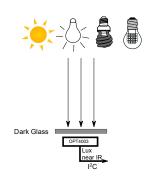
OPT4003-Q1

Instruments

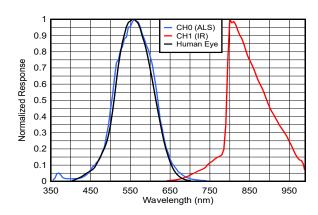
OPT4003-Q1 高速双通道高精度数字环境光传感器

1 特性

- 符合面向汽车应用的 AEC-Q100 标准:
 - 温度等级 2 (USON 型号): -40°C 至 105°C, T_A
- 通过高速 I²C 接口实现高精度、高速光/数转换
- 具有 28 位有效动态范围的可见光通道:
 - 535 μ lux 至 143klux (适用于 USON 封装型
 - 精密光学滤波,与人眼高度匹配,具有出色的近 红外 (NIR) 抑制能力
- 具有 26 位有效动态范围的近 IR 通道:
 - 409pW/cm² 至 27.45mW/cm², 适用于 USON 封装型号
 - 精密光学滤波可提供高 NIR 灵敏度和出色的可 见光抑制能力
- 半对数输出:
 - 9(可见光通道)和7(NIR通道)二进制对数 满量程照度范围
 - 每个范围内都有高度线性响应
- 内置自动满量程照度范围选择逻辑,可根据输入光 条件切换测量范围,从而始终具有出色的分辨率
- 12 个可配置转换时间:
 - 每通道 600 μs 至 800ms, 适用于高速和高精度 应用
- 用于硬件同步触发和中断的外部引脚中断
- 纠错码特性可提高汽车用例的可靠性
- 带 I²C 突发读出的输出寄存器的内部 FIFO
- 低工作电流:30μA 超低待机功耗: 2μA
- 工作温度范围: -40°C 至 +105°C
- 宽电源电压范围: 1.6V 至 3.6V
- 可耐受 5.5V 电压的 I/O 引脚
- 可选择的 I²C 地址
- 小巧的外形:
 - USON: 2mm × 2mm × 0.65mm


2 应用

- 车内和车外照明
- 信息娱乐系统与仪表组
- 电致变色和智能后视镜
- 平视显示系统
- 汽车摄像头系统
- 汽车 HVAC


封装信息

器件型号	封装 ⁽¹⁾	封装尺寸⁽²⁾
OPT4003-Q1	DNP (USON , 6)	2mm × 2mm × 0.65mm

- (1) 如需更多信息,请参阅机械、封装和可订购信息。
- (2) 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。

OPT4003-Q1 典型应用图

光谱响应: OPT4003-Q1 和人眼

3 说明

OPT4003-Q1 是一款双通道光/数传感器(单芯片照度计和 NIR 功率计),可独立测量可见光和近红外 (NIR) 光的强度。为了测量准确的可见光强度,器件上专门设计的滤波器可与人眼的明视响应高度匹配,并抑制常见光源中的近红外成分。NIR 通道滤波器经过专门设计,对近红外区域的波长具有高灵敏度,并且在 800nm 波长处实现精确截止,实现对可见光波长的高度抑制。OPT4003-Q1 具有半对数输出,并具有二进制对数满量程照度范围,每个范围内都有高度线性响应。可见光通道提供九个二进制照度范围,使得 USON 封装型号的测量能力为 535 μ lux 至 143klux,NIR 通道提供七个照度范围,使得 USON 封装型号的测量能力为 409pW/cm² 至 27.45mW/cm²,。内置的自动范围选择逻辑可根据照度级别动态调整器件增益设置,无需用户输入即可在各种条件下提供出色的分辨率。

OPT4003-Q1 在两个通道上均配备了工程光学滤波器,可提供强大的带外抑制。可见光通道上强大的红外抑制能力有助于在所有光源下保持较高的照度精度,尤其是为了美观而将传感器置于深色玻璃下时。NIR 通道能够可靠地抑制可见光波长,并在 800nm 波长以下实现精确截止,因此可在混合照明条件(包括较高的可见光照度级别)下进行精确的近红外测量。

OPT4003-Q1 设计用于需要照度级别检测以增强用户体验的系统,该器件通常使用不起眼的人眼匹配和近红外抑制功能来取代低精度光电二极管、光敏电阻器和其他环境光传感器。

OPT4003-Q1 可通过 12 个步骤配置为以每通道 600 µs 到 800ms 的光转换时间运行,从而能够根据应用需要提供系统灵活性。转换时间包括光采集时间和模数转换器 (ADC) 转换时间。测量分辨率由光强度和采集时间两者决定,USON 封装型号可有效地测量低至 535 µlux 的光强度变化,

数字操作可灵活用于系统集成。测量可以是连续的,也可以通过寄存器写入或硬件引脚一次性触发。此器件提供 了阈值检测逻辑,这允许处理器进入睡眠状态,直到传感器检测到适当的唤醒事件并通过中断引脚进行报告。

该传感器通过兼容 I²C 和 SMBus 的双线制串行接口报告表示照度级别的数字输出。输出寄存器上的内部先入先出 (FIFO) 可用于以较慢的速度从传感器读取测量值,同时仍保留器件捕获的所有数据。OPT4003-Q1 还支持 I²C 突发模式,从而以更小的 I²C 开销帮助主机从 FIFO 读取数据。

OPT4003-Q1 兼具低功耗和低电源电压功能,可延长电池供电系统的电池寿命。

内容

1 特性	1	6.5 编程	20
2 应用		7 寄存器映射	
3 说明		7.1 寄存器说明	
4 引脚配置和功能	4	8 应用和实施	35
5 规格		8.1 应用信息	35
5.1 绝对最大额定值	<mark>5</mark>	8.2 典型应用	35
5.2 ESD 等级	<u>5</u>	8.3 优秀设计实践	
5.3 建议运行条件	5	8.4 电源相关建议	37
5.4 热性能信息	5	8.5 布局	37
5.5 电气特性	6	9 器件和文档支持	40
5.6 时序要求	8	9.1 文档支持	40
5.7 时序图	8	9.2 接收文档更新通知	40
5.8 典型特性	9	9.3 支持资源	40
6 详细说明	11	9.4 商标	40
6.1 概述	11	9.5 静电放电警告	40
6.2 功能方框图	11	9.6 术语表	40
6.3 特性说明	12	10 修订历史记录	40
6.4 器件功能模式	13	11 机械、封装和可订购信息	41

4 引脚配置和功能

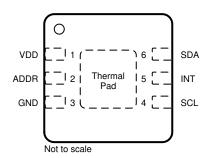


图 4-1. DNP 封装、 6 引脚 USON (顶视图)

表 4-1. 引脚功能

引	脚		说明	
编号	名称	类型 ⁽¹⁾	近 明	
1	V _{DD}	I	器件电源。连接到 1.6V 至 3.6V 电源。	
2	ADDR	I	地址引脚。该引脚设置 I ² C 地址的 LSB。	
3	GND	Р	接地	
4	SCL	I	I^2 C 时钟。通过 10k Ω 电阻器连接至 1.6V 至 5.5V 电源。	
5	INT	I/O	中断输入/输出开漏。通过 10kΩ 电阻器连接至 1.6V 至 5.5V 电源。	
6	SDA	I/O	I ² C 数据。通过 10k Ω 电阻器连接至 1.6V 至 5.5V 电源。	

(1) I=输入,O=输出,I/O=输入或输出,P=电源

5 规格

5.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

		最小值	最大值	单位
电压	VDD 至 GND	-0.5	6	V
	SDA 和 SCL 至 GND	-0.5	6	V
	任何引脚的输入电流		10	mA
T_J	结温		150	°C
T _{stg}	贮存温度	-65	150 ⁽²⁾	°C

⁽¹⁾ 超出"绝对最大额定值"运行可能会对器件造成永久损坏。绝对最大额定值并不表示器件在这些条件下或在建议运行条件以外的任何其他条件下能够正常运行。如果超出"建议运行条件"但在"绝对最大额定值"范围内使用,器件可能不会完全正常运行,这可能影响器件的可靠性、功能和性能并缩短器件寿命。

5.2 ESD 等级

			值	单位
V	静电放电	人体放电模型 (HBM),符合 AEC Q100-002 ⁽¹⁾ HBM ESD 分类等级 2	±2000	V
V _(ESD)		充电器件模型 (CDM),符合 AEC Q100-011 CDM ESD 分类等级 C4	±500	V

(1) AEC Q100-002 指示应当按照 ANSI/ESDA/JEDEC JS-001 规范执行 HBM 应力测试。

5.3 建议运行条件

在自然通风条件下的工作温度范围内测得(除非另有说明)

	最小值	标称值 最大值	単位
电源电压	1.6	3.6	V
工作温度 (USON 型号)	-40	105	°C

5.4 热性能信息

		OPT4003-Q1	
	热指标 ⁽¹⁾	DNP (USON)	单位
		6 引脚	
R ₀ JA	结至环境热阻	71.2	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻	45.7	°C/W
R ₀ JB	结至电路板热阻	42.2	°C/W
Ψ_{JT}	结至顶部特征参数	2.4	°C/W
ΨЈВ	结至电路板特征参数	42.8	°C/W

(1) 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标应用手册。

⁽²⁾ 长时间暴露在高于 105°C 的温度下会导致封装变色,频谱失真和测量不准确。

5.5 电气特性

除非另有说明,否则所有规格的适用条件为:TA = 25°C,VDD = 3.3V,每通道 800ms 的转换时间,自动满标量程,白色 LED(适用于通道 0),850nm LED(适用于通道 1)、光的法向入射角,以及在自然通风条件下的工作温度范围内。

	参数	测试条件	最小值	典型值	最大值	单位	
光学							
USON 2	型号						
	No 136 min Po 46 169 149 141	CH0 (ALS)		560			
人峰值	光谱响应的峰值波长	CH1 (IR)		800		nm	
ED	位外/预率 CHU (VI C)	最低自动增益范围,每通道 100ms 转换时间		4.28		mlux	
ER _{lux}	等效分辨率 CH0 (ALS)	最低自动增益范围,每通道 800ms 转换时间		535		μ lux	
ED	你放人童童 OTA (ID)	最低自动增益范围,每通道 100ms 转换时间,810nm 单色光源		3.28		nW/cm ²	
ER _{IR}	等效分辨率 CH1 (IR)	最低自动增益范围,每通道 800ms 转换时间,810nm 单色光源		0.409		TIVV/CITI	
_	ᄴᆸᄱᄽᄮᄱᄽ	CH0 (ALS)		143613		勒克斯	
E _{vFS}	满量程等效照度	CH1 (IR), 810nm 单色光源		27.45		mW/cm ²	
R _{CH0}	响应度	CH0 (ALS) 最低自动增益范围,每通道 800ms 转换时间,550nm 单色光源		12800		每 μ W/cm² 代码数	
R _{CH1} 响应度	响应度	CH1 (IR) 最低自动增益范围,每通道 800ms 转换时间,810nm 单色光源		2441		每 μ W/cm² 代码数	
	た成立 ピ (アM/ IMA)	CH0 (ALS)		120		٥	
	角度响应 (FWHM)	CH1 (IR), 850nm LED 输入		125			
E _v	照度测量输出结果	2000lux 输入 ⁽¹⁾	1800	2000	2200	勒克斯	
E _{IR}	CH1 (IR) 测量的测量输出结果	850nm LED 输入,79.68μW/cm ² 输入辐 照度	117900	131000	144100	代码	
常见规格	Y .						
	通道数量			2			
	ADC 分辨率		9		20	位	
	范围确定	CH0 (ALS)		4		là:	
		CH1 (IR)		3		位	
т	每通道的光采集时间 ⁽⁴⁾	转换时间 CT = 0x6		25		me	
T _{intg}		转换时间 CT = 0xB		800		ms	
	增益范围之间的相对精度(2)	所有通道		0.6		%	
E _{vIR}	红外响应(6)	850nm 近红外,CH0 (ALS) 响应		0.2		%	
E _{vVIS}	可见响应	550nm 单色光源,CH1 (IR) 响应		0.2		%	
	用于照度测量的光源变化(白炽灯、卤素 灯、荧光灯)	裸器件,无盖玻片		4		%	
	线性度	EXPONENT > 0,每个通道 100ms 转换时间,所有通道		2		%	
		EXPONENT = 0,每个通道 100ms 转换时间,所有通道	5			70	
	暗场测量	所有通道		0	10	代码	
	整个温度范围内的漂移	CH0 (ALS)		0.02		%/°C	
	正(四尺化四円円余砂	CH1 (IR), 850nm LED 输入		0.12		707 0	

Product Folder Links. OP 14003-Q1

除非另有说明,否则所有规格的适用条件为: TA = 25°C, VDD = 3.3V, 每通道 800ms 的转换时间,自动满标量程,白色 LED(适用于通道 0),850nm LED(适用于通道 1)、光的法向入射角,以及在自然通风条件下的工作温度范围内。

	参数	测试条件	最小值	典型值	最大值	单位	
		CH0 (ALS), VDD 为 3.6V 和 1.6V		0.2		%/V	
PSRR	电源抑制比(3)	CH1 (IR), VDD 为 3.6V 和 1.6V, 850nm LED 输入		0.8		%/V	
电源					,		
V_{DD}	电源		1.6		3.6	V	
V _{I2C}	I ² C 上拉电阻的电源	I ² C 上拉电阻,V _{DD} ≤ V _{I2C}	1.6		5.5	V	
l	有效电流	暗		22		μA	
IQACTIVE	有效电弧	满量程照度		30		μΛ	
I _Q	静态电流	暗		1.6	μΑ		
'Q	那 恋电机	满量程照度		2		μΛ	
POR	上电复位阈值			8.0		V	
数字							
C _{IO}	I/O 引脚电容			3		pF	
V _{IL}	低电平输入电压(SDA、SCL 和 ADDR)		0	(0.3 x V _{DD}	V	
V _{IH}	高电平输入电压(SDA、SCL 和 ADDR)		0.7 x V _{DD}		5.5	V	
I _{IL}	低电平输入电流(SDA、SCL 和 ADDR)			0.01	0.25 ⁽⁵⁾	μΑ	
V _{OL}	低电平输出电压(SDA和INT)	I _{OL} = 3mA			0.32	V	
I _{ZH}	输出逻辑高电平,高阻态漏电流(SDA、INT)	在引脚电压为 V _{DD} 时测量		0.01	0.25 ⁽⁵⁾	μΑ	
温度							
额定温度	范围	USON 型号	-40		105	°C	

- (1) 使用校准至 2000lux 的白色 LED 进行测试。
- (2) 其特点是在较高的相邻满量程设置上测量固定的近满量程照度级别。
- (3) PSRR 是测量的照度输出相对于电流值的变化百分比除以电源电压的变化,如 3.6V 和 1.6V 电源的结果所示。
- (4) 从转换开始到准备好读取数据为止的转换时间是采集时间与模数转换时间之和。
- (5) 规定的漏电流受生产测试设备限制的影响。典型值要小得多。
- (6) 使用 850nm 波长的近红外 LED 进行表征。

5.6 时序要求

参阅 (1)

		最小值	典型值	最大值	单位
I ² C 快速模式					
f _{SCL}	SCL 运行频率	0.01		0.4	MHz
t _{BUF}	开始和停止之间的总线空闲时间	1300			ns
t _{HDSTA}	重复启动后的保持时间	600			ns
t _{SUSTA}	重复启动的建立时间	600			ns
t _{SUSTO}	停止的建立时间	600			ns
t _{HDDAT}	数据保持时间	20		900	ns
t _{SUDAT}	数据设置时间	100			ns
t_{LOW}	SCL 时钟低电平周期	1300			ns
t _{HIGH}	SCL 时钟高电平周期	600			ns
t _{RC} 和t _{FC}	时钟上升和下降时间			300	ns
t _{RD} 和t _{FD}	数据上升和下降时间			300	ns
t _{TIMEO}	总线超时周期。如果 SCL 线路在这段时间内保持低电平,总线状态机将复位。		28		ms
I ² C 高速模式					
f _{SCL}	SCL 运行频率	0.01		2.6	MHz
t _{BUF}	开始和停止之间的总线空闲时间	160			ns
t _{HDSTA}	重复启动后的保持时间	160			ns
t _{SUSTA}	重复启动的建立时间	160			ns
t _{SUSTO}	停止的建立时间	160			ns
t _{HDDAT}	数据保持时间	20		140	ns
t _{SUDAT}	数据设置时间	20			ns
t_{LOW}	SCL 时钟低电平周期	240			ns
t _{HIGH}	SCL 时钟高电平周期	60			ns
t _{RC} 和t _{FC}	时钟上升和下降时间			40	ns
t _{RD} 和 t _{FD}	数据上升和下降时间			80	ns
t _{TIMEO}	总线超时周期。如果 SCL 线路在这段时间内保持低电平,总线状态机将复位。		28		ms

(1) 所有时序参数均参考最终稳定值的 30% 和 70% 的低电压阈值和高电压阈值。

5.7 时序图

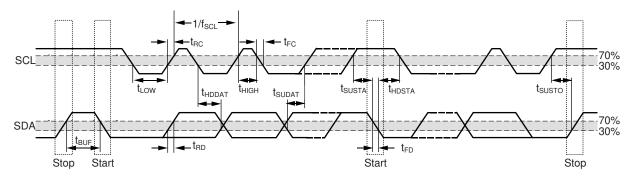
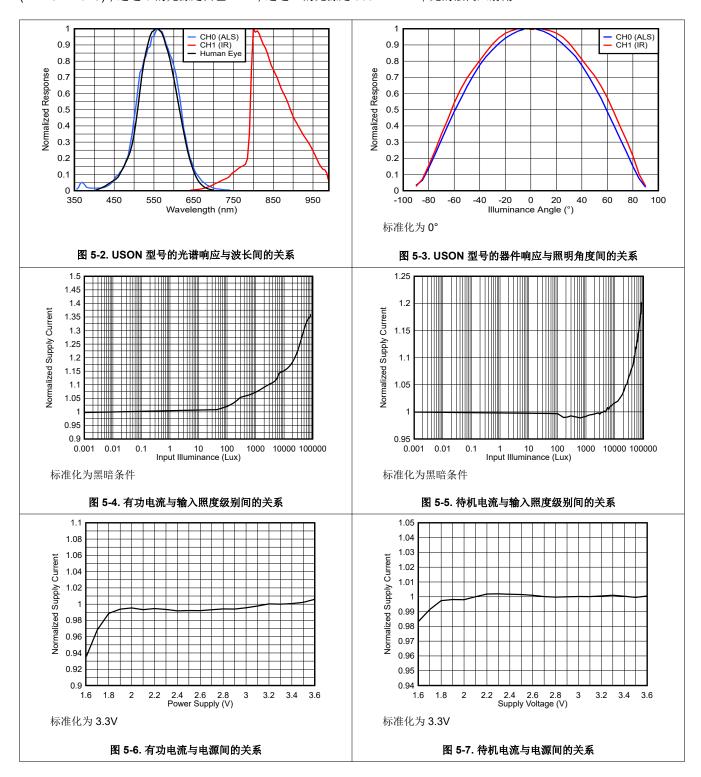
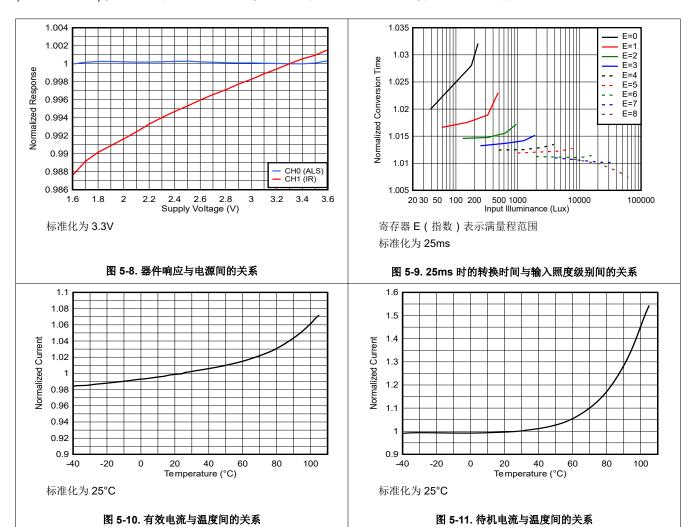



图 5-1. I²C 详细时序图

5.8 典型特性


除非另有说明,否则适用条件为: T_A = 25°C, V_{DD} = 3.3V,800ms 转换时间 (CONVERSION_TIME = 0xB),自动满量程 (RANGE = 0xC),通道 0 的光源是白色 LED,通道 1 的光源是 850nm LED,光的法向入射角

5.8 典型特性 (续)

除非另有说明,否则适用条件为: T_A = 25°C, V_{DD} = 3.3V,800ms 转换时间 (CONVERSION_TIME = 0xB),自动满量程 (RANGE = 0xC),通道 0 的光源是白色 LED,通道 1 的光源是 850nm LED,光的法向入射角

6 详细说明

6.1 概述

OPT4003-Q1 测量照亮器件的环境光。该器件在光线测量方面的光谱响应与人眼高度匹配,并具有强大的近红外 抑制能力。

环境光传感器测量环境光并帮助打造人性化的照明体验,因此传感器的光谱响应与人眼的光谱响应相匹配非常重 要。另外,人眼无法看见红外线,因此对红外线的良好阻隔效果也是此匹配的关键部分。这种匹配使得 OPT4003-Q1 尤其适合在看起来很黑但会透射红外线的窗口下方运行。

红外通道对 800nm 至 1000nm 之间的波长比较敏感。即使在有强可见光的情况下,这种灵敏度也能准确测量近红 外光源。

OPT4003-Q1 是一款完全自包含器件,能够测量环境光并通过 I²C 总线以数字形式报告与照度成正比的 ADC 代 码结果。该结果还可用于通过 INT 引脚向系统发出警报和使处理器中断。该结果还可通过可编程阈值比较进行总 结并通过 INT 引脚进行传输。

OPT4003-Q1 默认配置为在自动满量程检测模式下运行,从而始终根据给定的照明条件选择合适的满量程设置。 有九种满量程设置,其中一种也可以手动选择。将器件设置为在自动满量程检测模式下运行,用户无需对软件进 行编程,即可实现多次测量迭代并对满量程进行重新调整,直到针对任何给定测量达到可接受的结果。由于器件 在整个 28 位动态测量范围内表现了出色的线性度,因此无需在系统级别进行额外的线性度校准。

OPT4003-Q1 可配置为在连续或单次触发测量模式下运行。该器件提供 12 个转换时间,每通道 600 µs 至 800ms 不等。该器件会在启动后进入低功耗关断状态,因此 OPT4003-Q1 仅在器件设置为活动状态后才消耗活动 运行功率。

OPT4003-Q1 光学滤波系统对光学表面上的细小颗粒和微影不是很敏感。灵敏度降低的原因是,器件相对而言不 那么依赖传感器区域的均匀光照,即可抑制红外线。在所有光学器件上,为了获得出色结果,应始终确保光学表 面具有适当的洁净度。

6.2 功能方框图

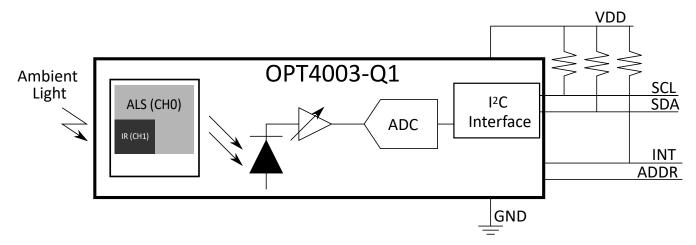


图 6-1. OPT4003-Q1 的功能方框图

Product Folder Links: OPT4003-Q1

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

6.3 特性说明

6.3.1 光谱响应

6.3.1.1 通道 0: 人眼匹配度

OPT4003-Q1 的光谱响应与人眼的光谱响应非常接近。如果使用环境光传感器测量来帮助打造良好的人类体验,或创造对人类有利的光学条件,则该传感器测量的光谱必须与人眼看到的光谱相同。

OPT4003-Q1 还具有出色的近红外 (NIR) 抑制能力。这种 NIR 抑制能力尤其重要,因为许多现实世界的光源包含大量人眼不可见的红外成分。如果传感器测量的是人眼不可见的红外光,则无法准确表示真实的人类体验。

如果应用需要将 OPT4003-Q1 隐藏在暗窗下方(这样一来,最终产品用户就无法看到传感器),则 OPT4003-Q1 的红外抑制能力就变得明显更加重要,因为许多暗窗会使可见光衰减,但会透射红外光。这种可见光衰减而 NIR 光衰减不足的情况会增大红外光与照亮传感器的可见光的比率。由于 OPT4003-Q1 具有较高的红外抑制能力,因此在这种情况下,结果仍可很好地与人眼相匹配。

6.3.1.2 通道 1: 近红外线

通道 1 能够保持较高的近红外灵敏度,同时具有出色的可见光抑制能力。该功能意味着,即使对于存在不同类型光源的应用,OPT4003-Q1 也可以进行精确的近红外测量,而不受可见光照度级别的影响。除了精确测量近红外光源之外,还可以利用通道 1 数据测量常见光源的红外成分。

6.3.2 自动满量程设置

OPT4003-Q1 具有自动满量程设置特性,无需预测和设置器件的合适范围。在该模式下,每次测量时,器件都会针对不同的照明条件自动选择合适的满量程。该器件的满量程设置之间可实现结果高度匹配。当选择不同的满量程时,这种匹配可消除结果不同的问题,也无需特定于量程且用户校准的增益系数。

6.3.3 纠错码 (ECC) 特性

OPT4003-Q1 在输出寄存器中采用了附加纠错码 (ECC) 位,有助于提高应用中光测量的可靠性。

6.3.3.1 输出采样计数器

OPT4003-Q1 包含一个 COUNTER 寄存器作为输出寄存器的一部分,每次成功测量时,COUNTER 寄存器都会递增。该寄存器可作为输出寄存器的一部分进行读取,这有助于应用跟踪测量结果。4 位计数器在上电时从 0 开始计数,最多计数到 15,之后计数器复位回 0 并继续计数,这在以下情况下尤其有用:

- 主机或控制器需要连续测量。使用 COUNTER 寄存器,控制器可以比较样片,并确保样片按预期顺序排列, 而不会丢失中间计数器值。
- 作为照度级别不变时的一项安全特性,控制器可通过比较两次测量的 COUNTER 寄存器值来确保 OPT4003-Q1 的测量值不会卡住不变。如果 COUNTER 值继续随着样片而变化,则器件会使用最新的照度级别测量值来更新输出寄存器。

Copyright © 2025 Texas Instruments Incorporated

6.3.3.2 输出 CRC

CRC 寄存器由循环冗余校验器位组成,是 OPT4003-Q1 内计算的输出寄存器的一部分,每次测量时都会更新。 该特性有助于在从器件读出输出期间检测与通信相关的位错误。寄存器 1 列出了 CRC 位的计算方法,可在控制器 或主机固件和软件中独立验证,以验证控制器和器件之间的通信是否成功,传输期间未出现位错误。

6.3.3.3 阈值检测

OPT4003-Q1 具有阈值检测逻辑,可对该逻辑进行编程,以在测得的照度级别超过用户设置的阈值时指示并更新 寄 存 器 标 志 。 可 对 阈 值 条 件 进 行 编 程 , 以 将 两 个 通 道 之 一 用 作 触 发 器 , 具 体 使 用 哪 个 通 道 由 THRESHOLD CH SEL 寄存器确定。存在独立的低阈值和高阈值目标寄存器,并且具有独立的标志寄存器来指 示所测照度级别的状态。所测照度级别低于低阈值和高于高阈值称为*故障*。用户可对故障计数寄存器进行编程 . 该寄存器在设置标志寄存器之前对连续故障数量进行计数。 *阈值检测计算* 部分提供了用于设置阈值的计算方法。

6.4 器件功能模式

6.4.1 运行模式

OPT4003-Q1 具有以下运行模式:

- **断电模式**:该模式是让器件进入低功耗状态的断电或待机模式。在该模式下没有激活的光感应或转换。器件仍 响应 I²C 事务,这些事务可用于使器件退出该模式。OPERATING MODE 寄存器设置为 0。
- 连续模式:在这种模式下,OPT4003-Q1 会根据转换时间连续测量和更新输出寄存器,并在每次成功转换时在 INT 引脚上生成硬件中断。使用 INT DIR 寄存器在输出模式下配置 INT 引脚。器件有源电路持续保持有源状 态,以尽可能缩短两次测量的时间间隔。OPERATING MODE 寄存器设置为 3。
- 单次触发模式: OPT4003-Q1 可通过两种方式用于单次触发运行模式,其中一个共同主题是 OPT4003-Q1 保 持待机模式,并通过向配置寄存器写入寄存器或通过 INT 引脚上的硬件中断来触发转换。

有两种类型的单次触发模式。除非通过设置配置寄存器中的 RANGE 位指定手动范围模式,否则这两种模式都 采用自动范围选择逻辑。

- 强制自动范围单次触发模式:每个单次触发都会强制自动范围控制逻辑完全复位,并且会忽略之前的测量结 果而启动全新的自动范围检测。在照明条件预计会频繁变化且单次触发频率条件预计不会频繁变化的情况。 下,该模式特别有用。从复位状态恢复的自动范围逻辑会对转换时间造成少许影响。自动范围控制逻辑上的 完整复位周期约为 500 μs,使用该模式时,必须在两次测量之间考虑到这一点。OPERATING MODE 寄 存器设置为1。
- **常规自动范围单次触发模式:**自动范围选择逻辑使用来自先前测量的信息来确定当前触发的范围。仅当器件 需要在控制器频繁触发的情况下进行时间同步测量时,才使用该模式。换句话说,该模式可用作连续模式的 替代方案。这些模式之间的关键区别在于两次测量的时间间隔由单次触发决定。OPERATING MODE 寄存 器设置为2。

可通过以下方式触发单次触发模式:

- 硬件触发器:INT 引脚可配置为用于触发测量的输入(将 INT DIR 寄存器设置为 0)。当 INT 引脚用作输 入时,没有硬件中断来指示测量完成。控制器必须记录从触发机制开始的时间并读出输出寄存器。
- 寄存器触发:对 OPERATING MODE 寄存器的 I²C 写入会触发测量(值1或2)。寄存器值在下一次成功 测量后复位。通过将 INT_DIR 寄存器设置为 1, 可将 INT 引脚配置为指示测量完成,以读出输出寄存器。

设置后续触发之间的间隔时必须考虑到触发机制中涉及的所有方面,例如 I2C 事务时间、器件唤醒时间、自动 范围时间(如果使用)和器件转换时间。如果在当前测量完成之前接收到转换触发,则器件会忽略新请求,直 到上一次转换完成。

器件在每个单次触发后进入待机模式;因此,单次触发机制中的测量间隔必须考虑额外的时间(*规格*部分中指 定的用于让电路从待机状态恢复的 t_{ss} 时间)。然而,设置快速唤醒寄存器 QWAKE 就无需考虑这个额外的 t_{ss},但代价是不会切断有源电路的电源,并且器件不会在两次触发之间进入待机模式。

图 6-2 展示了各种运行模式下的时序图。

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

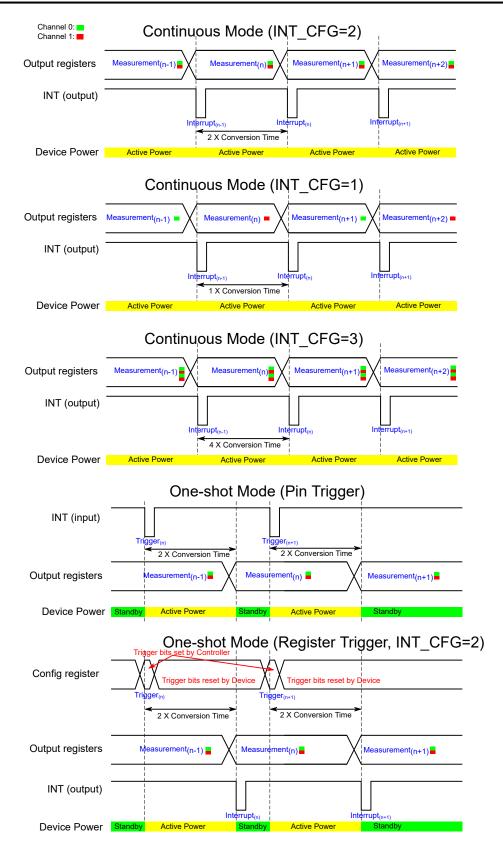


图 6-2. 不同运行模式下的时序图

6.4.2 运行中断模式

该器件有一个中断报告系统,可使连接到 I²C 总线的处理器进入睡眠状态,或忽略器件结果,直到发生需要采取可能行动的用户定义事件。或者,对于可以利用单个数字信号(用于指示照度是高于还是低于目标级别)的任何系统,也可以使用这种相同的机制。

INT 引脚具有开漏输出,需要使用上拉电阻。该开漏输出允许将多个具有开漏 INT 引脚的器件连接到同一条线路,从而在这些器件之间实现逻辑 NOR 或 AND 功能。INT 引脚的极性可由 INT POL 寄存器控制。

主要有两种中断报告机制模式:锁存窗口比较模式和透明迟滞比较模式。LATCH 配置寄存器控制使用这两种模式中的哪一种。表 6-1 和图 6-3 汇总了这两种模式的功能。此外,INT 引脚可用于指示其中一种模式出现故障 (INT CFG = 0) 或指示转换完成 (INT CFG > 0)。表 6-2 详细介绍了该功能。

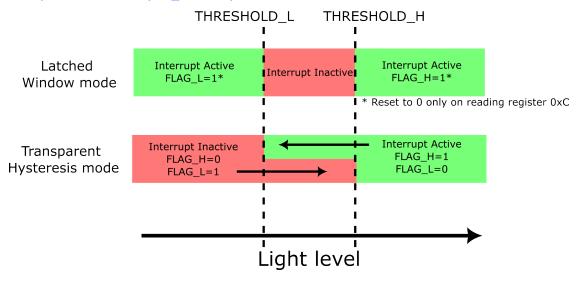


图 6-3. 中断引脚状态 (INT_CFG = 0 设置)和寄存器标志行为

表 6-1. 中断引脚状态(INT_CFG = 0 设置)和寄存器标志行为

LATCH 设置	INT 引脚状态(当 INT_CFG=0 时)	FLAG_H 值	FLAG_L 值	锁存行为
0:透明迟滞模式	INT 引脚指示测量值是高于 (INT 有效)还是低于 (INT 无效)阈值。如果测量值介于高阈值和低阈值 之间,则保持之前的INT 值。该模式可防止在测量 值接近阈值时INT引脚重 复切换。	0:如果测量值低于下限 1:如果测量值高于上限 如果测量值介于上限和下 限之间,则保持之前的 值。	0:如果测量值高于上限 1:如果测量值低于下限 如果测量值介于上限和下 限之间,则保持之前的 值。	不锁存:每次转换后都会 更新值
1:锁存窗口模式	如果测量值超出窗口(高于高阈值或低于低阈值),则 INT 引脚变为有效状态。在读取 0xC 寄存器之前,INT 引脚不会复位并返回无效状态。	1:如果测量值高于上限	1:如果测量值低于下限	锁存:在读取 0x0C 寄存器 之前,INT 引脚、FLAG_H 和 FLAG_L 值不会复位。

THRESHOLD_H、THRESHOLD_L、LATCH 和 FAULT_COUNT 寄存器控制中断行为。如表 6-1 所示,可通过LATCH 字段设置在锁存窗口模式和透明迟滞模式之间进行选择。可以在 INT 引脚、FLAG_H 和 FLAG_L 寄存器上观察中断报告。

将当前传感器测量值与 THRESHOLD_H 和 THRESHOLD_L 寄存器进行比较得出的结果称为*故障事件*。有关用于设置这些寄存器的计算,请参阅*阈值检测计算* 部分。FAULT_COUNT 寄存器决定了触发中断事件并随后更改中断报告机制状态所需的连续*故障事件*的数量。例如,FAULT_COUNT 值 2 对应于四个故障计数,在这种情况下,除非连续进行四次满足故障条件的测量,否则不会实现表 6-1 中所示的 INT 引脚、FLAG_H 和 FLAG_L 状态。

表 6-1 中列出的 INT 引脚功能仅在 INT_CFG = 0 时有效。如表 6-2 所述,可以更改 INT 引脚功能,以指示转换结束或 FIFO 已满状态。即使在 INT_CFG > 0 的情况下,FLAG_H 和 FLAG_L 寄存器也继续按表 6-1 中所列的方式运行。INT 引脚的极性由 INT_POL 寄存器控制。

 INT_CFG 设置
 INT 引脚功能

 0
 如表 6-1 所示

 1
 每次转换后,INT 引脚均以 1µs 脉冲持续时间置位

 2
 每进行两次转换,INT 引脚就会以 1µs 脉冲持续时间置位,以指示两个通道测量均已完成

 3
 每进行四次转换,INT 引脚就会以 1µs 脉冲持续时间置位,以指示 FIFO已满

表 6-2. INT_CFG 设置和产生的 INT 引脚行为

6.4.3 照度范围选择

OPT4003-Q1 具有自动满量程设置模式,无需预测和设置器件的合适量程。将 RANGE 寄存器设置为 0xC 可进入该模式。该器件根据当前光照条件和先前测量值的组合来确定进行测量的合适满量程。

如果测量值接近满量程的下限,则下一次测量的满量程范围会减少一级或两级设置。如果测量值接近满量程的上限,则下一次测量的满量程范围会增加一级设置。

如果由于光学瞬态事件快速增加而导致测量值超出满量程,则终止当前测量。不报告该无效测量值。如果量程未达到最大值,则器件会将量程增加一级,并使用该量程重新进行测量。因此,在这种模式下快速增加的光学瞬态期间,完成和报告测量所需的时间可能比 CONVERSION_TIME 配置寄存器指示的时间更长。

德州仪器 (TI) 强烈建议使用该功能,因为器件会根据照明条件选择合适的范围设置。但是,可以选择手动设置范围。手动设置范围会关闭自动满量程选择逻辑,并且器件会在特定的范围设置下运行。范围选择表列出了范围选择设置。

通道 1 的辐照度级别由 810nm 激励进行指定。范围选择表展示了设置 RANGE 寄存器时通道 0 和通道 1 的行为。由于通道 1 具有 7 个满量程光范围,因此指数寄存器的位数限制为 6,而通道 0 具有 9 个满量程光范围,因此最大指数值为 8。

表 6-3. USON 型号的范围选择表

大 C C C C C C C T T T T T T T T T T T T					
范围寄存器设置	USON 型号的 CH0 典型满量程照度级 别	CH0 指数	USON 型号的 CH1 典型满量程辐照度	CH1 指数	
0	561lux	0	0.429mW/cm ²	0	
1	1122lux	1	0.858mW/cm ²	1	
2	2244lux	2	1.72mW/cm ²	2	
3	4488lux	3	3.43mW/cm ²	3	
4	8976lux	4	6.86mW/cm ²	4	
5	17952lux	5	13.72mW/cm ²	5	
6	35903lux	6	27.45mW/cm ²	6	
7	71806lux	7	27.45mW/cm ²	6	
8	143613lux	8	27.45mW/cm ²	6	
12	由自动满量程范围逻辑确定;可以独立设置通道 0 和通道 1				

17

Product Folder Links: *OPT4003-Q1*English Data Sheet: SBASA69

6.4.4 选择转换时间

如表 6-4 所示,OPT4003-Q1 提供多个可选转换时间。转换时间定义为一次测量从启动到完成所花费的时间,包括更新输出寄存器中的结果所花费的时间。测量启动由运行模式决定,如*运行模式* 部分中指定。

表 6-4. 转换时间选择

CONVERSION_TIME 寄存器	典型转换时间 每通道
0	0.6ms
1	1ms
2	1.8ms
3	3.4ms
4	6.5ms
5	12.7ms
6	25ms
7	50ms
8	100ms
9	200ms
10	400ms
11	800ms

6.4.5 照度测量 (以 lux 为单位)

OPT4003-Q1 测量照度并使用比例 ADC 代码更新输出寄存器。器件的输出由两部分表示:4 个 EXPONENT 寄存器位和 20 个 MANTISSA 位。这种二进制对数满量程的排列方式在一定范围内具有线性表示,有助于覆盖较大的动态测量范围。MANTISSA 表示在给定满量程内与测量的照度成正比的线性 ADC 代码,而 EXPONENT 位表示当前所选的满量程。所选范围既可通过自动范围选择逻辑自动确定,也可根据节 6.4.3 手动选择。

可以使用以下公式来确定照度级别。首先,使用方程式 1 或方程式 2 计算 MANTISSA。接下来,使用方程式 3 或方程式 4 计算 ADC CODES。最后,使用最后一个公式来计算照度。

或

$$MANTISSA = (RESULT_MSB \times 2^{8}) + RESULT_LSB$$
 (2)

其中:

• RESULT MSB、RESULT LSB 和 EXPONENT 位是输出寄存器的一部分

RESULT_MSB 寄存器承载 MANTISSA 的 12 个最高有效位,而 RESULT_LSB 寄存器承载 MANTISSA 的 8 个最低有效位。使用上述公式即可得到 20 位 MANTISSA 数字。四个 EXPONENT 位直接从寄存器读取。

计算 EXPONENT 和 MANTISSA 部分后,请使用方程式 3 或方程式 4 计算线性化的 ADC_CODES。

或

ADC CODES =
$$(MANTISSA \times 2^{2}E)$$
 (4)

寄存器 E 的最大值为 8, 因此 ADC_CODES 实际上是一个 28 位数字。

$$lux = ADC_CODES \times 535E-6 \text{ for the USON variant}$$
 (5)

MANTISSA 和 ADC_CODES 都是很大的数字,分别需要 20 位和 28 位来表示。在开发用于这些计算的固件或软件时,分配适当的数据类型以防止数据溢出非常重要。建议对较大的数据类型进行一些显式类型转换,例如左移运算 (<<) 前的 32 位表示。

6.4.6 阈值检测计算

THRESHOLD_H_RESULT 和 THRESHOLD_L_RESULT 阈值结果寄存器有 12 位,而THRESHOLD_H_EXPONENT 和 THRESHOLD_L_EXPONENT 阈值指数寄存器有 4 位。将阈值与线性ADC_CODES 处的值进行比较,如以下公式所示。因此,阈值寄存器在内部用零填充,以便与 ADC_CODES 进行比较。

或

$$ADC_CODES_TH = THRESHOLD_H_RESULT \times 2^{(8} + THRESHOLD_H_EXPONENT)$$
 (7)

以及

或

然后根据以下公式比较阈值,以检测故障事件。

以及

根据 FAULT_COUNT 寄存器设置,对于连续的*故障高电平* 或*故障低电平* 事件,会设置相应的 FLAG_H 和 FLAG_L 寄存器。 更多信息请参阅 运行中断模式 部分。了解 THRESHOLD_H_EXPONENT、THRESHOLD_H_RESULT、THRESHOLD_L_EXPONENT 和 THRESHOLD_L_RESULT 寄存器位与输出寄存器 之间的关系,对于根据应用需求设置适当的阈值非常重要。

6.4.7 光分辨率

OPT4003-Q1 的有效分辨率取决于转换时间设置和满量程照度范围。虽然线性 ADC_CODES 的 LSB 分辨率不变,但器件的有效或有用分辨率取决于转换时间设置和满量程。在有效分辨率较低的转换时间内,LSB 用 0 填充。

EXPONENT 0 3 5 8 CONVERSIO MANTISSA N_TIME 寄存 满量程照度 转换时间 有效位 561 1122 2244 4488 8976 17952 35903 71806 143613 以 Lux 为单位的有效分辨率 0 9 1.096 2.191 4.38 17.53 70.12 140.25 280.49 600us 8.77 35.06 1ms 10 547.84m 1.096 2.191 4.38 8.77 17.53 35.06 70.12 140.25 17.53 35.06 70.12 1.8ms 11 273.92m 547.84m 1.096 2.191 3 3.4ms 12 136.96m 273.92m 547.84m 1.096 2.191 4.38 8.77 17.53 35.06 4 6.5ms 13 68.48m 136.96m 273.92m 547.84m 1.096 2.191 4.38 8.77 17.53 5 12.7ms 14 34.24m 68.48m 136.96m 273.92m 547.84m 1.096 2.191 4.38 8.77 6 25ms 15 17.12m 34.24m 68.48m 136.96m 273.92m 547.84m 1.096 2.191 4.38 7 16 8.56m 17.12m 34.24m 68.48m 136.96m 273.92m 547.84m 1.096 2.191 100ms 17 4.28m 8.56m 68.48m 136.96m 547.84m 1.096 8 17.12m 34.24m 273.92m 9 200ms 18 2.14m 4.28m 8.56m 17.12m 34.24m 68.48m 136.96m 273.92m 547.84m 10 19 400ms 1.07m 2.14m 4.28m 17.12m 34.24m 68.48m 136.96m 273.92m 11 20 800ms 0.535m 1.07m 2.14m 4.28m 8.56m 17.12m 34.24m 68.48m 136.96m

表 6-5. USON 型号的 分辨率表

表 6-6. USON 型号的通道 1 分辨率表

			₹ 0-0.	USUN 至与	的理理工艺	1 // 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 						
				EXPONENT								
CONVERSION_		MANTISSA 有效	0	1	2	3	4	5	6			
TIME 寄存器	转换时间	位	满量程辐照度 (μW/cm²)									
			429	858	1715	3431	6862	13724	27447			
				有效分辨率 (nW/cm²)								
0	600µs	9	837.63	1675.26	3350.53	6701.06	13402.11	26804.22	53608.45			
1	1ms	10	418.82	837.63	1675.26	3350.53	6701.06	13402.11	26804.22			
2	1.8ms	11	209.41	418.82	837.63	1675.26	3350.53	6701.06	13402.11			
3	3.4ms	12	104.7	209.41	418.82	837.63	1675.26	3350.53	6701.06			
4	6.5ms	13	52.35	104.7	209.41	418.82	837.63	1675.26	3350.53			
5	12.7ms	14	26.18	52.35	104.7	209.41	418.82	837.63	1675.26			
6	25ms	15	13.09	26.18	52.35	104.7	209.41	418.82	837.63			
7	50ms	16	6.54	13.09	26.18	52.35	104.7	209.41	418.82			
8	100ms	17	3.27	6.54	13.09	26.18	52.35	104.7	209.41			
9	200ms	18	1.64	3.27	6.54	13.09	26.18	52.35	104.7			
10	400ms	19	0.818	1.64	3.27	6.54	13.09	26.18	52.35			
11	800ms	20	0.409	0.818	1.64	3.27	6.54	13.09	26.18			

6.5 编程

OPT4003-Q1 支持标准模式(高达 100kHz)、快速模式(高达 400kHz)和高速模式(高达 2.6MHz)的传输协议。快速和标准模式被描述为默认协议,称为 *F/S*。*高速 I2C 模式* 部分介绍了高速模式。

6.5.1 I2C 总线概述

OPT4003-Q1 提供与 I^2C 和 SMBus 接口的兼容性。 I^2C 与 SMBus 协议互相兼容。本文通篇将 I^2C 接口用作主要示例,只有当讨论两种协议之间的差异时才指定 SMBus 协议。

Copyright © 2025 Texas Instruments Incorporated

该器件通过两个引脚连接到总线:一个 SCL 时钟输入引脚和一个 SDA 开漏双向数据引脚。总线必须包含一个控 制器器件,用于生成串行时钟(SCL),控制总线访问并生成启动和停止条件。为了寻址一个特定的器件,控制器 通过在 SCL 为高电平时将一个数据信号线路 (SDA) 的逻辑电平从高拉为低来启动一个启动条件。总线上的所有目 标器件都在 SCL 上升沿移入目标地址字节,最后一位表明希望进行的是读取还是写入操作。在第九个时钟脉冲期 间,被寻址的目标器件会生成一个确认位并将 SDA 下拉为低电平,对控制器做出响应。

然后启动数据传输并发送 8 位数据,随后发送一个确认位。在数据传输期间,SDA 必须保持稳定,同时 SCL 为 高电平。SCL 为高电平时 SDA 上的任何变化会被认为是一个开始或者停止条件。传输完所有数据后,控制器会在 SCL 为高电平时将 SDA 从低电平拉至高电平,生成一个停止条件。该器件在 I²C 接口上包括一个 28ms 超时来防 止锁定总线。如果 SCL 线路在这段时间内保持低电平,则总线状态机将复位。

6.5.1.1 串行总线地址

要与 OPT4003-Q1 通信,控制器必须首先启动 I²C 启动命令。然后,控制器必须通过目标地址字节来对目标器件 寻址。目标地址字节包括一个7位地址和一个方向位,该方向位指示这项操作将是读取还是写入操作。

通过将 ADDR 引脚连接到以下四个引脚之一,可以获得四个 I²C 地址: GND、VDD、SDA 或 SCL。表 6-7 总结 了具有相应 ADDR 引脚配置的可能地址。每次总线通信时都会对 ADDR 引脚的状态进行采样,因此在接口上发生 任何活动之前,必须将该引脚驱动或连接到所需的电平。

•	
ADDR 引脚连接	器件 I ² C 地址
GND	1000100
VDD	1000101
SDA	1000110
SCL	1000111

表 6-7. ADDR 引脚地址

6.5.1.2 串行接口

OPT4003-Q1 在 I²C 总线和 SMBus 上均作为目标器件运行。通过 SCL 时钟输入线路和 SDA 开漏 I/O 线路实现 到总线的连接。该器件支持标准模式(高达 100kHz)、快速模式(高达 400kHz)和高速模式(高达 2.6MHz) 的传输协议。在发送的所有数据字节中,首先发送最高有效位。

SDA 和 SCL 引脚特有集成的峰值抑制滤波器和施密特触发器来大大减少输入峰值和总线噪声的影响。

6.5.2 写入和读取

通过在 I²C 事务序列期间写入适当的寄存器地址,可访问 OPT4003-Q1 上的特定寄存器。有关寄存器和对应的寄 存器地址的完整列表,请参阅*寄存器映射*。寄存器地址的值(如图 6-4 所示)是在 R/W 位为低电平时目标地址字 节之后传输的第一个字节。

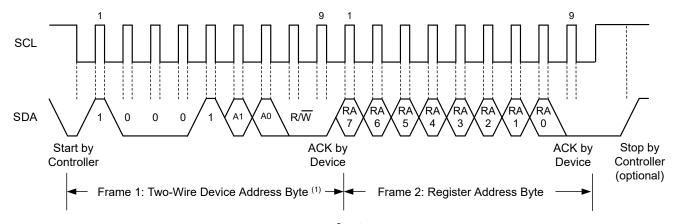


图 6-4. 设置 I²C 寄存器地址

Product Folder Links: OPT4003-Q1

写入寄存器的过程从控制器传输的第一个字节开始。这个字节为目标地址,其中 R/W 位为低电平。然后,器件确认接收到一个有效地址。控制器发送的下一个字节是数据将要写入的寄存器的地址。下两个字节写入由寄存器地址进行寻址的寄存器。器件确认收到每个数据字节。控制器可以通过生成启动或停止条件来终止数据传输。

从器件中读取时,写入操作存储在寄存器地址中的最后一个值将确定在读取操作期间应读取哪个寄存器。要为读取操作更改寄存器地址,必须启动新的部分 I²C 写入事务。要完成该部分写入,应在 R/W 位为低电平时发出一个目标地址字节,后跟寄存器地址字节和停止命令。然后,控制器生成一个启动条件,并在 R/W 位为高电平时发送目标地址字节,以启动读取命令。下一个字节由目标器件发送,是寄存器地址所指示寄存器的最高有效字节。该字节后跟一个来自控制器的确认,然后目标器件发送最低有效字节。控制器确认收到数据字节。控制器可在接收任何数据字节时生成非确认,或生成启动或停止条件,来终止数据传输。如果需要从同一寄存器执行重复的读取操作,则无需连续发送寄存器地址字节。器件会保留寄存器地址,直到下一次写入操作更改该地址为止。

图 6-5 和图 6-6 分别显示了写入和读取操作时序图。首先发送的寄存器字节为最高有效字节,之后是最低有效字节。

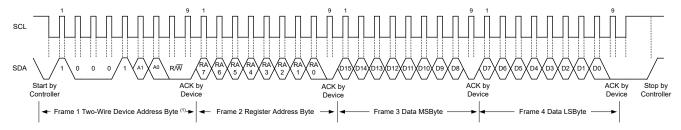
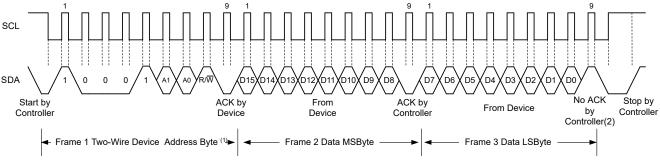



图 6-5. I²C 写入示例

A. 也可能发送控制器的 ACK。

图 6-6. I2C 读取示例

6.5.2.1 高速 I²C 模式

当总线空闲时,SDA 和 SCL 线路都被上拉电阻或有源上拉器件拉至高电平。控制器生成一个启动条件,后跟一个有效的串行字节,其中包含高速 (HS) 控制器代码 0000 1XXXb。该传输可在标准模式或快速模式(高达 400kHz)下进行。器件不对 HS 控制器代码进行确认,但的确会识别该代码并切换其内部滤波器以支持 2.6MHz 运行。

然后,控制器生成重复启动条件(重复启动条件与启动条件具有相同的时序)。在这个重复的启动条件之后,协议与 F/S 模式一致,除非允许的传输速度高达 2.6MHz。不要使用停止条件,而是使用重复的启动条件将总线保持在 HS 模式。停止条件结束 HS 模式并切换器件的所有滤波器以支持 F/S 模式。

6.5.2.2 突发读取模式

OPT4003-Q1 支持 I^2C 突发读取模式,这有助于更大限度地减少总线上的事务数量,从而实现从器件到控制器的高效数据传输。

Copyright © 2025 Texas Instruments Incorporated

考虑突发模式之前,常规 I²C 读取事务会对器件读取指针执行 I²C 写入操作,然后执行实际的 I²C 读取操作。如果从连续位置的输出寄存器和 FIFO 寄存器读取数据时执行了常规 I²C 读取事务,则每两个字节写入一次寄存器指针,该过程会占用几个时钟周期。启用突发模式后,读取指针地址会在每次寄存器读取(两个字节)后自动递增,从而无需执行写入操作来为后续寄存器读取设置指针。

设置 I2C_BURST 寄存器以启用突发模式。发出停止命令后,指针复位为原始寄存器地址,然后再自动递增。图 6-7 显示了 I²C 写入、单次读取和突发模式读取操作示意图。

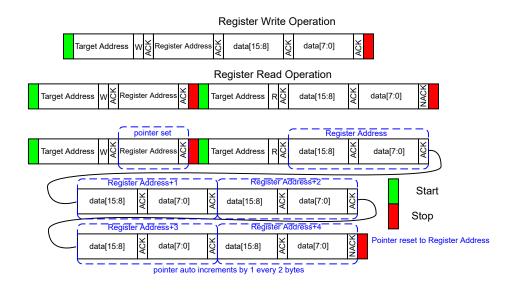
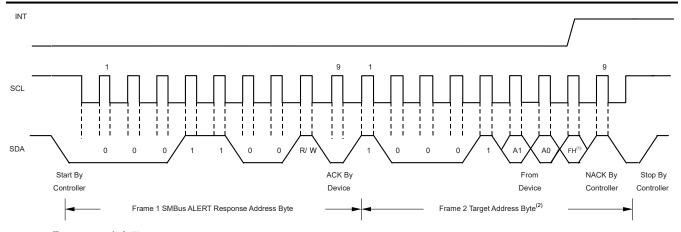


图 6-7. I²C 操作

6.5.2.3 通用广播复位命令

I²C 通用广播复位允许主机控制器使用一条命令来复位总线上响应通用广播复位命令的所有器件。写入 I²C 地址 0 (0000 0000b) 以启动通用广播。当随后的第二个地址字节为 06h (0000 0110b) 时,将启动复位命令。通过此事务,器件发出一个确认位,并将所有寄存器设置为上电复位默认条件。


6.5.2.4 SMBus 警报响应

SMBus 警报响应可快速识别发出中断的器件。如果没有该警报响应功能,当连接了多个目标器件时,处理器就无法确定哪个器件拉取了中断线路。

OPT4003-Q1 用于在锁存窗口式比较模式下响应 SMBus 警报响应地址。在透明模式下,OPT4003-Q1 不会响应 SMBus 警报响应。

图 6-8 显示了器件对 SMBus 警报响应的行为。当处理器的中断线路拉至活动状态时,控制器可以广播警报响应目标地址。在该警报响应之后,生成警报的任何目标器件都会通过确认警报响应并在总线上发送相应的 I²C 地址来标识自己。该警报响应可同时激活多个不同的目标器件。如果多于一个目标器件试图进行响应,那么采用总线仲裁规则。具有最低地址的器件将在仲裁中胜出。如果 OPT4003-Q1 未在仲裁中胜出,器件将不会确认 I²C 事务,且 INT 引脚保持活动状态,提示 I²C 控制器处理器发出后续 SMBus 警报响应。当 OPT4003-Q1 在仲裁中胜出时,器件将确认该事务并将 INT 引脚设置为非活动状态。控制器可以再次发出相同的命令,根据需要多次清除 INT 引脚。有关如何控制标志和 INT 引脚的信息,请参阅*运行中断模式* 部分。控制器可以从上述过程中广播的地址获取有关 OPT4003-Q1 中断源的信息。FLAG_H 值作为地址的最后一个 LSB 发送,目的是向控制器提供有关 OPT4003-Q1 中断原因的其他信息。如果控制器需要其他信息,可以查询结果寄存器或配置寄存器。SMBus 警报响应不会清除 FLAG H 和 FLAG L 字段。

A. FH 是 FLAG_H 寄存器。

图 6-8. SMBus 警报响应时序图

Copyright © 2025 Texas Instruments Incorporated

7 寄存器映射

图 7-1. 所有寄存器映射

ADD	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
00h	EXPONENT_CH0						RESULT_MSB_CH0									
01h				RESULT_	LSB_CH0					COUNT	ER_CH0			CRC_	_CH0	
02h		EXPONE	ENT_CH1							RESULT_	MSB_CH1		•			
03h	RESULT_LSB_CH1							COUNT	ER_CH1			CRC_	_CH1			
04h	EXPONENT_FIFO_CH0							•	RESULT_MS	B_FIFO_CH0		•				
05h	RESULT_LSB_FIFO_CH0							COUNTER	_FIFO_CH0		CRC_FIFO_CH0					
06h	EXPONENT_FIFO_CH1						RESULT_MSB_FIFO_CH1									
07h	RESULT_LSB_FIFO_CH1						COUNTER_FIFO_CH1				CRC_FIFO_CH1					
08h		THRESHOLD	L_EXPONENT	-					THRESHOLD_L_RESULT							
09h		THRESHOLD_	H_EXPONENT	-					THRESHOLD_H_RESULT							
0Ah	QWAKE	0		范	韦			CONVERS	SION_TIME		OPERATIN	G_MODE	锁存	INT_POL	FAULT_	COUNT
0Bh	128									THRESHOL D_CH_SEL	INT_DIR	INT_	CFG	0	I2C_BURST	
0Ch	0 OVERLOAD CONVERSI FLAG_H FLAG_L ON_READY FLAG FLAG								FLAG_L							
11h)	DI	DL						DI	DH		1	1		1

English Data Sheet: SBASA69

提交文档反馈

7.1 寄存器说明

7.1.1 寄存器 0h (偏移 = 0h) [复位 = 0h]

图 7-2. 寄存器 0h

73 13 00 2										
15	14	13	12	11	10	9	8			
	EXPONE	NT_CH0		RESULT_MSB_CH0						
	R-	0h		R-0h						
7	6	5	4	3	2	1	0			
	RESULT_MSB_CH0									
	R-0h									

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-3. 寄存器 00 字段说明

* * * * * * * * * * * * * * * * * * *									
位	字段	类型	复位	说明					
15-12	EXPONENT_CH0	R	l ()h	EXPONENT 输出 CH0。确定通道光测量的满量程。用作照度计算的比例因子。					
11-0	RESULT_MSB_C H0	R		结果寄存器 MSB(最高有效位)CH0。用于计算表示给定 EXPONENT 或满量程内照度级别的 MANTISSA。					

7.1.2 寄存器 1h (偏移 = 1h)[复位 = 0h]

图 7-4. 寄存器 1h

	Edit of Millian									
15	14	13	12	11	10	9	8			
	RESULT_LSB_CH0									
	R-0h									
7	6	5	4	3	2	1	0			
	COUNT	ER_CH0			CRC	CRC_CH0				
	R-	0h		R-0h						

说明: R/W = 读取/写入; W = 只写; -n = 复位后的值

图 7-5. 寄存器 01 字段说明

位	字段	类型	复位	说明
15-8	RESULT_LSB_C H0	R	0h	结果寄存器 LSB(最低有效位)CH0。用于计算表示给定 EXPONENT 或满量程内照度级别的 MANTISSA。
7-4	COUNTER_CH0	R	0h	采样计数器 CHO。滚动计数器,每次转换时递增。
3-0	CRC_CH0	R	0h	CRC 位 CH0。 R[19:0] = MANTISSA = ((RESULT_MSB<<8) + RESULT_LSB X[0] = XOR(E[3:0], R[19:0], C[3:0]) XOR of all bits X[1] = XOR(C[1], C[3], R[1], R[3], R[5], R[7], R[9], R[11], R[13], R[15], R[17], R[19], E[1], E[3]) X[2] = XOR(C[3], R[3], R[7], R[11], R[15], R[19], E[3]) X[3] = XOR(R[3], R[11], R[19])

Product Folder Links: OPT4003-Q1

Copyright @ 2025 Texas Instruments Incorporated

7.1.3 寄存器 2h (偏移 = 2h)[复位 = 0h]

图 7-6. 寄存器 2h

	H 4 14 MM										
15	14	13	12	11 10 9							
	EXPONE	NT_CH1		RESULT_MSB_CH1							
	R-	0h		R-0h							
7	6	5	4	3	2	1	0				
	RESULT_MSB_CH1										
			R-	0h							

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-7. 寄存器 02 字段说明

, , , , , , , , , , , , , , , , , , ,									
位	字段	类型	复位	说明					
15-12	EXPONENT_CH1	R	0h	EXPONENT 输出 CH1。确定通道光测量的满量程。用作照度计算的比例因子。					
11-0	RESULT_MSB_C H1	R	0h	结果寄存器 MSB(最高有效位)CH1。用于计算表示给定 EXPONENT 或满量程内照度级别的 MANTISSA。					

7.1.4 寄存器 3h (偏移 = 3h) [复位 = 0h]

图 7-8. 寄存器 3h

	71 . 01 14 11 th 011									
15	14	13	12	11	10	9	8			
	RESULT_LSB_CH1									
	R-0h									
7	6	5	4	3	2	1	0			
	COUNT	ER_CH1		CRC_CH1						
	R-	∙0h		R-0h						

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-9. 寄存器 03 字段说明

	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7									
位	字段	类型	复位	说明						
15-8	RESULT_LSB_C H1	R	0h	结果寄存器 LSB(最低有效位)CH1。用于计算表示给定 EXPONENT 或满量程内照度级别的 MANTISSA。						
7-4	COUNTER_CH1	R	0h	采样计数器 CH1。滚动计数器,每次转换时递增。						
3-0	CRC_CH1	R	0h	CRC 位 CH1。 R[19:0] = MANTISSA = ((RESULT_MSB<<8) + RESULT_LSB X[0] = XOR(E[3:0], R[19:0], C[3:0]) XOR of all bits X[1] = XOR(C[1], C[3], R[1], R[3], R[5], R[7], R[9], R[11], R[13], R[15], R[17], R[19], E[1], E[3]) X[2] = XOR(C[3], R[3], R[7], R[11], R[15], R[19], E[3]) X[3] = XOR(R[3], R[11], R[19])						

Product Folder Links: OPT4003-Q1

提交文档反馈

7.1.5 寄存器 4h (偏移 = 4h) [复位 = 0h]

图 7-10. 寄存器 4h

4.5	4.4	40	10	44	10		_		
15	14	13	12	11	10	9	8		
	EXPONENT	_FIFO_CH0		RESULT_MSB_FIFO_CH0					
	R-	0h		R-0h					
7	6	5	4	3	2	1	0		
	RESULT_MSB_FIFO_CH0								
		R-0h							

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-11. 寄存器 04 字段说明

位	字段	类型	复位	说明
15-12	EXPONENT_FIF O_CH0	R	0h	来自 FIFO CH0 的 EXPONENT 寄存器
11-0	RESULT_MSB_FI FO_CH0	R	0h	来自 FIFO CH0 的 RESULT_MSB 寄存器

7.1.6 寄存器 5h (偏移 = 5h) [复位 = 0h]

图 7-12. 寄存器 5h

	互 1-12. 创作册 OⅡ							
15	14	13	12	11	10	9	8	
	RESULT_LSB_FIFO_CH0							
R-0h								
7	6	5	4	3	2	1	0	
	COUNTER	FIFO_CH0		CRC_FIFO_CH0				
	R-	0h			R-	-0h		

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-13. 寄存器 05 字段说明

位	字段	类型	复位	说明
15-8	RESULT_LSB_FI FO_CH0	R	0h	来自 FIFO CH0 的 RESULT_LSB 寄存器
7-4	COUNTER_FIFO _CH0	R	0h	来自 FIFO CH0 的 COUNTER 寄存器
3-0	CRC_FIFO_CH0	R	0h	来自 FIFO CH0 的 CRC 寄存器

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *OPT4003-Q1*

7.1.7 寄存器 6h (偏移 = 6h)[复位 = 0h]

图 7-14. 寄存器 6h

				4 14 00 -				
15	14	13	12	11	10	9	8	
	EXPONENT	_FIFO_CH1		RESULT_MSB_FIFO_CH1				
	R-	0h		R-0h				
7	6	5	4	3	2	1	0	
	RESULT_MSB_FIFO_CH1							
			R-	0h				

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-15. 寄存器 06 字段说明

位	字段	类型	复位	说明
15-12	EXPONENT_FIF O_CH1	R	0h	来自 FIFO CH1 的 EXPONENT 寄存器
11-0	RESULT_MSB_FI FO_CH1	R	0h	来自 FIFO CH1 的 RESULT_MSB 寄存器

7.1.8 寄存器 7h (偏移 = 7h)[复位 = 0h]

图 7-16. 寄存器 7h

	图 /-10. 可付价 /Ⅱ							
15	14	13	12	11	10	9	8	
	RESULT_LSB_FIFO_CH1							
	R-0h							
7	6	5	4	3	2	1	0	
	COUNTER	FIFO_CH1		CRC_FIFO_CH1				
	R-	0h			R-	-0h		

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-17. 寄存器 07 字段说明

位	字段	类型	复位	说明
15-8	RESULT_LSB_FI FO_CH1	R	0h	来自 FIFO CH1 的 RESULT_LSB 寄存器
7-4	COUNTER_FIFO _CH1	R	0h	来自 FIFO CH1 的 COUNTER 寄存器
3-0	CRC_FIFO_CH1	R	0h	来自 FIFO CH1 的 CRC 寄存器

7.1.9 寄存器 8h (偏移 = 8h)[复位 = 0h]

图 7-18. 寄存器 8h

				4 14 100 -				
15	14	13	12	11	10	9	8	
	THRESHOLD_	L_EXPONENT		THRESHOLD_L_RESULT				
	R/W	V-0h		R/W-0h				
7	6	5	4	3	2	1	0	
	THRESHOLD_L_RESULT							
			R/V	V-0h				

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-19. 寄存器 08 字段说明

位	字段	类型	复位	说明
15-12	THRESHOLD_L_ EXPONENT	R/W	0h	阈值低寄存器指数
11-0	THRESHOLD_L_ RESULT	R/W	0h	阈值低寄存器结果

7.1.10 寄存器 9h (偏移 = 9h) [复位 = BFFFh]

图 7-20. 寄存器 9h

				4 14 MM				
15	14	13	12	11	10	9	8	
	THRESHOLD_	H_EXPONENT		THRESHOLD_H_RESULT				
	R/W	/-Bh		R/W-Fh				
7	6	5	4	3	2	1	0	
	THRESHOLD_H_RESULT							
			R/W	-FFh				

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-21. 寄存器 09 字段说明

				** * * = * *
位	字段	类型	复位	说明
15-12	THRESHOLD_H_ EXPONENT	R/W	Bh	阈值高寄存器指数
11-0	THRESHOLD_H_ RESULT	R/W	FFFh	阈值高寄存器结果

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: OPT4003-Q1

7.1.11 寄存器 Ah (偏移 = Ah) [复位 = 3208h]

图 7-22. 寄存器 Ah

15	14	13	12	11	10	9	8
QWAKE	0	范围 CONVERSION_TIME					
R/W-0h	R/W-0h	R/W-Ch R/W-2h					/-2h
7	6	5	4	3	2	1	0
CONVERS	ION_TIME	OPERATING_MODE		LATCH	INT_POL	FAULT_COUNT	
R/W	/-0h	R/W	/-0h	R/W-1h	R/W-0h	R/W	/-0h

说明: R/W = 读取/写入; W = 只写; -n = 复位后的值

图 7-23. 寄存器 0A 字段说明

	图 7-23. 奇仔器 0A 字段说明									
位	字段	类型	复位	说明						
15-15	QWAKE	R/W	0h	不必关断所有电路的电源,即可在单次触发模式下快速从待机状态唤醒。仅适用于单次触发模式,与完全待机模式相比,有助于更快地退出待机模式,同时降低功耗。						
14-14	0	R/W	0h	必须读取或写入 0						
13-10	范围	R/W	Ch	控制器件的满量程照度级别范围。对于 0 至 8 范围内的所有值,该寄存器的格式与 EXPONENT 寄存器相同。对于 CH0 和 CH1 RANGE 以及相应的 EXPONENT 值,请参阅节6.4.3。						
9-6	CONVERSION_TI ME	R/W	8h	控制器件转换时间 0 = 600µs 1 = 1ms 2 = 1.8ms 3 = 3.4ms 4 = 6.5ms 5 = 12.7ms 6 = 25ms 7 = 50ms 8 = 100ms 9 = 200ms 10 = 400ms 11 = 800ms						
5-4	OPERATING_MO DE	R/W	0h	控制器件运行模式 0 = 断电 1 = 强制自动范围单次触发 2 = 单次触发 3 = 连续						
3-3	LATCH	R/W	1h	控制用于阈值检测逻辑的 INT 引脚的中断报告机制功能						
2-2	INT_POL	R/W	0h	控制 INT 引脚的极性或活动状态。 0 = 低电平有效 1 = 高电平有效						
1-0	FAULT_COUNT	R/W	0h	故障计数寄存器指示器件需要多少个连续故障事件才能触发阈值机制:标志高(FLAG_H)和标志低(FLAG_L)寄存器。0=一个故障计数1=两个故障计数2=四个故障计数3=八个故障计数						

7.1.12 寄存器 Bh (偏移 = Bh) [复位 = 8011h]

图 7-24. 寄存器 Bh

				* ** ***			
15	14	13	12	11	10	9	8
1	0	0	0	0	0	0	0

Product Folder Links: OPT4003-Q1

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

图 7-24. 寄存器 Bh (续)

				() /			
R/W-1h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h
7	6	5	4	3	2	1	0
0	0	THRESHOLD_ CH_SEL	INT_DIR	INT_	CFG	0	I2C_BURST
R/W-0h	R/W-0h	R/W-0h	R/W-1h	R/W	/-0h	R/W-0h	R/W-1h

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-25. 寄存器 0B 字段说明

位	字段	类型	复位	说明
15-6	128	R/W	200h	必须读取或写入 128
5-5	THRESHOLD_CH _SEL	R/W	0h	阈值逻辑的通道选择 0 = 选定 CH0 1 = 选定 CH1
4-4	INT_DIR	R/W	1h	确定 INT 引脚的方向。 0 = 输入 1 = 输出
3-2	INT_CFG	R/W	0h	控制转换结束后的输出中断机制 0 = SMBus 警报 1 = INT 引脚在每次转换后置位 2 = INT 引脚在每 2 次转换后置位 3 = INT 引脚在每 4 次转换后置位(FIFO 已满)
1-1	0	R/W	0h	必须读取或写入 0
0-0	I2C_BURST	R/W	1h	设置后将启用 I^2C 突发模式,通过在每次读取寄存器后将读取寄存器指针自动递增 1 ,更大限度地减少 I^2C 读取周期。

7.1.13 寄存器 Ch (偏移 = Ch) [复位 = 0h]

图 7-26. 寄存器 Ch

15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h	R/W-0h
7	6	5	4	3	2	1	0
0	0	0	0	OVERLOAD_F LAG	CONVERSION _READY_FLAG	FLAG_H	FLAG_L
R/W-0h	R/W-0h	R/W-0h	R/W-0h	R-0h	R-0h	R-0h	R-0h

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-27. 寄存器 0C 字段说明

图 7-27. 司行船 00 于校见为								
位	字段	类型	复位	说明				
15-4	0	R/W	0h	必须读取或写入 0				
3-3	OVERLOAD_FLA G	R	0h	指示数据转换过程中何时发生溢出情况,该情况通常是因为 照亮器件的光超出了满量程。				
2-2	CONVERSION_R EADY_FLAG	R	0h	转换就绪标志指示转换何时完成。该标志在转换结束时设置为1,在用任何非零值读取或写入寄存器地址0xC时清除(设置为0)。0=正在进行转换1=转换完成				
1-1	FLAG_H	R	0h	标志高寄存器表明转换结果是指定目标级别的测量值。如果经过由 FAULT_COUNT 寄存器定义的连续数量的测量,结果大于 THRESHOLD_H_EXPONENT 和 THRESHOLD_H_RESULT 寄存器中的级别,则 FLAG_H 设置为 1。				
0-0	FLAG_L	R	0h	标志低寄存器表明测量结果低于指定目标级别。如果经过由FAULT_COUNT寄存器定义的连续数量的测量,结果小于THRESHOLD_LOW_EXPONENT和THRESHOLD_L_RESULT寄存器中的级别,则FL设置为1。				

7.1.14 寄存器 11h (偏移 = 11h) [复位 = 121h]

图 7-28. 寄存器 11h

15	14	13	12	11	10	9	8	
0	0	DIDL		DIDH				
R/W-0h	R/W-0h	R-0h		R-2h				
7	6	5 4		3	2	1	0	
DIDH								
R-21h								

说明:R/W=读取/写入;W=只写;-n=复位后的值

图 7-29. 寄存器 11 字段说明

位	字段	类型	复位	说明
15-14	0	R/W	0h	必须读取或写入 0
13-12	DIDL	R	0h	器件 ID L
11-0	DIDH	R	221h	器件 ID H

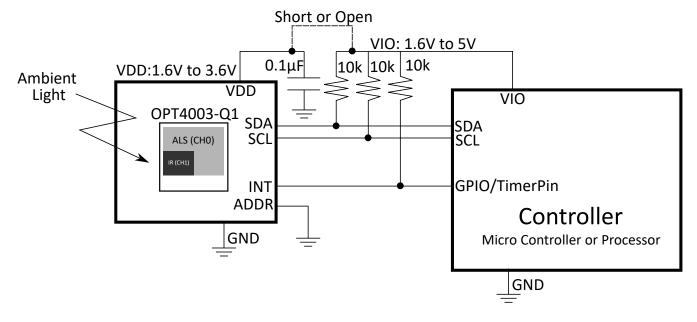
提交文档反馈

Copyright © 2025 Texas Instruments Incorporated

8 应用和实施

备注

以下应用部分中的信息不属于 TI 元件规格,TI 不担保其准确性和完整性。TI 的客户负责确定元件是否 适合其用途,以及验证和测试其设计实现以确认系统功能。


8.1 应用信息

由于环境光传感器广泛用于各种需要精确测量人眼感知光线的应用,因此这些传感器具有可模仿人眼的专用滤波 器。以下各节介绍了有关在应用中集成 OPT4003-Q1 的关键信息。

8.2 典型应用

8.2.1 电气接口

如图 8-1 所示, 电气接口非常简单。将 OPT4003-Q1 I2C SDA 和 SCL 引脚连接到应用处理器、微控制器或其他 数字处理器的相同引脚。如果该数字处理器需要由 OPT4003-Q1 的相关事件产生中断,则将 INT 引脚连接到处理 器的中断或通用 I/O 引脚。该 INT 引脚有多种用途,包括在单次触发模式下触发测量、向系统发出信号以从低功 耗模式唤醒、在等待相关的环境光事件时处理其他任务、或向处理器发出警报以指明已准备好读取样片。在适用 于数字通信的电源与 SDA 和 SCL 引脚(因为这些引脚具有开漏输出结构)之间连接上拉电阻。如果使用 INT 引 脚,请将一个上拉电阻连接到 INT 引脚。这些上拉电阻器的典型阻值为 10kΩ。可以结合总线电容来优化电阻选 择,以平衡系统速度、功率、抗噪性和其他要求。

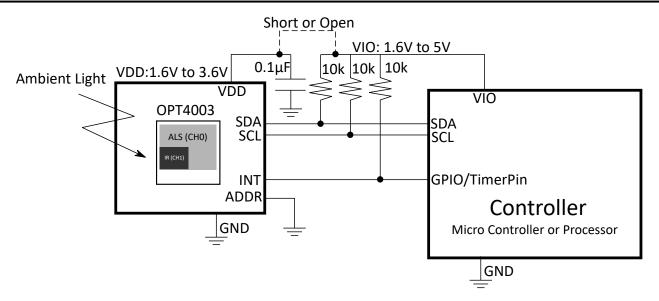


图 8-1. 典型应用原理图

电源相关建议 部分介绍了电源和接地注意事项。

尽管 SDA 和 SCL 引脚电路中集成了峰值抑制功能,但应使用适当的布局实践来尽量减少进入通信线路的耦合量。一个可能引入噪声的来源是两条通信线路之间的电容耦合信号边沿。另一个可能引入噪声的来源是系统中存在的其他开关噪声源,尤其对于长通信线路而言。在嘈杂的环境中,将通信线路屏蔽可降低有害噪声耦合进入数字 I/O 线路而被错误解释的可能性。

8.2.1.1 设计要求

本部分介绍了光传感器的设计要求,该光传感器集成到带有深色玻璃的外壳切口后面的系统中。该应用是光传感器系统集成的常见示例。*光学接口*部分讨论了传感器视场 (FoV) 和深色玻璃传输等主要注意事项。

8.2.1.1.1 光学接口

图 8-2 显示了光学区域的尺寸。

浅灰色区域表示通道 0 光电二极管,黑灰色区域表示通道 1 光电二极管。

图 8-2. USON 传感器位置

通常,任何影响光传感器感应区域光照的物理元件也会影响光传感器的性能。例如,可使用深色或不透明的窗口,通过隐藏传感器来进一步增强设计的视觉吸引力。这种窗口材料通常是透明塑料或玻璃。因此,为了获得出色性能,请务必了解并控制这些元件的影响。设计窗口的宽度和高度,使光线能够从足够大的视场照亮传感器。为获得出色性能,使用的视场应至少为 ±35°,建议 ±45°或更大。有关如何理解和设计视场的详细信息,请参阅环境光传感器应用指南应用手册。

暗窗的可见光谱透射率通常在 5% 到 30% 之间,但也可能低于 1%。将可见光谱透射率指定为低至但不超过达到足够视觉吸引力所需的值,因为透射率降低会减少传感器测量的可用光量。通过在透明窗口材料上涂上墨水或在窗口材料中加入染料或其他光学物质,可以使窗口变暗。窗口可见光谱中的这种透射率衰减情况会在设计外部的光线与器件测量的光线之间产生一个比率。要准确测量设计外部的光线,应按照该比率对器件测量进行补偿。

尽管暗窗的墨水和染料的主要目的是尽量降低可见光的透射率,但某些墨水和染料的红外光透射率也很高。使用 这些墨水和染料会进一步降低可见光与红外光的比率,从而降低传感器测量精度。然而,由于该器件具有出色的 红色和红外抑制能力,因此可以尽可能地降低这种影响,在具有相似光谱响应的暗窗下能够获得良好效果。

Copyright © 2025 Texas Instruments Incorporated

为获得出色精度,除非设计人员充分了解光学效应,否则应避免采用格栅状窗口结构。这些格栅状窗口结构会在传感器处形成不均匀的照明图案,导致光的测量结果随着放置容差和光的入射角而变化。如果需要格栅状窗口结构,那么该器件是理想的传感器之选,因为该器件对干扰测量过程的照明均匀性问题的敏感度极低。

光管看起来很有吸引力,可协助光机设计将光线投射到传感器上;但是,除非系统设计人员充分了解光管的光学物理特性在整个设计和目标背景下的影响,否则请勿将光管与任何光传感器一起使用。

8.2.1.2 详细设计过程

8.2.1.2.1 光机设计 (USON, SOT-5X3 型号)

完成电气设计后,下一项任务就是光机设计。有关窗口大小调整和放置的更详细讨论,请参阅*环境光传感器应用指南*。

8.2.1.3 应用曲线

传感器光谱与人眼明视响应的匹配(参阅图 5-2)决定了传感器在不同照明条件下报告准确光强读数的能力。红外通道的灵敏度使传感器即使在可见光存在的情况下也能进行准确的近红外测量。裸器件响应随两个通道角度的变化如图 5-3 所示。当传感器集成在系统级时,传感器光谱响应和角度响应可能会受到影响。OPT3001:环境光传感器应用指南应用手册提供了有关集成光传感器和系统级设计注意事项的更多详细信息。

8.3 优秀设计实践

与任何光学产品一样,处理 OPT4003-Q1 时要特别小心。无论是使用器件进行原型设计,还是在大规模生产制造过程中,器件的光学表面都必须保持清洁,以获得出色性能。保持光学表面清洁,无指纹、灰尘和其他光学抑制污染物。使用尺寸合适的真空操作工具来处理器件。

如果器件的光学表面需要清洁,请用蘸有去离子水或异丙醇的软棉签轻轻擦拭几下。避免使用可能具有磨蚀性的清洁和操作工具,并避免用力过大而划伤光学表面。

如果 OPT4003-Q1 性能有任何下降,请检查光学表面是否有污垢、划痕或其他光学伪影。

8.4 电源相关建议

尽管 OPT4003-Q1 对电源问题的敏感度较低,但始终建议采用良好的做法。为获得出色性能,器件的 VDD 引脚必须具有稳定的低噪声电源,该电源有一个靠近器件并可靠接地的 100nF 旁路电容器。由于该器件的电流消耗较低,因此有许多为该器件供电的选项。

8.5 布局

8.5.1 布局指南

TI 强烈建议将去耦电容器放置在靠近器件的位置,但请记住,元件的光学反射表面也会影响设计的性能。应考虑传感器周围所有元件和结构的三维几何形状,以防止二次光学反射产生意外结果。将电容器和元件放置在至少是元件高度两倍的距离处通常就足够了。合适的光学布局是将所有近距离元件都放置在 PCB 上与 OPT4003-Q1 相对的一侧。然而,这种方法并不适合每种设计的约束条件。

器件布局对于良好的 SMT 组装也至关重要。该封装可使用两种焊盘布局类型的焊盘:阻焊层限定 (SMD) 焊盘和非阻焊层限定 (NSMD) 焊盘。SMD 焊盘的阻焊层开孔小于金属焊盘的阻焊层开孔,而 NSMD 焊盘的阻焊层开孔大于金属焊盘的阻焊层开孔。图 8-3 展示了这些焊盘布局类型的焊盘。优先选择 SMD 焊盘,因为这些焊盘提供了更精确的焊盘尺寸和布线连接。有关 SMT 和 PCB 建议的进一步讨论,请参阅*焊接和处理建议* 部分。

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

37

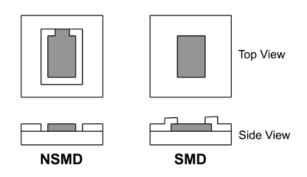
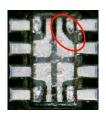


图 8-3. 阻焊层限定 (SMD) 焊盘和非阻焊层限定 (NSMD) 焊盘

8.5.1.1 焊接和处理建议(USON 型号)

OPT4003-Q1 符合 JEDEC JSTD-020 标准,适用于三种回流焊操作。

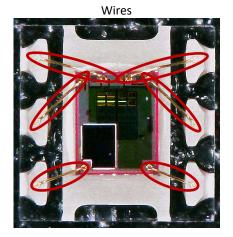

备注

温度过高会导致器件褪色并影响光学性能。

有关焊接热概况和其他详细信息,请参阅 QFN 和 SON PCB 连接 应用手册。如果必须从 PCB 上移除 OPT4003-Q1,请拆下该器件,并且请勿重新安装。

与大多数光学器件一样,应特别注意确保器件的光学表面保持洁净无损伤。有关更详细的建议,请参阅节 8.3。为获得出色的光学性能,完成焊接后必须清理焊剂和任何其他可能的碎屑。

图 8-4 显示了如何识别封装底部的引脚 1。图 8-5 显示了封装顶部引脚 1 的各种识别特性。



注意:该器件的底部有一个斜角特性来表示引脚 1。

图 8-4. 引脚 1 的识别特性

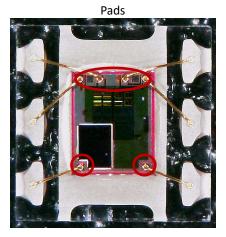


图 8-5. USON 封装的引脚 1 识别特性

8.5.2 布局示例

9 器件和文档支持

9.1 文档支持

9.1.1 相关文档

请参阅以下相关文档:

- 德州仪器 (TI), 环境光传感器应用指南 应用手册
- 德州仪器 (TI), 光传感器评估模块用户指南 用户指南
- 德州仪器 (TI), QFN 和 SON PCB 连接 应用手册

9.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

9.3 支持资源

TI E2E™中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

9.4 商标

TI E2E™ is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

9.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

9.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

10 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision C (January 2025) to Revision D (June 2025)	Page
• 删除了 DTS 封装	1
• 更新了整个文档中的表格、图和交叉参考的编号格式	2
• 删除了光机设计(SOT-5X3型号)部分	37
Changes from Revision B (December 2024) to Revision C (January 2025)	Page
Changes from Revision B (December 2024) to Revision C (January 2025) • 更新了整个文档中的表格、图和交叉参考的编号格式	<u>~</u> _
, , , , , , , , , , , , , , , , , , , ,	2
• 更新了整个文档中的表格、图和交叉参考的编号格式	2
更新了整个文档中的表格、图和交叉参考的编号格式 添加了 SOT-5X3 封装	

Copyright © 2025 Texas Instruments Incorporated

www.ti.com.cn

• 为 USON 封装添加了 CH1 测量输出结果。	5
添加了 SOT-5X3 封装的范围选择设置	16
• 添加了 SOT-5X3 封装的"分辨率表"	
• 添加了 SOT-5X3 传感器位置	36
• 添加了 SOT-5X3 封装布局视图	
• 添加了 SOT-5X3 封装的布局示例	39
Changes from Revision A (December 2023) to Revision B (December 2024) • 更新了整个文档中的表格、图和交叉参考的编号格式	Page
Changes from Revision A (December 2023) to Revision B (December 2024) • 更新了整个文档中的表格、图和交叉参考的编号格式	
• 更新了整个文档中的表格、图和交叉参考的编号格式	Page

11 机械、封装和可订购信息

下述页面包含机械、封装和订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

www.ti.com 6-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
OPT4003DNPRQ1	Active	Production	USON (DNP) 6	3000 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 105	3Q
OPT4003DNPRQ1.A	Active	Production	USON (DNP) 6	3000 LARGE T&R	Yes	NIPDAUAG	Level-3-260C-168 HR	-40 to 105	3Q

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

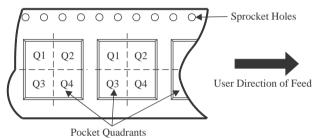
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE MATERIALS INFORMATION

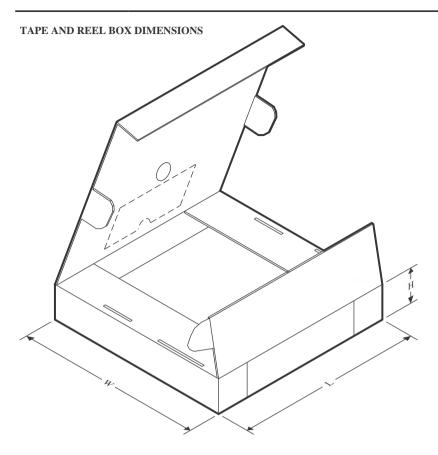
www.ti.com 12-Jun-2025


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

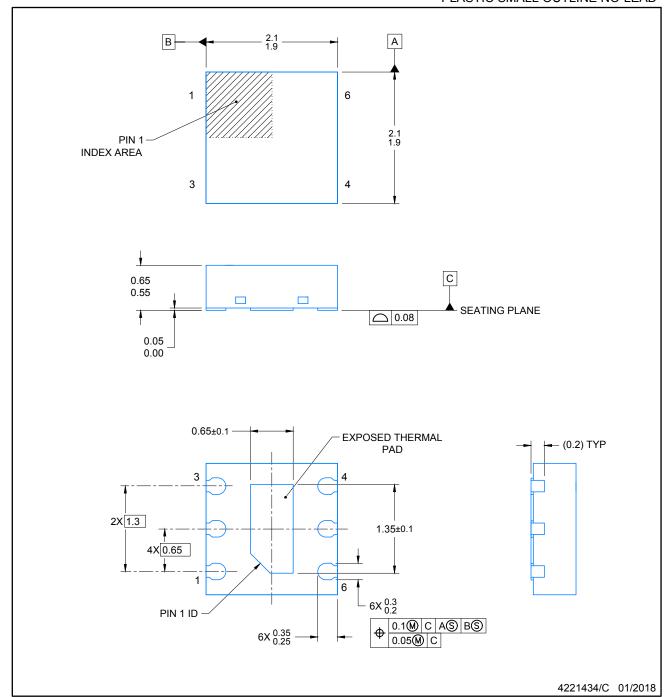
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
OPT4003DNPRQ1	USON	DNP	6	3000	330.0	12.4	2.3	2.3	0.9	8.0	12.0	Q1

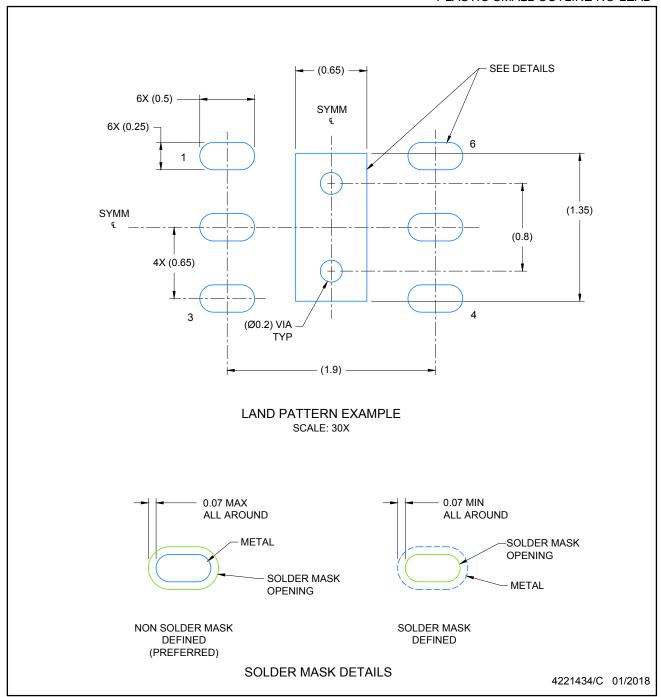
PACKAGE MATERIALS INFORMATION


www.ti.com 12-Jun-2025

*All dimensions are nominal

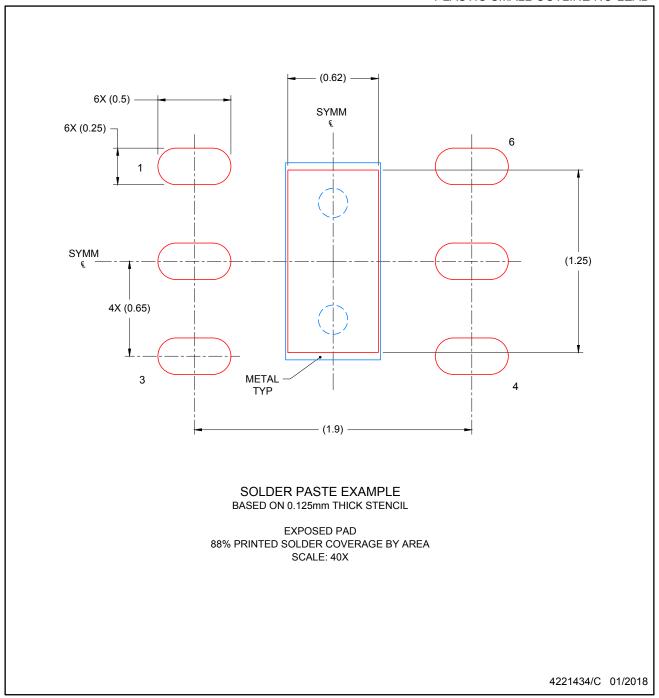
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
OPT4003DNPRQ1	USON	DNP	6	3000	356.0	338.0	48.0

PLASTIC SMALL OUTLINE NO-LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
- Optical package with clear mold compound.


PLASTIC SMALL OUTLINE NO-LEAD

NOTES: (continued)

5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

PLASTIC SMALL OUTLINE NO-LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月