OPA1677, OPA1678, OPA1679 ZHCSG25E JANUARY 2017 - REVISED DECEMBER 2022 # OPA167x 低失真音频运算放大器 ## 1 特性 低噪声: 1 kHz 时为 4.5nV/ √Hz 低失真: 1kHz 时为 0.0001% 高开环增益: 114dB 高共模抑制:110dB • 低静态电流: - 每通道 2mA 低输入偏置电流:10pA(典型值) 压摆率:9 Wμs • 宽增益带宽: 16 MHz (G = 1) • 单位增益稳定 轨到轨输出 宽电源电压范围: - ±2.25V 至 ±18V 或 4.5V 至 36V • 单通道、双通道和四通道版本 可用封装: - 单通道: SOIC-8、SOT-23 - 双通道:SOIC-8、小型SON-8、VSSOP-8 - 四通道:小型 QFN-16、SO-14、TSSOP-14 • 温度范围: -40°C 至 +85°C ## 2 应用 • 专业麦克风和无线系统 专业音频混合器/控制平面 • 吉他放大器和其他乐器放大器 • A/V 接收器 • 汽车外部放大器 # 3 说明 单通道 OPA1677、双通道 OPA1678 和四通道 OPA1679 (OPA167x) 运算放大器较音频电路中常用的 传统运算放大器而言,可提供更高的系统级性能。 OPA167x 放大器在 1kHz 时可实现 4.5nV/ √Hz 的低噪 声密度和 0.0001% 的低失真度,从而提高了音频信号 保真度。这些器件在 $2k\Omega$ 负载下还可提供 800mV 范 围内的轨到轨输出摆幅,从而增加余量并更大限度地扩 大动态范围。 为了适应多种类型音频产品的电源限制, OPA167x 仅 在 2mA 的电源电流、±2.25V 至 ±18V (或 4.5V 至 36V)的非常宽的电源电压范围内工作。这些运算放大 器是单位增益稳定型放大器,且可在各种负载条件下实 现出色的动态行为,因此 OPA167x 可在许多音频电路 中使用。 OPA167x 放大器使用完全独立的内部电路,可将串扰 降到最低,即便在过驱动或过载时也不受通道间相互作 用的影响。 哭件信息 | 器件型号 | 通道 | 封装 ⁽¹⁾ | |---------|-------|-------------------| | OPA1677 | 单通道 | SOIC (8) | | OPATOTT | 平 地 但 | SOT-23 (5) | | OPA1678 | | SOIC (8) | | | 双通道 | VSSOP (8) | | | | SON (8) | | | | SOIC (14) | | OPA1679 | 四通道 | TSSOP (14) | | | | QFN (16) | 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。 THD+N 与频率 (2k Ω 负载) # **Table of Contents** | 1 特性 | 1 | 7.3 Feature Description | 15 | |--------------------------------------|---|---|-----------------| | 2 应用 | | 7.4 Device Functional Modes | | | 3 说明 | | 8 Application and Implementation | 20 | | 4 Revision History | | 8.1 Application Information | 20 | | 5 Pin Configuration and Functions | | 8.2 Typical Applications | 21 | | 6 Specifications | | 8.3 Power Supply Recommendations | <mark>27</mark> | | 6.1 Absolute Maximum Ratings | | 8.4 Layout | <mark>27</mark> | | 6.2 ESD Ratings | | 9 Device and Documentation Support | <mark>29</mark> | | 6.3 Recommended Operating Conditions | | 9.1 Device Support | 29 | | 6.4 Thermal Information: OPA1677 | | 9.2 Documentation Support | 30 | | 6.5 Thermal Information: OPA1678 | 7 | 9.3 接收文档更新通知 | 30 | | 6.6 Thermal Information: OPA1679 | 7 | 9.4 支持资源 | 30 | | 6.7 Electrical Characteristics | 8 | 9.5 Trademarks | | | 6.8 Typical Characteristics | | 9.6 Electrostatic Discharge Caution | 30 | | 7 Detailed Description | | 9.7 术语表 | 30 | | 7.1 Overview | | 10 Mechanical, Packaging, and Orderable | | | 7.2 Functional Block Diagram | | Information | 30 | | - | | | | # **4 Revision History** 注:以前版本的页码可能与当前版本的页码不同 | Cr | nanges from Revision D (December 2021) to Revision E (December 2022) | Page | |----|---|------| | • | 将 OPA1677 D (SOIC , 8) 封装从"预发布"更改为"量产数据"(正在供货) | 1 | | Cł | nanges from Revision C (April 2019) to Revision D (December 2021) | Page | | • | 更新了整个文档中的表格、图和交叉参考的编号格式 | 1 | | | 添加了 OPA1677 器件的量产数据 (正在供货)和相关内容 | | | Cł | nanges from Revision B (June 2018) to Revision C (April 2019) | Page | | • | 将 OPA1679 QFN 封装的状态更改为量产数据 | 1 | | • | Changed GPN BUF634A in Figure 8-6, Composite Headphone Amplifier (Single-Channel Shown) | 26 | | Cł | nanges from Revision A (May 2018) to Revision B (June 2018) | Page | | • | 添加了内容: 预发布 QFN (RUM) 封装 | 1 | | Cł | nanges from Revision * (February 2017) to Revision A (May 2018) | Page | | • | 向 <i>器件信息</i> 表添加了 DRG (SON) 8 引脚封装 | 1 | | | 向 <i>特性</i> 列表添加了 SON-8 封装 | | | • | Added DRG (SON) 8-pin pinout drawing to Pin Configuration and Functions section | 3 | | • | Added thermal pad information to Pin Functions: OPA1678 table | 3 | | | | | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated # **5 Pin Configuration and Functions** 图 5-1. OPA1677: D Package, 8-Pin SOIC (Top View) 图 5-2. OPA1677: DBV Package, 5-Pin SOT-23 (Top View) **Pin Functions: OPA1677** | | PIN | | | | | |---------------|-----|-----------------|--------|---------------------------------|--| | | N | 0. | TYPE | DESCRIPTION | | | NAME D (SOIC) | | DBV
(SOT-23) | | | | | - IN | 2 | 4 | Input | Inverting input | | | +IN | 3 | 3 | Input | Noninverting input | | | OUT | 6 | 1 | Output | Output | | | V - | 4 | 2 | Power | Negative (lowest) power supply | | | V+ | 7 | 5 | Power | Positive (highest) power supply | | 图 5-3. OPA1678: D Package, 8-Pin SOIC and DGK Package, 8-Pin VSSOP (Top View) 图 5-4. OPA1678: DRG Package, 8-Pin SON With Exposed Thermal Pad (Top View) #### **Pin Functions: OPA1678** | PIN | | TYPE | DESCRIPTION | |-------------|-------------|--------|---| | NAME | NO. | IIFE | DESCRIPTION | | - IN A | 2 | Input | Inverting input, channel A | | +IN A | 3 | Input | Noninverting input, channel A | | - IN B | 6 | Input | Inverting input, channel B | | +IN B | 5 | Input | Noninverting input, channel B | | OUT A | 1 | Output | Output, channel A | | OUT B | 7 | Output | Output, channel B | | V - | 4 | Power | Negative (lowest) power supply | | V+ | 8 | Power | Positive (highest) power supply | | Thermal Pad | Thermal pad | _ | For DRG (SON-8) package. Exposed thermal die pad on underside. Connect thermal die pad to V Solder the thermal pad to improve heat dissipation and provide specified performance. | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 图 5-5. OPA1679: D Package, 14-Pin SOIC and PW Package, 14-Pin TSSOP (Top View) 图 5-6. OPA1679: RUM Package, 16-Pin QFN With Exposed Thermal Pad (Top View) **Pin Functions: OPA1679** | | PIN | | | | | |-------------|------------------------|-------------|--------|--|--| | | N | NO. | | DESCRIPTION | | | NAME | D (SOIC)
PW (TSSOP) | RUM (QFN) | TYPE | | | | - IN A | 2 | 1 | Input | Inverting input, channel A | | | +IN A | 3 | 2 | Input | Noninverting input, channel A | | | - IN B | 6 | 5 | Input | Inverting input, channel B | | | +IN B | 5 | 4 | Input | Noninverting input, channel B | | | - IN C | 9 | 8 | Input | Inverting input, channel C | | | +IN C | 10 | 9 | Input | Noninverting input, channel C | | | - IN D | 13 | 12 | Input | Inverting input, channel D | | | +IN D | 12 | 11 | Input | Noninverting input, channel D | | | NC | _ | 13 | _ | No connect | | | NC | _ | 16 | _ | No connect | | | OUT A | 1 | 15 | Output | Output, channel A | | | OUT B | 7 | 6 | Output | Output, channel B | | | OUT C | 8 | 7 | Output | Output, channel C | | | OUT D | 14 | 14 | Output | Output, channel D | | | V+ | 4 | 3 | Power | Positive (highest) power supply | | | V - | 11 | 10 | Power | Negative (lowest) power supply | | | Thermal Pad | _ | Thermal pad | _ | Exposed thermal die pad on underside. Connect thermal die pad to V Solder the thermal pad to improve heat dissipation and provide specified performance. | | # **6 Specifications** # **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |------------------|----------------------|---|--------------|------------|------| | Voltage | | Supply voltage, V _S = (V+) - (V -) | | 40 | V | | | Voltage | Input voltage | (V -) - 0.5 | (V+) + 0.5 | V | | | Current | Input current (all pins except power-supply pins) | - 10 | 10 | mA | | | Current | Output short-circuit current ⁽²⁾ | Continu | ous | | | T _A | Operating ten | nperature | - 55 | 125 | °C | | TJ | Junction temperature | | | 150 | °C | | T _{stg} | Storage temperature | | - 65 | 150 | °C | ⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. ## 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|--|-------|------| | | | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±2000 | | | V _(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾ | ±1000 | V | | | | Machine model (MM) ⁽³⁾ | ±200 | | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. - (3) Machine Model was not tested on OPA1679IRUM. ### **6.3 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | | MIN | NOM MAX | UNIT | |----------------|-----------------------|---------------|-------|---------|------| | V _S | Supply voltage | Single supply | 4.5 | 36 | V | | VS | Supply voltage | Dual supply | ±2.25 | ±18 |] | | T _A | Operating temperature | | - 40 | 125 | °C | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ⁽²⁾ Short-circuit to V_S / 2 (ground in symmetrical dual-supply setups), one amplifier per package. ## 6.4 Thermal Information: OPA1677 | | | OPA | OPA1677 | | | |------------------------|--|--------|-----------------|------|--| | | THERMAL METRIC ⁽¹⁾ | | DBV
(SOT-23) | UNIT | | | | | 8 PINS | 5 PINS | | | | R ₀ JA | Junction-to-ambient thermal resistance | 132.9 | 180.5 | °C/W | | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 74.0 | 78.5 | °C/W | | | R ₀ JB | Junction-to-board thermal resistance | 76.3 | 47.3 | °C/W | | | ψ JT | Junction-to-top characterization parameter | 24.9 | 20.4 | °C/W | | | ψ ЈВ
| Junction-to-board characterization parameter | 75.6 | 47.0 | °C/W | | | R _{θ JC(bot)} | Junction-to-case (bottom) thermal resistance | N/A | N/A | °C/W | | For more information about traditional and new thermal metrics, see the <u>Semiconductor and IC Package Thermal Metrics</u> application report. #### 6.5 Thermal Information: OPA1678 | | THERMAL METRIC ⁽¹⁾ | | OPA1678 | | | | |------------------------|--|--------|----------------|--------------|------|--| | | | | DGK
(VSSOP) | DRG
(SON) | UNIT | | | | | 8 PINS | 8 PINS | 8 PINS | | | | R ₀ JA | Junction-to-ambient thermal resistance | 144 | 219 | 66.9 | °C/W | | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 77 | 79 | 54.5 | °C/W | | | R ₀ JB | Junction-to-board thermal resistance | 62 | 104 | 40.4 | °C/W | | | ψJT | Junction-to-top characterization parameter | 28 | 15 | 1.9 | °C/W | | | ψ ЈВ | Junction-to-board characterization parameter | 61 | 102 | 40.4 | °C/W | | | R _{θ JC(bot)} | Junction-to-case (bottom) thermal resistance | N/A | N/A | 10.8 | °C/W | | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. # 6.6 Thermal Information: OPA1679 | THERMAL METRIC(1) | | D
(SOIC) | PW
(TSSOP) | RUM
(QFN) | UNIT | |-------------------------------------|--|-------------|---------------|--------------|------| | | | 14 PINS | 14 PINS | 16 PINS | | | R ₀ JA | Junction-to-ambient thermal resistance | 90 | 127 | 38.5 | °C/W | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 55 | 47 | 34.4 | °C/W | | R _{θ JB} | Junction-to-board thermal resistance | 44 | 59 | 17.4 | °C/W | | ψJT | Junction-to-top characterization parameter | 20 | 55 | 0.6 | °C/W | | ψ ЈВ | Junction-to-board characterization parameter | 44 | 58 | 17.4 | °C/W | | R _{θ JC(bot)} | Junction-to-case (bottom) thermal resistance | N/A | N/A | 7.1 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ## **6.7 Electrical Characteristics** at $V_S = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$, $R_L = 2 \text{ k}\Omega$, and $V_{CM} = V_{OUT} = \text{midsupply}$ (unless otherwise noted) | | PARAMETER | | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|--------------------------------------|--|---|--------------|-----------|------------|---------------------| | AUDIO PER | RFORMANCE | | | | | | | | | | | | | 0.0001% | | | | THD+N | Total harmonic distortion + noise | $G = 1, R_L = 6$ | 00 Ω, $f = 1 \text{ kHz}$, $V_0 = 3 V_{RMS}$ | | - 120 | | dB | | | | | SMPTE/DIN two-tone, 4:1 | , | 0.0001% | | | | | | | (60 Hz and 7 kHz) | | - 120 | | dB | | | | G = 1 | DIM 30 | , | 0.0001% | | | | IMD | Intermodulation distortion | $V_0 = 3 V_{RMS}$ | (3-kHz square wave and 15-kHz sine wave) | | - 120 | | dB | | | | | CCIF twin-tone | | 0.0001% | | | | | | | (19 kHz and 20 kHz) | | - 120 | | dB | | FREQUENC | CY RESPONSE | | | | | | | | GBW | Gain-bandwidth product | G = 1 | | | 16 | | MHz | | SR | Slew rate | G = -1 | | | 9 | | V/µs | | | Full power bandwidth ⁽¹⁾ | V _O = 1 V _P | | | 1.4 | | MHz | | | Overload recovery time | G = -10 | | | 1 | | μs | | | Channel separation (dual and quad) | f = 1 kHz | | | - 130 | | dB | | NOISE | | | | | | | | | | | | 0 kHz | 5.4 | | | / | | en | Input voltage noise | f = 0.1 Hz to 1 | 10 Hz | 1.74 | | | μV_{PP} | | | Input voltage noise density | f = 1 kHz | | | 4.5 | | nV/ √ Hz | | i _n | Input current noise density | f = 1 kHz | | | 3 | | fA/ √ Hz | | OFFSET VO | DLTAGE | | | | | | | | | / | | to ±18 V | | ±0.5 | ±2 | mV | | V _{OS} | Input offset voltage | V _S = ±2.25 V | to ±18 V, $T_A = -40^{\circ}\text{C}$ to 125°C ⁽²⁾ | | 2 | | μV/°C | | PSRR | Power-supply rejection ratio | V _S = ±2.25 V | to ±18 V | | 3 | 8 | μV/V | | INPUT BIAS | CURRENT | ' | | | | | | | I _B | Input bias current | V _{CM} = 0 V | | | ±10 | | pA | | I _{OS} | Input offset current | V _{CM} = 0 V | | | ±10 | | pA | | INPUT VOL | TAGE RANGE | | | · | | | | | V _{CM} | Common-mode voltage range | | | (V -)+0.5 | | (V+) - 2 | V | | CMRR | Common-mode rejection ratio | | | 100 | 110 | | dB | | INPUT IMP | EDANCE | | | | | | | | | Differential | | | | 100 6 | | M Ω pF | | | Common-mode | | | | 6000 2 | | G Ω pF | | OPEN-LOO | PGAIN | • | | | | | | | A _{OL} | Open-loop voltage gain | (V -) + 0.8 V | \leq V _O \leq (V+) - 0.8 V | 106 | 114 | | dB | | OUTPUT | | • | | | | | | | Vo | Output voltage | | | (V -) + 0.8 | | (V+) - 0.8 | V | | I _{OUT} | Output Current | | | | See 节 6.8 | | mA | | Z _O | Open-loop output impedance | f = 1 MHz | | | See 节 6.8 | | Ω | | I _{SC} | Short-circuit current ⁽³⁾ | | | | ±50 | | mA | | C _L | Capacitive load drive | | | | 100 | | pF | | POWER SU | IPPLY | 1 | | | | | | | | Outcoant ourset (see sheet P | I _O = 0 A | | | 2 | 2.5 | μ Λ | | IQ | Quiescent current (per channel) | I _O = 0 A, T _A = | - 40°C to 125°C ⁽²⁾ | | | 2.8 | mA | ⁽¹⁾ Full-power bandwidth = SR / (2 π ×V_P), where SR = slew rate. ⁽²⁾ Specified by design and characterization. (3) One channel at a time. ## **6.8 Typical Characteristics** at T_A = 25°C, V_S = ±15 V, and R_L = 2 k Ω , (unless otherwise noted) at T_A = 25°C, V_S = ±15 V, and R_L = 2 k Ω , (unless otherwise noted) at T_A = 25°C, V_S = ±15 V, and R_L = 2 k Ω , (unless otherwise noted) at T_A = 25°C, V_S = ±15 V, and R_L = 2 k Ω , (unless otherwise noted) at T_A = 25°C, V_S = ±15 V, and R_L = 2 k Ω , (unless otherwise noted) ## 7 Detailed Description #### 7.1 Overview The OPA167x devices are unity-gain stable, dual-channel and quad-channel op amps with low noise and distortion. #7.2 shows a simplified schematic of the OPA167x (one channel shown). These devices consist of a low-noise input stage with a folded cascode and a rail-to-rail output stage. This topology exhibits excellent noise and distortion performance across a wide range of supply voltages that are not delivered by legacy, commodity, audio operational amplifiers. ## 7.2 Functional Block Diagram ## 7.3 Feature Description #### 7.3.1 Phase Reversal Protection The OPA167x family has internal phase-reversal protection. Many op amps exhibit phase reversal when the input is driven beyond the linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The input of the OPA167x prevents phase reversal with excessive common-mode voltage. Instead, the appropriate rail limits the output voltage. This performance is shown in $\boxed{8}$ 7-1. 图 7-1. Output Waveform Devoid of Phase Reversal During an Input Overdrive Condition #### 7.3.2 Electrical Overstress Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress. These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly. A good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is helpful. 7-2 illustrates the ESD circuits contained in the OPA167x (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation. 图 7-2. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application An ESD event produces a short-duration, high-voltage pulse that is transformed into a short-duration, high-current pulse when discharging through a semiconductor device. The ESD protection circuits are designed to provide a current path around the operational amplifier core to prevent damage. The energy absorbed by the protection circuitry is then dissipated as heat. When an ESD voltage develops across two or more amplifier device pins, current flows through one or more steering diodes. Depending on the path that the current takes, the absorption device can activate. The absorption device has a trigger, or threshold voltage, that is greater than the normal operating voltage of the OPA167x but less than the device breakdown voltage level. When this threshold is exceeded, the absorption device quickly activates and clamps the voltage across the supply rails to a safe level. When the operational amplifier connects into a circuit (see 7-2), the ESD protection components are intended to remain inactive and do not become involved in the application circuit operation. However, circumstances can arise where an applied voltage exceeds the operating voltage range of a given pin. If this condition occurs, there is a risk that some internal ESD protection circuits can turn on and conduct current. Any such current flow occurs through steering-diode paths and rarely involves the absorption device. \boxtimes 7-2 shows a specific example where the input voltage (V_{IN}) exceeds the positive supply voltage (V+) by 500 mV or more. Much of what happens in the circuit depends on the supply characteristics. If V+ can sink the current, one of the upper input
steering diodes conducts and directs current to V+. Excessively high current levels can flow with increasingly higher V_{IN} . As a result, the data sheet specifications recommend that applications limit the input current to 10 mA. If the supply is not capable of sinking the current, V_{IN} can begin sourcing current to the operational amplifier and then take over as the source of positive supply voltage. The danger in this case is that the voltage can rise to levels that exceed the operational amplifier absolute maximum ratings. Another common question involves what happens to the amplifier if an input signal is applied to the input when the power supplies (V+ or V -) are at 0 V. Again, this question depends on the supply characteristic when at 0 V, or at a level less than the input signal amplitude. If the supplies appear as high impedance, then the input source supplies the operational amplifier current through the current-steering diodes. This state is not a normal bias condition; most likely, the amplifier does not operate normally. If the supplies are low impedance, then the current through the steering diodes can become quite high. The current level depends on the ability of the input source to deliver current, and any resistance in the input path. If there is any uncertainty about the ability of the supply to absorb this current, add external Zener diodes to the supply pins; see 3 7-2. Select the Zener voltage so that the diode does not turn on during normal operation. However, the Zener voltage must be low enough so that the Zener diode conducts if the supply pin begins to rise above the safe-operating, supply-voltage level. #### 7.3.3 EMI Rejection Ratio (EMIRR) The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many operational amplifiers is a change in the offset voltage as a result of RF signal rectification. An operational amplifier that is more efficient at rejecting this change in offset as a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this document provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is applied to the noninverting input pin of the operational amplifier. In general, only the noninverting input is tested for EMIRR for the following three reasons: - Operational amplifier input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the supply or output pins. - The noninverting and inverting operational amplifier inputs have symmetrical physical layouts and exhibit nearly matching EMIRR performance. - EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input pin can be isolated on a printed-circuit-board (PCB). This isolation allows the RF signal to be applied directly to the noninverting input pin with no complex interactions from other components or connecting PCB traces. A more formal discussion of the EMIRR IN+ definition and test method is shown in the *EMI Rejection Ratio of Operational Amplifiers* application report, available for download at www.ti.com. The EMIRR IN+ of the OPA167x is plotted versus frequency in [8] 7-3. The dual and quad operational amplifier device versions have approximately identical EMIRR IN+ performance. The OPA167x unity-gain bandwidth is 16 MHz. EMIRR performance below this frequency denotes interfering signals that fall within the operational amplifier bandwidth. 图 7-3. OPA167x EMIRR vs Frequency \bar{z} 7-1 lists the EMIRR IN+ values for the OPA167x at particular frequencies commonly encountered in real-world applications. Applications listed in \bar{z} 7-1 can be centered on or operated near the particular frequency shown. This information can be of special interest to designers working with these types of applications, or working in other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, and medical (ISM) radio band. | 7-1. Of A 107% Elimitation 101 Trequencies of interest | | | | | | | | |--|---|-----------|--|--|--|--|--| | FREQUENCY | APPLICATION OR ALLOCATION | EMIRR IN+ | | | | | | | 400 MHz | Mobile radio, mobile satellite, space operation, weather, radar, UHF | 36 dB | | | | | | | 900 MHz | GSM, radio communication and navigation, GPS (to 1.6 GHz), ISM, aeronautical mobile, UHF | 42 dB | | | | | | | 1.8 GHz | GSM, mobile personal comm. broadband, satellite, L-band | 52 dB | | | | | | | 2.4 GHz | 802.11b/g/n, Bluetooth™, mobile personal comm., ISM, amateur radio and satellite, S-band | 64 dB | | | | | | | 3.6 GHz | Radiolocation, aero comm./nav., satellite, mobile, S-band | 67 dB | | | | | | | 5 GHz | 802.11a/n, aero communication and navigation, mobile communication, space and satellite operation, C- | 77 dB | | | | | | 表 7-1. OPA167x EMIRR IN+ for Frequencies of Interest #### 7.3.3.1 EMIRR IN+ Test Configuration ₹ 7-4 shows the circuit configuration for testing the EMIRR IN+. An RF source is connected to the operational amplifier noninverting input pin using a transmission line. The operational amplifier is configured in a unity-gain buffer topology with the output connected to a low-pass filter (LPF) and a digital multimeter (DMM). A large impedance mismatch at the operational amplifier input causes a voltage reflection; however, this effect is characterized and accounted for when determining the EMIRR IN+. The resulting dc offset voltage is sampled and measured by the multimeter. The LPF isolates the multimeter from residual RF signals that can interfere with multimeter accuracy. See the EMI Rejection Ratio of Operational Amplifiers application report for more details. 图 7-4. EMIRR IN+ Test Configuration Schematic #### 7.4 Device Functional Modes #### 7.4.1 Operating Voltage The OPA167x series op amps operate from ± 2.25 V to ± 18 V supplies while maintaining excellent performance. The OPA167x series can operate with as little as 4.5 V between the supplies and with up to 36 V between the supplies. However, some applications do not require equal positive and negative output voltage swing. With the OPA167x series, power-supply voltages are not required to be equal. For example, the positive supply can be set to 25 V with the negative supply at -5 V. In all cases, the common-mode voltage must be maintained within the specified range. In addition, key parameters are specified over the temperature range of $T_A = -40^{\circ}\text{C}$ to +85°C. Parameters that vary significantly with operating voltage or temperature are shown in # 6.8. # 8 Application and Implementation #### 备注 以下应用部分中的信息不属于 TI 器件规格的范围, TI 不担保其准确性和完整性。TI 的客户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 ## 8.1 Application Information ## 8.1.1 Capacitive Loads The dynamic characteristics of the OPA167x series are optimized for commonly encountered gains, loads, and operating conditions. The combination of low closed-loop gain and high capacitive loads decreases the phase margin of the amplifier, and can lead to gain peaking or oscillations. As a result, heavier capacitive loads must be isolated from the output. The simplest way to achieve this isolation is to add a small resistor (R_S equal to 50 Ω , for example) in series with the output. This small series resistor also prevents excess power dissipation if the output of the device short-circuits. For more details about analysis techniques and application circuits, see the *Feedback Plots Define Op Amp AC Performance* application report, available for download from the TI website (www.ti.com). Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## 8.2 Typical Applications ## 8.2.1 Phantom-Powered Preamplifier for Piezo Contact Microphones Contact microphones are useful for amplifying the sound of musical instruments that do not contain electric pickups, such as acoustic guitars and violins. Most contact microphones use a piezo element to convert vibrations in the body of the musical instrument to a voltage which can be amplified or recorded. The low noise and low input bias current of the OPA1678 make the device an excellent choice for high impedance preamplifiers for piezo elements. This preamplifier circuit provides high input impedance for the piezo element but has low output impedance for driving long cable runs. The circuit is also designed to be powered from 48-V phantom power which is commonly available in professional microphone preamplifiers and recording consoles. A TINA-TI™ simulation schematic of the circuit below is available in the *Tools and Software* section of the OPA1678 or OPA1679 product folder. 图 8-1. Phantom-Powered Preamplifier for Piezo Contact Microphones ## 8.2.1.1 Design Requirements - 3-dB bandwidth: 20 Hz to 20 kHz Gain: 20 dB (10 V/V) Piezo element capacitance: 8 nF (9-kHz resonance) #### 8.2.1.2 Detailed Design Procedure #### **8.2.1.2.1 Power Supply** In professional audio systems, phantom power is applied to the two signal lines that carry a differential audio signal from the microphone. 🛭 8-2 is a diagram of the system showing 48-V phantom power applied to the differential signal lines between the piezo preamplifier output and the input of a professional microphone preamplifier. 图 8-2. System Diagram Showing the Application of Phantom Power to the Audio Signal Lines A voltage divider is used to extract the common-mode phantom power from the differential audio signal in this type of system. The voltage at center point of the voltage divider formed by R1 and R2 does not change when audio signals are present on the signal lines (assuming R1 and R2 are matched). A Zener diode forces the voltage at the center point of R1 and R2 to a regulated voltage. The values
of R1 and R2 are determined by the allowable voltage drop across these resistors from the current delivered to both op amp channels and the Zener diode. There are two power supply current pathways in parallel, each sharing half the total current of the op amp and Zener diode. Resistors R1 and R2 can be calculated using 1: $$\frac{V_{ZD}}{\left(\frac{I_{OPA}}{2} + \frac{I_{ZD}}{2}\right)} - 6.8 \text{ k}\Omega = R_{PS}$$ (1) A 24-V Zener diode is selected for this design, and 1 mA of current flows through the diode at idle conditions to maintain the reverse-biased condition of the Zener diode. The maximum idle power supply current of both op amp channels is 5 mA. Inserting these values into <math> 方程式 1 gives the values for R1 and R2 shown in 方程式 2. $$\frac{24V}{\left(\frac{I_{OPA}}{2} + \frac{I_{ZD}}{2}\right)} - 6.8 \text{ k}\Omega = \frac{24V}{\left(\frac{5.0 \text{ mA}}{2} + \frac{1.0 \text{ mA}}{2}\right)} - 6.8 \text{ k}\Omega = 1.2 \text{ k}\Omega = R_{PS}$$ (2) Using a value of 1.2 k Ω for resistors R1 and R2 establishes a 1-mA current through the Zener diode and properly regulate the node to 24 V. Capacitor C1 forms a low-pass filter with resistors R1 and R2 to filter the Zener diode noise and any residual differential audio signals. Mismatch in the values of R1 and R2 causes a portion of the audio signal to appear at the voltage divider center point. The corner frequency of the low-pass filter must be set below the audio band, as shown in 方程式 3. $$C_1 \ge \frac{1}{2 \cdot \pi \cdot R_1 \mid\mid R_2 \cdot f_{-3dB}} \ge \frac{1}{2 \cdot \pi \cdot 600 \Omega \cdot 20 Hz} \ge 13 \mu F \rightarrow 22 \mu F \tag{3}$$ A 22- μ F capacitor is selected because the capacitor meets the requirements for power supply filtering and is a widely available denomination. A 0.1- μ F capacitor (C2) is added in parallel with C1 as a high-frequency bypass capacitor. #### 8.2.1.2.2 Input Network Resistors R3 and R4 provide a pathway for the input bias current of the OPA1678 while maintaining the high input impedance of the circuit. The contact microphone capacitance and the required low-frequency response determine the values of R3 and R4. The - 3-dB frequency formed by the microphone capacitance and amplifier input impedance is shown in Equation 4: $$F_{-3dB} = \frac{1}{2 \cdot \pi \cdot (R_3 + R_4) \cdot C_{MIC}} \le 20 \text{ Hz}$$ (4) A piezo element with 8 nF of capacitance was selected for this design because the 9-kHz resonance is towards the upper end of the audible bandwidth, and is less likely to affect the frequency response of many musical instruments. The minimum value for resistors R3 and R4 is then calculated with Equation 5: $$R_{3} = R_{4} = R_{IN}$$ $$R_{IN} \ge \frac{1}{4 \cdot \pi \cdot F_{-3dB} \cdot C_{MIC}} \ge \frac{1}{4 \cdot \pi \cdot 20 \text{ Hz} \cdot 8 \text{ nF}} \ge 497.4 \text{ k}\Omega$$ (5) 1-M Ω resistors are selected for R3 and R4 to make sure the circuit meets the design requirements for - 3-dB bandwidth. The center point of resistors R3 and R4 is biased to half the supply voltage through the voltage divider formed by R5 and R6. This sets the input common-mode voltage of the circuit to a value within the input voltage range of the OPA1678. Piezo elements can produce very large voltages if the elements are struck with sufficient force. To prevent damage, the input of the OPA1678 is protected by a transient voltage suppressor (TVS) diode placed across the preamplifier inputs. The TPD1E1B04 TVS was selected due to low capacitance and the 6.4-V clamping voltage does not clamp the desired low amplitude vibration signals. Resistors R14 and R15 limit current flow into the amplifier inputs in the event that the internal protection diodes of the amplifier are forward-biased. #### 8.2.1.2.3 Gain R7, R8, and R9 determines the gain of the preamplifier circuit. The gain of the circuit is shown in Equation 6: $$A_{V} = 1 + \frac{R_{7} + R_{9}}{R_{8}} = 10 \text{ V/V}$$ (6) Resistors R7 and R9 are selected with a value of 2 k Ω to avoid loading the output of the OPA1678 and producing distortion. The value of R8 is then calculated in Equation 7: $$R_8 = \frac{R_7 + R_9}{A_V - 1} = \frac{2 k\Omega + 2 k\Omega}{10 - 1} = 444.4 \Omega \rightarrow 442 \Omega$$ (7) Capacitors C3 and C4 limit the bandwidth of the circuit so that signals outside the audio bandwidth are not amplified. The corner frequency produced by capacitors C3 and C4 is shown in Equation 8. This corner frequency must be above the desired – 3-dB bandwidth point to avoid attenuating high-frequency audio signals. $$\begin{split} &C_{3} = C_{4} = C_{FB} \\ &C_{FB} \leq \frac{1}{2 \cdot \pi \cdot F_{-3dB} \cdot R_{7/9}} \leq \frac{1}{2 \cdot \pi \cdot 20 \text{ kHz} \cdot 2 \text{ k}\Omega} \leq 3.98 \text{ nF} \end{split} \tag{8}$$ C3 and C4 are 390-pF capacitors, which places the corner frequency approximately 1 decade above the desired – 3-dB bandwidth point. Capacitors C3 and C4 must be NP0 or C0G type ceramic capacitors or film capacitors. Other ceramic dielectrics, such as X7R, are not suitable for these capacitors and produce distortion. #### 8.2.1.2.4 Output Network $$C_{5} = C_{6} = C_{OUT}$$ $$C_{OUT} \ge \frac{2}{2 \cdot \pi \cdot R_{IN_MIC} \cdot 20 \text{ Hz}} \ge \frac{2}{2 \cdot \pi \cdot 4.4 \text{ k}\Omega \cdot 20 \text{ Hz}} \ge 3.6 \text{ }\mu\text{F}$$ (9) #### 8.2.1.3 Application Curves The frequency response of the preamplifier circuit is shown in <a>\bar{\text{8}} 8-3. The -3-dB frequencies are 15.87 Hz and 181.1 kHz, which meet the design requirements. The gain within the passband of the circuit is 18.9 dB, slightly less than the design goal of 20 dB. The reduction in gain is a result of the voltage division between the output resistors of the piezo preamplifier circuit and the input impedance of the microphone preamplifier. The A-weighted noise of the circuit (referred to the input) is 842.2 nV_{RMS} or − 119.27 dBu. 图 8-3. Frequency Response of the Preamplifier Circuit for a 8-nF Piezo Element #### 8.2.2 Phono Preamplifier for Moving Magnet Cartridges The noise and distortion performance of the OPA167x family of amplifiers is exceptional in applications with high source impedances, which makes these devices a viable choice in preamplifier circuits for moving magnet (MM) phono cartridges. 8-4 shows a preamplifier circuit for MM cartridges with 40 dB of gain at 1 kHz. 图 8-4. Phono Preamplifier for Moving Magnet Cartridges (Single-Channel Shown) ## 8.2.3 Single-Supply Electret Microphone Preamplifier The preamplifier circuit shown in 🛭 8-5 operates the OPA1678 as a transimpedance amplifier that converts the output current from the electret microphone internal JFET into a voltage. Resistor R4 determines the gain of the circuit. Resistors R2 and R3 bias the input voltage to half the power supply voltage for proper functionality on a single-supply. 图 8-5. Single-Supply Electret Microphone Preamplifier #### 8.2.4 Composite Headphone Amplifier 8-6 shows the BUF634A buffer inside the feedback loop of the OPA1678 to increase the available output current for low-impedance headphones. If the BUF634A is used in wide-bandwidth mode, no additional components besides the feedback resistors are required to maintain loop stability. 图 8-6. Composite Headphone Amplifier (Single-Channel Shown) ## 8.2.5 Differential Line Receiver With AC-Coupled Outputs ⊗ 8-7 shows the OPA1678 used as an integrator that drives the reference pin of the INA1650, which forces the output dc voltage to 0 V. This configuration is an alternative to large ac-coupling capacitors that can distort at high output levels. The low input bias current and low input offset voltage of the OPA1678 make the device an excellent choice for integrator applications. 图 8-7. Differential Line Receiver With AC-Coupled Outputs ## 8.3 Power Supply Recommendations The OPA167x devices are specified for operation from 4.5 V to 36 V (± 2.25 V to ± 18 V); many specifications apply from -40° C to $+85^{\circ}$ C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are shown in # 6.8. Applications with noisy or high-impedance power supplies require decoupling capacitors close to the device pins. In most cases, 0.1-µF capacitors are adequate. #### 8.4 Layout #### 8.4.1 Layout Guidelines For best operational performance of the device, use good printed-circuit board (PCB) layout practices, including: - Noise can propagate into analog circuitry through the power pins of the circuit as a whole and of op amp itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry. - Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications. - Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. Physically separate digital and analog grounds, observing the flow of the ground current. - To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to in parallel with the noisy trace. - Place the external components as close to the device as possible. As shown in 🛭 8-8, keeping R_F and R_G close to the inverting input minimizes parasitic capacitance. - Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. - Consider a driven, low-impedance guard ring around the critical traces. A guard ring can
significantly reduce leakage currents from nearby traces that are at different potentials. - Cleaning the PCB following board assembly is recommended for best performance. Any precision integrated circuit can experience performance shifts resulting from moisture ingress into the plastic package. Following any aqueous PCB cleaning process, bake the PCB assembly to remove moisture introduced into the device packaging during the cleaning process. A low temperature, post-cleaning bake at 85°C for 30 minutes is sufficient for most circumstances. #### 8.4.1.1 Power Dissipation The OPA167x series op amps are capable of driving $2-k\,\Omega$ loads with a power-supply voltage up to $\pm 18\,V$ and full operating temperature range. Internal power dissipation increases when operating at high supply voltages. Copper leadframe construction used in the OPA167x series op amps improves heat dissipation compared to conventional materials. Circuit board layout can also help minimize junction temperature rise. Wide copper traces help dissipate the heat by acting as an additional heat sink. Temperature rise can be further minimized by soldering the devices to the circuit board rather than using a socket. #### 8.4.2 Layout Example 图 8-8. Operational Amplifier Board Layout for Noninverting Configuration # 9 Device and Documentation Support ## 9.1 Device Support #### 9.1.1 Development Support #### 9.1.1.1 PSpice® for TI PSpice® for TI 是可帮助评估模拟电路性能的设计和仿真环境。在进行布局和制造之前创建子系统设计和原型解决方案,可降低开发成本并缩短上市时间。 #### 9.1.1.2 TINA-TI™ 仿真软件 (免费下载) TINA-TI™ 仿真软件是一款简单易用、功能强大且基于 SPICE 引擎的电路仿真程序。TINA-TI 仿真软件是 TINA™ 软件的一款免费全功能版本,除了一系列无源和有源模型外,此版本软件还预先载入了一个宏模型库。TINA-TI 仿真软件提供所有传统的 SPICE 直流、瞬态和频域分析,以及其他设计功能。 TINA-TI 仿真软件提供全面的后处理能力,便于用户以多种方式获得结果,用户可从设计工具和仿真网页免费下载。虚拟仪器提供选择输入波形和探测电路节点、电压以及波形的能力,从而构建一个动态的快速启动工具。 ## 备注 必须安装 TINA 软件或者 TINA-TI 软件后才能使用这些文件。请从 TINA-TI™ 软件文件夹中下载免费的 TINA-TI 仿真软件。 ## 9.1.1.3 DIP-Adapter-EVM 借助 DIP-Adapter-EVM 加快运算放大器的原型设计和测试,该 EVM 有助于快速轻松地连接小型表面贴装器件并且价格低廉。使用随附的 Samtec 端子板连接任何受支持的运算放大器,或者将这些端子板直接连接至现有电路。DIP-Adapter-EVM 套件支持以下业界通用封装:D 或 U (SOIC-8)、PW (TSSOP-8)、DGK (VSSOP-8)、DBV (SOT-23-6、SOT-23-5 和 SOT-23-3)、DCK (SC70-6 和 SC70-5)和 DRL (SOT563-6)。 #### 9.1.1.4 **DIYAMP-EVM** DIYAMP-EVM 是一款独特的评估模块 (EVM),可提供真实的放大器电路,使用户能够快速评估设计概念并验证仿真。此 EVM 采用 3 种业界通用封装选项 (SC70、SOT23 和 SOIC)并提供 12 种流行的放大器配置,包括放大器、滤波器、稳定性补偿以及同时适用于单电源和双电源的比较器配置。 #### 9.1.1.5 TI 参考设计 TI 参考设计是由 TI 的精密模拟应用专家创建的模拟解决方案。TI 参考设计提供了许多实用电路的工作原理、组件选择、仿真、完整印刷电路板 (PCB) 电路原理图和布局布线、物料清单以及性能测量结果。TI 参考设计可在线获取,网址为 https://www.ti.com/reference-designs。 #### 9.1.1.6 滤波器设计工具 滤波器设计工具是一款简单、功能强大且便于使用的有源滤波器设计程序。利用滤波设计器,用户可使用精选 TI 运算放大器和 TI 供应商合作伙伴提供的无源器件来打造理想滤波器设计方案。 设计工具和仿真网页以基于网络的工具形式提供滤波设计工具。用户通过该工具可在短时间内完成多级有源滤波器解决方案的设计、优化和仿真。 Copyright © 2023 Texas Instruments Incorporated # 9.2 Documentation Support #### 9.2.1 Related Documentation The following documents are relevant to using the OPA167x, and are recommended for reference. All are available for download at www.ti.com unless otherwise noted. - Texas Instruments, Source resistance and noise considerations in amplifiers technical brief - Burr Brown, Single-Supply Operation of Operational Amplifiers application bulletin - Burr Brown, Op Amp Performance Analysis application bulletin - Texas Instruments, Compensate Transimpedance Amplifiers Intuitively application report - Burr Brown, Tuning in Amplifiers application bulletin - Burr Brown, Feedback Plots Define Op Amp AC Performance application bulletin - Texas Instruments, Active Volume Control for Professional Audio precision design ## 9.3 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 #### 9.4 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 #### 9.5 Trademarks TINA-TI™ and TI E2E™ are trademarks of Texas Instruments. TINA™ is a trademark of DesignSoft, Inc. PSpice® is a registered trademark of Cadence Design Systems, Inc. 所有商标均为其各自所有者的财产。 #### 9.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 9.7 术语表 TI术语表本术语表列出并解释了术语、首字母缩略词和定义。 ## 10 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated www.ti.com 17-Jun-2025 # **PACKAGING INFORMATION** | Orderable part number | Status (1) | Material type | Package Pins | Package qty Carrier | RoHS (3) | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|------------|---------------|------------------|-----------------------|-----------------|-------------------------------|----------------------------|--------------|------------------| | OPA1677DBVR | Active | Production | SOT-23 (DBV) 5 | 3000 LARGE T&R | Yes | NIPDAU SN | Level-1-260C-UNLIM | -40 to 125 | O1677 | | OPA1677DBVR.B | Active | Production | SOT-23 (DBV) 5 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | O1677 | | OPA1677DBVT | Active | Production | SOT-23 (DBV) 5 | 250 SMALL T&R | Yes | NIPDAU SN | Level-1-260C-UNLIM | -40 to 125 | O1677 | | OPA1677DBVT.B | Active | Production | SOT-23 (DBV) 5 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | O1677 | | OPA1677DR | Active | Production | SOIC (D) 8 | 3000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OP1677 | | OPA1677DR.B | Active | Production | SOIC (D) 8 | 3000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 125 | OP1677 | | OPA1678IDGKR | Active | Production | VSSOP (DGK) 8 | 2500 LARGE T&R | Yes | NIPDAU SN
 NIPDAUAG | Level-2-260C-1 YEAR | -40 to 85 | 1AW7 | | OPA1678IDGKR.A | Active | Production | VSSOP (DGK) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | 1AW7 | | OPA1678IDGKR.B | Active | Production | VSSOP (DGK) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | 1AW7 | | OPA1678IDGKT | Active | Production | VSSOP (DGK) 8 | 250 SMALL T&R | Yes | NIPDAU SN
 NIPDAUAG | Level-2-260C-1 YEAR | -40 to 85 | 1AW7 | | OPA1678IDGKT.A | Active | Production | VSSOP (DGK) 8 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | 1AW7 | | OPA1678IDGKT.B | Active | Production | VSSOP (DGK) 8 | 250 SMALL T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | 1AW7 | | OPA1678IDR | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OP1678 | | OPA1678IDR.A | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OP1678 | | OPA1678IDR.B | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OP1678 | | OPA1678IDRG4 | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OP1678 | | OPA1678IDRG4.A | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OP1678 | | OPA1678IDRG4.B | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OP1678 | | OPA1678IDRGR | Active | Production | SON (DRG) 8 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OP1678 | | OPA1678IDRGR.A | Active | Production | SON (DRG) 8 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OP1678 | | OPA1678IDRGR.B | Active | Production | SON (DRG) 8 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OP1678 | | OPA1678IDRGRG4 | Active | Production | SON (DRG) 8 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OP1678 | | OPA1678IDRGRG4.A | Active | Production | SON (DRG) 8 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OP1678 | | OPA1678IDRGRG4.B | Active | Production | SON (DRG) 8 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OP1678 | | OPA1678IDRGT | Active | Production | SON (DRG) 8 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OP1678 | | OPA1678IDRGT.A | Active | Production | SON (DRG) 8 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OP1678 | | OPA1678IDRGT.B | Active | Production | SON (DRG) 8 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OP1678 | | OPA1679IDR | Active | Production | SOIC (D) 14 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OPA1679 | -40 to 85 17-Jun-2025 OPA 1679 www.ti.com | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/ | MSL rating/ | Op temp (°C) | Part marking | |-----------------------|--------|---------------|-----------------|-----------------------|------|---------------|---------------------|--------------|--------------| | | (1) | (2) | | | (3) | Ball material | Peak reflow | | (6) | | | | | | | | (4) | (5) | | | | OPA1679IDR.A | Active | Production | SOIC (D) 14 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OPA1679 | | OPA1679IPWR | Active | Production | TSSOP (PW) 14 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OPA1679 | | OPA1679IPWR.A | Active | Production | TSSOP (PW) 14 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OPA1679 | | OPA1679IPWRG4 | Active |
Production | TSSOP (PW) 14 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OPA1679 | | OPA1679IPWRG4.A | Active | Production | TSSOP (PW) 14 | 2000 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | OPA1679 | | OPA1679IRUMR | Active | Production | WQFN (RUM) 16 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OPA
1679 | | OPA1679IRUMR.A | Active | Production | WQFN (RUM) 16 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OPA
1679 | | OPA1679IRUMR.B | Active | Production | WQFN (RUM) 16 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OPA
1679 | | OPA1679IRUMT | Active | Production | WQFN (RUM) 16 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OPA
1679 | | OPA1679IRUMT.A | Active | Production | WQFN (RUM) 16 | 250 SMALL T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | OPA
1679 | Active OPA1679IRUMT.B Yes **NIPDAU** Level-1-260C-UNLIM 250 | SMALL T&R Production WQFN (RUM) | 16 ⁽¹⁾ Status: For more details on status, see our product life cycle. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE OPTION ADDENDUM** www.ti.com 17-Jun-2025 Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF OPA1679: Automotive : OPA1679-Q1 NOTE: Qualified Version Definitions: Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects www.ti.com 30-Jul-2025 ## TAPE AND REEL INFORMATION # TAPE DIMENSIONS KO PI BO Cavity A0 | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | Pins | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |----------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | OPA1677DBVR | SOT-23 | DBV | 5 | 3000 | 180.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | OPA1677DBVT | SOT-23 | DBV | 5 | 250 | 180.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | OPA1677DR | SOIC | D | 8 | 3000 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | OPA1678IDGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | OPA1678IDGKT | VSSOP | DGK | 8 | 250 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | OPA1678IDR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | OPA1678IDRG4 | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | OPA1678IDRGR | SON | DRG | 8 | 3000 | 330.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | | OPA1678IDRGRG4 | SON | DRG | 8 | 3000 | 330.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | | OPA1678IDRGT | SON | DRG | 8 | 250 | 180.0 | 12.4 | 3.3 | 3.3 | 1.1 | 8.0 | 12.0 | Q2 | | OPA1679IDR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | OPA1679IPWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | OPA1679IPWRG4 | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | OPA1679IRUMR | WQFN | RUM | 16 | 3000 | 330.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | | OPA1679IRUMT | WQFN | RUM | 16 | 250 | 180.0 | 12.4 | 4.25 | 4.25 | 1.15 | 8.0 | 12.0 | Q2 | www.ti.com 30-Jul-2025 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | OPA1677DBVR | SOT-23 | DBV | 5 | 3000 | 210.0 | 185.0 | 35.0 | | OPA1677DBVT | SOT-23 | DBV | 5 | 250 | 210.0 | 185.0 | 35.0 | | OPA1677DR | SOIC | D | 8 | 3000 | 353.0 | 353.0 | 32.0 | | OPA1678IDGKR | VSSOP | DGK | 8 | 2500 | 353.0 | 353.0 | 32.0 | | OPA1678IDGKT | VSSOP | DGK | 8 | 250 | 353.0 | 353.0 | 32.0 | | OPA1678IDR | SOIC | D | 8 | 2500 | 353.0 | 353.0 | 32.0 | | OPA1678IDRG4 | SOIC | D | 8 | 2500 | 353.0 | 353.0 | 32.0 | | OPA1678IDRGR | SON | DRG | 8 | 3000 | 346.0 | 346.0 | 33.0 | | OPA1678IDRGRG4 | SON | DRG | 8 | 3000 | 346.0 | 346.0 | 33.0 | | OPA1678IDRGT | SON | DRG | 8 | 250 | 182.0 | 182.0 | 20.0 | | OPA1679IDR | SOIC | D | 14 | 2500 | 353.0 | 353.0 | 32.0 | | OPA1679IPWR | TSSOP | PW | 14 | 2000 | 353.0 | 353.0 | 32.0 | | OPA1679IPWRG4 | TSSOP | PW | 14 | 2000 | 353.0 | 353.0 | 32.0 | | OPA1679IRUMR | WQFN | RUM | 16 | 3000 | 367.0 | 367.0 | 35.0 | | OPA1679IRUMT | WQFN | RUM | 16 | 250 | 210.0 | 185.0 | 35.0 | SMALL OUTLINE INTEGRATED CIRCUIT ## NOTES: - 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. - 4. This dimension does not include interlead flash. - 5. Reference JEDEC registration MS-012, variation AA. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. SMALL OUTLINE TRANSISTOR - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC MO-178. - 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side. - 5. Support pin may differ or may not be present. SMALL OUTLINE TRANSISTOR NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary
based on board fabrication site. SMALL OUTLINE TRANSISTOR - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. PowerPAD is a trademark of Texas Instruments. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-187. - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. - 9. Size of metal pad may vary due to creepage requirement. - 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 12. Board assembly site may have different recommendations for stencil design. 3 x 3, 0.5 mm pitch PLASTIC SMALL OUTLINE - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. PLASTIC SMALL OUTLINE - NO LEAD - All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. This drawing is subject to change without notice. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC SMALL OUTLINE - NO LEAD - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC SMALL OUTLINE - NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm, per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side. - 5. Reference JEDEC registration MS-012, variation AB. NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. 4 x 4, 0.65 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. # RUM (S-PQFP-N16) # PLASTIC QUAD FLATPACK NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. - B. This drawing is subject to change without notice. - C. QFN (Quad Flatpack No-Lead) package configuration. The package thermal pad must be soldered to the board for thermal and mechanical performance. See the Product Data Sheet for details regarding the exposed thermal pad dimensions. E. Package complies to JEDEC MO-220 variation WGGC-3. 4209093-2/F 09/15 ### RUM (S-PWQFN-N16) ### PLASTIC QUAD FLATPACK NO-LEAD ### THERMAL INFORMATION This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. NOTES: All linear dimensions are in millimeters ### 重要通知和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司