

LMK1D2106, LMK1D2108

ZHCSP67A - OCTOBER 2021 - REVISED JANUARY 2022

LMK1D210x 低附加抖动 LVDS 缓冲器

1 特性

- 高性能 LVDS 时钟缓冲器系列: 高达 2GHz
 - 双路 1:6 差分缓冲器
 - 双路 1:8 差分缓冲器
- 电源电压: 1.71V 至 3.465V
- 低附加抖动: 156.25MHz 下小于 12kHz 至 20MHz 范围内的

60fs RMS 最大值

- 超低相位本底噪声:-164dBc/Hz(典型值)
- 超低传播延迟:<575ps(最大值)
- 输出延迟: 20ps (最大值)
- 高摆幅 LVDS (升压模式):500mV VOD (典型 值, AMP SEL 设置为 1 时)
- 使用 EN 引脚启用/禁用组
- 失效防护输入操作
- 通用输入接受 LVDS、LVPECL、LVCMOS、HCSL 和 CML 信号电平
- LVDS 基准电压 (V_{AC REF}) 适用于容性耦合输入
- 工业温度范围: 40°C 至 105°C
- 采用封装
 - LMK1D2106:6mm×6mm40引脚VQFN (RHA)
 - LMK1D2108:7mm×7mm48引脚VQFN (RGZ)

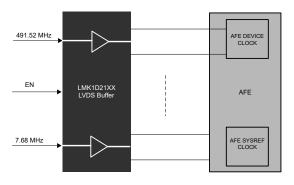
2 应用

- 电信及网络
- 医疗成像
- 测试和测量
- 无线基础设施
- 专业音频、视频和标牌

3 说明

LMK1D210x 时钟缓冲器将两个时钟输入(INO 和 IN1) 分配给 LMK1D2108 中的共 16 对差分 LVDS 时 钟输出(OUT0 至 OUT15),以及 LMK1D2106 中的 共 12 对时钟输出(OUT0 至 OUT11),通过超小延 迟实现时钟分配。每个缓冲器块由一个输入和最多 6 个 (LMK1D2106) 或 8 个 (LMK1D2108) LVDS 输出组 成。输入可以为 LVDS、LVPECL、HCSL、CML 或 LVCMOS.

 $\mathsf{LMK1D210x}$ 专为驱动 $\mathsf{50}\Omega$ 传输线路而设计。在单端 模式下驱动输入时,对未使用的负输入引脚施加适当的 偏置电压(请参阅图 8-6)。


使用控制引脚 (EN) 可以启用或禁用输出组。如果该引 脚保持开路,将启用两个组输出。如果控制引脚切换至 逻辑"0",则两个组输出均被禁用(静态逻辑 "0")。如果控制引脚切换至逻辑"1",则一个组 的输出被禁用,而另一个组的输出被启用。该器件还支 持失效防护功能。该器件还整合了输入迟滞,可防止在 没有输入信号的情况下输出随机振荡。

该器件可在 1.8V、2.5V 或 3.3V 电源环境下工作,额 定温度范围是 - 40°C 至 105°C (环境温度)。

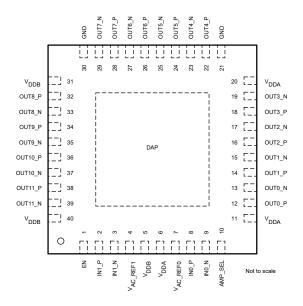
器件信息

	PP 1 1 1P 10	
器件型号 ⁽¹⁾	封装	封装尺寸 (标称值)
LMK1D2106	VQFN (40)	6.00mm × 6.00mm
LMK1D2108	VQFN (48)	7.00mm × 7.00mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

应用示例

Table of Contents


1 特性	1	8.4 Device Functional Modes	15
2 应用		9 Application and Implementation	18
3 说明		9.1 Application Information	18
4 Revision History		9.2 Typical Application	18
5 Pin Configuration and Functions		10 Power Supply Recommendations	<mark>22</mark>
6 Specifications		11 Layout	23
6.1 Absolute Maximum Ratings		11.1 Layout Guidelines	23
6.2 ESD Ratings		11.2 Layout Examples	<mark>23</mark>
6.3 Recommended Operating Conditions		12 Device and Documentation Support	24
6.4 Thermal Information		12.1 Documentation Support	24
6.5 Electrical Characteristics		12.2 接收文档更新通知	24
6.6 Typical Characteristics		12.3 支持资源	
7 Parameter Measurement Information		12.4 Trademarks	
8 Detailed Description		12.5 Electrostatic Discharge Caution	<mark>2</mark> 4
8.1 Overview		12.6 术语表	
8.2 Functional Block Diagram		13 Mechanical, Packaging, and Orderable	
8.3 Feature Description		Information	24
·			

4 Revision History 注:以前版本的页码可能与当前版本的页码不同

C	hanges from Revision * (October 2021) to Revision A (January 2022)	Page
•	向 <i>特性</i> 添加了失效防护输入操作	1
•	Added Fail-Safe Input section	15

5 Pin Configuration and Functions

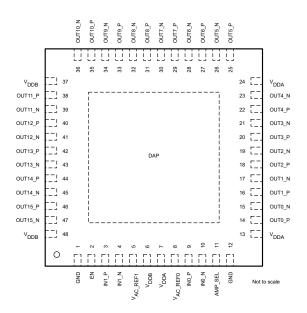


图 5-1. LMK1D2106: RHA Package 40-Pin VQFN Top View

图 5-2. LMK1D2108: RGZ Package 48-Pin VQFN Top View

表 5-1. Pin Functions

	PIN		TYPE(1)	DESCRIPTION		
NAME	LMK1D2106	LMK1D2108	- ITPE(')	DESCRIPTION		
DIFFERENTIAL/SINGLE	-ENDED CLOCK	INPUT				
INO_P, INO_N	8, 9	9, 10	I	Primary: Differential input pair or single-ended input		
	Secondary: Differential input pair or single-end					
IN1_P, IN1_N	2, 3	3, 4	I	Note that INP0, INN0 are used indistinguishably with IN0_P, IN0_N.		
BANK ENABLE						
EN	1	2	1	Output bank enable/disable with an internal 500-k Ω pullup and 320-k Ω pulldown. See \gtrsim 8-2.		
AMPLITUDE SELECT			•			
AMP_SEL	10	11	1	Output amplitude swing select with an internal 500-k Ω pullup and 320-k Ω pulldown. See \gtrsim 8-3.		
BIAS VOLTAGE OUTPU	İT		'			
V _{AC_REF0} ,V _{AC_REF1}	7, 4	8, 5	0	Bias voltage output for capacitive coupled inputs. If used, TI recommends using a 0.1-µF capacitor to GND on this pin.		
DIFFERENTIAL CLOCK	OUTPUT		'			
OUT0_P, OUT0_N	12, 13	14, 15	0	Differential LVDS output pair number 0		
OUT1_P, OUT1_N	14, 15	16, 17	0	Differential LVDS output pair number 1		
OUT2_P, OUT2_N	16, 17	18, 19	0	Differential LVDS output pair number 2		
OUT3_P, OUT3_N	18, 19	20, 21	0	Differential LVDS output pair number 3		
OUT4_P, OUT4_N	22, 23	22, 23	0	Differential LVDS output pair number 4		
OUT5_P, OUT5_N	24, 25	25, 26	0	Differential LVDS output pair number 5		
OUT6_P, OUT6_N	26, 27	27, 28	0	Differential LVDS output pair number 6		
OUT7_P, OUT7_N	28, 29	29, 30	0	Differential LVDS output pair number 7		
OUT8_P, OUT8_N	32, 33	31, 32	0	Differential LVDS output pair number 8		

表 5-1. Pin Functions (continued)

PIN		TYPE ⁽¹⁾	DESCRIPTION	
NAME	LMK1D2106	LMK1D2108	11166	DESCRIPTION
OUT9_P, OUT9_N	34, 35	33, 34	0	Differential LVDS output pair number 9
OUT10_P, OUT10_N	36, 37	35, 36	0	Differential LVDS output pair number 10
OUT11_P, OUT11_N	38, 39	38, 39	0	Differential LVDS output pair number 11
OUT12_P, OUT12_N	_	40, 41	0	Differential LVDS output pair number 12
OUT13_P, OUT13_N	_	42, 43	0	Differential LVDS output pair number 13
OUT14_P, OUT14_N	_	44, 45	0	Differential LVDS output pair number 14
OUT15_P, OUT15_N	_	46, 47	0	Differential LVDS output pair number 15
SUPPLY VOLTAGE				
V_{DDA}	6, 11, 20	7, 13, 24	Р	Device power supply (1.8 V, 2.5 V, or 3.3 V) for Bank 0
V_{DDB}	5, 31, 40	6, 37, 48	Р	Device power supply (1.8 V, 2.5 V, or 3.3 V) for Bank 1
GROUND				
GND	21, 30	1, 12	G	Ground
MISC				
DAP	DAP	DAP	G	Die Attach Pad. Connect to the printed circuit board (PCB) ground plane for heat dissipation.

(1) G = Ground, I = Input, O = Output, P = Power

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
V_{DD}	Supply voltage	- 0.3	3.6	V
V _{IN}	Input voltage	- 0.3	3.6	V
Vo	Output voltage	- 0.3	V _{DD} + 0.3	V
I _{IN}	Input current	- 20	20	mA
Io	Continuous output current	- 50	50	mA
TJ	Junction temperature		135	°C
T _{stg}	Storage temperature (2)	- 65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Device unpowered

6.2 ESD Ratings

	•			
			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾		
V _(ESD)		Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
	Core supply voltage	3.3-V supply	3.135	3.3	3.465	
V_{DD}		2.5-V supply	2.375	2.5	2.625	V
		1.8-V supply	1.71	1.8	1.89	
Supply Ramp	Supply voltage ramp	Requires monotonic ramp (10-90 % of VDD)	0.1		20	ms
T _A	Operating free-air temperature		- 40		105	°C
T _J	Operating junction temperature		- 40		135	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾		LMK1D2106	LMK1D2108	
		RHA (VQFN)	RGZ (VQFN)	UNIT
		40 PINS	48 PINS	
R ₀ JA	Junction-to-ambient thermal resistance	30.3	30.5	°C/W
R _{θ JC(top)}	Junction-to-case (top) thermal resistance	21.6	21.2	°C/W
R ₀ JB	Junction-to-board thermal resistance	13.1	12.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.4	0.4	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	13	12.8	°C/W
R _{θ JC(bot)}	Junction-to-case (bottom) thermal resistance	4.5	4.5	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

VDD = 1.8 V ± 5 %, − 40°C ≤T_A ≤ 105°C. Typical values are at VDD = 1.8 V, 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SU	JPPLY CHARACTERISTICS					
IDD _{STAT}	Core supply current, static (LMK1D2106)	All outputs enabled and unterminated, f = 0 Hz, AMP_SEL = Open (default)		75		mA
IDD _{STAT}	Core supply current, static (LMK1D2108)	All outputs enabled and unterminated, f = 0 Hz, AMP_SEL = Open (default)		80		mA
IDD _{100M}	Core supply current (LMK1D2106)	All outputs enabled, RL = 100 $^{\Omega}$, f =100 MHz, AMP_SEL = Open (default)		113	140	mA
IDD _{100M}	Core supply current (LMK1D2108)	All outputs enabled, RL = 100 $^{\Omega}$, f =100 MHz, AMP_SEL = Open (default)		134	160	mA
IDD _{STAT}	Core supply current, static (LMK1D2106)	All outputs enabled and unterminated, f = 0 Hz, AMP_SEL = 1		75		mA
IDD _{STAT}	Core supply current, static (LMK1D2108)	All outputs enabled and unterminated, f = 0 Hz, AMP_SEL = 1		80		mA
IDD _{100M}	Core supply current (LMK1D2106)	All outputs enabled, RL = 100 $^{\Omega}$, f =100 MHz, AMP_SEL = 1		130	165	mA
IDD _{100M}	Core supply current (LMK1D2108)	All outputs enabled, RL = 100 Ω , f =100 MHz, AMP_SEL = 1			185	mA
EN/AMP_S	EL CONTROL INPUT CHARACTERISTICS	(Applies to V_{DD} = 1.8 V ± 5%, 2.5 V	' ± 5% and 3.3	V ± 5%)	,	

VDD = 1.8 V \pm 5 %, -40° C \leq T A \leq 105 $^{\circ}$ C. Typical values are at VDD = 1.8 V, 25 $^{\circ}$ C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Vd _{I3}	Tri-state input	Open		0.4 × V _{CC}		V
V _{IH}	Input high voltage	Minimum input voltage for a logical "1" state in table 1	0.7 × V _{CC}		V _{CC} + 0.3	V
V _{IL}	Input low voltage	Maximum input voltage for a logical "0" state in table 1	- 0.3		0.3 × V _{CC}	V
I _{IH}	Input high current	V_{DD} can be 1.8V, 2.5V, or 3.3V with V_{IH} = V_{DD}			30	μΑ
I _{IL}	Input low current	V_{DD} can be 1.8V, 2.5V, or 3.3V with V_{IH} = V_{DD}	- 30			μΑ
R _{pull-up}	Input pullup resistor			500		k Ω
R _{pull-down}	Input pulldown resistor			320		kΩ
SINGLE-EN	DED LVCMOS/LVTTL CLOCK INPUT (App	lies to V _{DD} = 1.8 V ± 5%, 2.5 V ± 5%	% and 3.3 V ±	5%)	-	
f _{IN}	Input frequency	Clock input	DC		250	MHz
V _{IN_S-E}	Single-ended Input Voltage Swing	Assumes a square wave input with two levels	0.4		3.465	V
dVIN/dt	Input Slew Rate (20% to 80% of the amplitude)		0.05			V/ns
Ін	Input high current	V _{DD} = 3.465 V, V _{IH} = 3.465 V			60	μA
I _{IL}	Input low current	V _{DD} = 3.465 V, V _{IL} = 0 V	- 30			μΑ
C _{IN_SE}	Input capacitance	at 25°C		3.5		pF
	IAL CLOCK INPUT (Applies to V _{DD} = 1.8 V	V ± 5%, 2.5 V ± 5% and 3.3 V ± 5%)			-	
i IN	Input frequency	Clock input			2	GHz
,	Differential input voltage peak-to-peak {2	V _{ICM} = 1 V (V _{DD} = 1.8 V)	0.3		2.4	
$V_{\text{IN,DIFF(p-p)}}$	× (V _{INP} - V _{INN})}	V _{ICM} = 1.25 V (V _{DD} = 2.5 V/3.3 V)	0.3		2.4	V_{PP}
V _{ICM}	Input common-mode voltage	V _{IN,DIFF(P-P)} > 0.4 V (V _{DD} = 1.8 V/2.5 V/3.3 V)	0.25		2.3	V
ІН	Input high current	V _{DD} = 3.465 V, V _{INP} = 2.4 V, V _{INN} = 1.2 V			30	μΑ
lıL	Input low current	V _{DD} = 3.465 V, V _{INP} = 0 V, V _{INN} = 1.2 V	- 30			μΑ
C _{IN_SE}	Input capacitance (Single-ended)	at 25°C		3.5		pF
LVDS DC OL	JTPUT CHARACTERISTICS					
VODI	Differential output voltage magnitude V _{OUTP} - V _{OUTN}	$V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$	250	350	450	mV
VODI	Differential output voltage magnitude V _{OUTP} - V _{OUTN}	$V_{IN,DIFF(P-P)}$ = 0.3 V, R_{LOAD} = 100 Ω , AMP_SEL = 1	400	500	650	mV
ΔVOD	Change in differential output voltage magnitude	$V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$	- 15		15	mV
ΔVOD	Change in differential output voltage magnitude	$V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$ Ω , AMP_SEL = 1	- 20		20	mV
\/	Steady-state, common-mode output	$V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$ $\Omega \text{ (V}_{DD} = 1.8 \text{ V)}$	1		1.2	V
V _{OC(SS)}	voltage	$V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$ $\Omega \text{ (V}_{DD} = 2.5 \text{ V/3.3 V)}$	1.1		1.375	V
	Steady state common mode output	$V_{IN,DIFF(P-P)} = 0.3 \text{ V, R}_{LOAD} = 100$ $\Omega \text{ (VDD} = 1.8 \text{ V), AMP_SEL} = 1$	0.8		1.05	
V _{OC(SS)}	Steady-state, common-mode output voltage	$V_{\text{IN,DIFF(P-P)}} = 0.3 \text{ V, R}_{\text{LOAD}} = 100$ Ω (VDD = 2.5 V/3.3 V), AMP_SEL = 1	0.9		1.15	V
	Change in steady-state, common-mode	$V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$	- 15		15	mV

VDD = 1.8 V \pm 5 %, -40° C \leq T_A \leq 105 $^{\circ}$ C. Typical values are at VDD = 1.8 V, 25 $^{\circ}$ C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$^{\Delta}$ VOC(SS)	Change in steady-state, common-mode output voltage	$V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$ Ω , AMP_SEL = 1	- 20		20	mV
LVDS AC OU	JTPUT CHARACTERISTICS					
V_{ring}	Output overshoot and undershoot	$V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$ Ω , $f_{OUT} = 491.52 \text{ MHz}$	- 0.1		0.1	V_{OD}
V _{OS}	Output AC common-mode voltage	$V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$		50	100	${\rm mV_{pp}}$
V _{OS}	Output AC common-mode voltage	$V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$ Ω , AMP_SEL = 1		75	150	mV_{pp}
I _{OS}	Short-circuit output current (differential)	V _{OUTP} = V _{OUTN}	- 12		12	mA
I _{OS(cm)}	Short-circuit output current (common-mode)	V _{OUTP} = V _{OUTN} = 0	- 24		24	mA
t _{PD}	Propagation delay	$V_{IN,DIFF(P-P)} = 0.3 \text{ V}, R_{LOAD} = 100$ Ω (1)	0.3		0.575	ns
t _{SK, O}	Output skew	Skew between outputs with the same load conditions (12 and 16 channels) (2)			20	ps
t _{SK, b}	Output bank skew	Skew between the outputs within the same bank (2106/2108) (3)			17.5	ps
t _{SK, PP}	Part-to-part skew	Skew between outputs on different parts subjected to the same operating conditions with the same input and output loading.			200	ps
t _{SK, P}	Pulse skew	50% duty cycle input, crossing point-to-crossing-point distortion (4)	- 20		20	ps
t _{RJIT(ADD)}	Random additive Jitter (rms)	f_{IN} = 156.25 MHz with 50% dutycycle, Input slew rate = 1.5V/ns, Integration range = 12 kHz to 20 MHz, with output load R _{LOAD} = 100 Ω		45	60	fs, RMS
		PN _{1kHz}		- 143		
	Phase Noise for a carrier frequency of	PN _{10kHz}		- 150		
Phase noise	156.25 MHz with 50% duty-cycle, Input slew rate = 1.5V/ns with output load	PN _{100kHz}		- 157		dBc/Hz
	$R_{LOAD} = 100 \Omega$	PN _{1MHz}		- 160		
		PN _{floor}		- 164		
ODUD	Spurious suppression between dual	F _{IN0} = 491.52 MHz, F _{IN1} = 61.44 MHz; Measured between neighboring outputs		- 60		
SPUR	banks	F _{IN0} = 491.52 MHz, F _{IN1} = 15.36 MHz; Measured between neighboring outputs		- 70		dB
ODC	Output duty cycle	With 50% duty cycle input	45		55	%
t _R /t _F	Output rise and fall time	20% to 80% with R_{LOAD} = 100 Ω			300	ps
t _R /t _F	Output rise and fall time	20% to 80% with RLOAD = 100 Ω (AMP_SEL= 1)			300	ps
V _{AC_REF}	Reference output voltage	VDD = 2.5 V, I _{LOAD} = 100 μA	0.9	1.25	1.375	V
	PPLY NOISE REJECTION (PSNR) V _{DD} = 2	2.5 V/ 3.3 V				

VDD = 1.8 V \pm 5 %, -40° C \leq T_A \leq 105 $^{\circ}$ C. Typical values are at VDD = 1.8 V, 25 $^{\circ}$ C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PSNR	Power Supply Noise Rejection (f _{carrier} =	10 kHz, 100 mVpp ripple injected on V _{DD}		- 70		dBc
I ONIX	156.25 MHz)	1 MHz, 100 mVpp ripple injected on V _{DD}		- 50		dbc

- (1) Measured between single-ended/differential input crossing point to the differential output crossing point.
- (2) For the dual bank devices, the inputs are phase aligned and have 50% duty cycle.
- (3) Applies to the dual bank family.
- (4) Defined as the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

6.6 Typical Characteristics

图 6-1 (LMK1D2106) and 图 6-3 (LMK1D2108) capture the variation of the current consumption with input frequency and supply voltage when AMP_SEL = 0. 图 6-2 (LMK1D2106) and 图 6-4 (LMK1D2108) show the current consumption variation when AMP_SEL = 1. 图 6-5 and 图 6-6 portray the variation of the differential output voltage (VOD) swept across frequency.

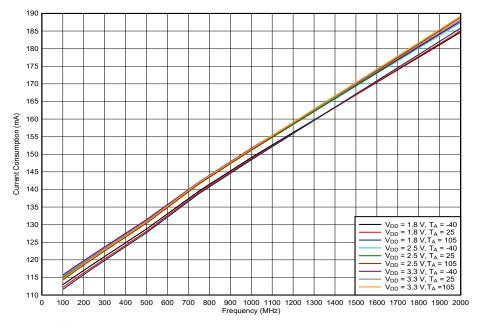


图 6-1. LMK1D2106 Current Consumption vs. Frequency, AMP_SEL = 0

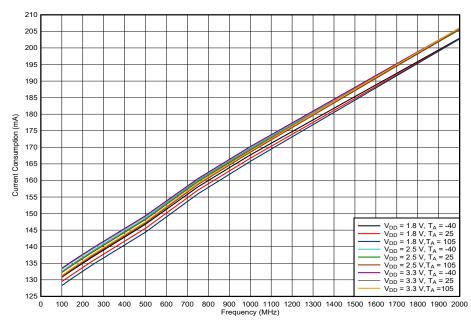


图 6-2. LMK1D2106 Current Consumption vs. Frequency, AMP_SEL = 1

6.6 Typical Characteristics

图 6-1 (LMK1D2106) and 图 6-3 (LMK1D2108) capture the variation of the current consumption with input frequency and supply voltage when AMP_SEL = 0. 图 6-2 (LMK1D2106) and 图 6-4 (LMK1D2108) show the current consumption variation when AMP_SEL = 1. 图 6-5 and 图 6-6 portray the variation of the differential output voltage (VOD) swept across frequency.

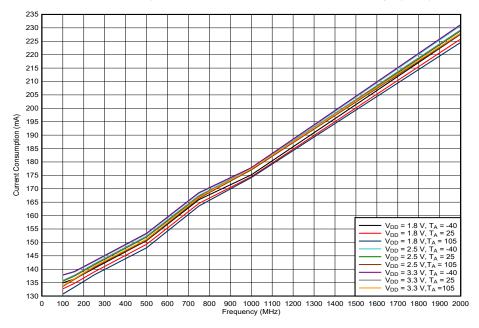


图 6-3. LMK1D2108 Current Consumption vs. Frequency, AMP_SEL = 0

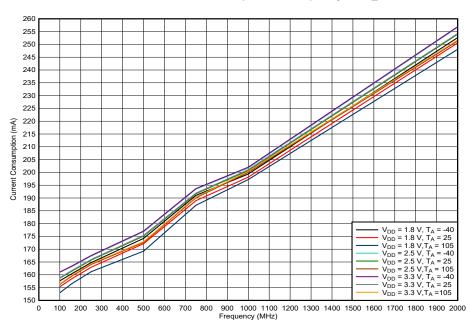


图 6-4. LMK1D2108 Current Consumption vs. Frequency, AMP_SEL = 1

6.6 Typical Characteristics

图 6-1 (LMK1D2106) and 图 6-3 (LMK1D2108) capture the variation of the current consumption with input frequency and supply voltage when AMP_SEL = 0. 图 6-2 (LMK1D2106) and 图 6-4 (LMK1D2108) show the current consumption variation when AMP_SEL = 1. 图 6-5 and 图 6-6 portray the variation of the differential output voltage (VOD) swept across frequency.

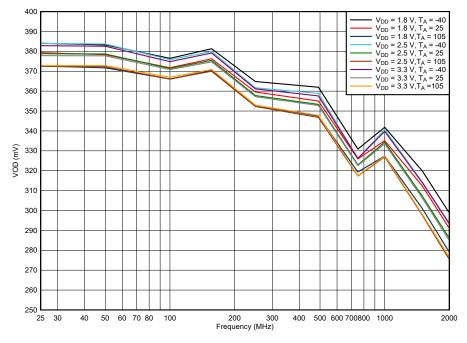


图 6-5. LMK1D210x VOD vs. Frequency, AMP_SEL = 0

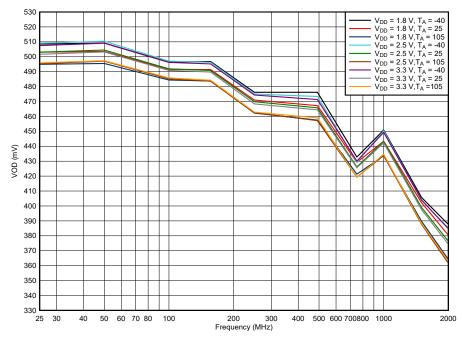


图 6-6. LMK1D210x VOD vs. Frequency, AMP_SEL = 1

7 Parameter Measurement Information

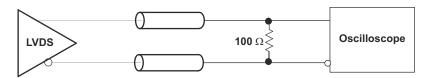


图 7-1. LVDS Output DC Configuration During Device Test

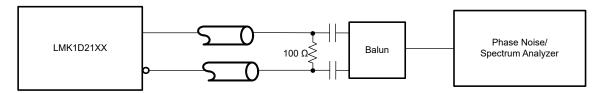


图 7-2. LVDS Output AC Configuration During Device Test

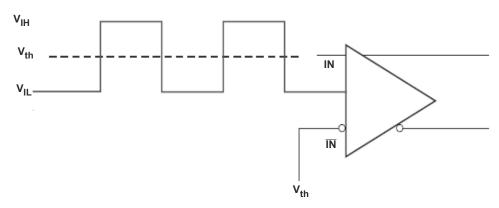


图 7-3. DC-Coupled LVCMOS Input During Device Test

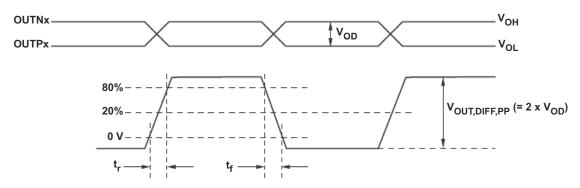
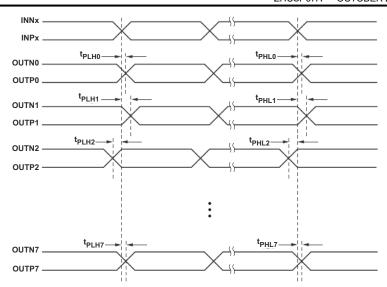



图 7-4. Output Voltage and Rise/Fall Time

- A. Output skew is calculated as the greater of the following: the difference between the fastest and the slowest t_{PLHn} or the difference between the fastest and the slowest t_{PHLn} (n = 0, 1, 2, ...7)
- B. Part-to-part skew is calculated as the greater of the following: the difference between the fastest and the slowest t_{PLHn} or the difference between the fastest and the slowest t_{PHLn} across multiple devices (n = 0, 1, 2, ..7)

图 7-5. Output Skew and Part-to-Part Skew

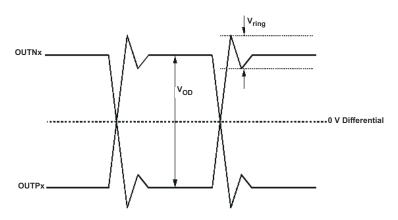


图 7-6. Output Overshoot and Undershoot

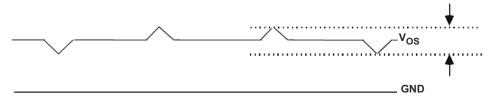
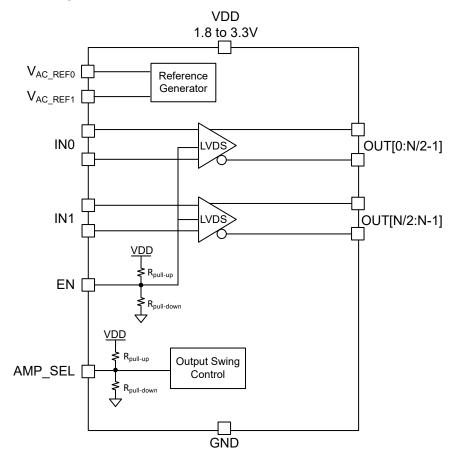


图 7-7. Output AC Common Mode


8 Detailed Description

8.1 Overview

The LMK1D210x LVDS drivers use CMOS transistors to control the output current. Therefore, proper biasing and termination are required to ensure correct operation of the device and to maximize signal integrity.

The proper LVDS termination for signal integrity over two $50^{\circ}\Omega$ lines is $100^{\circ}\Omega$ between the outputs on the receiver end. Either DC-coupled termination or AC-coupled termination can be used for LVDS outputs. TI recommends placing a termination resistor close to the receiver. If the receiver is internally biased to a voltage different than the output common-mode voltage of the LMK1D210x, AC coupling must be used. If the LVDS receiver has internal $100^{\circ}\Omega$ termination, external termination must be omitted.

8.2 Functional Block Diagram

8.3 Feature Description

The LMK1D210x is a low additive jitter LVDS fan-out buffer that can generate up to 6 (LMK1D2106) or 8 (LMK1D2108) LVDS copies of a single input that is either LVDS, LVPECL, HCSL, CML, or LVCMOS on each of its banks. The device has two banks, therefore this translates to a total of 12 (LMK1D2106) or 16 (LMK1D2108) pairs of outputs. Refer to the 表 8-1 for output bank mapping. The reference clock frequencies can go up to 2 GHz.

表 8-1. Output Bank

Bank	LMK1D2106	LMK1D2108
0	OUT0 to OUT5	OUT0 to OUT7
1	OUT6 to OUT11	OUT8 to OUT15

Apart from providing a very low additive jitter and low output skew, the LMK1D210x has an output bank enable/ disable control pin (EN) and an output amplitude control pin (AMP_SEL).

8.3.1 Fail-Safe Input

The LMK1D210x family of devices is designed to support fail-safe input operation. This feature allows the user to drive the device inputs before VDD is applied without damaging the device. Refer to the *Absolute Maximum Ratings* for more information on the maximum input supported by the device. The device also incorporates an input hysteresis, which prevents random oscillation in absence of an input signal, allowing the input pins to be left open.

8.4 Device Functional Modes

The output banks of the LMK1D210x can be selected through the control pin (see $\frac{1}{8}$ 8-2). Unused inputs can be left floating to reduce overall component cost. Both AC- and DC-coupling schemes can be used with the LMK1D210x to provide greater system flexibility.

表 8-2. Output Control

EN	CLOCK OUTPUTS
0	All bank outputs disabled (static logic "0")
1	Bank 0 outputs enabled and Bank 1 outputs disabled
OPEN	All bank outputs enabled

The output amplitude of the banks of the LMK1D210x can be selected through the amplitude selection pin (see 表 8-3). The higher output amplitude mode (boosted swing LVDS mode) can be used in applications which require higher amplitude either for better noise performance (higher slew rate) or if the receiver has swing requirements which the standard LVDS swing cannot meet.

表 8-3. Amplitude Selection

AMP_SEL	OUTPUT AMPLITUDE (mV)		
0	Bank 0: boosted LVDS swing (500 mV) Bank 1: standard LVDS swing (350 mV)		
OPEN	Bank 0: standard LVDS swing (350 mV) Bank 1: standard LVDS swing (350 mV)		
1	Bank 0: boosted LVDS swing (500 mV) Bank 1: boosted LVDS swing (500 mV)		

8.4.1 LVDS Output Termination

TI recommends unused outputs to be terminated differentially with a 100- Ω resistor for optimum performance, although unterminated outputs are also okay but will result in slight degradation in performance (Output AC common-mode V_{OS}) in the outputs being used.

The LMK1D210x can be connected to LVDS receiver inputs with DC and AC coupling as shown in 图 8-1 and 图 8-2, respectively.

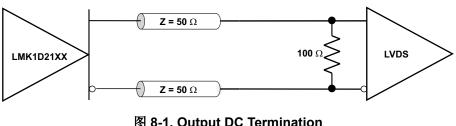


图 8-1. Output DC Termination

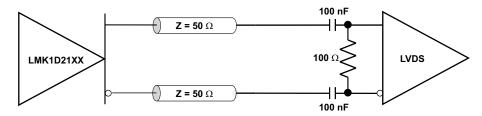


图 8-2. Output AC Termination (With the Receiver Internally Biased)

8.4.2 Input Termination

The LMK1D210x inputs can be interfaced with LVDS, LVPECL, HCSL, or LVCMOS drivers.

LVDS drivers can be connected to LMK1D210x inputs with DC and AC coupling as shown \ 8 8-3 and \ 8 8-4, respectively.

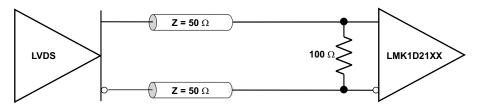


图 8-3. LVDS Clock Driver Connected to LMK1D210x Input (DC-Coupled)

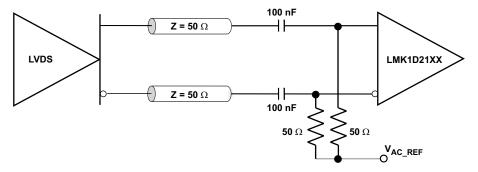


图 8-4. LVDS Clock Driver Connected to LMK1D210x Input (AC-Coupled)

 8-5 shows how to connect LVPECL inputs to the LMK1D210x. The series resistors are required to reduce the LVPECL signal swing if the signal swing is $>1.6 V_{PP}$.

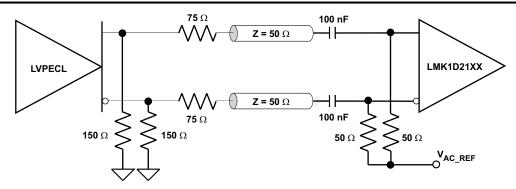


图 8-5. LVPECL Clock Driver Connected to LMK1D210x Input

8-6 shows how to couple a LVCMOS clock input to the LMK1D210x directly.

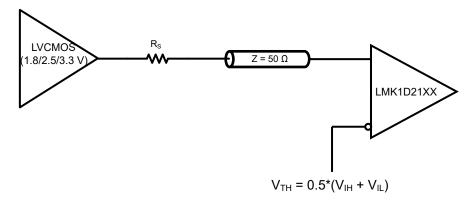


图 8-6. 1.8-V, 2.5-V, or 3.3-V LVCMOS Clock Driver Connected to LMK1D210x Input

For unused input, TI recommends grounding both input pins (INP, INN) using 1-k Ω resistors.

9 Application and Implementation

备注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The LMK1D210x is a low additive jitter universal to LVDS fan-out buffer with dual inputs which fan-out to dual outputs banks. Each input can fan-out to six outputs in case of LMK1D2106 and eight outputs in case of LMK1D2108. The small package size, 1.8-V power supply operation, low output skew, and low additive jitter is desgined for applications that require high-performance clock distribution as well as for low-power and space-constraint applications.

9.2 Typical Application

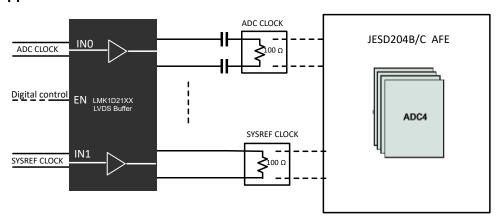


图 9-1. Fan-Out Buffer for ADC Device Clock and SYSREF Distribution

9.2.1 Design Requirements

The LMK1D210x shown in

9-1 is configured to fan-out an ADC clock on the first output bank and SYSREF clock on the second output bank for a system using the JESD204B/C ADC. The low output-to-output skew, very low additive jitter and superior spurious suppression between dual banks makes the LMK1D210x a simple, robust and low-cost solution for distributing various clocks to JESD204B/C AFE systems. The configuration example can drive up to 4 ADC clocks and 4 SYSREF clocks for a JESD204B/C receiver with the following properties:

- The ADC clock receiver module is typically AC-coupled with an LVDS driver such as the LMK1D210x due to differences in common-mode voltage between the driver and receiver. Depending on the receiver, there maybe an option for internal 100- Ω differential termination in which case an external termination would not be required for the LMK1D210x.
- The SYSREF clock receiver module is typically DC-coupled provided the common-mode voltage of the LMK1D210x outputs match with the receiver. An external termination may not be needed in case of an internal termination in the receiver.
- Unused outputs of the LMK1D210x device are terminated differentially with a 100- Ω resistor for optimum performance.

9.2.2 Detailed Design Procedure

See Input Termination for proper input terminations, dependent on single-ended or differential inputs.

See LVDS Output Termination for output termination schemes depending on the receiver application.

TI recommends unused outputs to be terminated differentially with a 100- Ω resistor for optimum performance, although unterminated outputs are also okay but will result in slight degradation in performance (Output AC common-mode V_{OS}) in the outputs being used.

In this application example, the ADC clock and SYSREF clocks require different output interfacing schemes. Power-supply filtering and bypassing is critical for low-noise applications.

In case of common-mode mismatch between the output voltage of the LMK1D210x and the receiver, one can use AC coupling to get around this. It might not be possible in certain applications, however, to AC-couple the LMK1D210x outputs to the receiver due to the settling time associated with this AC-coupling network (High-pass filter), which can result in non-deterministic behavior during the initial transients. For such applications, DC-coupling the outputs is necessary and thus requires a scheme which can overcome the inherent mismatch between the common-mode voltage of the driver and receiver.

The application report *Interfacing LVDS Driver With a Sub-LVDS Receiver* discusses how to interface between a LVDS driver and sub-LVDS receiver. The same concept can be applied to interface the LMK1D210x outputs to a receiver which has a lower common-mode voltage.

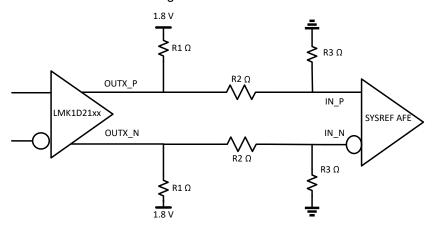
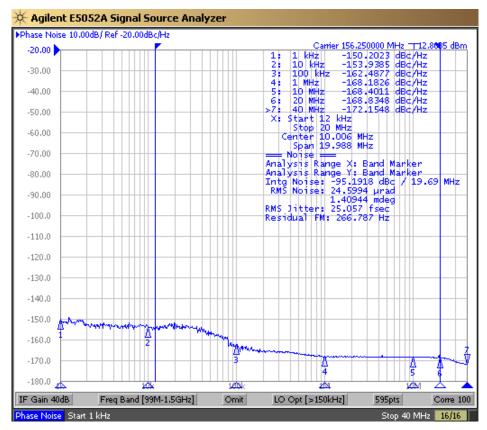



图 9-2. Schematic for DC-Coupling LMK1D21xx With Lower Common-Mode Receiver

图 9-2 shows the resistor divider network for stepping down the common-mode voltage as explained in the above application report. The resistors R1, R2 and R3 are chosen according to the input common-mode voltage requirements of the receiver. As highlighted before, make sure that the reduced swing is able to meet the requirements of the receiver. Higher swing mode (boosted LVDS swing mode) can be selected using the AMP_SEL pin highlighted in 表 8-3 to compensate for the reduced swing as the result of the resistor voltage divider.

9.2.3 Application Curves

The low additive noise of the LMK1D2108. The low noise 156.25-MHz source with 25-fs RMS jitter, shown in 图 9-3, drives the LMK1D2108, resulting in 46.9-fs RMS when integrated from 12 kHz to 20 MHz (图 9-4). The resultant additive jitter is a low 39.7-fs RMS for this configuration. Note that this result applies to the LMK1D2106 device as well.

Note: Reference signal is a low-noise Rhode and Schwarz SMA100B

图 9-3. LMK1D2108 Reference Phase Noise, 156.25 MHz, 25-fs RMS (12 kHz to 20 MHz)

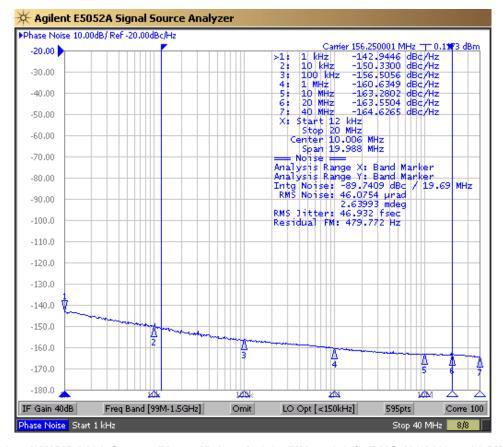


图 9-4. LMK1D2108 Output Phase Noise, 156.25 MHz, 46.9-fs RMS (12 kHz to 20 MHz)

10 Power Supply Recommendations

High-performance clock buffers are sensitive to noise on the power supply, which can dramatically increase the additive jitter of the buffer. Thus, it is essential to reduce noise from the system power supply, especially when jitter or phase noise is critical to applications.

Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass capacitors provide the low impedance path for high-frequency noise and guard the power-supply system against the induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by the device and must have low equivalent series resistance (ESR). To properly use the bypass capacitors, they must be placed close to the power-supply pins and laid out with short loops to minimize inductance. TI recommends adding as many high-frequency (for example, 0.1-µF) bypass capacitors as there are supply pins in the package. TI recommends, but does not require, inserting a ferrite bead between the board power supply and the chip power supply that isolates the high-frequency switching noises generated by the clock driver. These ferrite beads prevent the switching noise from leaking into the board supply. Choose an appropriate ferrite bead with low DC resistance because it is imperative to provide adequate isolation between the board supply and the chip supply, as well as to maintain a voltage at the supply pins that is greater than the minimum voltage required for proper operation.

图 10-1 shows this recommended power-supply decoupling method.

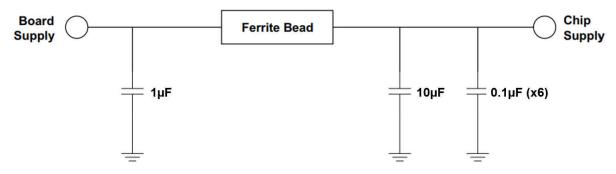


图 10-1. Power Supply Decoupling

11 Layout

11.1 Layout Guidelines

For reliability and performance reasons, the die temperature must be limited to a maximum of 135°C.

The device package has an exposed pad that provides the primary heat removal path to the printed circuit board (PCB). To maximize the heat dissipation from the package, a thermal landing pattern including multiple vias to a ground plane must be incorporated into the PCB within the footprint of the package. The thermal pad must be soldered down to ensure adequate heat conduction to of the package.

11-1 and 11-2 show the recommended top layer and via patterns for the 40-pin package (LMK1D2106).

11.2 Layout Examples

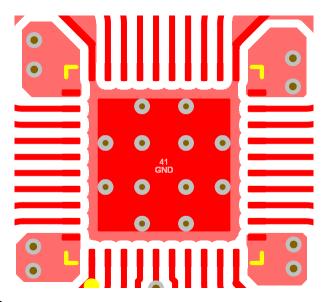


图 11-1. PCB layout example for LMK1D2106, Top Layer

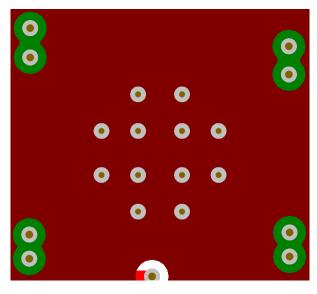


图 11-2. PCB Layout Example for LMK1D2106, GND layer

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

For related documentation see the following:

- Texas Instruments, Low-Additive Jitter, Four LVDS Outputs Clock Buffer Evaluation Board user's guide
- Texas Instruments, Power Consumption of LVPECL and LVDS Analog design journal
- Texas Instruments, Using Thermal Calculation Tools for Analog Components application report

12.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.3 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

12.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

12.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Submit Document Feedback

www.ti.com

17-Jun-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
LMK1D2106RHAR	Active	Production	VQFN (RHA) 40	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	LMK1D 2106
LMK1D2106RHAR.B	Active	Production	VQFN (RHA) 40	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	LMK1D 2106
LMK1D2106RHAT	Active	Production	VQFN (RHA) 40	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	LMK1D 2106
LMK1D2106RHAT.B	Active	Production	VQFN (RHA) 40	250 SMALL T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 105	LMK1D 2106
LMK1D2108RGZR	Active	Production	VQFN (RGZ) 48	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	LMK1D 2108
LMK1D2108RGZR.B	Active	Production	VQFN (RGZ) 48	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	LMK1D 2108
LMK1D2108RGZT	Active	Production	VQFN (RGZ) 48	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	LMK1D 2108
LMK1D2108RGZT.B	Active	Production	VQFN (RGZ) 48	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	LMK1D 2108
LMK1D2108RGZTG4	Active	Production	VQFN (RGZ) 48	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	LMK1D 2108
LMK1D2108RGZTG4.B	Active	Production	VQFN (RGZ) 48	250 SMALL T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 105	LMK1D 2108

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

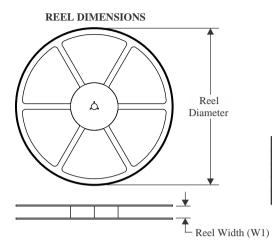
PACKAGE OPTION ADDENDUM

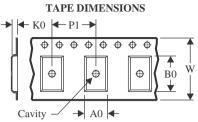
www.ti.com 17-Jun-2025

(5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

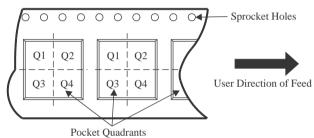
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

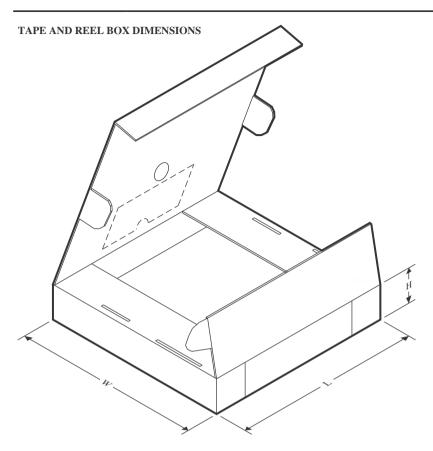
PACKAGE MATERIALS INFORMATION

www.ti.com 18-Jun-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

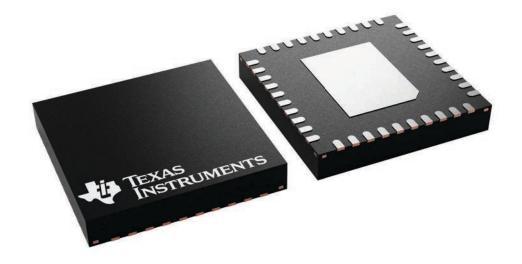
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



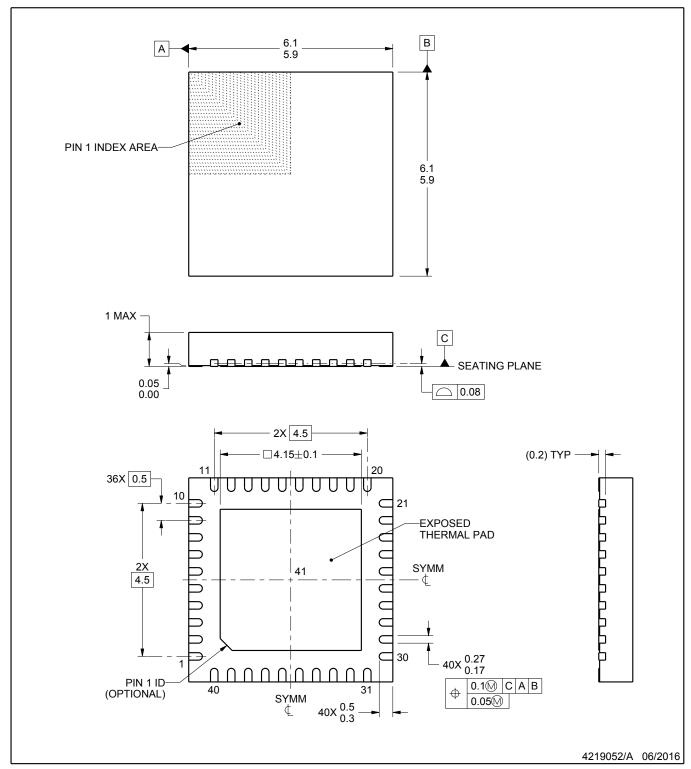
*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMK1D2106RHAR	VQFN	RHA	40	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
LMK1D2106RHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
LMK1D2108RGZR	VQFN	RGZ	48	2500	330.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2
LMK1D2108RGZT	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2
LMK1D2108RGZTG4	VQFN	RGZ	48	250	180.0	16.4	7.3	7.3	1.1	12.0	16.0	Q2

www.ti.com 18-Jun-2025

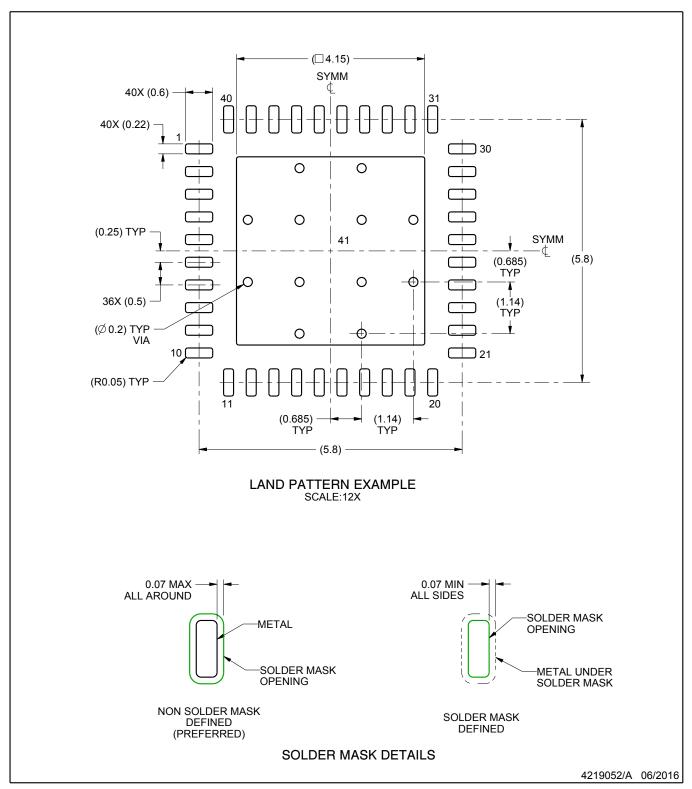

*All dimensions are nominal

7 til dilitionolorio di o mominar							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMK1D2106RHAR	VQFN	RHA	40	2500	367.0	367.0	35.0
LMK1D2106RHAT	VQFN	RHA	40	250	210.0	185.0	35.0
LMK1D2108RGZR	VQFN	RGZ	48	2500	367.0	367.0	35.0
LMK1D2108RGZT	VQFN	RGZ	48	250	210.0	185.0	35.0
LMK1D2108RGZTG4	VQFN	RGZ	48	250	210.0	185.0	35.0


6 x 6, 0.5 mm pitch

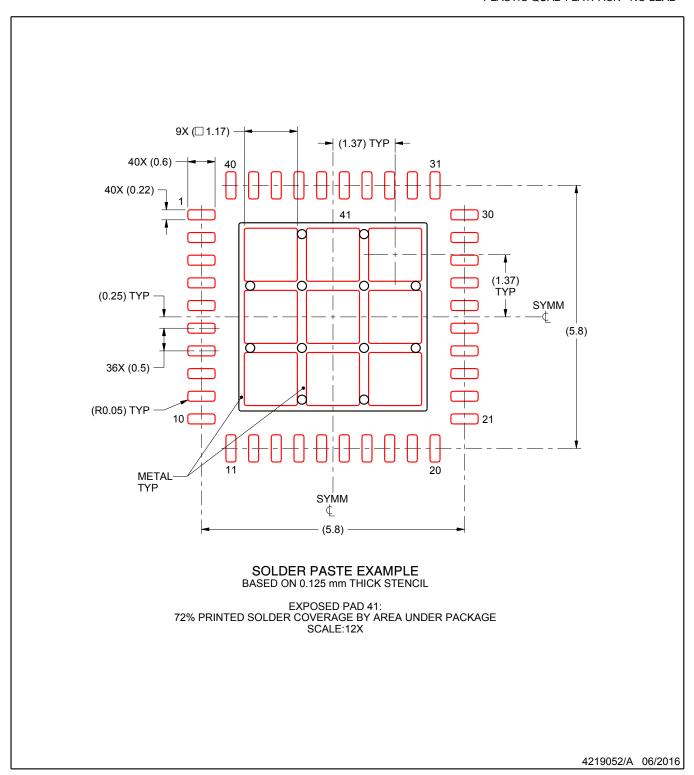
PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.



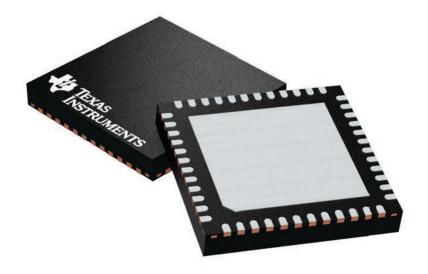
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



NOTES: (continued)

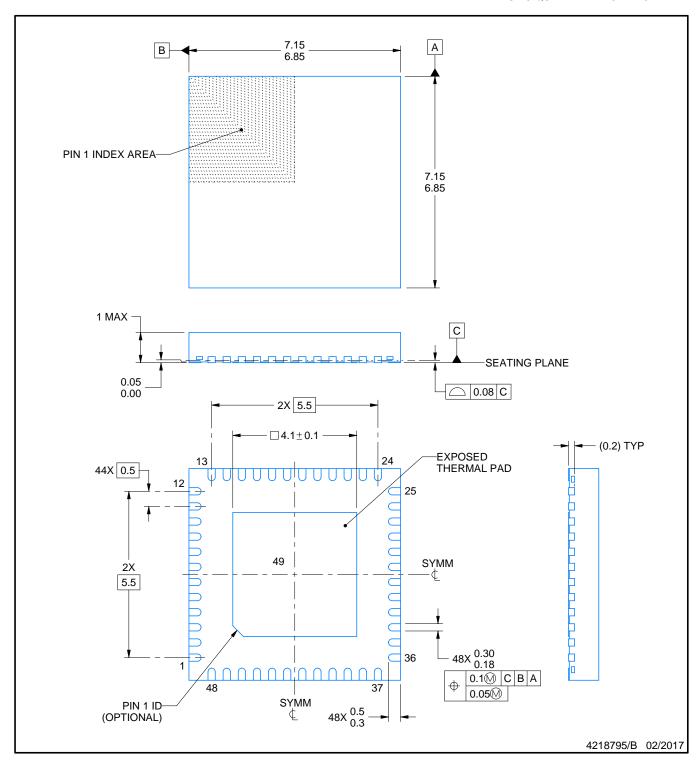
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).


NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

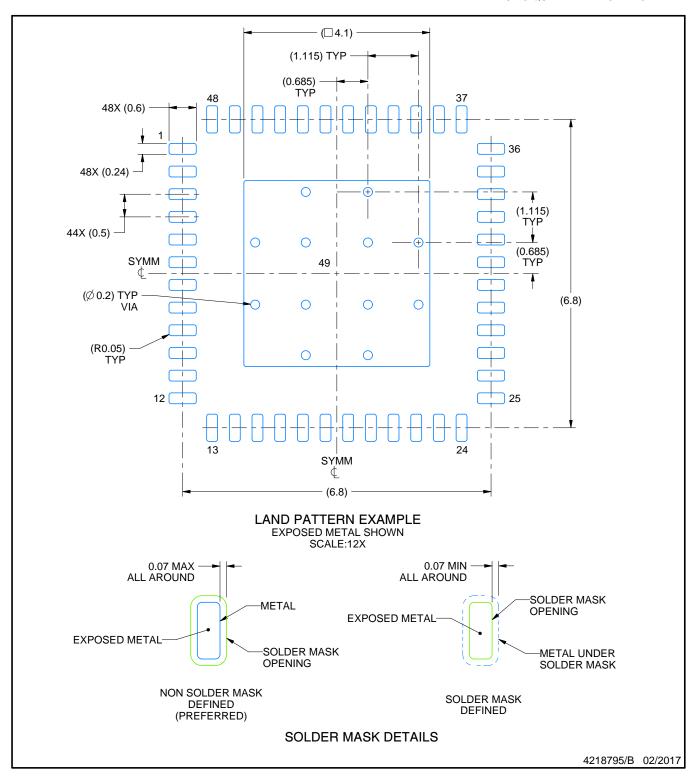
7 x 7, 0.5 mm pitch

PLASTIC QUADFLAT PACK- NO LEAD



Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

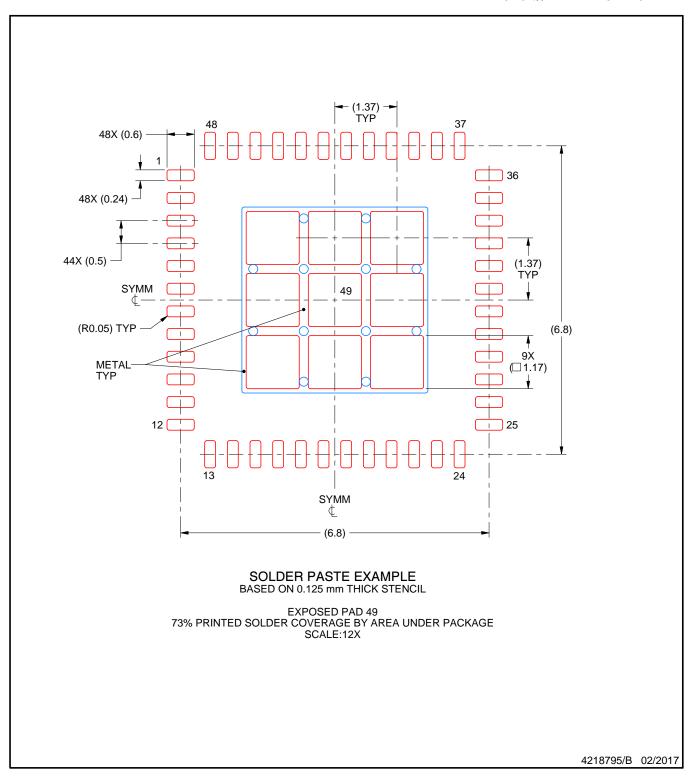
4224671/A



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司