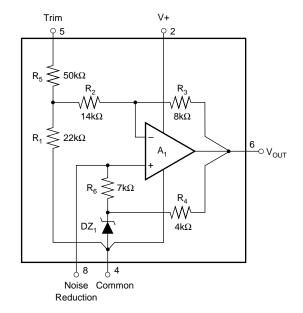


SBVS022B - SEPTEMBER 2000 - REVISED JUNE 2009

10V Precision **Voltage Reference**

FEATURES


- +10V +0.0025V OUTPUT
- VERY LOW DRIFT: 2.5ppm/°C max
- EXCELLENT STABILITY: 5ppm/1000hr typ
- EXCELLENT LINE REGULATION: 1ppm/V max
- EXCELLENT LOAD REGULATION: 10ppm/mA max
- LOW NOISE: 5μV_{PP} typ, 0.1Hz to 10Hz
- WIDE SUPPLY RANGE: 11.4VDC to 36VDC **● LOW QUIESCENT CURRENT: 1.4mA max** PACKAGE OPTIONS: PLASTIC DIP, SO-8

DESCRIPTION

The REF102 is a precision 10V voltage reference. The drift is laser-trimmed to 2.5ppm/°C max C-grade over the industrial temperature range. The REF102 achieves its precision without a heater. This results in low power, fast warm-up, excellent stability, and low noise. The output voltage is extremely insensitive to both line and load variations and can be externally adjusted with minimal effect on drift and stability. Single-supply operation from 11.4V to 36V and excellent overall specifications make the REF102 an ideal choice for demanding instrumentation and system reference applications.

APPLICATIONS

- PRECISION-CALIBRATED VOLTAGE **STANDARD**
- D/A AND A/D CONVERTER REFERENCE
- PRECISION CURRENT REFERENCE
- ACCURATE COMPARATOR THRESHOLD REFERENCE
- DIGITAL VOLTMETER
- TEST EQUIPMENT
- PC-BASED INSTRUMENTATION

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

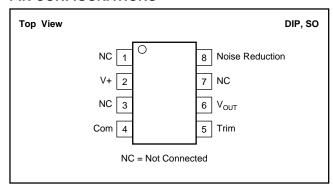
ABSOLUTE MAXIMUM RATINGS(1)

Input Voltage+40V
Operating Temperature
P, U –25°C to +85°C
Storage Temperature Range
P, U—40°C to +125°C
Short-Circuit Protection to Common or V+ Continuous

NOTE: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.


ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION(1)

PRODUCT	MAX INITIAL ERROR (mV)	MAX DRIFT (PPM/°C)	PACKAGE-LEAD	PACKAGE DESIGNATOR	PACKAGE MARKING
REF102AU	±10	±10	SO-8	D	REF102AU
REF102AP	±10	±10	DIP-8	P	REF102AP
REF102BU	±5	±5	SO-8	D	REF102BU
REF102BP	±5	±5	DIP-8	P	REF102BP
REF102CU	±2.5	±2.5	SO-8	D	REF102CU
REF102CP	±2.5	±2.5	DIP-8	P	REF102CP

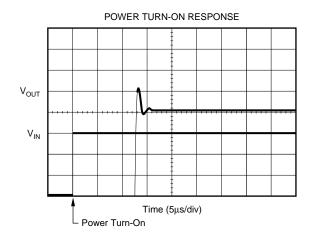
NOTE: (1) For the most current package and ordering information, see the Package Option Addendum at the end of this data sheet, or see the TI website at www.ti.com.

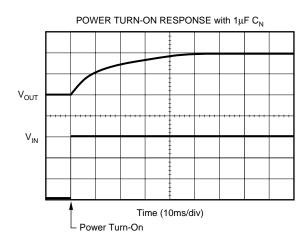
PIN CONFIGURATIONS

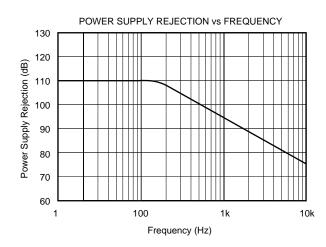
ELECTRICAL CHARACTERISTICS

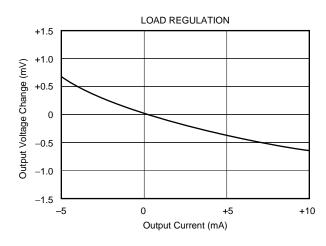
At T_A = +25°C and V_S = +15V power supply, unless otherwise noted.

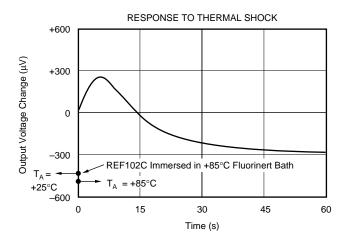
		REF102A				REF102B					
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE											
Initial	$T_A = 25^{\circ}C$	9.99		10.01	9.995		10.005	9.9975		10.0025	V
vs Temperature (1)				10			5			2.5	ppm/°C
vs Supply											
(Line Regulation)	$V_S = 11.4V \text{ to } 36V$			2			1			1	ppm/V
vs Output Current											
(Load Regulation)	$I_L = 0mA \text{ to } +10mA$			20			10			10	ppm/mA
	$I_L = 0mA \text{ to } -5mA$			40			20			20	ppm/mA
vs Time	$T_A = +25^{\circ}C$										
M Package			5			*			*		ppm/1000hr
P, U Packages (2)			20			*					ppm/1000hr
Trim Range (3)		±3			*			*			%
Capacitive Load, max			1000			*			*		pF
NOISE	0.1Hz to 10Hz		5			*			*		μV_{PP}
OUTPUT CURRENT		+10, –5			*			*			mA
INPUT VOLTAGE											
RANGE		+11.4		+36	*		*	*		*	V
QUIESCENT CURRENT	$I_{OUT} = 0$			+1.4			*			*	mA
WARM-UP TIME (4)	To 0.1%		15			*			*		μs
TEMPERATURE											
RANGE											
Specification											
REF102A, B, C		-25		+85	*		*	*		*	°C

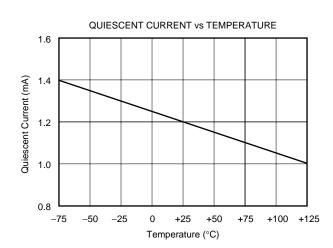

^{*} Specifications same as REF102A.

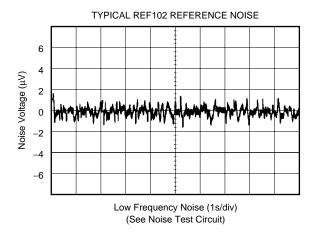

NOTES: (1) The box method is used to specify output voltage drift vs temperature; see the Discussion of Performance section.

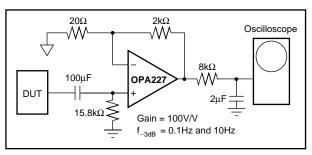

- (2) Typically 5ppm/1000hrs after 168hr powered stabilization.
- (3) Trimming the offset voltage affects drift slightly. See Installation and Operating Instructions for details.
- (4) With noise reduction pin floating. See Typical Characteristics for details.


TYPICAL CHARACTERISTICS


At $T_A = +25^{\circ}C$, $V_S = +15V$, unless otherwise noted.







TYPICAL CHARACTERISTICS (Cont.)

At $T_A = +25$ °C, $V_S = +15$ V, unless otherwise noted.

Noise Test Circuit.

THEORY OF OPERATION

Refer to the diagram on the first page of this data sheet. The 10V output is derived from a compensated buried zener diode DZ_1 , op amp A_1 , and resistor network $R_1 - R_6$.

Approximately 8.2V is applied to the non-inverting input of A_1 by $DZ_1,\,R_1,\,R_2,\,$ and R_3 are laser-trimmed to produce an exact 10V output. The zener bias current is established from the regulated output voltage through $R_4,\,R_5$ allows user-trimming of the output voltage by providing for small external adjustment of the amplifier gain. Because the temperature coefficient (TCR) of of R_5 closely matches the TCR of $R_1,\,R_2$ and R_3 , the voltage trim has minimal effect on the reference drift. The output voltage noise of the REF102 is dominated by the noise of the zener diode. A capacitor can be connected between the Noise Reduction pin and ground to form a low-pass filter with R_6 and roll off the high-frequency noise of the zener.

DISCUSSION OF PERFORMANCE

The REF102 is designed for applications requiring a precision voltage reference where both the initial value at room temperature and the drift over temperature are of importance to the user. Two basic methods of specifying voltage reference drift versus temperature are in common usage in the industry—the butterfly method and the box method. The

REF102 is specified by the more commonly-used *box method*. The *box* is formed by the high and low specification temperatures and a diagonal, the slope of which is equal to the maximum specified drift.

Since the shape of the actual drift curve is not known, the vertical position of the box is not known, either. It is, however, bounded by $V_{UPPER\ BOUND}$ and $V_{LOWER\ BOUND}$ (see Figure 1). Figure 1 uses the REF102CU as an example. It has a drift specification of 2.5ppm/°C maximum and a specification temperature range of -25° C to $+85^{\circ}$ C. The box height, V_1 to V_2 , is 2.75mV.

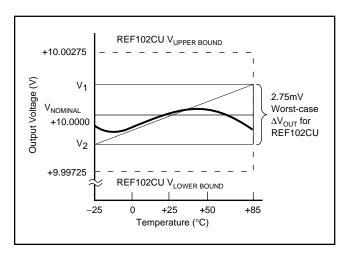


FIGURE 1. REF102CU Output Voltage Drift.

INSTALLATION AND OPERATING INSTRUCTIONS

BASIC CIRCUIT CONNECTION

Figure 2 shows the proper connection of the REF102. To achieve the specified performance, pay careful attention to layout. A low resistance star configuration will reduce voltage errors, noise pickup, and noise coupled from the power supply. Commons should be connected as indicated, being sure to minimize interconnection resistances.

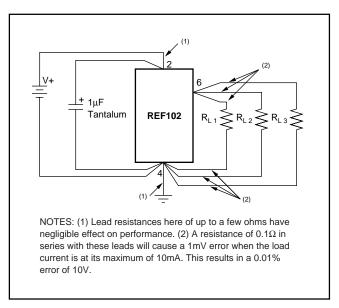


FIGURE 2. REF102 Installation.

OPTIONAL OUTPUT VOLTAGE ADJUSTMENT

Optional output voltage adjustment circuits are shown in Figures 3 and 4. Trimming the output voltage will change the voltage drift by approximately 0.008ppm/°C per mV of trimmed voltage. In the circuit in Figure 3, any mismatch in TCR between the two sections of the potentiometer will also affect drift, but the effect of the Δ TCR is reduced by a factor of five by the internal resistor divider. A high quality potentiometer, with good mechanical stability, such as a cermet, should be

used. The circuit in Figure 3 has a minimum trim range of ± 300 mV. The circuit in Figure 4 has less range but provides higher resolution. The mismatch in TCR between R_S and the internal resistors can introduce some slight drift. This effect is minimized if R_S is kept significantly larger than the 50k Ω internal resistor. A TCR of 100ppm/°C is normally sufficient.

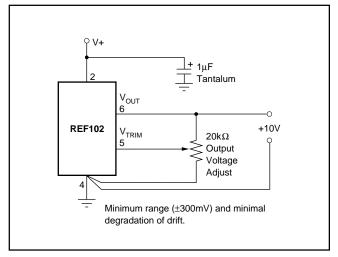


FIGURE 3. REF102 Optional Output Voltage Adjust.

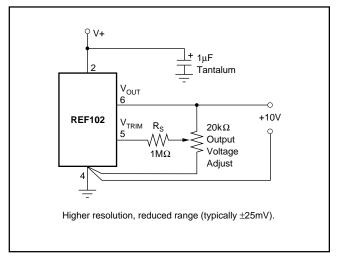


FIGURE 4. REF102 Optional Output Voltage, Fine Adjust.

OPTIONAL NOISE REDUCTION

The high-frequency noise of the REF102 is dominated by the zener diode noise. This noise can be greatly reduced by connecting a capacitor between the Noise Reduction pin and ground. The capacitor forms a low-pass filter with R_6 (refer to the figure on page 1) and attenuates the high-frequency noise generated by the zener. Figure 5 shows the effect of a $1\mu F$ noise reduction capacitor on the high-frequency noise of the REF102. R_6 is typically $7k\Omega$ so the filter has a -3dB frequency of about 22Hz. The result is a reduction in noise from about $800\mu V_{PP}$ to under $200\mu V_{PP}$. If further noise reduction is required, use the circuit in Figure 14.

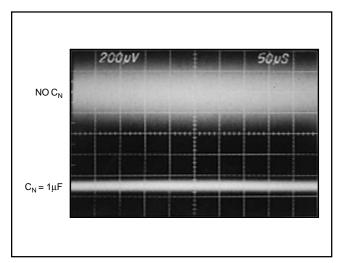


FIGURE 5. Effect of $1\mu F$ Noise Reduction Capacitor on Broadband Noise (f_3dB = 1MHz)

APPLICATIONS INFORMATION

High accuracy, extremely low drift, outstanding stability, and low cost make the REF102 an ideal choice for all instrumentation and system reference applications. Figures 6 through 14 show a variety of useful application circuits.

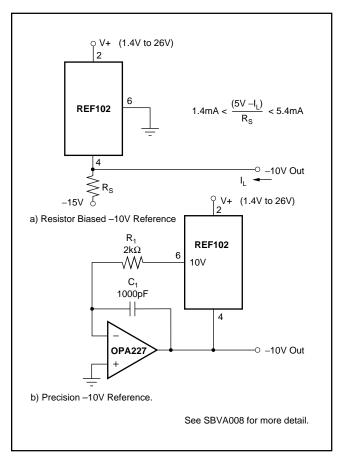


FIGURE 6. -10V Reference Using a) Resistor or b) OPA227.

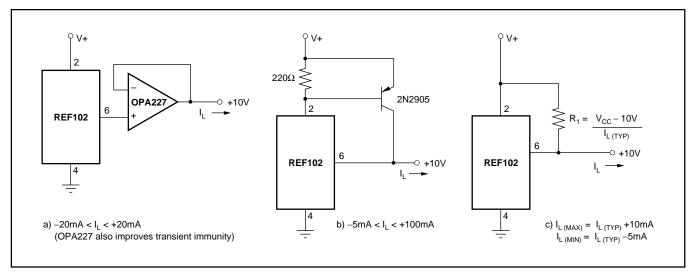


FIGURE 7. +10V Reference With Output Current Boosted to: a) \pm 20mA, b) +100mA, and c) $I_{L (TYP)}$ +10mA, -5A.

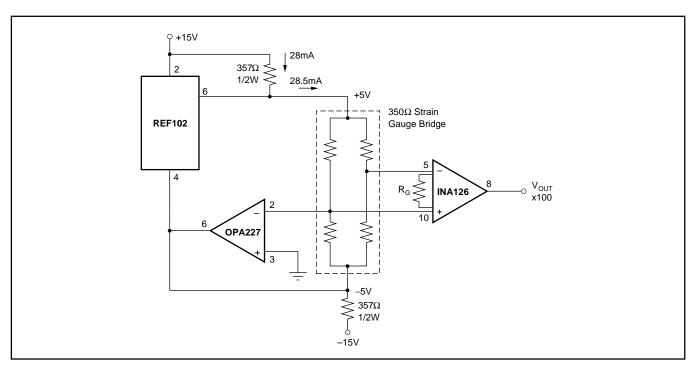


FIGURE 8. Strain Gauge Conditioner for 350Ω Bridge.

FIGURE 9. ±10V Reference.

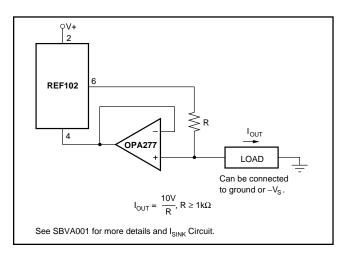
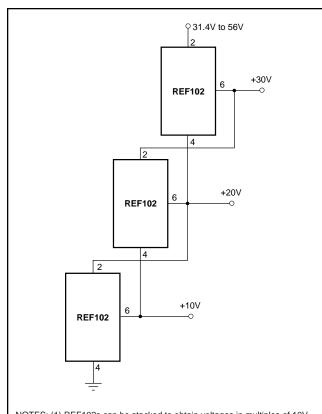



FIGURE 10. Positive Precision Current Source.

NOTES: (1) REF102s can be stacked to obtain voltages in multiples of 10V. (2) The supply voltage should be between 10n + 1.4 and 10n + 26, where *n* is the number of REF102s. (3) Output current of each REF102 must not exceed its rated output current of +10, -5mA. This includes the current delivered to the lower REF102.

FIGURE 11. Stacked References.

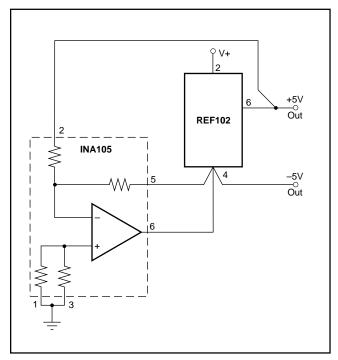


FIGURE 12. ±5V Reference.

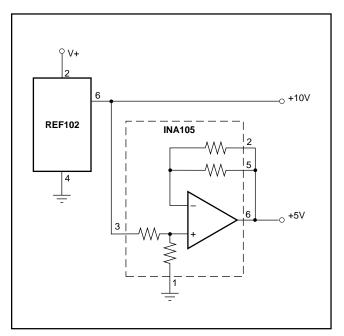


FIGURE 13. +5V and +10V Reference.

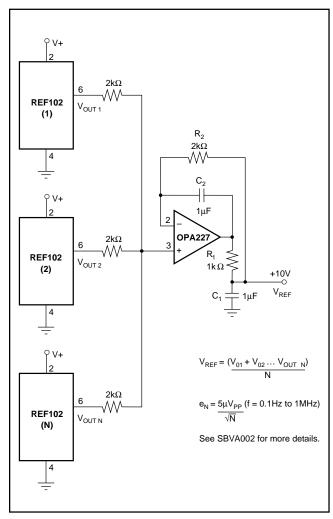


FIGURE 14. Precision Voltage Reference with Extremely Low Noise.

Revision History

DATE	REVISION	PAGE	SECTION	DESCRIPTION
6/00	D	0	Absolute Maximum Ratings	Deleted lead temperature rating.
6/09 B	2	Package/Ordering Information	Changed Package Ordering Information table.	

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

www.ti.com

23-May-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
REF102AU	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-	REF 102U A
REF102AU.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-25 to 85	REF 102U A
REF102AU/2K5	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-	REF 102U A
REF102AU/2K5.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-25 to 85	REF 102U A
REF102BU	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-25 to 85	REF 102U B
REF102BU.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-25 to 85	REF 102U B
REF102CU	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-25 to 85	REF 102U C
REF102CU.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-25 to 85	REF 102U C
REF102CU/2K5	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	Call TI	Level-2-260C-1 YEAR	-25 to 85	REF 102U C
REF102CU/2K5.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	Call TI	Level-2-260C-1 YEAR	-25 to 85	REF 102U C

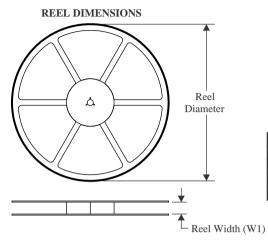
⁽¹⁾ Status: For more details on status, see our product life cycle.

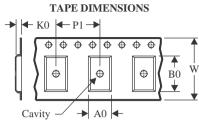
PACKAGE OPTION ADDENDUM

www.ti.com 23-May-2025

- (2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.
- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

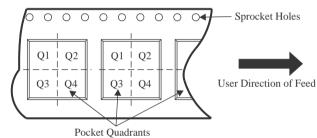
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

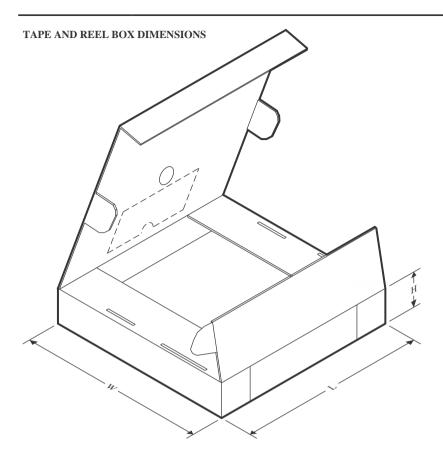
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

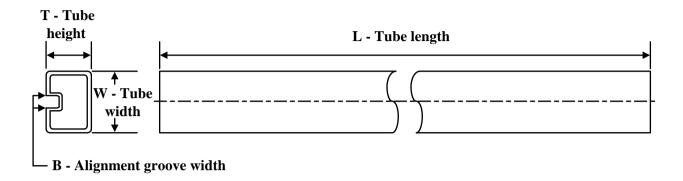


*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
REF102AU/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
REF102CU/2K5	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ı	REF102AU/2K5	SOIC	D	8	2500	353.0	353.0	32.0
ı	REF102CU/2K5	SOIC	D	8	2500	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
REF102AU	D	SOIC	8	75	506.6	8	3940	4.32
REF102AU.A	D	SOIC	8	75	506.6	8	3940	4.32
REF102BU	D	SOIC	8	75	506.6	8	3940	4.32
REF102BU.A	D	SOIC	8	75	506.6	8	3940	4.32
REF102CU	D	SOIC	8	75	506.6	8	3940	4.32
REF102CU.A	D	SOIC	8	75	506.6	8	3940	4.32

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated