OPA1633 高性能、全差分音频运算放大器 88 Texas Instruments # 1 特性 出色的音质 超低失真:132dB 低噪声:1.1nV/√Hz 高速: - 压摆率:80 V/μs - 增益带宽积:200MHz • 完全差分架构: - 平衡输入和输出将单端输入转换为平衡差分输出 • 宽电源电压范围: ±2.5V 至 ±17.5V 关断电流: 0.77 mA (V_S = ± 5V) • 温度范围: -40°C至+85°C 封装: HVSSOP-8、SOIC-8 # 2 应用 - 专业音频混合器或控制平面 - 专业麦克风和无线系统 - 专业扬声器系统 - 专业音频放大器 - 条形音箱 - 转盘 - 专业摄像机 - 吉他和其他乐器放大器 - 数据采集 (DAQ) - 引脚兼容型升级至 OPA1632 # 3 说明 OPA1633 是一款全差分放大器,旨在驱动高性能音频 模数转换器 (ADC) 或用作 D 类放大器的前置驱动器。 Burr-Brown Audio OPA1633 可实现卓越的音频质量、极低的噪声、大输 出电压摆幅和高电流驱动。OPA1633 具有 200MHz 的 出色增益带宽以及 80V/ μs 的超快压摆率,可实现极 低的失真。非常低的输入电压噪声 1.1nV/ √ Hz 可进一 步提供更大信噪比和动态范围。 全差分架构的灵活性有助于轻松实现单端到全差分输出 转换。差分输出可减少偶次谐波并最大限度地减少共模 噪声干扰。OPA1633 在用于驱动高性能音频 ADC (如 PCM1804)时可提供卓越的性能。添加了关断功能以 在器件未使用时节省电量。 OPA1633 可在 -40°C 至 +85°C 的温度范围内正常运 行,采用 SO-8 封装和热增强型 HVSSOP PowerPAD ™ 集成电路封装。 # 封装信息 | 器件型号 | 封装 ⁽¹⁾ | 封装尺寸 ⁽²⁾ | |---------|--------------------|---------------------| | | D (SOIC , 8) | 4.9 mm × 6 mm | | OPA1633 | DGN (HVSSOP , 8) | 3 mm × 4.9 mm | - (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 - 封装尺寸(长x宽)为标称值,并包括引脚(如适用)。 # **Table of Contents** | 1 特性 | 7.4 Device Functional Modes | 12 | |---------------------------------------|---|----| | 2 应用 | 8 Application and Implementation | 13 | | 3 说明 | 8.1 Application Information | 13 | | 4 Revision History2 | 8.2 Typical Application | 14 | | 5 Pin Configuration and Functions3 | 8.3 Power Supply Recommendations | 15 | | 6 Specifications4 | 8.4 Layout | 16 | | 6.1 Absolute Maximum Ratings4 | 9 Device and Documentation Support | 19 | | 6.2 ESD Ratings4 | 9.1 Documentation Support | 19 | | 6.3 Recommended Operating Conditions4 | 9.2 接收文档更新通知 | 19 | | 6.4 Thermal Information4 | 9.3 支持资源 | 19 | | 6.5 Electrical Characteristics5 | 9.4 Trademarks | | | 6.6 Typical Characteristics | | | | 7 Detailed Description11 | 9.6 术语表 | | | 7.1 Overview11 | 10 Mechanical, Packaging, and Orderable | | | 7.2 Functional Block Diagram11 | Information | 19 | | 7.3 Feature Description12 | | | 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 | CI | hanges from Revision * (February 2023) to Revision A (June 2023) | Page | |----|--|------| | • | 将数据表状态从"预告信息(预发布)"更改为"量产数据(正在供货)" | 1 | # **5 Pin Configuration and Functions** 图 5-1. D Package, 8-Pin SOIC or DGN⁽¹⁾ Package, 8-Pin HVSSOP (Top View) 表 5-1. Pin Functions | PIN | | TYPE(2) | DESCRIPTION | | |--------|-----|---------|--|--| | NAME | NO. | ITPE(=) | DESCRIPTION | | | Enable | 7 | I | Active-high enable pin | | | V+ | 3 | I/O | Positive supply voltage pin | | | V- | 6 | I/O | legative supply voltage pin | | | IN+ | 8 | I | Positive input voltage pin | | | IN - | 1 | I | Negative input voltage pin | | | VOCM | 2 | I | Output common-mode control voltage pin | | | OUT+ | 4 | 0 | Positive output voltage pin | | | OUT - | 5 | 0 | Negative output voltage pin | | ⁽¹⁾ Solder the exposed DGN package thermal pad to a heat-spreading power or ground plane. This pad is electrically isolated from the die, but must be connected to a power or ground plane and not floated. ⁽²⁾ I = input, O = output. # 6 Specifications # 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) (2) | | | MIN MAX | UNIT | |------------------|--|-----------------|------| | Vs | Supply voltage | ±18.5 | V | | | Supply turn on and turn off dV/dT ⁽³⁾ | 1.7 | V/µs | | VI | Input voltage | ±V _S | V | | Io | Output current | 150 | mA | | I _{IN} | Continuous input current | 10 | mA | | V _{ID} | Differential input voltage | ±1.5 | V | | TJ | Junction temperature | 150 | °C | | T _A | Ambient temperature | - 40 85 | °C | | T _{stg} | Storage temperature | - 65 150 | °C | - Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality, performance, and shorten the device lifetime. - The OPA1633 HVSSOP PowerPAD integrated circuit package incorporates a thermal pad on the underside of the chip. This thermal pad acts as a heat sink and must be connected to a thermally-dissipative plane for proper power dissipation. Failure to do so can result in exceeding the maximum junction temperature, which can permanently damage the device. See TI technical brief SLMA002 for more information about using the thermally-enhanced PowerPAD integrated circuit package. - Stay below this specification to make sure that the edge-triggered ESD absorption devices across the supply pins remain off. # 6.2 ESD Ratings | | | | VALUE | UNIT | |--|---|---|-------|------| | V _(ESD) Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±2000 | V | | | V _(ESD) | Liectrostatic discriarge | Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾ | ±1500 | , v | - JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. # 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | | MIN | MAX | UNIT | |-------------------------------|---------------------|--------|-----|-------|------| | V _S Supply voltage | Supply voltage | Dual | ±2 | ±17.5 | \/ | | | Supply voltage | Single | 4 | 35 | V | | T _A | Ambient temperature | | -40 | 85 | °C | # 6.4 Thermal Information | | | | OPA1633 | | | |------------------------|--|----------|---------|------|--| | | THERMAL METRIC ⁽¹⁾ | D (SOIC) | UNIT | | | | | | 8 PINS | 8 PINS | | | | R ₀ JA | Junction-to-ambient thermal resistance | 126.3 | 57.6 | °C/W | | | R ₀ JC(top) | Junction-to-case (top) thermal resistance | 67.3 | 76.3 | °C/W | | | R ₀ JB | Junction-to-board thermal resistance | 69.8 | 30.0 | °C/W | | | ψ JT | Junction-to-top characterization parameter | 19.5 | 4.0 | °C/W | | | ψ ЈВ | Junction-to-board characterization parameter | 69.0 | 29.9 | °C/W | | | R ₀ JC(bot) | Junction-to-case (bottom) thermal resistance | N/A | 14.3 | °C/W | | For information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. # **6.5 Electrical Characteristics** at V_S = ±15 V, R_F = 390 $\,^{\Omega}$, R_L = 800 $\,^{\Omega}$, and G = +1 (unless otherwise noted) | | PARAMET | | TEST COND | · · · · · · · · · · · · · · · · · · · | MIN | TYP | MAX | UNIT | |----------------------|---|--|--|---------------------------------------|---------------|------------|----------|-----------------| | OFFSET | VOLTAGE | | | | | | | | | Vos | Input offset voltage | | | | | 0.2 | 2 | mV | | dV _{OS} /dT | Offset voltage drift | | | | | ±0.6 | | μ V/°C | | PSRR | Power supply reject | Power supply rejection ratio | | | | 13 | 100 | μ V/V | | INPUT B | IAS CURRENT | | | | | | | | | I _B | Input bias current | | | | | 6.8 | 11.5 | μА | | I _{OS} | Input offset current | | | | | ±20 | ±400 | nA | | NOISE | | | | | | | | | | e _N | Input voltage noise | density | f = 10 kHz | | | 1.1 | | nV/ √ Hz | | i _N | Input current noise | density | f = 10 kHz | | | 1.3 | | pA/ √ Hz | | INPUT V | OLTAGE | | | | | | | | | V _{CM} | Common-mode volt | age | | | (V-) +
1.5 | | (V+) - 1 | | | CMRR | Common-mode reje | ction ratio | | | 80 | 100 | | dB | | INPUT IN | IPEDANCE | | • | | | | | | | | In must income a demand | Common-mode | Measured into each in | put pin | | 320 1.3 | | M Ω pF | | | Input impedance | Differential | Measured into each in | put pin | | 12 2.3 | | kΩ pF | | OPEN-LO | OOP GAIN | | | | I | | | | | A _{OL} | Open-loop gain | | | | 91 | 97 | | dB | | FREQUE | NCY RESPONSE | | | | | | | | | | | | G = +1, R _F = 348 Ω | | | 200 | | | | CCDM | Small signal | | G = +2, R _F = 602 Ω | | | 117 | | - MHz | | SSBW | bandwidth | $(V_O = 100 \text{ mV}_{PP},$
peaking < 0.5 dB) | G = +5, R _F = 1.5 kΩ | | | 53 | | | | | | peaking 10.0 db) | $G = +10$, $R_F = 3.01$ k $Ω$ | | | 26 | | | | | Bandwidth for 0.1-d | B flatness | G = +1, V _O = 100 mV _{PP} | | | 40 | | MHz | | | Peaking at a gain of | 1 | V _O = 100 mV _{PP} | | | 0.25 | | dB | | LSBW | Large-signal bandw | idth | $G = +2, V_O = 20 V_{PP}$ | | | 3 | | MHz | | SR | Slew rate (25% to 7 | 75%) | G = +1 | | | 80 | | V/μs | | | Rise and fall time | | G = +1, V _O = 5-V step | | | 62 | | ns | | + | Settling time | To 0.1% | G = +1, V _O = 2-V step | | | 30 | | ne | | t _s | Settling time | To 0.01% | G = +1, V _O = 2-V step | | | 40 | | ns | | | | Differential input/ | G = +1, f = 1 kHz, | R _L = 600 Ω | | 131 | | | | TUDIN | HD+N Total harmonic distortion + noise Single-e | output | $V_O = 3 V_{RMS}$ | R _L = 2 k Ω | | 132 | | ٩D | | INDTN | | Single-ended in/
differential out | G = +1, f = 1 kHz, | R _L = 600 Ω | | 131 | | - dB
- | | | | | $V_O = 3 V_{RMS}$ | R _L = 2 k Ω | | 132 | | | | | | Differential input/ | G = +1, SMPTE/DIN,
V _O = 2 V _{PP} | R _L = 600 Ω | | 125 | | dB | | 11.45 | Intermodulation | output | | R _L = 2 k Ω | | 125 | | | | IMD | distortion | Single-ended in/ | G = +1, SMPTE/DIN,
V _O = 2 V _{PP} | R _L = 600 Ω | | 125 | | | | | | differential out | | $R_L = 2 k \Omega$ | | 125 | | | | | Headroom | | THD < 0.01%, R _L = 2 k Ω | | | 40 | | V _{PP} | # **6.5 Electrical Characteristics (continued)** at V_S = ±15 V, R_F = 390 Ω , R_L = 800 Ω , and G = +1 (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------|------------------------------|---|---------------|-------------|---------------|------------| | OUTP | UT | | | | <u>'</u> | | | Vo | Voltage output swing | R _L = 1 k Ω | (V+) -
1.9 | | (V-) +
1.9 | V | | Io | Output current | | 65 | 85 | | mA | | | Closed-loop output impedance | G = +1, f = 100 kHz | | 0.1 | | Ω | | POWE | R DOWN | | ' | | , | | | | Enable voltage threshold | | | (V−) + 1.45 | (V−) +
1.5 | V | | | Disable voltage threshold | | (V-) +
0.8 | (V-) + 1.4 | | V | | | Chutdown ourrent | V _S = ±5 V, V _{Enable} = −5 V | | 0.77 | | m Λ | | I _{SD} | Shutdown current | V _S = ±15 V, V _{Enable} = −15 V | | 1.4 | | mA | | | Turn-on delay | Time for I _Q to reach 50% | | 0.12 | | μs | | | Turn-off delay | Time for I _Q to reach 50% | | 0.03 | | μ S | | POWE | R SUPPLY | | | | | | | IQ | Quiescent current | | | 11 | 13.2 | mA | # 6.6 Typical Characteristics at T_A = 25°C, V_S = ±15 V, R_F = 348 Ω , G = +1, and R_L = 2 k Ω (unless otherwise noted) # 6.6 Typical Characteristics (continued) at T_A = 25°C, V_S = ±15 V, R_F = 348 Ω , G = +1, and R_L = 2 k Ω (unless otherwise noted) # 6.6 Typical Characteristics (continued) at T_A = 25°C, V_S = ±15 V, R_F = 348 Ω , G = +1, and R_L = 2 k Ω (unless otherwise noted) # 6.6 Typical Characteristics (continued) at T_A = 25°C, V_S = ±15 V, R_F = 348 $\,^{\Omega}$, G = +1, and R_L = 2 k $\,^{\Omega}$ (unless otherwise noted) # 7 Detailed Description # 7.1 Overview The OPA1633 is a fully differential amplifier (FDA). Differential signal processing offers a number of performance advantages in high-speed analog signal processing systems, including immunity to external common-mode noise, suppression of even-order nonlinearities, and increased dynamic range. FDAs not only serve as the primary means of providing gain to a differential signal chain, but also provide a monolithic solution for converting single-ended signals into differential signals allowing for easy, high-performance processing. For more information on the basic theory of operation for FDAs, refer to the *Fully Differential Amplifiers* application note. # 7.2 Functional Block Diagram # 7.3 Feature Description § 7-1 and § 7-2 depict the differences between the operation of the OPA1633 in two different modes. FDAs can work with a differential input or be implemented as a single-ended input and differential output. 图 7-1. Amplifying Differential Input Signals 图 7-2. Amplifying Single-Ended Input Signals #### 7.4 Device Functional Modes # 7.4.1 Shutdown Function The shutdown (enable) function of the OPA1633 is referenced to the negative supply of the operational amplifier. A valid logic low (< 0.8 V above negative supply) applied to the Enable pin (pin 7) disables the amplifier output. Voltages applied to pin 7 that are greater than 2 V above the negative supply place the amplifier output in an active state, and the device is enabled. If pin 7 is left disconnected, an internal pullup resistor enables the device. Turn-on and turn-off times are approximately 2 μ s each. Quiescent current is reduced to approximately 0.77 mA when the amplifier is disabled. When disabled, the output stage is *not* in a high-impedance state. Thus, the shutdown function cannot be used to create a multiplexed switching function in series with multiple amplifiers. # 8 Application and Implementation # 备注 以下应用部分中的信息不属于 TI 元件规格,TI 不担保其准确性和完整性。TI 的客户负责确定元件是否适合其用途,以及验证和测试其设计实现以确认系统功能。 # 8.1 Application Information # 8.1.1 Output Common-Mode Voltage The output common-mode voltage pin sets the dc output voltage of the OPA1633. A voltage applied to the VOCM pin from a low-impedance source can be used to directly set the output common-mode voltage. If left floating, the VOCM pin defaults to the mid-rail voltage, defined as: $$\frac{(V+)+(V-)}{2} \tag{1}$$ To minimize common-mode noise, connect a 0.1-uF bypass capacitor to the VOCM pin. Output common-mode voltage causes additional current to flow in the feedback resistor network. This current is supplied by the output stage of the amplifier; therefore, additional power dissipation is created. For commonly used feedback resistance values, this current is easily supplied by the amplifier. The additional internal power dissipation created by this current can be significant in some applications and can dictate use of the HVSSOP (DGN) PowerPAD integrated circuit package to effectively control self-heating. #### 8.1.1.1 Resistor Matching Resistor matching is important in FDAs to maintain good output balance. An ideal differential output signal implies the two outputs of the FDA should be exactly equal in amplitude and shifted 180° in phase. Any imbalance in amplitude or phase between the two output signals results in an undesirable common-mode signal at the output. The output balance error is a measure of how well the outputs are balanced and is defined as the ratio of the output common-mode voltage to the output differential signal. Output Balance Error = $$\frac{\left(\frac{(V_{OUT+}) - (V_{OUT-})}{2}\right)}{(V_{OUT+}) - (V_{OUT-})}$$ (2) At low frequencies, resistor mismatch is the primary contributor to output balance errors. Additionally CMRR, PSRR, and HD2 performance diminish if resistor mismatch occurs. Therefore, use 1% tolerance resistors or better to optimize performance. 表 8-1 provides the recommended resistor values to use for a particular gain. 表 8-1. Recommended Resistor Values | GAIN (V/V) | R _G (Ω) | R _F (Ω) | |------------|--------------------|--------------------| | 1 | 390 | 390 | | 2 | 374 | 750 | | 5 | 402 | 2010 | | 10 | 402 | 4020 | # 8.2 Typical Application 8-1 shows the OPA1633 used as a differential-output driver for the PCM1804 high-performance audio ADC. 图 8-1. ADC Driver for Professional Audio # 8.2.1 Design Requirements 表 8-2 provides example design parameters and values for the typical application design example shown in 图 7-1. 表 8-2. Design Parameters | DESIGN PARAMETERS | VALUE | |--------------------|---| | Supply voltage | ±2.5 V to ±17.5 V | | Amplifier topology | Voltage feedback | | Output control | DC-coupled with output common-mode control capability | | Filter requirement | 500-kHz, multiple-feedback low-pass filter | Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated #### 8.2.2 Detailed Design Procedure Supply voltages of ± 15 V are commonly used for the OPA1633. The relatively low input voltage swing required by the ADC allows use of lower power-supply voltage, if desired. Power supplies as low as ± 8 V can be used in this application with excellent performance. This lower-voltage operation reduces power dissipation and heat rise. Bypass power supplies with 10- μ F tantalum capacitors in parallel with 0.1- μ F ceramic capacitors to avoid possible oscillations and instability. The V_{COM} reference voltage output on the PCM1804 ADC provides the proper input common-mode reference voltage (2.5 V). This V_{COM} voltage is buffered with op amp by the OPA134 and drives the output common-mode voltage pin of the OPA1633. This biases the average output voltage of the OPA1633 to 2.5 V. The signal gain of the circuit is generally set to approximately 0.25 to be compatible with commonly used audio line levels. Gain can be adjusted, if necessary, by changing the values of R_1 and R_2 . Keep the feedback resistor values (R_3 and R_4) relatively low, as indicated, for best noise performance. Resistors R_5 , R_6 , and C_3 provide an input filter and charge glitch reservoir for the ADC. The values shown are generally satisfactory. Some adjustment of the values can help optimize performance with different ADCs. Make sure to maintain accurate resistor matching on R_1/R_2 and R_3/R_4 to achieve good differential signal balance. Use 1% resistors for highest performance. When connected for single-ended inputs (inverting input grounded, see 8-1), the source impedance must be low. Differential input sources must have well-balanced or low source impedance. Choose capacitors C_1 , C_2 , and C_3 carefully for good distortion performance. Polystyrene, polypropylene, NPO ceramic, and mica types are generally excellent. Polyester and high-K ceramic types such as Z5U can create distortion. # 8.2.3 Application Curves #### 8.3 Power Supply Recommendations The OPA1633 device is designed to operate on power supplies ranging from ±2.5 V to ±17.5 V. Single power supplies ranging from 5 V to 35 V can also be used. Use a power-supply accuracy of 5%, or better. When operated on a board with high-speed digital signals, make sure to provide isolation between digital signal noise and the analog input pins. The OPA1633 is connected to power supplies through pin 3 (V+) and pin 6 (V-). Decouple each supply pin to GND as close to the device as possible with a low-inductance, surface-mount ceramic capacitor of approximately 10 nF. When vias are used to connect the bypass capacitors to a ground plane, configure the vias for minimal parasitic inductance. One method of reducing via inductance is to use multiple vias. For broadband systems, two capacitors per supply pin are advised. To avoid undesirable signal transients, do not power on the OPA1633 device with large inputs signals present. Careful planning of system power on sequencing is especially important to avoid damage to ADC inputs when an ADC is used in the application. # 8.4 Layout # 8.4.1 Layout Guidelines - 1. The thermal pad is electrically isolated from the silicon and all leads. Connecting the thermal pad to any potential voltage between the power-supply voltages is acceptable; however, best practice is to tie to ground because ground is generally the largest conductive plane. - 2. Prepare the printed circuit board (PCB) with a top-side etch pattern, as shown in 🛭 8-4. Use etch for the leads as well as etch for the thermal pad. - 3. Place five holes in the area of the thermal pad. Keep these holes 13 mils (0,03302 cm) in diameter. Keep them small so that solder wicking through the holes is not a problem during reflow. - 4. Additional vias can be placed anywhere along the thermal plane outside of the thermal pad area. These vias help dissipate the heat generated by the OPA1633 device, and can be larger than the 13-mil diameter vias directly under the thermal pad. The vias can be larger because the vias are not in the thermal pad area to be soldered so that wicking is not a problem. - 5. Connect all holes to the internal ground plane. - 6. When connecting these holes to the plane, do not use the typical web or spoke via connection methodology. Web connections have a high thermal resistance connection that is useful for slowing the heat transfer during soldering operations. This slow heat transfer makes the soldering of vias that have plane connections easier. In this application, however, low thermal resistance is desired for the most efficient heat transfer. Therefore, make sure the holes under the OPA1633 PowerPAD package connect to the internal plane with a complete connection around the entire circumference of the plated through-hole. - 7. The top-side solder mask must leave the package pins and the thermal pad area with the five holes exposed. The bottom-side solder mask must cover the five holes of the thermal pad area. This configuration prevents solder from being pulled away from the thermal pad area during the reflow process. - 8. Apply solder paste to the exposed thermal pad area and all of the device pins. With these preparatory steps in place, the device is simply placed in position and runs through the solder reflow operation as any standard surface-mount component. This process results in a part that is properly installed. 图 8-4. PowerPAD Integrated Circuit Package PCB Etch and Via Pattern Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated # 8.4.1.1 PowerPAD™ Integrated Circuit Package Design Considerations The OPA1633 is available in a thermally-enhanced PowerPAD integrated circuit package. This package is constructed using a downset leadframe upon which the die is mounted (see 8-5(a) and 8-5(b)). This arrangement results in the lead frame being exposed as a thermal pad on the underside of the package (see 8-5(c)). Because this thermal pad has direct thermal contact with the die, excellent thermal performance can be achieved by providing a good thermal path away from the thermal pad. 图 8-5. Views of the Thermally-Enhanced Package The PowerPAD integrated circuit package allows for both assembly and thermal management in one manufacturing operation. During the surface-mount solder operation (when the leads are being soldered), the thermal pad must be soldered to a copper area underneath the package. Through the use of thermal paths within this copper area, heat can be conducted away from the package into either a ground plane or other heat-dissipating device. Soldering the thermal pad to the PCB is always required, even with applications that have low power dissipation. The PowerPAD integrated circuit package provides the necessary thermal and mechanical connection between the lead frame die pad and the PCB. # 8.4.1.2 Power Dissipation and Thermal Considerations The OPA1633 does not have thermal shutdown protection. Make sure that the maximum junction temperature is not exceeded. Excessive junction temperature can degrade performance or cause permanent damage. For best performance and reliability, make sure that the junction temperature does not exceed 125°C. The thermal characteristics of the device are dictated by the package and the circuit board. Maximum power dissipation for a given package can be calculated using the following formula: $$P_{\text{DMax}} = \frac{T_{\text{Max}} - T_{\text{A}}}{\theta_{\text{JA}}} \tag{3}$$ where: - P_{DMax} is the maximum power dissipation in the amplifier (W) - T_{Max} is the absolute maximum junction temperature (°C) - T_A is the ambient temperature (°C) - $\theta_{JA} = \theta_{JC} + \theta_{CA}$ - θ _{JC} is the thermal coefficient from the silicon junctions to the case (°C/W) - θ CA is the thermal coefficient from the case to ambient air (°C/W) For systems where heat dissipation is more critical, the OPA1633 is offered in an HVSSOP-8 with PowerPAD integrated circuit package. The thermal coefficient for the HVSSOP (DGN) package is substantially improved over the traditional SO package. # 8.4.2 Layout Example 图 8-6. Representative Schematic for Example Layout 图 8-7. Example Layout # 9 Device and Documentation Support # 9.1 Documentation Support #### 9.1.1 Related Documentation For related documentation, see the following: - Texas Instruments, Fully Differential Amplifiers application note - · Texas Instruments, TI Precision Labs Fully Differential Amplifiers video series - Texas Instruments, Maximizing Signal Chain Distortion Performance Using High Speed Amplifiers application note - Texas Instruments, Analog Audio Amplifier Front-End Reference Design With Improved Noise and Distortion - Texas Instruments, Public Announcement Audio Reference Design utilizing Best in Class Boost Controller - Texas Instruments, Motherboard/controller for the AMC1210 Reference Design - Texas Instruments, TPA6120A2 Stereo, 9.0 to 33.0-V, Analog Input Headphone Amplifier With 128-dB Dynamic Range - Texas Instruments, OPA2863 Dual, Low-Power, 110-MHz, 12-V, RRIO Voltage Feedback Amplifier - Texas Instruments, OPA2834 Ultra-Low Power, 50-MHz Rail-to-Rail Out, Negative Rail In, Voltage-feedback Op Amp # 9.2 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 # 9.3 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 #### 9.4 Trademarks PowerPAD™ and TI E2E™ are trademarks of Texas Instruments. 所有商标均为其各自所有者的财产。 #### 9.5 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 # 9.6 术语表 TI术语表本术语表列出并解释了术语、首字母缩略词和定义。 # 10 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: OPA1633 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking (6) | |-----------------------|--------|---------------|------------------|-----------------------|------|-------------------------------|----------------------------|--------------|------------------| | | | | | | | (4) | (5) | | | | OPA1633DGNR | Active | Production | HVSSOP (DGN) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | 2USJ | | OPA1633DGNR.B | Active | Production | HVSSOP (DGN) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | 2USJ | | OPA1633DR | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | O1633 | | OPA1633DR.B | Active | Production | SOIC (D) 8 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | O1633 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Jul-2025 # TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | # QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | OPA1633DGNR | HVSSOP | DGN | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | | OPA1633DR | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | www.ti.com 24-Jul-2025 # *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |-------------|--------------|-----------------|------|------|-------------|------------|-------------|--| | OPA1633DGNR | HVSSOP | DGN | 8 | 2500 | 353.0 | 353.0 | 32.0 | | | OPA1633DR | SOIC | D | 8 | 2500 | 353.0 | 353.0 | 32.0 | | SMALL OUTLINE INTEGRATED CIRCUIT # NOTES: - 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side. - 4. This dimension does not include interlead flash. - 5. Reference JEDEC registration MS-012, variation AA. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE INTEGRATED CIRCUIT NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. 3 x 3, 0.65 mm pitch SMALL OUTLINE PACKAGE This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. INSTRUMENTS www.ti.com # PowerPAD[™] VSSOP - 1.1 mm max height SMALL OUTLINE PACKAGE ### NOTES: PowerPAD is a trademark of Texas Instruments. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-187. - 6. Features may differ or may not be present. SMALL OUTLINE PACKAGE NOTES: (continued) - 7. Publication IPC-7351 may have alternate designs. - 8. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 9. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. - 10. Size of metal pad may vary due to creepage requirement. SMALL OUTLINE PACKAGE NOTES: (continued) - 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 12. Board assembly site may have different recommendations for stencil design. # 重要通知和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司