

INA270, INA271

ZHCSHF9E -FEBRUARY 2007-REVISED JANUARY 2018

INA27x 电压输出、单向测量电流分流监控器

特性

- 宽共模范围: -16V 至 +80V
- CMRR: 120dB
- 精度: ±0.5mV 失调电压(典型值) ±0.2% 增益误差(典型值) 2.5 μV/°C 温漂 (典型值) 50 ppm/°C 增益漂移(最大值)
- 带宽: 高达 130kHz
- 两种可用增益选项: 14 V/V (INA270) 20 V/V (INA271)
- 静态电流: 700μA (典型值)
- 电源: +2.7V 至 +18V
- 可用于滤波

应用

- 电源管理
- 汽车
- 电信设备
- 笔记本电脑
- 电池充电器
- 手机
- 焊接设备

3 说明

INA270 和 INA271 系列器件电压输出、电流感应放大 器可在独立于电源电压的 -16V 至 +80V 共模电压中检 测分流电阻上的压降。INA270 和 INA271 引脚排列可 随时用于滤波。

INA270 和 INA271 具有两种增益选项: 14 V/V 和 20 V/V。130kHz 带宽简化了在电流控制环路中的使用。

INA270 和 INA271 由一个 +2.7V 至 +18V 单电源供 电,消耗的电源电流为 700μA (典型值)。器件具有 -40°C 至 +125°C 扩展额定工作温度范围, 采用 SOIC-8 封装。

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
INA27x	SOIC (8)	4.90mm x 3.91mm

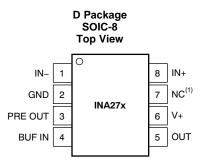
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。

简化原理图 R_{S} -16V to +80V Load Supply Single-Pole Filter Capacitor +2.7V to +18V BUF IN PRE OUT \gtrsim 5k Ω \gtrsim 5k Ω ₩ -O OUT \geqslant 96k Ω \lessgtr R $_{ m L}$ INA270 GND

_	
	— .
	70
	- 210

1	特性1		8.4 Device Functional Modes	12
2	应用 1	9	Application and Implementation	15
3	说明 1		9.1 Application Information	15
4	修订历史记录 2		9.2 Typical Application	15
5	Device Comparison Table3	10	Power Supply Recommendations	17
6	Pin Configuration and Functions		10.1 Shutdown	17
7	Specifications	11	Layout	18
•	7.1 Absolute Maximum Ratings		11.1 Layout Guidelines	18
	7.2 ESD Ratings		11.2 Layout Example	18
	7.3 Recommended Operating Conditions	12	器件和文档支持	19
	7.4 Thermal Information		12.1 Documentation Support	19
	7.5 Electrical Characteristics 5		12.2 相关链接	
	7.6 Typical Characteristics		12.3 社区资源	
8	Detailed Description 10		12.4 商标	19
	8.1 Overview		12.5 静电放电警告	19
	8.2 Functional Block Diagram 10		12.6 Glossary	19
	8.3 Feature Description11	13	机械、封装和可订购信息	19

4 修订历史记录 注: 之前版本的页码可能与当前版本有所不同。


Changes from Revision D (November 2014) to Revision E	Page
 为第1页的图添加了标题 	1
Updated ESD Ratings table to current standards	4
Changed Figure 16: changed op amp input to BUF IN pin from negative to positive	12
• 添加了 <i>社区资源</i> 部分	19
Changes from Revision C (May 2010) to Revision D	Page
• 更改了格式以符合最新数据表标准	1
• 添加了处理额定值、引脚说明与建议运行条件表和特性说明、器件功能模式、应用和实施、电源机器件和文档支持以及机械、封装和可订购信息部分	
• 更改了精度和静态电流特性项目符号:从规格和值的最大值更改成了典型值	1
• 更改了两种可用增益选项特性 项目符号中的措辞	1
• 更改了说明部分用于澄清说明	1
• 添加了器件信息表	1
Deleted Ordering Information table	3
• Changed Input, Full-Scale Input Voltage parameter conditions in Electrical Characteristics table	5
Changed title of First- or Second-Order Filtering section	12
Changed title of Power Supply Recommendations section	17
Changes from Revision B (July 2008) to Revision C	Page
Corrected Figure 17 y-axis	14
Corrected Figure 18 y-axis	14

5 Device Comparison Table

DEVICE	GAIN
INA270	14 V/V
INA271	20 V/V

6 Pin Configuration and Functions

NOTE (1): NC denotes no internal connection.

Pin Functions

I	PIN		DECORPTION	
NAME	NO.	- I/O	DESCRIPTION	
BUF IN	4	Analog input	Connect to output of filter from PRE OUT	
GND	2	Analog	Ground	
IN-	1	Analog input	Connect to load side of shunt resistor	
IN+	8	Analog input	Connect to supply side of shunt resistor	
NC	7	_	Connect to ground	
OUT	5	Analog output	Output voltage	
PRE OUT	3	Analog output	Analog output Connect to input of filter to BUF IN	
V+	6	Analog input	Power supply, +2.7 V to +18 V	

7 Specifications

7.1 Absolute Maximum Ratings⁽¹⁾

	-	MIN	MAX	UNIT
Supply voltage (V _S)			+18	V
Analog inputs, V _{IN+} , V _{IN-} :	Differential, (V _{IN+}) - (V _{IN-})	-18	+18	V
	Common-mode	-16	+80	V
Analog output: OUT and PRE OUT pins		GND - 0.3	(V+) + 0.3	V
Input current into any pin			5	mA
Operating temperature		- 55	+150	°C
Junction temperature			+150	°C
Storage temperature, T _{stg}		-65	+150	°C

⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

				VALUE	UNIT
	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±3000			
'	V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±750	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V_{CM}	Common-mode input voltage	-16	12	80	V
Vs	Operating supply voltage	2.7	5	18	V
T _A	Operating free-air temperature	-40		125	°C

7.4 Thermal Information

		INA27x	
	THERMAL METRIC ⁽¹⁾		UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	78.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	71.6	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	68.2	°C/W
ΨЈТ	Junction-to-top characterization parameter	22.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	67.6	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

At $T_A = +25$ °C, $V_S = +5$ V, $V_{CM} = +12$ V, $V_{SENSE} = 100$ mV, and PRE OUT connected to BUF IN, unless otherwise noted.

	PARAME	TER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
INPUT			1			1	
V _{SENSE}	Full-scale input vo	oltage	$V_{SENSE} = (V_{IN+}) - (V_{IN-})$		0.15 (V	/ _S - 0.2) / Gain	V
V _{CM}	Common-mode in	put range	$T_A = -40$ °C to +125°C	-16		+80	V
CMRR	Common-mode re	ejection ratio	V _{IN+} = -16 V to +80 V	80	120		dB
	CMRR over temp	erature	V_{IN+} = +12 V to +80 V, T_A = -40°C to +125°C	100	120		dB
V _{OS}	Offset voltage, R7	ΓΙ ⁽¹⁾			±0.5	2.5	mV
	V _{OS} over tempera	iture	$T_A = -40$ °C to +125°C			±3	mV
dV _{OS} /dT	V _{OS} vs temperatu	re	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		2.5	20	μV/°C
PSR	V _{OS} vs power-sup	pply	$V_S = +2.7 \text{ V to } +18 \text{ V}, V_{CM} = +18 \text{ V}, \\ T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		5	100	μV/V
I _B	Input bias current	, V _{IN} pin	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		±8	±16	μА
	PRE OUT output	impedance ⁽²⁾			96		kΩ
	Buffer input bias	current			-50		nA
	Buffer input bias of coefficient	current temperature			±0.03		nA/°C
OUTPUT	$(V_{SENSE} \ge 20 \text{mV})^{(3)}$						
G	Gain	INA270 total gain			14		V/V
	Gairi	INA271 total gain			20		V/V
G_BUF	Output buffer gain				2		V/V
	Total gain error		V _{SENSE} = 20 mV to 100 mV		±0.2%	±1%	
	Total gain error O	ver temperature	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			±2%	
	Total gain error vs	s temperature	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$			50	ppm/°C
	Total output error	(4)			±0.75%	±2.2%	
	Total output error		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		±1.0%	±3.0%	
	Nonlinearity error		V _{SENSE} = 20 mV to 100 mV		±0.002%		
R _O	Output impedance	e, pin 5			1.5		Ω
	Maximum capacit		No sustained oscillation		10		nF
VOLTAGE	E OUTPUT $^{(5)}$ (R _L = 1	l0 kΩ to GND)					
	Swing to V+ power	er-supply rail	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$		(V+) - 0.05	(V+) - 0.2	V
	Swing to GND ⁽⁶⁾		$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	V _G	_{SND} + 0.003	$V_{GND} + 0.05$	V
FREQUE	NCY RESPONSE						
BW	Bandwidth		C _{LOAD} = 5 pF		130		kHz
	Phase margin		C _{LOAD} < 10 nF		40		Degrees
SR	Slew rate				1		V/μs
t_S	Settling time (1%))	V_{SENSE} = 10 mV to 100 mV _{PP} , C_{LOAD} = 5 pF		2		μS

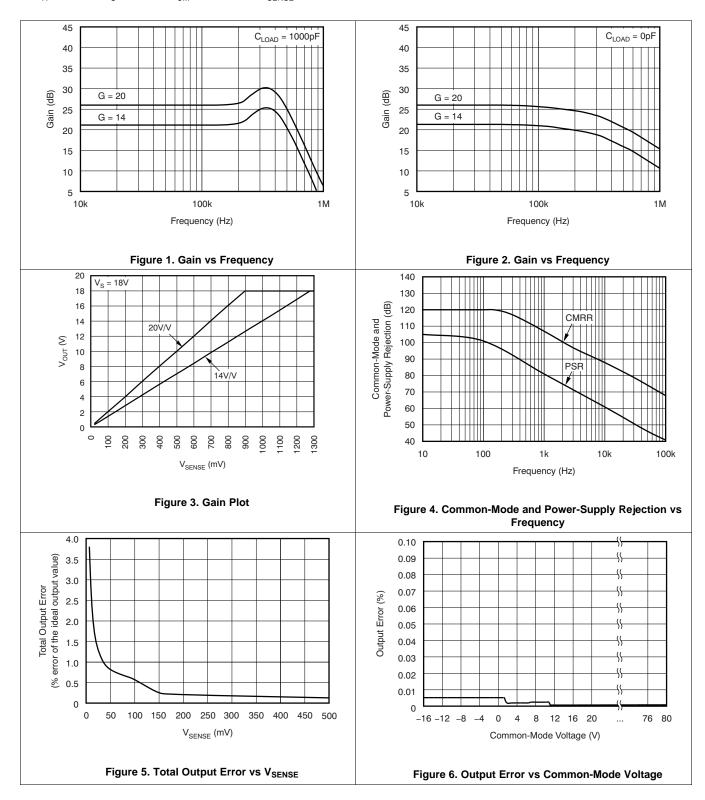
 ⁽¹⁾ RTI means *Referred-to-Input*.
 (2) Initial resistor variation is ±30% with an additional –2200-ppm/°C temperature coefficient.

For output behavior when V_{SENSE} < 20 mV, see the *Accuracy Variations* as a *Result of V_{SENSE}* and *Common-Mode Voltage* section. Total output error includes effects of gain error and V_{OS} .

⁽⁵⁾ See typical characteristic curve Output Swing vs Output Current and the Accuracy Variations as a Result of V_{SENSE} and Common-Mode Voltage section.

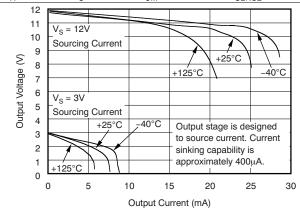
⁽⁶⁾ Ensured by design; not production tested.

Electrical Characteristics (continued)


At $T_A = +25$ °C, $V_S = +5$ V, $V_{CM} = +12$ V, $V_{SENSE} = 100$ mV, and PRE OUT connected to BUF IN, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
NOISE	, RTI ⁽¹⁾					
e _n	Voltage noise density			40		nV/√ Hz
POWE	R SUPPLY					
Vs	Operating range	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	+2.7		+18	V
IQ	Quiescent current	V _{OUT} = 2 V		700	900	μΑ
	I _Q over temperature	$V_{SENSE} = 0$ mV, $T_A = -40$ °C to +125°C		350	950	μΑ
TEMPE	RATURE RANGE				·	
	Specified temperature range		-40		+125	°C
	Operating temperature range		-55		+150	°C
θ_{JA}	Thermal resistance, SO-8			150		°C/W

7.6 Typical Characteristics


At T_A = +25°C, V_S = +12 V, V_{CM} = 12 V, and V_{SENSE} = 100 mV, unless otherwise noted.

TEXAS INSTRUMENTS

Typical Characteristics (continued)

At T_A = +25°C, V_S = +12 V, V_{CM} = 12 V, and V_{SENSE} = 100 mV, unless otherwise noted.

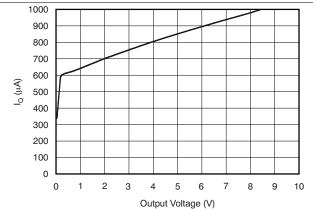
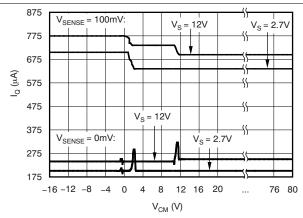



Figure 7. Positive Output Voltage Swing vs Output Current

Figure 8. Quiescent Current vs Output Voltage

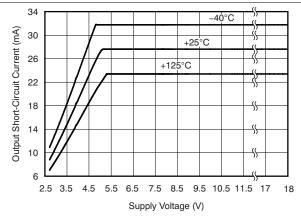
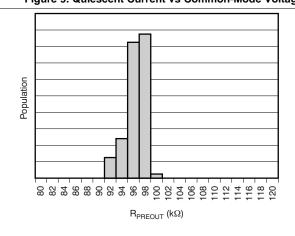
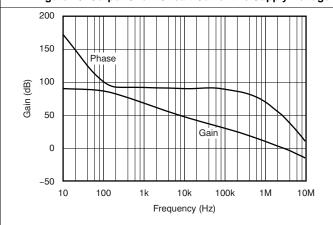



Figure 9. Quiescent Current vs Common-Mode Voltage

Figure 10. Output Short-Circuit Current vs Supply Voltage



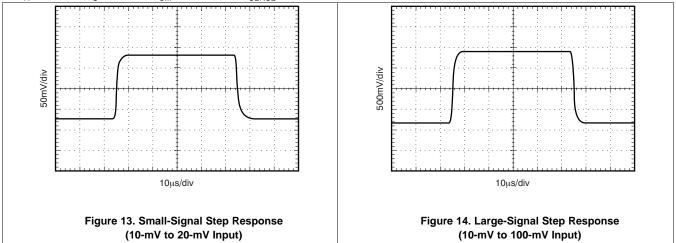
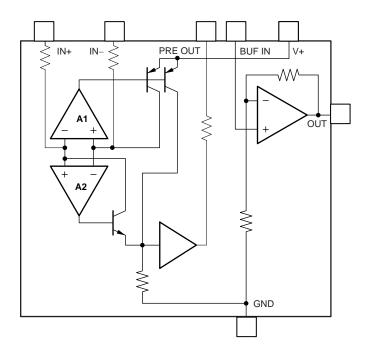

Figure 11. PRE OUT Output Resistance Production
Distribution

Figure 12. Buffer Gain vs Frequency

Typical Characteristics (continued)

At $T_A = +25$ °C, $V_S = +12$ V, $V_{CM} = 12$ V, and $V_{SENSE} = 100$ mV, unless otherwise noted.

8 Detailed Description


8.1 Overview

The INA270 and INA271 family of current-shunt monitors with voltage output can sense drops across current shunts at common-mode voltages from -16 V to +80 V, independent of the supply voltage. The INA270 and INA271 pinouts readily enable filtering.

The INA270 and INA271 are available with two output voltage scales: 14 V/V and 20 V/V. The 130-kHz bandwidth simplifies use in current-control loops.

The INA270 and INA271 operate from a single +2.7-V to +18-V supply, drawing a maximum of 900 μ A of supply current. The devices are specified over the extended operating temperature range of -40°C to +125°C and are offered in an SOIC-8 package.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Basic Connection

Figure 15 shows the basic connection of the INA270 and INA271. Connect the input pins (IN+ and IN-) as closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistance.

Power-supply bypass capacitors are required for stability. Applications with noisy or high-impedance power supplies may require additional decoupling capacitors to reject power-supply noise. Place minimum bypass capacitors of 0.01 μ F and 0.1 μ F in value close to the supply pins. Although not mandatory, an additional 10-mF electrolytic capacitor placed in parallel with the other bypass capacitors may be useful in applications with particularly noisy supplies.

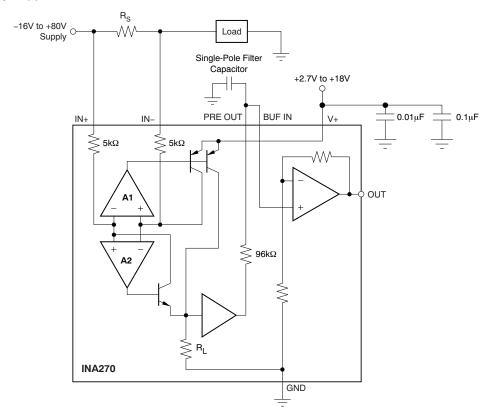


Figure 15. INA270 Basic Connections

8.3.2 Selecting R_S

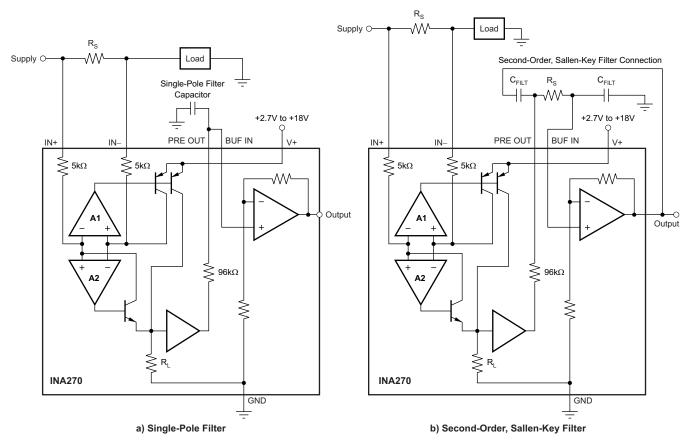
The value chosen for the shunt resistor, R_S , depends on the application and is a compromise between small-signal accuracy and maximum permissible voltage loss in the measurement line. High values of R_S provide better accuracy at lower currents by minimizing the effects of offset, while low values of R_S minimize voltage loss in the supply line. For most applications, best performance is attained with an R_S value that provides a full-scale shunt voltage range of 50 mV to 100 mV. Maximum input voltage for accurate measurements is ($V_S = 0.2$) / Gain.

8.3.3 Transient Protection

The -16-V to +80-V common-mode range of the INA270 and INA271 is ideal for withstanding automotive fault conditions ranging from 12-V battery reversal up to +80-V transients because no additional protective components are needed up to those levels. In the event that the INA270 and INA271 are exposed to transients on the inputs in excess of their ratings, external transient absorption with semiconductor transient absorbers (zeners or Transzorbs) are necessary.

Feature Description (continued)

Use of MOVs or VDRs is not recommended except when they are used in addition to a semiconductor transient absorber. Select the transient absorber such that it never allows the INA270 and INA271 to be exposed to transients greater than 80 V (that is, allow for transient absorber tolerance, as well as additional voltage because of transient absorber dynamic impedance). Despite the use of internal zener-type ESD protection, the INA270 and INA271 are not suited to using external resistors in series with the inputs because the internal gain resistors can vary up to ±30%, but are tightly matched (if gain accuracy is not important, then resistors can be added in series with the INA270 and INA271 inputs with two equal resistors on each input).


8.4 Device Functional Modes

8.4.1 First- or Second-Order Filtering

The output of the INA270 and INA271 is accurate within the output voltage swing range set by the power-supply pin, V+.

The INA270 and INA271 readily enable the inclusion of filtering between the preamp output and buffer input. Single-pole filtering can be accomplished with a single capacitor because of the $96-k\Omega$ output impedance at PRE OUT on pin 3, as shown in Figure 16a.

The INA270 and INA271 readily lend themselves to second-order Sallen-Key configurations, as shown in Figure 16b. When designing these configurations consider that the PRE OUT 96-k Ω output impedance exhibits an initial variation of $\pm 30\%$ with the addition of a -2200-ppm/°C temperature coefficient.

NOTE: Remember to use the appropriate buffer gain (INA270 = 1.4, INA271 = 2) when designing Sallen-Key configurations.

Figure 16. The INA270-INA271 can be Easily Connected for First- or Second-Order Filtering

Device Functional Modes (continued)

8.4.2 Accuracy Variations as a Result of V_{SENSE} and Common-Mode Voltage

The accuracy of the INA270 and INA271 current shunt monitors is a function of two main variables: V_{SENSE} ($V_{IN+} - V_{IN-}$) and common-mode voltage (V_{CM}) relative to the supply voltage, V_S . V_{CM} is expressed as ($V_{IN+} + V_{IN-}$) / 2; however, in practice, V_{CM} is used as the voltage at V_{IN+} because the voltage drop across V_{SENSE} is usually small.

This section addresses the accuracy of these specific operating regions:

Normal Case 1: $V_{SENSE} \ge 20 \text{ mV}$, $V_{CM} \ge V_{S}$ Normal Case 2: $V_{SENSE} \ge 20 \text{ mV}$, $V_{CM} < V_{S}$ Low V_{SENSE} Case 1: $V_{SENSE} < 20 \text{ mV}$, $-16 \text{ V} \le V_{CM} < 0$ Low V_{SENSE} Case 2: $V_{SENSE} < 20 \text{ mV}$, $0 \text{ V} \le V_{CM} \le V_{S}$ Low V_{SENSE} Case 3: $V_{SENSE} < 20 \text{ mV}$, $V_{SENSE} < 20 \text{ mV}$, $V_{SENSE} < 80 \text{ V}$

8.4.2.1 Normal Case 1: $V_{SENSE} \ge 20 \text{ mV}$, $V_{CM} \ge V_{S}$

This region of operation provides the highest accuracy. Here, the input offset voltage is characterized and measured using a two-step method. First, the gain is determined by Equation 1.

$$G = \frac{V_{OUT1} - V_{OUT2}}{100mV - 20mV}$$

where

V_{OUT1} = Output voltage with V_{SENSE} = 100 mV and

•
$$V_{OUT2}$$
 = Output voltage with V_{SENSE} = 20 mV. (1)

Then the offset voltage is measured at $V_{SENSE} = 100$ mV and referred to the input (RTI) of the current shunt monitor, as shown in Equation 2.

$$V_{OS}RTI$$
 (Referred-To-Input) = $\left[\frac{V_{OUT1}}{G}\right] - 100mV$ (2)

In the *Typical Characteristics*, the *Output Error vs Common-Mode Voltage* curve (Figure 6) shows the highest accuracy for the this region of operation. In this plot, $V_S = 12 \text{ V}$; for $V_{CM} \ge 12 \text{ V}$, the output error is at its minimum. This case is also used to create the $V_{SENSE} \ge 20 \text{ mV}$ output specifications in the *Electrical Characteristics* table.

8.4.2.2 Normal Case 2: $V_{SENSE} \ge 20 \text{ mV}$, $V_{CM} < V_{S}$

This region of operation has slightly less accuracy than Normal Case 1 as a result of the common-mode operating area in which the device functions, as illustrated in the *Output Error vs Common-Mode Voltage* curve (Figure 6). As noted, for this graph $V_S = 12 \text{ V}$; for $V_{CM} < 12 \text{ V}$, the output error increases when V_{CM} becomes less than 12 V, with a typical maximum error of 0.005% at the most negative $V_{CM} = -16 \text{ V}$.

8.4.2.3 Low
$$V_{SENSE}$$
 Case 1: V_{SENSE} < 20 mV, -16 V \leq V_{CM} < 0; and Low V_{SENSE} Case 3: V_{SENSE} < 20 mV, V_{S} < V_{CM} \leq 80 V

Although the INA270 family of devices are not designed for accurate operation in either of these regions, some applications are exposed to these conditions. For example, when monitoring power supplies that are switched on and off while V_S is still applied to the INA270 or INA271, knowing what the behavior of the devices is in these regions is important.

Device Functional Modes (continued)

When V_{SENSE} approaches 0 mV, in these V_{CM} regions, the device output accuracy degrades. A larger-than-normal offset can appear at the current shunt monitor output with a typical maximum value of $V_{OUT} = 60$ mV for $V_{SENSE} = 0$ mV. When V_{SENSE} approaches 20 mV, V_{OUT} returns to the expected output value with accuracy as specified in the *Electrical Characteristics*. Figure 17 shows this effect using the INA271 (gain = 20).

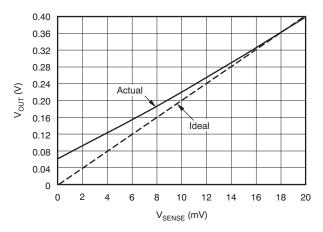
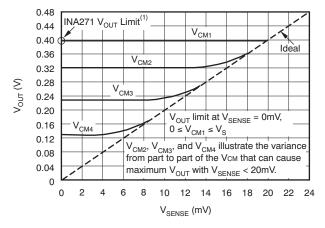



Figure 17. Example For Low V_{SENSE} Cases 1 and 3 (INA271, Gain = 20)

8.4.2.4 Low V_{SENSE} Case 2: V_{SENSE} < 20 mV, 0 V \leq $V_{CM} \leq$ V_{S}

This region of operation is the least accurate for the INA270 family. To achieve the wide input common-mode voltage range, these devices use two op amp front ends in parallel. One op amp front end operates in the positive input common-mode voltage range, and the other in the negative input region. For this case, neither of these two internal amplifiers dominates and overall loop gain is very low. Within this region, V_{OUT} approaches voltages close to linear operation levels for Normal Case 2.

This deviation from linear operation becomes greatest the closer V_{SENSE} approaches 0 V. Within this region, when V_{SENSE} approaches 20 mV, device operation is closer to that described by Normal Case 2. Figure 18 shows this behavior for the INA271. The V_{OUT} maximum peak for this case is determined by maintaining a constant V_S , setting $V_{SENSE} = 0$ mV, and sweeping V_{CM} from 0 V to V_S . The exact V_{CM} at which V_{OUT} peaks during this case varies from device to device. The maximum peak voltage for the INA270 is 0.28 V; for the INA271, the maximum peak voltage is 0.4 V.

NOTE: (1) INA271 V_{OUT} Limit = 0.4V. INA270 V_{OUT} Limit = 0.28V.

Figure 18. Example for Low V_{SENSE} Case 2 (INA271, Gain = 20)

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The INA270 and INA271 measures the voltage developed across a current-sensing resistor when current passes through it. The ability to drive the reference terminal to adjust the functionality of the output signal offers multiple configurations discussed throughout this section. There is also a filtering feature to remove unwanted transients and smooth the output voltage.

9.2 Typical Application

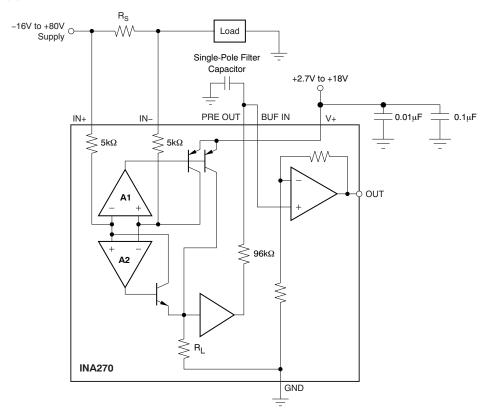


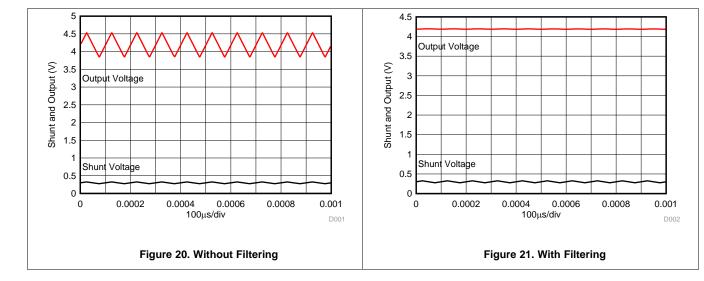
Figure 19. Filtering Configuration

9.2.1 Design Requirements

In this application, the device is configured to measure a triangular periodic current at 10 kHz with filtering. The average current through the shunt is the information that is desired. This current can be either solenoid current or inductor current where current is being pulsed through.

Selecting the capacitor size is based on the lowest frequency component to be filtered out. The amount of signal that is filtered out is dependant on this cutoff frequency. From the cutoff frequency, the attention is 20 dB per decade.

Typical Application (continued)


9.2.2 Detailed Design Procedure

Without this filtering capability, an input filter must be used. When series resistance is added to the input, large errors also come into play because the resistance must be large to create a low cutoff frequency. By using a 10-nF capacitor for the single-pole filter capacitor, the 10-kHz signal is averaged. The cutoff frequency made by the capacitor is set at 166 Hz frequency. This frequency is well below the periodic frequency and reduces the ripple on the output and the average current can easily be measured.

9.2.3 Application Curves

Figure 20 shows the output waveform without filtering. The output signal tracks the input signal with a large ripple. If this current is sampled by an ADC, many samples must be taken to average the current digitally. This process takes additional time to sample and average and is very time consuming, thus is unwanted for this application.

Figure 21 shows the output waveform with filtering. The output signal is filtered and the average can easily be measured with a small ripple. If this current is sampled by an ADC, only a few samples must be taken to average. Digital averaging is now not required and the time required is significantly reduced.

10 Power Supply Recommendations

The input circuitry of the INA270 and INA271 can accurately measure beyond its power-supply voltage, V+. For example, the V+ power supply can be 5 V, whereas the load power-supply voltage is up to +80 V. The output voltage range of the OUT terminal, however, is limited by the voltages on the power-supply pin.

10.1 Shutdown

The INA270 and INA271 do not provide a shutdown pin; however, because these devices consume a quiescent current less than 1 mA, they can be powered by either the output of logic gates or by transistor switches to supply power. Driving the gate low shuts down the INA270 and INA271. Use a totem-pole output buffer or gate that can provide sufficient drive along with a 0.1- μ F bypass capacitor, preferably ceramic with good high-frequency characteristics. This gate must have a supply voltage of 3 V or greater because the INA270 and INA271 require a minimum supply greater than 2.7 V. In addition to eliminating quiescent current, this gate also turns off the 10- μ A bias current present at each of the inputs. Note that the IN+ and IN- inputs are able to withstand full common-mode voltage under all powered and under-powered conditions. An example shutdown circuit is shown in Figure 22.

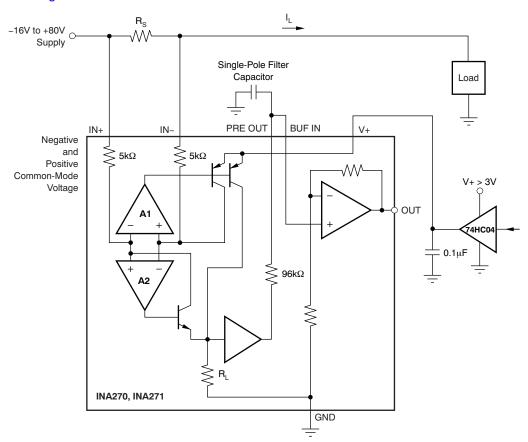


Figure 22. INA270-INA271 Example Shutdown Circuit

11 Layout

11.1 Layout Guidelines

- Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique
 ensures that only the current-sensing resistor impedance is detected between the input pins. Poor routing of
 the current-sensing resistor commonly results in additional resistance present between the input pins. Given
 the very low ohmic value of the current resistor, any additional high-current carrying impedance can cause
 significant measurement errors.
- Place the power-supply bypass capacitor as closely as possible to the supply and ground pins. The
 recommended value of this bypass capacitor is 0.1 μF. Additional decoupling capacitance can be added to
 compensate for noisy or high-impedance power supplies.

11.1.1 RFI and EMI

Attention to good layout practices is always recommended. Keep traces short and, when possible, use a printed circuit board (PCB) ground plane with surface-mount components placed as close to the device pins as possible. Small ceramic capacitors placed directly across amplifier inputs can reduce RFI and EMI sensitivity. PCB layout must locate the amplifier as far away as possible from RFI sources. Sources can include other components in the same system as the amplifier itself, such as inductors (particularly switched inductors handling a lot of current and at high frequencies). RFI can generally be identified as a variation in offset voltage or dc signal levels with changes in the interfering RF signal. If the amplifier cannot be located away from sources of radiation, shielding may be needed. Twisting wire input leads makes them more resistant to RF fields. The difference in input pin location of the INA270 and INA271 versus the INA193 to INA198 may provide different EMI performance.

11.2 Layout Example

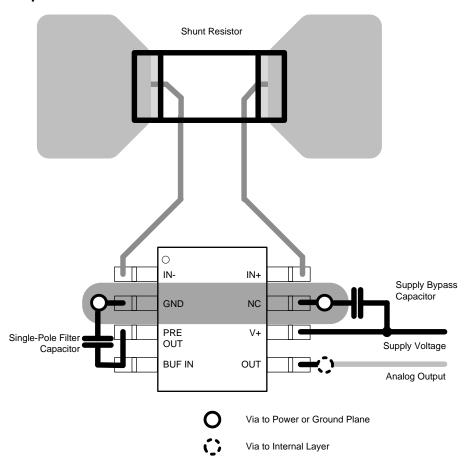


Figure 23. Example Layout

12 器件和文档支持

12.1 Documentation Support

12.1.1 相关文档

如需相关文档,请参阅:

INA270 TINA-TI Spice 模型, SBOM306

INA270 PSpice 模型, SBOM485

INA270 TINA-TI 参考设计, SBOC246

12.2 相关链接

下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即购买的快速链接。

表 1. 相关链接

器件	产品文件夹	立即订购	技术文档	工具和软件	支持和社区		
INA270	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处		
INA271	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处		

12.3 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点:请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

12.4 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 静电放电警告

18-1

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

12.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。

www.ti.com

10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
INA270AID	Last Time Buy	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I270A
INA270AIDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I270A
INA270AIDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I270A
INA270AIDRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I270A
INA270AIDRG4.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I270A
INA271AID	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I271A
INA271AID.A	Active	Production	SOIC (D) 8	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I271A
INA271AIDR	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I271A
INA271AIDR.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I271A
INA271AIDRG4	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I271A
INA271AIDRG4.A	Active	Production	SOIC (D) 8	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	I271A

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

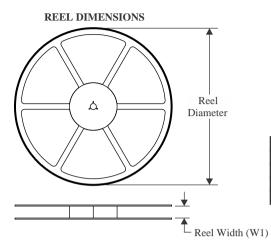
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

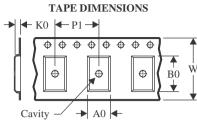
PACKAGE OPTION ADDENDUM

www.ti.com 10-Nov-2025

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

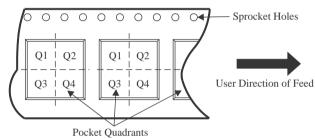
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


OTHER QUALIFIED VERSIONS OF INA271:

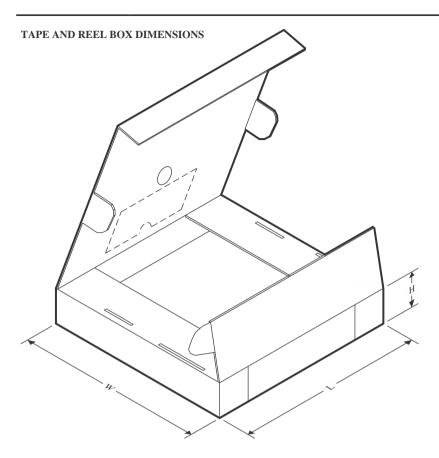

NOTE: Qualified Version Definitions:

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Jul-2025


TAPE AND REEL INFORMATION

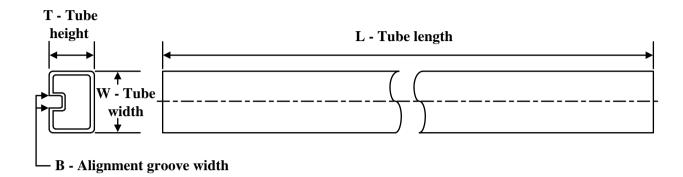
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
INA270AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA270AIDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA271AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
INA271AIDRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 15-Jul-2025

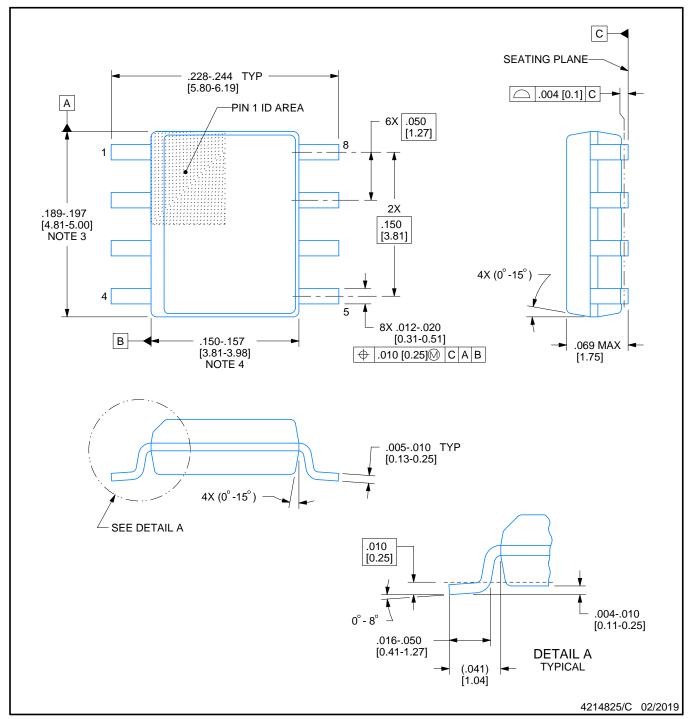

*All dimensions are nominal

	7 till dillitorioriorio di o riorimidi							
	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	INA270AIDR	SOIC	D	8	2500	350.0	350.0	43.0
	INA270AIDRG4	SOIC	D	8	2500	350.0	350.0	43.0
	INA271AIDR	SOIC	D	8	2500	350.0	350.0	43.0
١	INA271AIDRG4	SOIC	D	8	2500	350.0	350.0	43.0

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Jul-2025

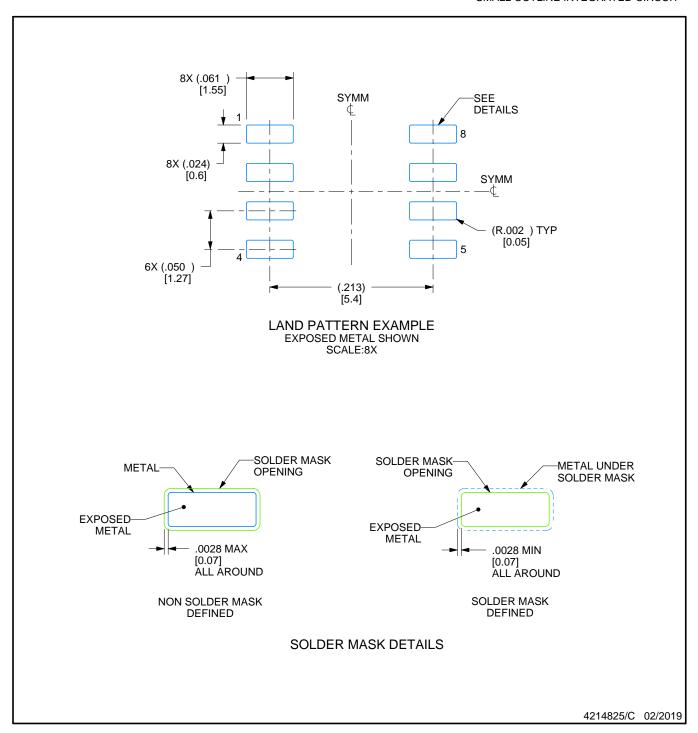
TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
INA270AID	D	SOIC	8	75	505.46	6.76	3810	4
INA271AID	D	SOIC	8	75	505.46	6.76	3810	4
INA271AID.A	D	SOIC	8	75	505.46	6.76	3810	4

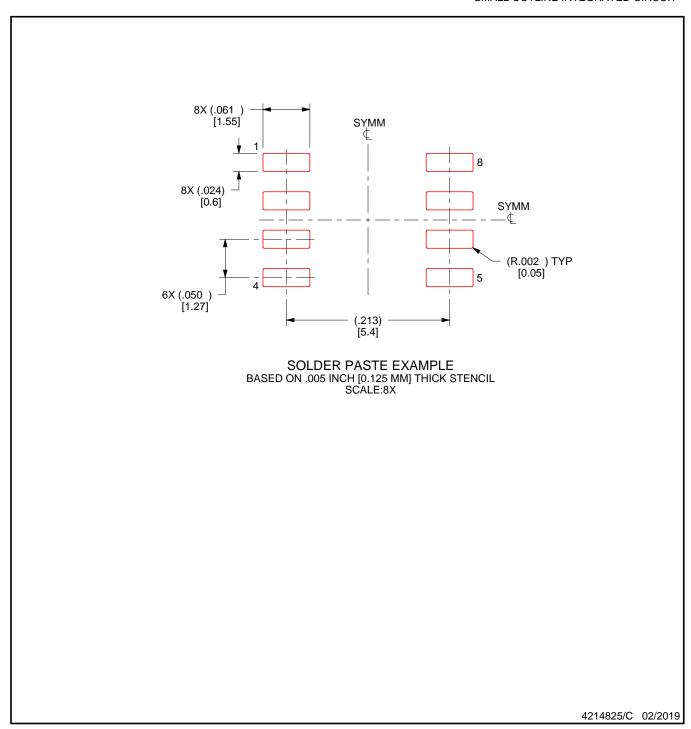
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、与某特定用途的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保法规或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。对于因您对这些资源的使用而对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,您将全额赔偿,TI 对此概不负责。

TI 提供的产品受 TI 销售条款)、TI 通用质量指南 或 ti.com 上其他适用条款或 TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 除非德州仪器 (TI) 明确将某产品指定为定制产品或客户特定产品,否则其产品均为按确定价格收入目录的标准通用器件。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

版权所有 © 2025, 德州仪器 (TI) 公司

最后更新日期: 2025 年 10 月