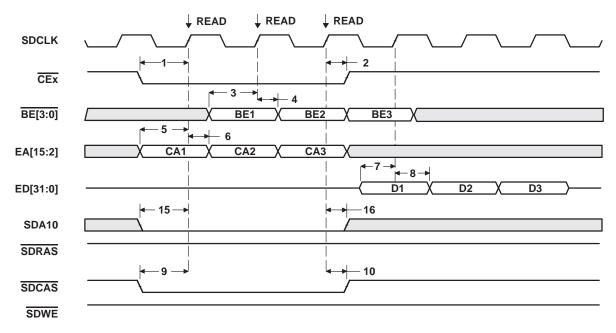
NO.			'C6701-14		'C6701-16		
NO.			MIN	MAX	MIN	MAX	UNIT
7	tsu(EDV-SDCLKH)	Setup time, read EDx valid before SDCLK high	2		2		ns
8	^t h(SDCLKH-EDV)	Hold time, read EDx valid after SDCLK high	3		3		ns

switching characteristics for synchronous DRAM cycles[†] (see Figure 18–Figure 23)

	DADAMETER		'C6701-	·14	'C6701-	16	
NO.		PARAMETER	MIN	MAX	MIN	MAX	UNIT
1	tosu(CEV-SDCLKH)	Output setup time, CEx valid before SDCLK high	1.5P – 5		1.5P – 4		ns
2	toh(SDCLKH-CEV)	Output hold time, CEx valid after SDCLK high	0.5P – 1.9		0.5P – 1.5		ns
3	tosu(BEV-SDCLKH)	Output setup time, BEx valid before SDCLK high	1.5P – 5		1.5P – 4		ns
4	toh(SDCLKH-BEIV)	Output hold time, BEx invalid after SDCLK high	0.5P – 1.9		0.5P – 1.5		ns
5	^t osu(EAV-SDCLKH)	Output setup time, EAx valid before SDCLK high	1.5P – 5		1.5P – 4		ns
6	^t oh(SDCLKH-EAIV)	Output hold time, EAx invalid after SDCLK high	0.5P – 1.9		0.5P – 1.5		ns
9	^t osu(SDCAS-SDCLKH)	Output setup time, SDCAS valid before SDCLK high	1.5P – 5		1.5P – 4		ns
10	toh(SDCLKH-SDCAS)	Output hold time, SDCAS valid after SDCLK high	0.5P – 1.9		0.5P – 1.5		ns
11	tosu(EDV-SDCLKH)	Output setup time, EDx valid before SDCLK high	1.5P – 5		1.5P – 4		ns
12	^t oh(SDCLKH-EDIV)	Output hold time, EDx invalid after SDCLK high	0.5P – 1.9		0.5P – 1.5		ns
13	^t osu(SDWE-SDCLKH)	Output setup time, SDWE valid before SDCLK high	1.5P – 5		1.5P – 4		ns
14	^t oh(SDCLKH-SDWE)	Output hold time, SDWE valid after SDCLK high	0.5P – 1.9		0.5P – 1.5		ns
15	^t osu(SDA10V-SDCLKH)	Output setup time, SDA10 valid before SDCLK high	1.5P – 5		1.5P – 4		ns
16	^t oh(SDCLKH-SDA10IV)	Output hold time, SDA10 invalid after SDCLK high	0.5P – 1.9		0.5P – 1.5		ns
17	^t osu(SDRAS-SDCLKH)	Output setup time, SDRAS valid before SDCLK high	1.5P – 5		1.5P – 4		ns
18	toh(SDCLKH-SDRAS)	Output hold time, SDRAS valid after SDCLK high	0.5P – 1.9		0.5P – 1.5		ns

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter.

When the PLL is used (CLKMODE x4), P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

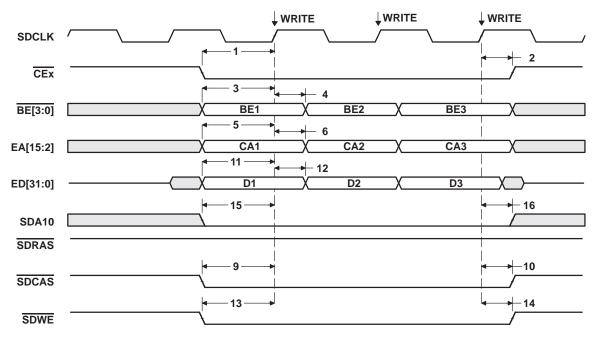
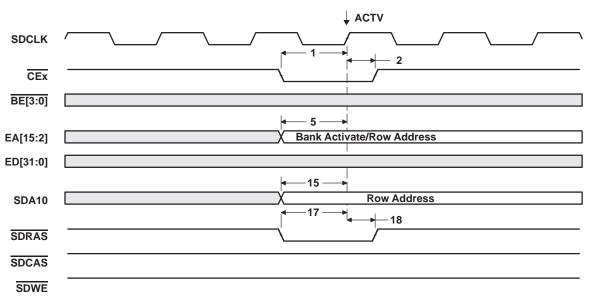

For CLKMODE x1:

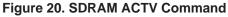
1.5P = P + PH, where P = 1/CPU clock frequency, and PH = pulse duration of CLKIN high.

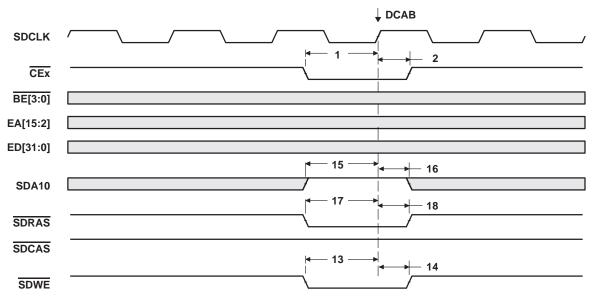
0.5P = PL, where PL = pulse duration of CLKIN low.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

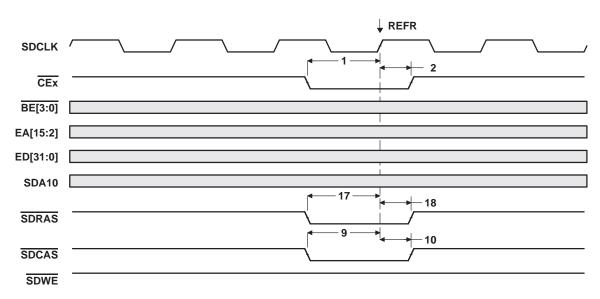
SYNCHRONOUS DRAM TIMING (CONTINUED)


Figure 19. Three SDRAM Write Commands



SGUS060A - DECEMBER 2007 - REVISED JULY 2009



SGUS060A - DECEMBER 2007 - REVISED JULY 2009

SYNCHRONOUS DRAM TIMING (CONTINUED)

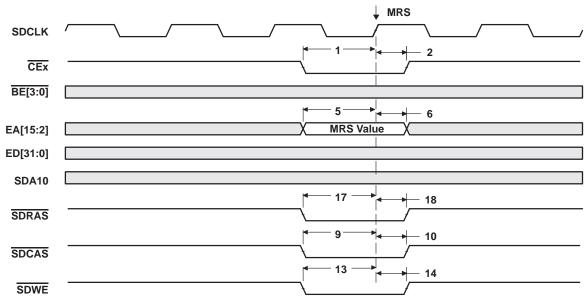


Figure 23. SDRAM MRS Command

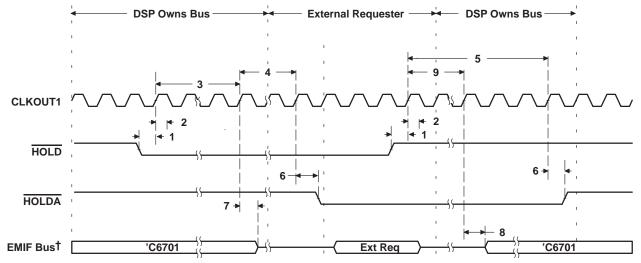
SGUS060A - DECEMBER 2007 - REVISED JULY 2009

HOLD/HOLDA TIMING

timing requirements for the hold/hold acknowledge cycles[†] (see Figure 24)

NO.	NO.		'C6701-14 'C6701-16		UNIT
			MIN	MAX	
1	tsu(HOLDH-CKO1H)	Setup time, HOLD high before CLKOUT1 high	5		ns
2	^t h(CKO1H-HOLDL)	Hold time, HOLD low after CLKOUT1 high	2		ns

⁺ HOLD is synchronized internally. Therefore, if setup and hold times are not met, it will either be recognized in the current cycle or in the next cycle. Thus, HOLD can be an asynchronous input.


switching characteristics for the hold/hold acknowledge cycles[‡] (see Figure 24)

NO.	PARAMETER		°C670 °C670		UNIT
			MIN	MAX	
3	^t R(HOLDL-EMHZ)	Response time, HOLD low to EMIF high impedance	4P	§	ns
4	^t R(EMHZ-HOLDAL)	Response time, EMIF high impedance to HOLDA low		2P	ns
5	^t R(HOLDH-HOLDAH)	Response time, HOLD high to HOLDA high	4P	7P	ns
6	^t d(CKO1H-HOLDAL)	Delay time, CLKOUT1 high to HOLDA valid	1	8	ns
7	^t d(CKO1H-BHZ)	Delay time, CLKOUT1 high to EMIF Bus high impedance \P	*1	*8	ns
8	^t d(CKO1H-BLZ)	Delay time, CLKOUT1 high to EMIF Bus low impedance \P	*1	*12	ns
9	^t R(HOLDH-BLZ)	Response time, \overline{HOLD} high to EMIF Bus low impedance \P	3P	6P	ns

 $^{\ddagger}P = 1/CPU$ clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

§ All pending EMIF transactions are allowed to complete before HOLDA is asserted. The worst cases for this is an asynchronous read or write with external ARDY used or a minimum of eight consecutive SDRAM reads or writes when RBTR8 = 1. If no bus transactions are occurring, then the minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting the NOHOLD = 1.

the minimum delay time can be achieved. Also, bus hold can be indefinitely delayed by setting the NOHOLD = 1. I EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS, and SDWE. *This parameter is not tested.

[†] EMIF Bus consists of CE[3:0], BE[3:0], ED[31:0], EA[21:2], ARE, AOE, AWE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS, and SDWE.

Figure 24. HOLD/HOLDA Timing

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

RESET TIMING

timing requirements for reset (see Figure 25)

NO.			'C6701-14 'C6701-16		UNIT
			MIN	MAX	
1	^t w(RESET)	Width of the $\overline{\text{RESET}}$ pulse (PLL stable) [†]	*10		CLKOUT1 cycles
		Width of the RESET pulse (PLL needs to sync up) [‡]	*250		μs

[†] This parameter applies to CLKMODE x1 when CLKIN is stable and applies to CLKMODE x4 when CLKIN and PLL are stable. *This parameter is not tested.

[‡] This parameter only applies to CLKMODE x4. The RESET signal is not connected internally to the clock PLL circuit. The PLL, however, may need up to 250 µs to stabilize following device powerup or after PLL configuration has been changed. During that time, RESET must be asserted to ensure proper device operation. See the *clock PLL* section for PLL lock times.

switching characteristics during reset§ (see Figure 25)

NO.		PARAMETER)1-14)1-16	UNIT
			MIN	MAX	
2	^t R(RESET)	Response time to change of value in RESET signal	*1		CLKOUT1 cycles
3	td(CKO1H-CKO2IV)	Delay time, CLKOUT1 high to CLKOUT2 invalid	*–1		ns
4	td(CKO1H-CKO2V)	Delay time, CLKOUT1 high to CLKOUT2 valid		*10	ns
5	td(CKO1H-SDCLKIV)	Delay time, CLKOUT1 high to SDCLK invalid	*–1		ns
6	td(CKO1H-SDCLKV)	Delay time, CLKOUT1 high to SDCLK valid		*10	ns
7	td(CKO1H-SSCKIV)	Delay time, CLKOUT1 high to SSCLK invalid	*-1		ns
8	td(CKO1H-SSCKV)	Delay time, CLKOUT1 high to SSCLK valid		*10	ns
9	td(CKO1H-LOWIV)	Delay time, CLKOUT1 high to low group invalid	*–1		ns
10	td(CKO1H-LOWV)	Delay time, CLKOUT1 high to low group valid		*10	ns
11	td(CKO1H-HIGHIV)	Delay time, CLKOUT1 high to high group invalid	*–1		ns
12	td(CKO1H-HIGHV)	Delay time, CLKOUT1 high to high group valid		*10	ns
13	td(CKO1H-ZHZ)	Delay time, CLKOUT1 high to Z group high impedance	*–1		ns
14	^t d(CKO1H-ZV)	Delay time, CLKOUT1 high to Z group valid		*10	ns
High g	roup consists of: roup consists of: p consists of:	IACK, INUM[3:0], DMAC[3:0], PD, TOUT0, and TOUT1. HRDY and HINT. EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SSADS, SSOE, SSWE	, SDA10,	SDRAS	, SDCAS,

EA[21:2], ED[31:0], CE[3:0], BE[3:0], ARE, AWE, AOE, SSADS, SSOE, SSWE, SDA10, SDRAS, SDCAS, SDWE, HD[15:0], CLKX0, CLKX1, FSX0, FSX1, DX0, DX1, CLKR0, CLKR1, FSR0, and FSR1.

*This parameter is not tested.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

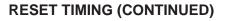


Figure 25. Reset Timing

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

EXTERNAL INTERRUPT/RESET TIMING

timing requirements for interrupt response cycles^{†‡} (see Figure 26)

NO.		'C6701-14 'C6701-16	UNIT
		MIN MAX	
2	t _w (ILOW) Width of the interrupt pulse low	*2P	ns
3	t _w (IHIGH) Width of the interrupt pulse high	*2P	ns

[†] Interrupt signals are synchronized internally and are potentially recognized one cycle later if setup and hold times are violated. Thus, they can be connected to asynchronous inputs.

 \ddagger P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

*This parameter is not tested.

switching characteristics during interrupt response cycles§ (see Figure 26)

NO.		PARAMETER	'C6701-14 'C6701-16		UNIT
			MIN	MAX	
1	^t R(EINTH-IACKH)	Response time, EXT_INTx high to IACK high	9P		ns
4	td(CKO2L-IACKV)	Delay time, CLKOUT2 low to IACK valid	-0.5P	13 – 0.5P	ns
5	td(CKO2L-INUMV)	Delay time, CLKOUT2 low to INUMx valid		10 – 0.5P	ns
6	td(CKO2L-INUMIV)	Delay time, CLKOUT2 low to INUMx invalid	-0.5P		ns

P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

When the PLL is used (CLKMODE x4), $0.5P = 1/(2 \times CPU \text{ clock frequency})$. For CLKMODE x1: 0.5P = PH, where PH is the high period of CLKIN.

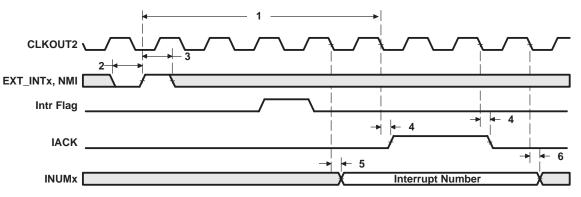


Figure 26. Interrupt Timing

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

HOST-PORT INTERFACE TIMING

timing requirements for host-port interface cycles^{†‡} (see Figure 27, Figure 28, Figure 29, and Figure 30)

NO.				01-14 01-16	UNIT
			MIN	MAX	
1	tsu(SEL-HSTBL)	Setup time, select signals [§] valid before HSTROBE low	4		ns
2	^t h(HSTBL-SEL)	Hold time, select signals§ valid after HSTROBE low	2		ns
3	^t w(HSTBL)	Pulse duration, HSTROBE low	*2P		ns
4	^t w(HSTBH)	Pulse duration, HSTROBE high between consecutive accesses	*2P		ns
10	^t su(SEL-HASL)	Setup time, select signals [§] valid before HAS low	4		ns
11	^t h(HASL-SEL)	Hold time, select signals [§] valid after HAS low	2		ns
12	^t su(HDV-HSTBH)	Setup time, host data valid before HSTROBE high	3		ns
13	^t h(HSTBH-HDV)	Hold time, host data valid after HSTROBE high	2		ns
14	^t h(HRDYL-HSTBL)	Hold time, HSTROBE low after HRDY low. HSTROBE should not be inactivated until HRDY is active (low); otherwise, HPI writes will not complete properly.	*1		ns
18	^t su(HASL-HSTBL)	Setup time, HAS low before HSTROBE low	*2		ns
19	^t h(HSTBL-HASL)	Hold time, HAS low after HSTROBE low	*2		ns

*This parameter is not tested.

[†] HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

[‡] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at <u>167 MHz</u>, use P = 6 ns.

§ Select signals include: HCNTRL[1:0], HR/W, and HHWIL.

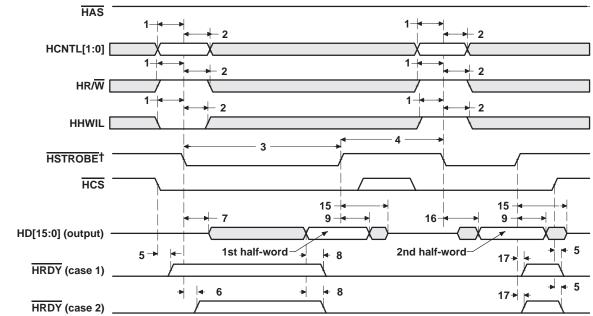
switching characteristics during host-port interface cycles^{†‡} (see Figure 27, Figure 28, Figure 29, and Figure 30)

NO.	PARAMETER		°C670 °C670	UNIT	
			MIN	MAX	
5	^t d(HCS-HRDY)	Delay time, HCS to HRDY	1	12	ns
6	^t d(HSTBL-HRDYH)	Delay time, HSTROBE low to HRDY high [#]	1	12	ns
7	toh(HSTBL-HDLZ)	Output hold time, HD low impedance after HSTROBE low for an HPI read	*4		ns
8	^t d(HDV-HRDYL)	Delay time, HD valid to HRDY low	*P – 3	*P + 3	ns
9	^t oh(HSTBH-HDV)	Output hold time, HD valid after HSTROBE high	3	12	ns
15	^t d(HSTBH-HDHZ)	Delay time, HSTROBE high to HD high impedance	*3	*12	ns
16	^t d(HSTBL-HDV)	Delay time, HSTROBE low to HD valid	3	12	ns
17	^t d(HSTBH-HRDYH)	Delay time, HSTROBE high to HRDY high	1	12	ns

*This parameter is not tested.

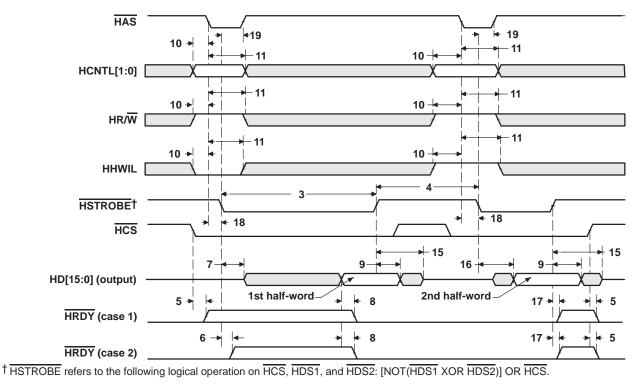
[†] HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

[‡] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.


THCS enables HRDY, and HRDY is always low when HCS is high. The case where HRDY goes high when HCS falls indicates that HPI is busy completing a previous HPID write or READ with autoincrement.

[#] This parameter is used during an HPID read. At the beginning of the first half-word transfer on the falling edge of HSTROBE, the HPI sends the request to the DMA auxiliary channel, and HRDY remains high until the DMA auxiliary channel loads the requested data into HPID.

This parameter is used after the second half-word of an HPID write or autoincrement read. HRDY remains low if the access is not an HPID write or autoincrement read. Reading or writing to HPIC or HPIA does not affect the HRDY signal.


SGUS060A - DECEMBER 2007 - REVISED JULY 2009

HOST-PORT INTERFACE TIMING (CONTINUED)

[†] HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

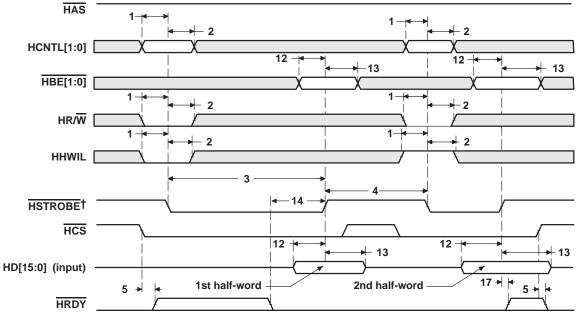
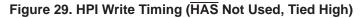
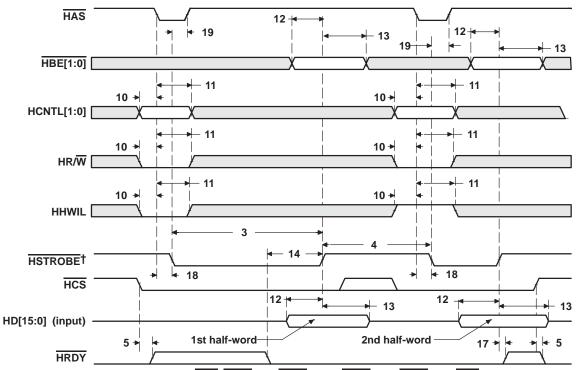

Figure 27. HPI Read Timing (HAS Not Used, Tied High)

Figure 28. HPI Read Timing (HAS Used)




SGUS060A - DECEMBER 2007 - REVISED JULY 2009

⁺HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

+ HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS.

Figure 30. HPI Write Timing (HAS Used)

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

MULTICHANNEL BUFFERED SERIAL PORT TIMING

timing requirements for McBSP^{†‡} (see Figure 31)

NO.				°C670 °C670		UNIT
				MIN	MAX	
2	^t c(CKRX)	Cycle time, CLKR/X	CLKR/X ext	*2P		ns
3	^t w(CKRX)	Pulse duration, CLKR/X high or CLKR/X low	CLKR/X ext	*P – 1		ns
_		Octors there and each EOD birth to (and OH/D laws	CLKR int	*13		
5	^t su(FRH-CKRL)	Setup time, external FSR high before CLKR low	CLKR ext	4		ns
	6 ^t h(CKRL-FRH)		CLKR int	*7		
6		Hold time, external FSR high after CLKR low	CLKR ext	4		ns
_			CLKR int	10		
7	^t su(DRV-CKRL)	Setup time, DR valid before CLKR low	CLKR ext	1		ns
			CLKR int	4		
8	^t h(CKRL-DRV)	Hold time, DR valid after CLKR low	CLKR ext	4		ns
10			CLKX int	*13		
10	^t su(FXH-CKXL)	Setup time, external FSX high before CLKX low	CLKX ext	4		ns
		Held the endered FO Y block of the OLIGY law	CLKX int	*7		
11	^t h(CKXL-FXH)	Hold time, external FSX high after CLKX low	CLKX ext	3		ns

[†] P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

[‡] CLKRP = CLKXP = FSRP = FSXP = 0 in the pin control register (PCR). If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

*This parameter is not tested.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

switching characteristics for McBSP^{†‡§} (see Figure 31)

NO.	PARAMETER				'C6701-14 'C6701-16	
				MIN	MAX	
1	^t d(CKSH-CKRXH)	Delay time, CLKS high to CLKR/X high for internal CLKR/X generated from CLKS input		3	15	ns
2	^t c(CKRX)	Cycle time, CLKR/X	CLKR/X int	2P		ns
3	^t w(CKRX)	Pulse duration, CLKR/X high or CLKR/X low	CLKR/X int	C – 1¶	C + 1¶	ns
4	^t d(CKRH-FRV)	Delay time, CLKR high to internal FSR valid	CLKR int	-4	4	ns
			CLKX int	-4	5	
9	^t d(CKXH-FXV)	Delay time, CLKX high to internal FSX valid	CLKX ext	*3	*16	ns
		Disable time, DX high impedance following last data bit from	CLKX int	*–3	*2	
12	^t dis(CKXH-DXHZ)	CLKX high	CLKX ext	*2	*9	ns
10			CLKX int	-2	4	
13	^t d(CKXH-DXV)	Delay time, CLKX high to DX valid.	CLKX ext	3	16	ns
		Delay time, FSX high to DX valid.	FSX int	*–2	*4	
14	14 ^t d(FXH-DXV)	ONLY applies when in data delay 0 (XDATDLY = 00b) mode.	FSX ext	*2	*10	ns

[†] CLKRP = CLKXP = FSRP = FSXP = 0 in the pin control register (PCR). If polarity of any of the signals is inverted, then the timing references of that signal are also inverted.

[‡] Minimum delay times also represent minimum output hold times.

 $\frac{9}{2}$ P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

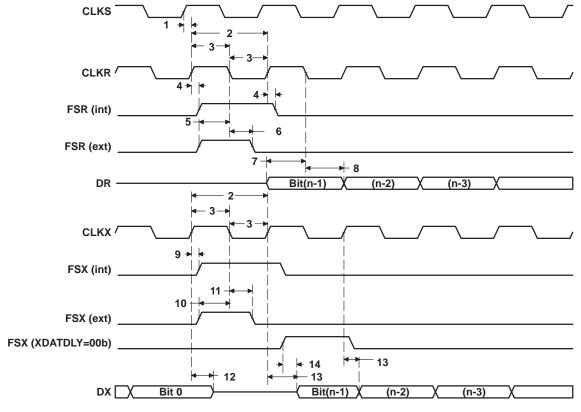
 $\P C = H \text{ or } L$

S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)

= sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

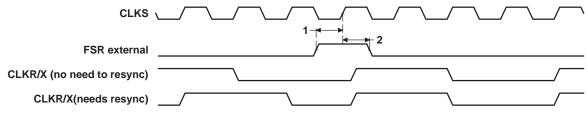

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

*This parameter is not tested.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)


SGUS060A - DECEMBER 2007 - REVISED JULY 2009

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

timing requirements for FSR when GSYNC = 1 (see Figure 32)

NO.	NO.		'C6701-14 'C6701-16		
		MIN	MAX		
1	tsu(FRH-CKSH) Setup time, FSR high before CLKS high	*4		ns	
2	th(CKSH-FRH) Hold time, FSR high after CLKS high	*4		ns	

*This parameter is not tested.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0^{†‡} (see Figure 33)

NO.			'C67('C67(
		MAST	ER	SLA\	/E	UNIT
		MIN	MAX	MIN	MAX	
4	tsu(DRV-CKXL) Setup time, DR valid before CLKX low	12		2 – 3P		ns
5	th(CKXL-DRV) Hold time, DR valid after CLKX low	4		5 + 6P		ns

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

switching characteristics for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 0^{†‡} (see Figure 33)

NO.					6701-14 6701-16		
		PARAMETER	MAS	TER§	SL	AVE	UNIT
			MIN	MAX	MIN	MAX	
1	th(CKXL-FXL)	Hold time, FSX low after CLKX low¶	T – 4	T + 4			ns
2	td(FXL-CKXH)	Delay time, FSX low to CLKX high [#]	L – 4	L + 4			ns
3	td(CKXH-DXV)	Delay time, CLKX high to DX valid	-4	4	3P + 1	5P + 17	ns
6	^t dis(CKXL-DXHZ)	Disable time, DX high impedance following last data bit from CLKX low	*L – 2	*L + 3			ns
7	^t dis(FXH-DXHZ)	Disable time, DX high impedance following last data bit from FSX high			*P + 4	*3P + 17	ns
8	^t d(FXL-DXV)	Delay time, FSX low to DX valid			2P + 1	4P + 13	ns

*This parameter is not tested.

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

[‡]For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

- S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)
 - = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
- T = CLKX period = (1 + CLKGDV) * S
- H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
- = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero L = CLKX low pulse

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

¶ FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

[#]FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

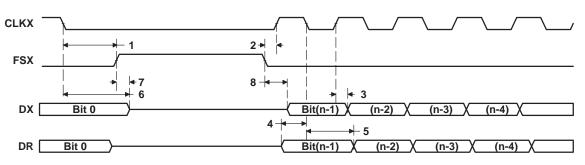


Figure 33. McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0

timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 0^{†‡} (see Figure 34)

NO.			°C670 °C670			
		MAST	ER	SLA\	/E	UNIT
		MIN	MAX	MIN	MAX	
4	t _{su(DRV-CKXH)} Setup time, DR valid before CLKX high	12		2 – 3P		ns
5	th(CKXH-DRV) Hold time, DR valid after CLKX high	4		5 + 6P		ns

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

SGUS060A – DECEMBER 2007 – REVISED JULY 2009

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

switching characteristics for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 0^{\ddagger} (see Figure 34)

NO.					01-14 01-16		
		PARAMETER	MAST	ĒR§	SL	AVE	UNIT
			MIN	MAX	MIN	MAX	
1	^t h(CKXL-FXL)	Hold time, FSX low after CLKX low \P	L – 4	L + 4			ns
2	^t d(FXL-CKXH)	Delay time, FSX low to CLKX high#	T – 4	T + 4			ns
3	td(CKXL-DXV)	Delay time, CLKX low to DX valid	-4	4	3P + 1	5P + 17	ns
6	^t dis(CKXL-DXHZ)	Disable time, DX high impedance following last data bit from CLKX low	*-2	*4	*3P + 4	*5P + 17	ns
7	^t d(FXL-DXV)	Delay time, FSX low to DX valid	*H – 2	*H + 3	2P + 1	4P + 13	ns

*This parameter is not tested.

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

 \pm For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

S =sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)

= sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

T = CLKX period = (1 + CLKGDV) * S

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

IFSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

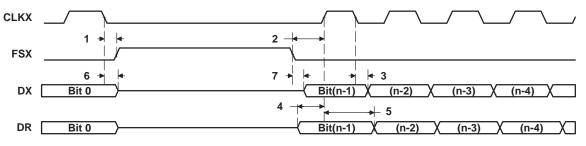


Figure 34. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

timing requirements for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1^{†‡} (see Figure 35)

NO.			°C670 °C670			
		MAST	ER	SLA\	/E	UNIT
		MIN	MAX	MIN	MAX	
4	t _{su(DRV-CKXH)} Setup time, DR valid before CLKX high	12		2 – 3P		ns
5	th(CKXH-DRV) Hold time, DR valid after CLKX high	4		5 + 6P		ns

[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

switching characteristics for McBSP as SPI master or slave: CLKSTP = 10b, CLKXP = 1^{†‡} (see Figure 35)

NO.					01-14 01-16		
		PARAMETER	MAST	ER§	SL	AVE	UNIT
			MIN	MAX	MIN	MAX	
1	^t h(CKXH-FXL)	Hold time, FSX low after CLKX high \P	T – 4	T + 4			ns
2	td(FXL-CKXL)	Delay time, FSX low to CLKX low [#]	H – 4	H + 4			ns
3	^t d(CKXL-DXV)	Delay time, CLKX low to DX valid	-4	4	3P + 1	5P + 17	ns
6	^t dis(CKXH-DXHZ)	Disable time, DX high impedance following last data bit from CLKX high	*H – 2	*H + 3			ns
7	^t dis(FXH-DXHZ)	Disable time, DX high impedance following last data bit from FSX high			*P + 4	*3P + 17	ns
8	^t d(FXL-DXV)	Delay time, FSX low to DX valid			2P + 1	4P + 13	ns

*This parameter is not tested.

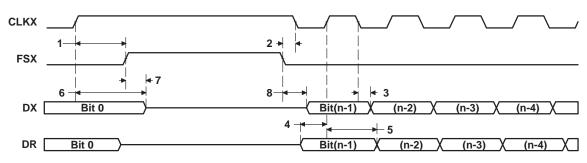
[†] The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

- S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)
 - = sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)
- T = CLKX period = (1 + CLKGDV) * S
- H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even
 - = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero
- L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
 - = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

¶ FSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP


CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

[#] FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

timing requirements for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1^{†‡} (see Figure 36)

			'C67('C67(
NO.		MAS	ER	SLA\	/E	UNIT
		MIN	MAX	MIN	MAX	
4	tsu(DRV-CKXL) Setup time, DR valid before CLKX low	12		2 – 3P		ns
5	th(CKXL-DRV) Hold time, DR valid after CLKX low	4		5 + 6P		ns

⁺ The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

[‡] For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

SGUS060A – DECEMBER 2007 – REVISED JULY 2009

MULTICHANNEL BUFFERED SERIAL PORT TIMING (CONTINUED)

switching characteristics for McBSP as SPI master or slave: CLKSTP = 11b, CLKXP = 1^{†‡} (see Figure 36)

NO.					6701-14 6701-16		
		PARAMETER	MAS	TER§	SL	AVE	UNIT
			MIN	MAX	MIN	MAX	
1	^t h(CKXH-FXL)	Hold time, FSX low after CLKX high	H – 4	H + 4			ns
2	td(FXL-CKXL)	Delay time, FSX low to CLKX low [#]	T – 4	T + 4			ns
3	td(CKXH-DXV)	Delay time, CLKX high to DX valid	-4	4	3P + 1	5P + 17	ns
6	^t dis(CKXH-DXHZ)	Disable time, DX high impedance following last data bit from CLKX high	*–2	*4	*3P + 4	*5P + 17	ns
7	td(FXL-DXV)	Delay time, FSX low to DX valid	*L – 2	*L + 3	2P + 1	4P + 13	ns

*This parameter is not tested.

⁺ The effects of internal clock jitter are included at test. There is no need to adjust timing numbers for internal clock jitter. P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

 \pm For all SPI slave modes, CLKG is programmed as 1/2 of the CPU clock by setting CLKSM = CLKGDV = 1.

§ S = sample rate generator input clock = P if CLKSM = 1 (P = 1/CPU clock frequency)

= sample rate generator input clock = P_clks if CLKSM = 0 (P_clks = CLKS period)

T = CLKX period = (1 + CLKGDV) * S

H = CLKX high pulse width = (CLKGDV/2 + 1) * S if CLKGDV is even

= (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

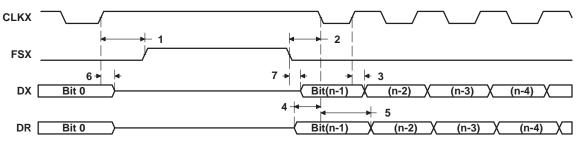
- L = CLKX low pulse width = (CLKGDV/2) * S if CLKGDV is even
 - = (CLKGDV + 1)/2 * S if CLKGDV is odd or zero

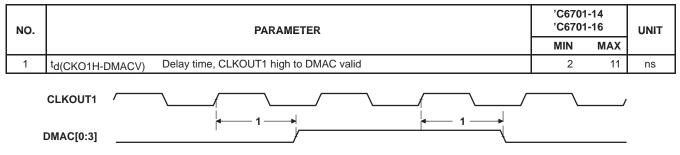
IFSRP = FSXP = 1. As a SPI master, FSX is inverted to provide active-low slave-enable output. As a slave, the active-low signal input on FSX and FSR is inverted before being used internally.

CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP

CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP

FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of the master clock (CLKX).




Figure 36. McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

DMAC, TIMER, POWER-DOWN TIMING

switching characteristics for DMAC outputs (see Figure 37)

Figure 37. DMAC Timing

timing requirements for timer inputs (see Figure 38)[†]

NO.		°C6701 °C6701		UNIT
		MIN	MAX	
1	tw(TINPH) Pulse duration, TINP high	2P		ns
tp 4/0				

[†] P = 1/CPU clock frequency in ns. For example, when running parts at 167 MHz, use P = 6 ns.

switching characteristics for timer outputs (see Figure 38)

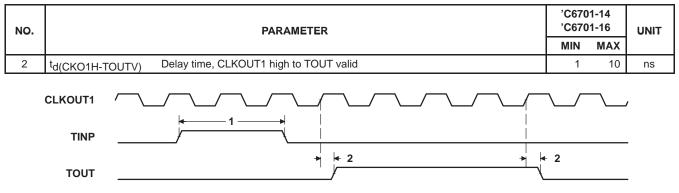


Figure 38. Timer Timing

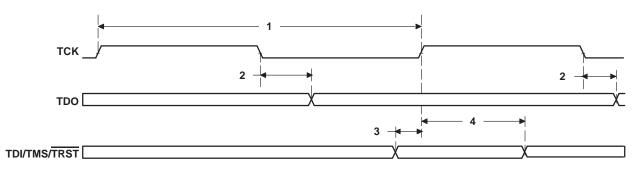
switching characteristics for power-down outputs (see Figure 39)

NO.	PARAMETER		'C6701-14 'C6701-16		
		MIN	MAX		
1	td(CKO1H-PDV) Delay time, CLKOUT1 high to PD valid	1	9	ns	
			/		
	Figure 20 Deven Deven Timin r				

Figure 39. Power-Down Timing

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

JTAG TEST-PORT TIMING


timing requirements for JTAG test port (see Figure 40)

NO.	NO.		²C6701-14 ²C6701-16		UNIT
			MIN	MAX	
1	^t c(TCK)	Cycle time, TCK	35		ns
3	t _{su} (TDIV-TCKH)	Setup time, TDI/TMS/TRST valid before TCK high	10		ns
4	^t h(TCKH-TDIV)	Hold time, TDI/TMS/TRST valid after TCK high	9		ns

switching characteristics for JTAG test port (see Figure 40)

NO.	PARAMETER	'C670 'C670	UNIT	
2	t _d (TCKL-TDOV) Delay time, TCK low to TDO valid	*–3	*15	ns

*This parameter is not tested.

SGUS060A - DECEMBER 2007 - REVISED JULY 2009

PACKAGE CHARACTERISTICS

thermal resistance characteristics (S-CBGA and S-CLGA packages)

NO			°C/W	Air Flow
1	RΘJC	Junction-to-Case, measured to the bottom of solder ball	3.0	N/A
2	RΘJC	Junction-to-Case, measured to the top of the package lid	7.3	N/A
3	RΘJA	Junction-to-Ambient	14.5	0
4			11.8	150 fpm
5	5 RΘ _{JMA}	Junction-to-Moving-Air	11.1	250 fpm
6			10.2	500 fpm
7	Røjb	Junction-to-Board, measured by soldering a thermocouple to one of the middle traces on the board at the edge of the package		N/A

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
5962-9866101QXA	Active	Production	CFCBGA (GLP) 429	40 JEDEC TRAY (5+1)	No	SNPB	N/A for Pkg Type	-55 to 115	5962-9866101QX A SMJ320C6701GLP W14
SM320C6701GLPW14	Active	Production	CFCBGA (GLP) 429	40 JEDEC TRAY (5+1)	No	SNPB	N/A for Pkg Type	-55 to 115	SM320C6701GLPW 14
SM320C6701GLPW14.A	Active	Production	CFCBGA (GLP) 429	40 JEDEC TRAY (5+1)	No	SNPB	N/A for Pkg Type	-55 to 115	SM320C6701GLPW 14
SMJ320C6701GLPW14	Active	Production	CFCBGA (GLP) 429	40 JEDEC TRAY (5+1)	No	SNPB	N/A for Pkg Type	-55 to 115	5962-9866101QX A SMJ320C6701GLP W14
SMJ320C6701GLPW14.A	Active	Production	CFCBGA (GLP) 429	40 JEDEC TRAY (5+1)	No	SNPB	N/A for Pkg Type	-55 to 115	5962-9866101QX A SMJ320C6701GLP W14

⁽¹⁾ **Status:** For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

www.ti.com

PACKAGE OPTION ADDENDUM

22-Aug-2025

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

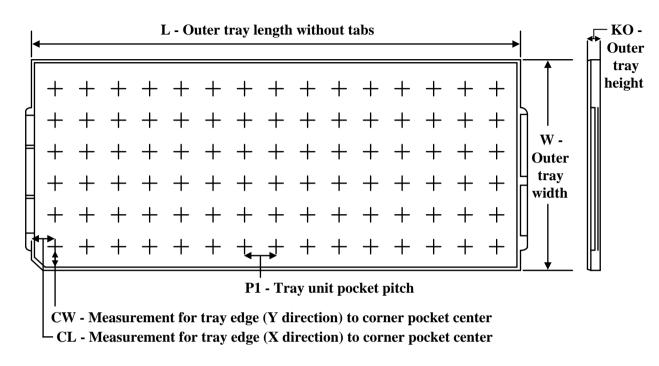
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SM320C6701, SMJ320C6701 :

- Catalog : TMS320C6701, TMS320C6701
- Enhanced Product : SM320C6701-EP
- Military : SMJ320C6701
- Space : SMJ320C6701-SP

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application


TEXAS INSTRUMENTS

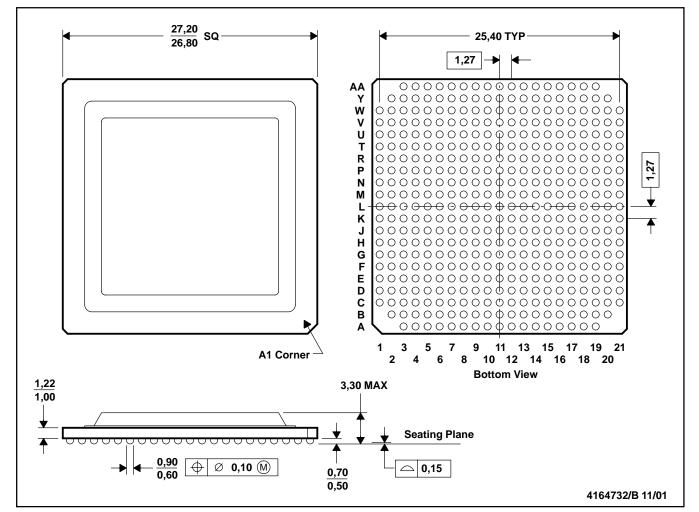
www.ti.com

TRAY

16-Aug-2025

Chamfer on Tray corner indicates Pin 1 orientation of packed units.

Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	K0 (µm)	P1 (mm)	CL (mm)	CW (mm)
5962-9866101QXA	GLP	CFCBGA	429	40	4x10	150	315	135.9	7620	29.2	26.1	24.15
SMJ320C6701GLPW14	GLP	CFCBGA	429	40	4x10	150	315	135.9	7620	29.2	26.1	24.15
SMJ320C6701GLPW14.A	GLP	CFCBGA	429	40	4x10	150	315	135.9	7620	29.2	26.1	24.15

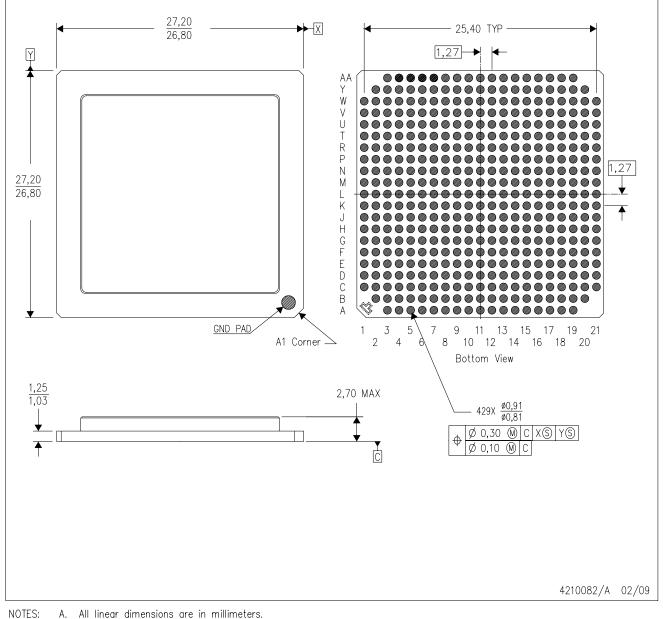

*All dimensions are nominal

MECHANICAL DATA

MCBG004A - SEPTEMBER 1998 - REVISED JANUARY 2002

CERAMIC BALL GRID ARRAY

GLP (S-CBGA-N429)


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-156
- D. Flip chip application only

ZMB (S-CLGA-N429)

CERAMIC LAND GRID ARRAY

- B. This drawing is subject to change without notice.
- C. Flip chip application only.
- D. All Ball Pads are Gold plated.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated