PCA9548A ZHCSJK4G - JUNE 2009 - REVISED MARCH 2021 # 支持复位的 PCA9548A 低电压 8 通道 I²C 开关 ### 1 特性 - 8选1双向转换开关 - 与 I²C 总线和系统管理总线 (SMBus) 兼容 - 低电平有效复位输入 - 三个硬件地址引脚允许在 I2C 总线上使用多达八个 PCA9548A 器件 - 通过 I2C 总线实现通道选择 - 加电时所有开关通道取消选定 - 低 R_{ON} 开关 - 支持 1.8V、2.5V、3.3V 和 5V 总线间的电压电平转 - 加电时无干扰 - 支持热插入 - 低待机电流 - 工作电源电压范围为 2.3V 至 5.5V - 5V 耐压输入 - 0kHz 至 400kHz 时钟频率 - 闩锁性能超过 100mA, 符合 JESD 78 II 类规范的 - ESD 保护性能超过 JESD 22 规范要求 - 2000V 人体放电模型 (A114-A) - 200V 机器放电模型 (A115-A) - 1000V 带电器件模型 (C101) ### 2 应用 - 服务器 - 路由器(电信交换设备) - 工厂自动化 - 具有 I²C 从地址冲突的产品 (例如 , 多个完全一样 的温度传感器) #### 3 说明 PCA9548A 器件配有八个可通过 I2C 总线控制的双向 转换开关。SCL/SDA 上行对扩展到八个下行对,或者 通道。根据可编程控制寄存器的内容,可选择任一单独 的 SCx/SDx 通道或者通道组合。这些下游通道可用于 解决 I²C 从器件地址冲突。例如,如果应用中需要八个 完全相同的数字温度传感器,则每个通道 (0-7) 可以连 接一个传感器。 发生超时或其他不当操作时,系统主控器可通过将 RESET 输入置为低电平来复位 PCA9548A。同样,上 电复位即可取消选中所有通道并初始化 I2C/SMBus 状 态机。将 RESET 置为有效也可实现复位和初始化,并 且无需将部件断电。这样可以在下游 I²C 总线卡在低电 平状态时进行恢复。 由于开关上有导通栅极,因此 VCC 引脚可用于限制将 由 PCA9548A 传递的最大电压。这样就可以在每个对 上使用不同的总线电压,从而让 1.8V、2.5V 或 3.3V 部件能够在没有任何额外保护的情况下与 5V 部件通 信。对于每个通道,外部上拉电阻器将总线电压上拉至 所需的电压水平。所有 I/O 引脚均可承受 5V 电压。 #### | | 静门间态 | | | | | | | | |----------|-------------------|------------------|--|--|--|--|--|--| | 器件名称 | 封装 ⁽¹⁾ | 封装尺寸(标称值) | | | | | | | | | SSOP (24) | 8.20mm × 5.30mm | | | | | | | | | TVSOP (24) | 5.00mm × 4.40mm | | | | | | | | PCA9548A | SOIC (24) | 15.40mm × 7.50mm | | | | | | | | | TSSOP (24) | 7.80mm × 4.40mm | | | | | | | | | VQFN (24) | 4.00mm × 4.00mm | | | | | | | 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 简化版原理图 ### **Table of Contents** | 1 特性 | 1 | 8.4 Device Functional Modes | 15 | |--|---|---|--------------------| | , | | 8.5 Programming | 15 | | - ፫/,1
3 说明 | | 8.6 Register Maps | | | 4 Revision History | | 9 Application Information Disclaimer | | | 5 Pin Configuration and Functions | | 9.1 Application Information | | | 6 Specifications | | 9.2 Typical Application | 20 | | 6.1 Absolute Maximum Ratings | 5 | 10 Power Supply Recommendations | 24 | | 6.2 ESD Ratings | | 10.1 Power-On Reset Requirements | 24 | | 6.3 Recommended Operating Conditions | | 11 Layout | | | 6.4 Thermal Information | | 11.1 Layout Guidelines | | | 6.5 Electrical Characteristics | | 11.2 Layout Example | | | 6.6 I ² C Interface Timing Requirements | | 12 Device and Documentation Support | <mark>28</mark> | | 6.7 Reset Timing Requirements | | 12.1 Related Documentation | 28 | | 6.8 Switching Characteristics | | 12.2 Receiving Notification of Documentation Update | es <mark>28</mark> | | 6.9 Typical Characteristics | | 12.3 Support Resources | 28 | | 7 Parameter Measurement Information | | 12.4 Trademarks | 28 | | 8 Detailed Description | | 12.5 Electrostatic Discharge Caution | 28 | | 8.1 Overview | | 12.6 Glossary | 28 | | 8.2 Functional Block Diagram | | 13 Mechanical, Packaging, and Orderable | | | 8.3 Feature Description | | Information | 28 | | 0.0 / Gataro Bocomption | | | | 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 | Changes from Revision F (April 2019) to Revision G (March 2021) | Page | |--|------| | Changed the PW and RGE package values in the Thermal Information. | 5 | | Changed the V _{PORR} row in the <i>Electrical Characteristics</i> | 6 | | Added V _{PORF} row to the <i>Electrical Characteristics</i> | 6 | | Changed the I _{CC} Low inputs and High inputs values in the <i>Electrical Characteristics</i> | 6 | | Changed the Power Supply Recommendations | 24 | | Changes from Revision E (February 2015) to Revision F (April 2019) | Page | | • 更新了 <i>节</i> 3 部分 | 1 | | Changed the Pin Configuration images | 3 | | Updated Pin Name for Pin 8 From: SC2 To: SD2 in the Pin Functions table | 3 | | Added the Typical Characteristics section | 10 | | Changes from Revision D (June 2014) to Revision E (February 2015) | Page | | -
• 更改了首页图 | 1 | | Added Thermal Information. | 5 | | Changed Note (2) in the Electrical Characteristics | 6 | | Added Layout Example | | | Changes from Revision C (June 2007) to Revision D (June 2014) | Page | | Added RESET Errata section | 15 | | Updated Typical Application schematic. | 20 | # **5 Pin Configuration and Functions** 图 5-1. DB, DGV, DW or PW Package, 24-Pin SSOP, TVSOP, SOIC or TSSOP , Top View 表 5-1. Pin Functions | | PIN | | | |-----------------|---------------------|-----|--| | | NO. | I/O | DESCRIPTION | | NAME | DB, DW, DGV ,
PW | | | | A0 | 1 | I | Address input 0. Connect directly to V _{CC} or ground | | A1 | 2 | I | Address input 1. Connect directly to V _{CC} or ground | | RESET | 3 | I | Active-low reset input. Connect to V _{CC} through a pull-up resistor, if not used | | SD0 | 4 | I/O | Serial data 0. Connect to V _{CC} through a pull-up resistor | | SC0 | 5 | I/O | Serial clock 0. Connect to V _{CC} through a pull-up resistor | | SD1 | 6 | I/O | Serial data 1. Connect to V _{CC} through a pull-up resistor | | SC1 | 7 | I/O | Serial clock 1. Connect to V _{CC} through a pull-up resistor | | SD2 | 8 | I/O | Serial data 2. Connect to V _{CC} through a pull-up resistor | | SC2 | 9 | I/O | Serial clock 2. Connect to V _{CC} through a pull-up resistor | | SD3 | 10 | I/O | Serial data 3. Connect to V _{CC} through a pull-up resistor | | SC3 | 11 | I/O | Serial clock 3. Connect to V _{CC} through a pull-up resistor | | GND | 12 | _ | Ground | | SD4 | 13 | I/O | Serial data 4. Connect to V _{CC} through a pull-up resistor | | SC4 | 14 | I/O | Serial clock 4. Connect to V _{CC} through a pull-up resistor | | SD5 | 15 | I/O | Serial data 5. Connect to V _{CC} through a pull-up resistor | | SC5 | 16 | I/O | Serial clock 5. Connect to V _{CC} through a pull-up resistor | | SD6 | 17 | I/O | Serial data 6. Connect to V _{CC} through a pull-up resistor | | SC6 | 18 | I/O | Serial clock 6. Connect to V _{CC} through a pull-up resistor | | SD7 | 19 | I/O | Serial data 7. Connect to V _{CC} through a pull-up resistor | | SC7 | 20 | I/O | Serial clock 7. Connect to V _{CC} through a pull-up resistor | | A2 | 21 | I | Address input 2. Connect directly to V _{CC} or ground | | SCL | 22 | I/O | Serial clock bus. Connect to V _{CC} through a pull-up resistor | | SDA | 23 | I/O | Serial data bus. Connect to V _{CC} through a pull-up resistor | | V _{CC} | 24 | _ | Supply voltage | 图 5-2. RGE Package, 24-Pin VQFN , Top View ### 表 5-2. Pin Functions, RGE | PIN | | | AX 3-2. F III I UIICUOIIS, NGL | |-----------------|-----|-----|--| | NAME | NO. | I/O | DESCRIPTION | | SD0 | 1 | I/O | Serial data 0. Connect to V _{CC} through a pull-up resistor | | SC0 | 2 | I/O | Serial clock 0. Connect to V _{CC} through a pull-up resistor | | SD1 | 3 | I/O | Serial data 1. Connect to V _{CC} through a pull-up resistor | | SC1 | 4 | I/O | Serial clock 1. Connect to V _{CC} through a pull-up resistor | | SD2 | 5 | I/O | Serial data 2. Connect to V _{CC} through a pull-up resistor | | SC2 | 6 | I/O | Serial clock 2. Connect to V _{CC} through a pull-up resistor | | SD3 | 7 | I/O | Serial data 3. Connect to V _{CC} through a pull-up resistor | | SC3 | 8 | I/O | Serial clock 3. Connect to V _{CC} through a pull-up resistor | | GND | 9 | _ | Ground | | SD4 | 10 | I/O | Serial data 4. Connect to V _{CC} through a pull-up resistor | | SC4 | 11 | I/O | Serial clock 4. Connect to V _{CC} through a pull-up resistor | | SD5 | 12 | I/O | Serial data 5. Connect to V _{CC} through a pull-up resistor | | SC5 | 13 | I/O | Serial clock 5. Connect to V _{CC} through a pull-up resistor | | SD6 | 14 | I/O | Serial data 6. Connect to V _{CC} through a pull-up resistor | | SC6 | 15 | I/O | Serial clock 6. Connect to V _{CC} through a pull-up resistor | | SD7 | 16 | I/O | Serial data 7. Connect to V _{CC} through a pull-up resistor | | SC7 | 17 | I/O | Serial clock 7. Connect to V _{CC} through a pull-up resistor | | A2 | 18 | I | Address input 2. Connect directly to V _{CC} or ground | | SCL | 19 | I/O | Serial clock bus. Connect to V _{CC} through a pull-up resistor | | SDA | 20 | I/O | Serial data bus. Connect to V _{CC} through a pull-up resistor | | V _{CC} | 21 | _ | Supply voltage | | A0 | 22 | I | Address input 0. Connect directly to V _{CC} or ground | | A1 | 23 | I | Address input 1. Connect directly to V _{CC} or ground | | RESET | 24 | I | Active-low reset input. Connect to V _{CC} through a pull-up resistor, if not used | ## **6 Specifications** ### 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) | | | MIN | MAX | UNIT | |------------------|------------------------------|-------|-----|------| | V _{CC} | Supply voltage | - 0.5 | 7 | V | | VI | Input voltage ⁽²⁾ | - 0.5 | 7 | V | | I _I | Input current | - 20 | 20 | mA | | Io | Output current | - 25 | 25 | mA | | I _{CC} | Supply current | - 100 | 100 | mA | | T _{stg} | Storage temperature | - 65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ### 6.2 ESD Ratings | | | | | VALUE | UNIT | |---|-------|-------------|--|-------|------| | | Ele | ectrostatic | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±2000 | | | V | (ECD) | scharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002 ⁽²⁾ | ±1000 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard
ESD control process. # **6.3 Recommended Operating Conditions** See (1) | | | | MIN | MAX | UNIT | |-----------------|--------------------------------|----------------|-----------------------|-----------------------|------| | V _{CC} | Supply voltage | | 2.3 | 5.5 | V | | \/ | High level input veltage | SCL, SDA | 0.7 × V _{CC} | 6 | V | | V _{IH} | High-level input voltage | A2 - A0, RESET | 0.7 × V _{CC} | V _{CC} + 0.5 | v | | \/ | Low-level input voltage | SCL, SDA | - 0.5 | 0.3 × V _{CC} | V | | V _{IL} | Low-level input voltage | A2 - A0, RESET | - 0.5 | 0.3 × V _{CC} | · | | T _A | Operating free-air temperature | | - 40 | 85 | °C | ⁽¹⁾ All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. See the *Implications of Slow or Floating CMOS Inputs* application report. ### **6.4 Thermal Information** | | | PCA9548A | | | | | | |------------------------|--|-----------|-------------|-----------|------------|------------|------| | | THERMAL METRIC ⁽¹⁾ | DB (SSOP) | DGV (TVSOP) | DW (SOIC) | PW (TSSOP) | RGE (VQFN) | UNIT | | | | 24 PINS | | | | | | | R _{θ JA} | Junction-to-ambient thermal resistance | 89.1 | 99.6 | 73.2 | 108.8 | 57.2 | °C/W | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 51.1 | 31.1 | 41.3 | 54.1 | 62.5 | °C/W | | R _{0 JB} | Junction-to-board thermal resistance | 46.6 | 53.1 | 42.9 | 62.7 | 34.4 | °C/W | | ψ ЈТ | Junction-to-top characterization parameter | 18.5 | 0.9 | 15.3 | 10.9 | 3.8 | °C/W | | ψ ЈВ | Junction-to-board characterization parameter | 46.3 | 52.6 | 42.6 | 62.3 | 34.4 | °C/W | ⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ### 6.4 Thermal Information (continued) | | | PCA9548A | | | | | | |----------------------|--|-----------|-------------|-----------|------------|------------|------| | | THERMAL METRIC ⁽¹⁾ | DB (SSOP) | DGV (TVSOP) | DW (SOIC) | PW (TSSOP) | RGE (VQFN) | UNIT | | | | | | 24 PINS | | | | | R _{H JC(bo} | Junction-to-case (bottom) thermal resistance | N/A | N/A | N/A | N/A | 15.5 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ### 6.5 Electrical Characteristics V_{CC} = 2.3 V to 3.6 V, over recommended operating free-air temperature range (unless otherwise noted) | | PARAMETE | R | TEST CONDITIONS | V _{cc} | MIN | TYP ⁽¹⁾ | MAX | UNIT | |--------------------------|------------------------|--|--|-----------------|-----|--------------------|-----|------------| | V _{PORR} | Power-on reset vo | oltage, V _{CC} rising | No load, V _I = V _{CC} or GND | | | 1.2 | 1.5 | V | | V _{PORF} | Power-on reset vo | oltage, V _{CC} falling ⁽²⁾ | No load, V _I = V _{CC} or GND | | 0.8 | 1 | | V | | | | | | 5 V | | 3.6 | | | | | | | | 4.5 V to 5.5 V | 2.6 | | 4.5 | ı | | | Conitals and and analy | | V V 1 400 A | 3.3 V | | 1.9 | | | | $V_{o(sw)}$ | Switch output volt | age | $V_{i(sw)} = V_{CC}$, $I_{SWout} = -100 \mu A$ | 3 V to 3.6 V | 1.6 | | 2.8 | V | | | | | | 2.5 V | | 1.5 | | ı | | | | | | 2.3 V to 2.7 V | 1.1 | | 2 | ı | | 1 | SDA | | V _{OL} = 0.4 V | 2.3 V to 5.5 V | 3 | 6 | | mA | | l _{OL} | SDA | | V _{OL} = 0.6 V | 2.3 V to 5.5 V | 6 | 9 | | IIIA | | | SCL, SDA | | | | - 1 | | 1 | | | | SC7 - SC0, SD7 | - SD0 | V V STONE | 0.07/4- 5.57/ | - 1 | | 1 | | | I _I | A2 - A0 | | - V _I = V _{CC} or GND | 2.3 V to 5.5 V | - 1 | | 1 | μA | | | RESET | | | | - 1 | | 1 | | | | Operating mode | | | 5.5 V | | 50 | 80 | | | | | f _{SCL} = 400 kHz | $V_I = V_{CC}$ or GND, $I_O = 0$ | 3.6 V | | 20 | 35 | - | | | | | | 2.7 V | | 11 | 20 | | | | | f _{SCL} = 100 kHz | $V_I = V_{CC}$ or GND, $I_O = 0$ | 5.5 V | | 9 | 30 | | | | | | | 3.6 V | | 6 | 15 | | | | | | | 2.7 V | | 4 | 8 | | | I _{CC} | | Low inputs | V _I = GND, I _O = 0 | 5.5 V | | 0.2 | 2 | μА | | | | | | 3.6 V | | 0.1 | 2 | - 1 | | | Standby mode | | | 2.7 V | | 0.1 | 1 | | | | Standby mode | | | 5.5 V | | 0.2 | 2 | ı | | | | High inputs | $V_I = V_{CC}, I_O = 0$ | 3.6 V | | 0.1 | 2 | ı | | | | | | 2.7 V | | 0.1 | 1 | | | A 1 | Supply-current | SCL, SDA | SCL or SDA input at 0.6 V,
Other inputs at V _{CC} or GND | 23 V to 5.5 V | | 3 | 20 | μ Α | | ΔI _{CC} | change | OOL, ODA | SCL or SDA input at V _{CC} - 0.6 V,
Other inputs at V _{CC} or GND | 2.3 V to 5.5 V | 20 | μΛ | | | | | A2 - A0 | | V _I = V _{CC} or GND | | | 4 | 5 | | | Ci | RESET | | ANI - ACC OI GIAD | 2.3 V to 5.5 V | | 4 | 5 | pF | | | SCL | | V _I = V _{CC} or GND, Switch OFF | | 20 | | 28 | | | C (3) | SDA | | V = V or CND Switch OFF | 2.2.V.to F.F.V | | 20 | 28 | | | C _{io(off)} (3) | SC7 - SC0, SD7 | - SD0 | $V_I = V_{CC}$ or GND, Switch OFF | 2.3 V to 5.5 V | | 5.5 | 7.5 | pF | Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated ### **6.5 Electrical Characteristics (continued)** V_{CC} = 2.3 V to 3.6 V, over recommended operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | V _{cc} | MIN | TYP ⁽¹⁾ | MAX | UNIT | |-----------------|----------------------|--|-----------------|-----|--------------------|-----|------| | R _{ON} | | V _O = 0.4 V, I _O = 15 mA | 4.5 V to 5.5 V | 4 | 10 | 20 | | | | Switch-on resistance | | 3 V to 3.6 V | 5 | 12 | 30 | Ω | | | | V _O = 0.4 V, I _O = 10 mA | 2.3 V to 2.7 V | 7 | 15 | 45 | | - (1) All typical values are at nominal supply voltage (2.5-, 3.3-, or 5-V V_{CC}), $T_A = 25^{\circ}C$. - (2) The power-on reset circuit resets the l²C bus logic with V_{CC} < V_{PORF}. (3) C_{io(ON)} depends on internal capacitance and external capacitance added to the SCn lines when channels(s) are ON. # 6.6 I²C Interface Timing Requirements over recommended operating free-air temperature range (unless otherwise noted) (see <a>\bar{8} 7-1) | | | | MIN | MAX | UNIT | |------------------------|---|---|----------------------------|------------|------------| | STANDARI | D MODE | | | | | | f _{scl} | I ² C clock frequency | | 0 | 100 | kHz | | t _{sch} | I ² C clock high time | 4 | | μ S | | | t _{scl} | I ² C clock low time | | 4.7 | | μs | | t _{sp} | I ² C spike time | | | 50 | ns | | t _{sds} | I ² C serial-data setup time | | 250 | | ns | | t _{sdh} | I ² C serial-data hold time | | 0 ⁽¹⁾ | | μs | | t _{icr} | I ² C input rise time | | | 1000 | ns | | t _{icf} | I ² C input fall time | | | 300 | ns | | t _{ocf} | I ² C output (SDn) fall time (10-pF to 40 | 0-pF bus) | | 300 | ns | | t _{buf} | I ² C bus free time between stop and sta | art | 4.7 | | μs | | t _{sts} | I ² C start or repeated start condition se | tup | 4.7 | | μs | | t _{sth} | I ² C start or repeated start condition ho | ld | 4 | | μs | | t _{sps} | I ² C stop condition setup | | 4 | | μs | | t _{vdL(Data)} | Valid-data time (high to low) ⁽³⁾ | SCL low to SDA output low valid | | 1 | μ s | | t _{vdH(Data)} | Valid-data time (low to high) ⁽³⁾ | SCL low to SDA output high valid | | 0.6 | μ S | | t _{vd(ack)} | Valid-data time of ACK condition | ACK signal from SCL low to SDA output low | | 1 | μS | | C _b | I ² C bus capacitive load | | 400 | pF | | | FAST MOD | E | | | | | | f _{scl} | I ² C clock frequency | | 0 | 400 | kHz | | t _{sch} | I ² C clock high time | | 0.6 | | μ S | | t _{scl} | I ² C clock low time | | 1.3 | | μs | | t _{sp} | I ² C spike time | | | 50 | ns | | t _{sds} | I ² C serial-data setup time | | 100 | | ns | | t _{sdh} | l ² C serial-data hold time | | 0(1) | | μ s | | t _{icr} | I ² C input rise time | | 20 + 0.1C _b (2) | 300 | ns | | t _{icf} | I ² C input fall time | | 20 + 0.1C _b (2) | 300 | ns | | t _{ocf} | I ² C output (SDn) fall time (10-pF to 40 | 0-pF bus) | 20 + 0.1C _b (2) | 300 | ns | | t _{buf} | I ² C bus free time between stop and sta | 1.3 | | μs | | | t _{sts} | I ² C start or repeated start condition se | 0.6 | | μs | | | t _{sth} | I ² C start or repeated start condition ho | 0.6 | | μs | | | t _{sps} | I ² C stop condition setup | | 0.6 | | μ s | | t _{vdL(Data)} | Valid-data time (high to low) ⁽³⁾ | SCL low to SDA output low valid | | 1 | μs | | t _{vdH(Data)} | Valid-data time (low to high) ⁽³⁾ | SCL low to SDA output high valid | | 0.6 | μs | | t _{vd(ack)} | Valid-data time of ACK condition | ACK signal from SCL low to SDA output low | | 1 | μs | | C _b | I ² C bus capacitive load | | 400 | pF | | ⁽¹⁾ A device internally must provide a hold time of at least 300 ns for the SDA signal (referred to the V_{IH} min of the SCL signal), to bridge the undefined region of the falling edge of SCL. ⁽²⁾ C_b = total bus capacitance of one bus line in pF. ### **6.7 Reset Timing Requirements** over recommended operating free-air temperature range (unless otherwise noted) | | | MIN | MAX | UNIT | |-----------------------|-----------------------------------|-----|-----|------| | t _{W(L)} | Pulse duration, RESET low | 6 | | ns | | t _{REC(STA)} | Recovery time from RESET to start | 0 | | ns | ### 6.8 Switching Characteristics over recommended operating free-air temperature range, C_I ≤ 100 pF (unless otherwise noted) (see 图 7-1) | | PARAMETE | R | FROM
(INPUT) | TO
(OUTPUT) | MIN MAX | UNIT | |----------------------|------------------------|--|-----------------|----------------|---------|------| | t _{pd} (1) | Propagation delay time | R_{ON} = 20 Ω , C_L = 15 pF | SDA or SCL | SDn or SCn | 0.3 | ns | | tpd \ | Propagation delay time | R_{ON}
= 20 Ω , C_L = 50 pF | SDA or SCL | SDn or SCn | 1 | 115 | | t _{rst} (2) | RESET time (SDA clear) | | RESET | SDA | 500 | ns | ⁽¹⁾ The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance). Copyright © 2021 Texas Instruments Incorporated ⁽²⁾ t_{rst} is the propagation delay measured from the time the RESET pin is first asserted low to the time the SDA pin is asserted high, signaling a stop condition. It must be a minimum of t_{WL}. ### **6.9 Typical Characteristics** 图 6-1. Maximum Pull-Up Resistance ($R_{p(max)}$) vs Bus Capacitance (C_b) 图 6-2. Minimum Pull-Up Resistance ($R_{p(min)}$) vs Pull-Up Reference Voltage (V_{DPUX}) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated ### 7 Parameter Measurement Information **SDA LOAD CONFIGURATION** **VOLTAGE WAVEFORMS** | BYTE | DESCRIPTION | |------|--------------------------| | 1 | I ² C address | | 2, 3 | P-port data | - A. C_L includes probe and jig capacitance. - B. All inputs are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z $_{0}$ = 50 Ω , t_{r}/t_{f} \leq 30 ns. - C. Not all parameters and waveforms are applicable to all devices. 图 7-1. I²C Load Circuit and Voltage Waveforms **SDA LOAD CONFIGURATION** - A. C_L includes probe and jig capacitance. - B. All inputs are supplied by generators having the following characteristics: PRR \leqslant 10 MHz, Z_{O} = 50 Ω , t_{r}/t_{f} \leqslant 30 ns. - C. I/Os are configured as inputs. - D. Not all parameters and waveforms are applicable to all devices. 图 7-2. Reset Load Circuit and Voltage Waveforms ### 8 Detailed Description #### 8.1 Overview The PCA9548A is a 8-channel, bidirectional translating I²C switch. The master SCL/SDA signal pair is directed to eight channels of slave devices, SC0/SD0-SC3/SD3. Any individual downstream channel can be selected as well as any combination of the eight channels. The device offers an active-low \overline{RESET} input which resets the state machine and allows the PCA9548A to recover if one of the downstream I²C buses get stuck in a low state. The state machine of the device can also be reset by cycling the power supply, V_{CC}, also known as a power-on reset (POR). Both the \overline{RESET} function and a POR cause all channels to be deselected. The connections of the I²C data path are controlled by the same I²C master device that is switched to communicate with multiple I²C slaves. After the successful acknowledgment of the slave address (hardware selectable by A0 and A1 pins), a single 8-bit control register is written to or read from to determine the selected channels. The PCA9548A may also be used for voltage translation, allowing the use of different bus voltages on each SCn/SDn pair such that 1.8-V, 2.5-V, or 3.3-V parts can communicate with 5-V parts. This is achieved by using external pull-up resistors to pull the bus up to the desired voltage for the master and each slave channel. #### 8.2 Functional Block Diagram ### **8.3 Feature Description** The PCA9548A is an 8-channel, bidirectional translating switch for I²C buses that supports Standard-Mode (100 kHz) and Fast-Mode (400 kHz) operation. The PCA9548A features I²C control using a single 8-bit control register in which each bit controls the enabling and disabling for one of the 8 switch channels of I²C data flow. Depending on the application, voltage translation of the I²C bus can also be achieved using the PCA9548A to allow 1.8-V, 2.5-V, or 3.3-V parts to communicate with 5-V parts. Additionally, in the event that communication on the I²C bus enters a fault state, the PCA9548A can be reset to resume normal operation using the RESET pin feature or by a power-on reset which results from cycling power to the device. #### 8.4 Device Functional Modes #### 8.4.1 RESET Input The $\overline{\text{RESET}}$ input is an active-low signal that may be used to recover from a bus-fault condition. When this signal is asserted low for a minimum of t_{WL} , the PCA9548A resets its registers and I^2C state machine and deselects all channels. The $\overline{\text{RESET}}$ input must be connected to V_{CC} through a pull-up resistor. #### 8.4.1.1 RESET Errata If RESET voltage set higher than VCC, current flows from RESET pin to VCC pin. #### 8.4.1.1.1 System Impact VCC is pulled above its regular voltage level. #### 8.4.1.1.2 System Workaround Design such that RESET voltage is same or lower than VCC. #### 8.4.2 Power-On Reset When power (from 0 V) is applied to V_{CC} , an internal power-on reset holds the PCA9548A in a reset condition until V_{CC} has reached V_{POR} . At that point, the reset condition is released and the PCA9548A registers and I^2C state machine initialize to their default states. After that, V_{CC} must be lowered to below V_{POR} and then back up to the operating voltage for a power-reset cycle. #### 8.5 Programming #### 8.5.1 I²C Interface The bidirectional I²C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be connected to a positive supply through a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy. I²C communication with this device is initiated by a master sending a start condition, a high-to-low transition on the SDA input/output while the SCL input is high (see $\[mathbb{8}\]$ 8-1). After the start condition, the device address byte is sent, most significant bit (MSB) first, including the data direction bit (R/ $\[mathbb{W}\]$). After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/output during the high of the ACK-related clock pulse. The address inputs (A0 – A2) of the slave device must not be changed between the start and the stop conditions. On the I²C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control commands (start or stop) (see 8 8-2). A stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the master (see \begin{align*}{8} 8-1). Any number of data bytes can be transferred from the transmitter to receiver between the start and the stop conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see 8-3). When a slave receiver is addressed, it must generate an ACK after each byte is received. Similarly, the master must generate an ACK after each byte that it receives from the slave transmitter. Setup and hold times must be met to ensure proper operation. A master receiver signals an end of data to the slave transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a stop condition. 图 8-1. Definition of Start and Stop Conditions 图 8-2. Bit Transfer 图 8-3. Acknowledgment on I²C Bus ### 8.6 Register Maps #### 8.6.1 Device Address 8-4 shows the address byte of the PCA9548A. 图 8-4. PCA9548A Address The last bit of the slave address defines the operation (read or write) to be performed. When it is high (1), a read is selected, while a low (0) selects a write operation. 表 8-1 shows the PCA9548A address reference. | INPUTS | | | |--------|------------------|------------------------------------| | | | I ² C BUS SLAVE ADDRESS | | A1 | A0 | 1 C BOS SLAVE ADDRESS | | L | L | 112 (decimal), 70 (hexadecimal) | | L | Н | 113 (decimal), 71 (hexadecimal) | | Н | L | 114 (decimal), 72 (hexadecimal) | | Н | Н | 115 (decimal), 73 (hexadecimal) | | L | L | 116 (decimal), 74 (hexadecimal) | | L | Н | 117 (decimal), 75 (hexadecimal) | | H L | | 118 (decimal), 76 (hexadecimal) | | Н | Н | 119 (decimal), 77 (hexadecimal) | | | L
H
H
L | L L L H H L L L L H H L | 表 8-1. Address Reference #### 8.6.2 Control Register Following the successful acknowledgment of the address byte, the bus master sends a command byte that is stored in the control register in the PCA9548A (see 8-5). This register can be written and read via the I²C bus. Each bit in the command byte corresponds to a SCn/SDn channel and a high (or 1) selects this channel. Multiple SCn/SDn channels may be selected at the same time. When a channel is selected, the channel becomes active after a stop condition has been placed on the I²C bus. This ensures that all SCn/SDn lines are in a high state when the channel is made active, so that no false conditions are generated at the time of connection. A stop condition always must occur immediately after the acknowledge cycle. If multiple bytes are received by the PCA9548A, it saves the last byte received. 图 8-5. Control Register 表 8-2 shows the PCA9548A Command byte definition. ### 表 8-2. Command Byte Definition | | | COMMAND | | | | | | | |-----|-------------|---------|--------------------|----|----|----|-----|---| | B7 | В6 | B5 | B4 | В3 | B2 | B1 | В0 | COMMAND | | X | Х | х | Х | Х | Х | Х | 0 | Channel 0 disabled | | _ ^ | ^ | ^ | ^ | ^ | ^ | ^ | 1 | Channel 0 enabled | | X | X X X X X 0 | × | Channel 1 disabled | | | | | | | _ ^ | ^ | ^ | ^ | | ^ | 1 | _ ^ | Channel 1 enabled | | X | X | × | Х | X | 0 | Х | X | Channel 2 disabled | | _ ^ | ^ | ^ | ^ | ^ | 1 | ^ | _ ^ | Channel 2 enabled | | Х | Х | Х | Х | 0 | Х | Х | Х | Channel 3 disabled | | _ ^ | ^ |
^ | ^ | 1 | ^ | ^ | _ ^ | Channel 3 enabled | | X | X | x | 0 | X | X | Х | × | Channel 4 disabled | | _ ^ | ^ | ^ | 1 | ^ | ^ | ^ | _ ^ | Channel 4 enabled | | X | X | 0 | Х | Х | Х | Х | X | Channel 5 disabled | | _ ^ | ^ | 1 | ^ | ^ | ^ | ^ | _ ^ | Channel 5 enabled | | Х | 0 | Х | Х | Х | Х | Х | X | Channel 6 disabled | | _ ^ | 1 | | ^ | ^ | ^ | ^ | _ ^ | Channel 6 enabled | | 0 | Х | Х | Х | Х | Х | Х | X | Channel 7 disabled | | 1 | ^ | _ ^ | ^ | ^ | ^ | ^ | _ ^ | Channel 7 enabled | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | No channel selected, power-up/reset default state | #### 8.6.3 Bus Transactions Data is exchanged between the master and PCA9548A through write and read commands. #### 8.6.3.1 Writes Data is transmitted to the PCA9548A by sending the device address and setting the least-significant bit (LSB) to a logic 0 (see 8 8-4 for device address). The command byte is sent after the address and determines which SCn/SDn channel receives the data that follows the command byte (see 8 8-6). There is no limitation on the number of data bytes sent in one write transmission. 图 8-6. Write to Control Register #### 8.6.3.2 Reads The bus master first must send the PCA9548A address with the LSB set to a logic 1 (see 8.4 for device address). The command byte is sent after the address and determines which SCn/SDn channel is accessed. After a restart, the device address is sent again, but this time, the LSB is set to a logic 1. Data from the SCn/SDn channel defined by the command byte then is sent by the PCA9548A (see 8.7). After a restart, the value of the SCn/SDn channel defined by the command byte matches the SCn/SDn channel being accessed when the restart occurred. Data is clocked into the SCn/SDn channel on the rising edge of the ACK clock pulse. There is no limitation on the number of data bytes received in one read transmission, but when the final byte is received, the bus master must not acknowledge the data. 图 8-7. Read From Control Register ## 9 Application Information Disclaimer #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ### 9.1 Application Information Applications of the PCA9548A contain an I²C (or SMBus) master device and up to eight I²C slave devices. The downstream channels are ideally used to resolve I²C slave address conflicts. For example, if eight identical digital temperature sensors are needed in the application, one sensor can be connected at each channel: 0, 1, 2, and 3. When the temperature at a specific location needs to be read, the appropriate channel can be enabled and all other channels switched off, the data can be retrieved, and the I²C master can move on and read the next channel In an application where the I²C bus contains many additional slave devices that do not result in I²C slave address conflicts, these slave devices can be connected to any desired channel to distribute the total bus capacitance across multiple channels. If multiple switches are enabled simultaneously, additional design requirements must be considered (See the *Design Requirements* and *Detailed Design Procedure* sections). ### 9.2 Typical Application A typical application of the PCA9548A contains 1 or many separate data pull-up voltages, V_{CC} , one for the master device and one for each of the selectable slave channels, 0 through 7. In the event where the master device and all slave devices operate at the same voltage, then the VCC pin can be connected to this supply voltage. In an application where voltage translation is necessary, additional design requirements must be considered (See the *Design Requirements* section). § 9-1 shows an application in which the PCA9548A can be used. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated A. Pin numbers shown are for the PW and RTW packages. 图 9-1. PCA9548A Typical Application Schematic #### 9.2.1 Design Requirements The A0, A1, and A2 pins are hardware selectable to control the slave address of the PCA9548A. These pins may be tied directly to GND or V_{CC} in the application. If multiple slave channels are activated simultaneously in the application, then the total I_{OL} from SCL/SDA to GND on the master side is the sum of the currents through all pull-up resistors, R_{p} . The pass-gate transistors of the PCA9548A are constructed such that the V_{CC} voltage can be used to limit the maximum voltage that is passed from one I^2C bus to another. Pass-Gate Voltage (V_{pass}) vs Supply Voltage (V_{CC}) at Three Temperature Points shows the voltage characteristics of the pass-gate transistors (note that the graph was generated using data specified in the *Electrical Characteristics* section of this data sheet). In order for the PCA9548A to act as a voltage translator, the V_{pass} voltage must be equal to or lower than the lowest bus voltage. For example, if the main bus is running at 5 V and the downstream buses are 3.3 V and 2.7 V, V_{pass} must be equal to or below 2.7 V to effectively clamp the downstream bus voltages. As shown in Pass-Gate Voltage (V_{pass}) vs Supply Voltage (V_{CC}) at Three Temperature Points, $V_{pass(max)}$ is 2.7 V when the PCA9548A supply voltage is 4 V or lower, so the PCA9548A supply voltage could be set to 3.3 V. Pull-up resistors then can be used to bring the bus voltages to their appropriate levels (see $\frac{V_{CC}}{V_{CC}}$). #### 9.2.2 Detailed Design Procedure Once all the slaves are assigned to the appropriate slave channels and bus voltages are identified, the pull-up resistors, R_p , for each of the buses need to be selected appropriately. The minimum pull-up resistance is a function of the reference voltage of the specific I^2C channel (V_{DPUX}) , $V_{OL,(max)}$, and I_{OL} as shown in 5 \pm 1. $$R_{p(min)} = \frac{V_{DPUX} - V_{OL(max)}}{I_{OL}}$$ (1) The maximum pull-up resistance is a function of the maximum rise time, t_r (300 ns for fast-mode operation, f_{SCL} = 400 kHz) and bus capacitance, C_b is given by 方程式 2. $$\mathsf{R}_{\mathsf{p}(\mathsf{max})} = \frac{\mathsf{t_r}}{0.8473 \times \mathsf{C_b}} \tag{2}$$ The maximum bus capacitance for an I^2C bus must not exceed 400 pF for fast-mode operation. The bus capacitance can be approximated by adding the capacitance of the PCA9548A, $C_{io(OFF)}$, the capacitance of wires, connections, traces, and the capacitance of each individual slave on a given channel. If multiple channels are activated simultaneously, each of the slaves on all channels contribute to total bus capacitance. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated ### 9.2.3 Application Curves 图 9-2. Pass-Gate Voltage (V_{pass}) vs Supply Voltage (V_{CC}) at Three Temperature Points 图 9-3. Maximum Pull-Up Resistance ($R_{p(max)}$) vs Bus Capacitance (C_b) V_{OL} = 0.2*V_{DPUX}, I_{OL} = 2 mA when V_{DPUX} \leqslant 2 V V_{OL} = 0.4 V, I_{OL} = 3 mA when V_{DPUX} > 2 V 图 9-4. Minimum Pullup Resistance (R_{p(min)}) vs Pullup Reference Voltage (V_{DPUX}) ### 10 Power Supply Recommendations #### 10.1 Power-On Reset Requirements In the event of a glitch or data corruption, PCA9548A can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application. The two types of power-on reset are shown in $\boxtimes 10-1$ and $\boxtimes 10-2$. 图 10-1. V_{CC} Is Lowered Below 0.2 V Or 0 V And Then Ramped Up To V_{CC} 图 10-2. V_{CC} is Lowered Below The Por Threshold, Then Ramped Back Up To V_{CC} 表 10-1 specifies the performance of the power-on reset feature for PCA9548A for both types of power-on reset. **PARAMETER** MIN **TYP** MAX UNIT $V_{CC\ FT}$ Fall rate See 图 10-1 100 1 ms V_{CC RT} Rise rate See 图 10-1 0.01 100 ms Time to re-ramp (when V_{CC} drops to GND) 0.001 V_{CC} TRR GND See 图 10-1 ms Time to re-ramp (when V_{CC} drops to $V_{POR\ MIN}$ - 50 mV) See **§** 10-2 0.001 V_{CC} TRR POR50 ms Level that V_{CCP} can glitch down to, but not cause a functional $V_{CC\ GH}$ See 图 10-3 1.2 V disruption when $V_{CCX GW} = 1 \mu s$ Glitch width that will not cause a functional disruption when See **8** 10-3 $V_{CC\ GW}$ $V_{CCX\ GH} = 0.5 \times V_{CCx}$ V_{PORF} Voltage trip point of POR on falling V_{CC} 0.767 1.144 V Voltage trip point of POR on rising V_{CC} 1.033 1.428 V_{PORR} 表 10-1. Recommended Supply Sequencing And Ramp Rates(1) ### (1) $T_A = -40^{\circ}C$ to 85°C (unless otherwise noted) Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width (V_{CC_GW}) and height (V_{CC_GH}) are dependent on each other. The bypass capacitance, source impedance, and the device impedance are factors that affect power-on reset performance. 图 10-3 and 表 10-1 provide more information on how to measure these specifications. Product Folder Links: PCA9548A 图 10-3. Glitch Width And Glitch Height V_{POR} is critical to the power-on reset. V_{POR} is the voltage level at which the reset condition is released and all the registers and the I²C/SMBus state machine are initialized to their default states. The value of V_{POR} differs based on the V_{CC} being lowered to or from 0. \boxtimes 10-4 and \gtrapprox 10-1 provide more details on this specification. ### 11 Layout ### 11.1 Layout Guidelines For PCB layout of the PCA9548A, common PCB layout practices must be followed but additional concerns related to high-speed data transfer such as matched impedances and differential pairs are not a concern for I²C signal speeds. It is common to have a
dedicated ground plane on an inner layer of the board and pins that are connected to ground must have a low-impedance path to the ground plane in the form of wide polygon pours and multiple vias. By-pass and de-coupling capacitors are commonly used to control the voltage on the VCC pin, using a larger capacitor to provide additional power in the event of a short power supply glitch and a smaller capacitor to filter out high-frequency ripple. In an application where voltage translation is not required, all V_{DPUX} voltages and V_{CC} could be at the same potential and a single copper plane could connect all of pull-up resistors to the appropriate reference voltage. In an application where voltage translation is required, V_{DPUM} and $V_{DPU0} - V_{DPU7}$ may all be on the same layer of the board with split planes to isolate different voltage potentials. To reduce the total I²C bus capacitance added by PCB parasitics, data lines (SCn and SDn) must be a short as possible and the widths of the traces must also be minimized (For example, 5-10 mils depending on copper weight). Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated ### 11.2 Layout Example 图 11-1. Layout Example ## 12 Device and Documentation Support #### 12.1 Related Documentation For related documentation see the following: - I2C Bus Pull-Up Resistor Calculation - Maximum Clock Frequency of I2C Bus Using Repeaters - Introduction to Logic - Understanding the I2C Bus - · Choosing the Correct I2C Device for New Designs ### 12.2 Receiving Notification of Documentation Updates To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com. In the upper right-hand corner, click the *Alert me* button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document. #### 12.3 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 12.4 Trademarks TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 #### 12.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 12.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. ### 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com 27-Jun-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/ MSL rating/ Ball material Peak reflow | | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|------------------|-----------------------|------|--|---------------------|--------------|------------------| | | ` , | | | | | (4) | (5) | | | | PCA9548ADB | Active | Production | SSOP (DB) 24 | 60 TUBE | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PD548A | | PCA9548ADB.A | Active | Production | SSOP (DB) 24 | 60 TUBE | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PD548A | | PCA9548ADBR | Active | Production | SSOP (DB) 24 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PD548A | | PCA9548ADBR.A | Active | Production | SSOP (DB) 24 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PD548A | | PCA9548ADGV | NRND | Production | TVSOP (DGV) 24 | - | - | Call TI | Call TI | -40 to 85 | | | PCA9548ADGVR | NRND | Production | TVSOP (DGV) 24 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PD548A | | PCA9548ADGVR.A | NRND | Production | TVSOP (DGV) 24 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PD548A | | PCA9548ADW | NRND | Production | SOIC (DW) 24 | 25 TUBE | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PCA9548A | | PCA9548ADW.A | NRND | Production | SOIC (DW) 24 | 25 TUBE | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PCA9548A | | PCA9548ADWR | NRND | Production | SOIC (DW) 24 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PCA9548A | | PCA9548ADWR.A | NRND | Production | SOIC (DW) 24 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PCA9548A | | PCA9548APWR | Active | Production | TSSOP (PW) 24 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PD548A | | PCA9548APWR.B | Active | Production | TSSOP (PW) 24 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PD548A | | PCA9548APWRG4 | Active | Production | TSSOP (PW) 24 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | PD548A | | PCA9548ARGER | NRND | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | PD548A | | PCA9548ARGER.B | NRND | Production | VQFN (RGE) 24 | 3000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | PD548A | ⁽¹⁾ Status: For more details on status, see our product life cycle. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. # **PACKAGE OPTION ADDENDUM** www.ti.com 27-Jun-2025 (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Jul-2025 ### TAPE AND REEL INFORMATION | | - | |----|---| | A0 | Dimension designed to accommodate the component width | | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | PCA9548ADBR | SSOP | DB | 24 | 2000 | 330.0 | 16.4 | 8.2 | 8.8 | 2.5 | 12.0 | 16.0 | Q1 | | PCA9548ADGVR | TVSOP | DGV | 24 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | PCA9548ADWR | SOIC | DW | 24 | 2000 | 330.0 | 24.4 | 10.75 | 15.7 | 2.7 | 12.0 | 24.0 | Q1 | | PCA9548ARGER
| VQFN | RGE | 24 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | www.ti.com 24-Jul-2025 #### *All dimensions are nominal | 7 till dillitoriolorio di o riorriiridi | | | | | | | | |---|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | PCA9548ADBR | SSOP | DB | 24 | 2000 | 353.0 | 353.0 | 32.0 | | PCA9548ADGVR | TVSOP | DGV | 24 | 2000 | 353.0 | 353.0 | 32.0 | | PCA9548ADWR | SOIC | DW | 24 | 2000 | 350.0 | 350.0 | 43.0 | | PCA9548ARGER | VQFN | RGE | 24 | 3000 | 353.0 | 353.0 | 32.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Jul-2025 ### **TUBE** *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |--------------|--------------|--------------|------|-----|--------|--------|--------|--------| | PCA9548ADB | DB | SSOP | 24 | 60 | 530 | 10.5 | 4000 | 4.1 | | PCA9548ADB.A | DB | SSOP | 24 | 60 | 530 | 10.5 | 4000 | 4.1 | | PCA9548ADW | DW | SOIC | 24 | 25 | 506.98 | 12.7 | 4826 | 6.6 | | PCA9548ADW.A | DW | SOIC | 24 | 25 | 506.98 | 12.7 | 4826 | 6.6 | PLASTIC QUAD FLATPACK - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4204104/H PLASTIC QUAD FLATPACK- NO LEAD #### NOTES: - All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK- NO LEAD NOTES: (continued) - This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - Solder mask tolerances between and around signal pads can vary based on board fabrication site. PLASTIC QUAD FLATPACK- NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.. #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. DW (R-PDSO-G24) # PLASTIC SMALL OUTLINE NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AD. #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. ### DB (R-PDSO-G**) ### PLASTIC SMALL-OUTLINE #### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 ### 重要通知和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司