

FEATURES

- Controlled Baseline
 - One Assembly
 - Test Site
 - One Fabrication Site
- Extended Temperature Performance of -55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product Change Notification
- Qualification Pedigree (1)
- Single Supply or Dual Supplies
- Wide Range of Supply Voltage
 - Max Rating . . . 2 V to 36 V
 - Tested to 30 V
- (1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold-compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

DESCRIPTION/ORDERING INFORMATION

 Low Supply-Current Drain Independent of Supply Voltage . . . 0.4 mA Typical Per Comparator

- Low Input Bias Current . . . 25 nA Typical
- Low Input Offset Voltage ... 2 mV Typical
- Common-Mode Input Voltage Range Includes Ground
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage . . . ±36 V
- Low Output Saturation Voltage
- Output Compatible With TTL, MOS, and CMOS

LM29	з (то	. D I P VI	PAC	CKAGE /)
10UT [1	U	8] V _{cc}
1IN-[2		7] 20UT
1IN+[3		6] 2IN–
GND[4		5] 2IN+

This device consist of two independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Operation from dual supplies also is possible as long as the difference between the two supplies is 2 V to 36 V, and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. Current drain is independent of the supply voltage. The outputs can be connected to other open-collector outputs to achieve wired-AND relationships.

The LM293-EP is characterized for operation from –55°C to 125°C.

ORDERING INFORMATION⁽¹⁾

T _A	V _{IOmax} AT 25°C	MAX V _{CC}	PAC	(AGE ⁽²⁾	ORDERABLE PART NUMBER	TOPSIDE MARKING
–55°C to 125°C	5 mV	30 V	SOIC – D	Reel of 2500	LM293MDREP	LM293E

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LM293-EP **DUAL DIFFERENTIAL COMPARATOR** SLCS155-OCTOBER 2007

Symbol (Each Comparator)

Current values shown are nominal.

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾			36	V
V _{ID}	Differential input voltage ⁽³⁾			±36	V
VI	Input voltage range (either input)		-0.3	36	V
Vo	Output voltage			36	V
Io	Output current			20	mA
	Duration of output short-circuit to ground ⁽⁴⁾		ι	Inlimited	
θ_{JA}	Package thermal impedance ⁽⁵⁾⁽⁶⁾	D package		97	°C/W
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltage values, except differential voltages, are with respect to GND. (2)

(3)

Differential voltages are at IN+, with respect to IN-. Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction. (4)

Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. (5)

(6) The package thermal impedance is calculated in accordance with JESD 51-7.

2

Electrical Characteristics

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	DADAMETED	TEST CONDITIONS		T (1)	L	LM293			
	PARAMETER			IA'''	MIN	TYP	MAX	UNIT	
		$V_{CC} = 5 V \text{ to } 30 V,$		25°C		2	5		
V _{IO}	Input offset voltage	age $V_O = 1.4 V$, $V_{IC} = V_{IC(min)}$		Full range			9	mV	
	Innut offert ourrent	V 4 4 V		25°C		5	50	~ ^	
IO	input onset current	$v_0 = 1.4 v$		Full range			250	nA	
				25°C		-25	-250	~ ^	
IB Input bias current		$v_0 = 1.4 v$		Full range			-400	nA	
	Common-mode input			25°C	0 to VCC – 1.5			V	
V _{ICR} voltage range ⁽²⁾				Full range	0 to VCC – 2				
A _{VD}	Large-signal differential-voltage amplification	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 15 \text{ V}, \\ V_O = 1.4 \text{ V to } 11.4 \text{ V} \\ R_L \geq 15 \text{ k}\Omega \text{ to } V_{CC} \end{array}$	Ι,	25°C	50	200		V/mV	
	High lovel output ourrent	V _{OH} = 5 V,	$V_{ID} = 1 V$	25°C		0.1	50	nA	
ЮН		V _{OH} = 30 V,	$V_{ID} = 1 V$	Full range			1	μA	
V			V 4.V	25°C		150	400	m)/	
V _{OL} Low-level output volta	Low-level output voltage	$I_{OL} = 4 \text{ mA},$	$v_{ID} = -1 v$	Full range			700	mv	
I _{OL}	Low-level output current	V _{OL} = 1.5 V,	$V_{ID} = -1 V$	25°C	6			mA	
		P _ m	$V_{CC} = 5 V$	25°C		0.8	1	m۸	
I _{CC} Supply current		$V_{CC} = 30 V$	Full range			2.5	ШA		

(1) Full range (MIN or MAX) for LM293 is -55°C to 125°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified.

The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the (2)common-mode voltage range is $V_{CC+} - 1.5$ V for the inverting input (-), and the non-inverting input (+) can exceed the V_{CC} level; the comparator provides a proper output state. Either or both inputs can go to 30 V without damage.

Switching Characteristics

 $V_{CC} = 5 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$

DADAMETED	TEST CO	LM293	UNIT	
FARAWETER	TEST CO	TYP		
Response time	R_L connected to 5 V through 5.2 k Ω ,	100 mV input step with 5 mV overdrive	1.3	
	$C_{L} = 15 \text{ pF}^{(1)}, \text{ See}^{(2)}$	TTL-level input step	0.3	μs

C_L includes probe and jig capacitance.
The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM293MDREP	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

25-Sep-2024

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM293MDREP	SOIC	D	8	2500	353.0	353.0	32.0

D0008A

PACKAGE OUTLINE

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

D0008A

EXAMPLE BOARD LAYOUT

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025, Texas Instruments Incorporated