

INA236

ZHCSNN5D - MAY 2021 - REVISED AUGUST 2023

INA236 具有 I²C 接口的 48V、16 位 超精密电流、 电压和功率监控器

1 特性

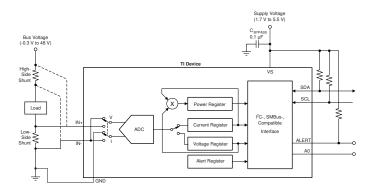
- 高侧或低侧电流检测
- 由 1.7V 至 5.5V 电源供电运行
- 报告电流、电压和功率
- 可编程满标量程:20mV/80mV
- 输入共模范围: -0.3V 至 48V
- 电流监控精度:
 - 16 位 ADC 分辨率
 - 0.1% 增益误差(最大值)
 - 5µV 失调电压(最大值)
- 低输入偏置电流:10nA(最大值)
- 可配置均值计算选项
- 通用呼叫寻址可在器件之间实现转换同步
- 过流和欠流事件的警报限值
- 兼容 I²C、SMBus 接口的 1.2V 电压
- 两个器件地址选项,具有4个引脚可选地址
- DSBGA-8 封装 (0.745mm × 1.508mm)
- SOT23-8 封装
- 工作温度: -40°C和+125°C

2 应用

- 手机
- 智能扬声器
- 可穿戴设备
- 电池充电器
- 电源管理
- 电池监控器和平衡器
- 机架式服务器

3 说明

INA236 是一款 16 位数字电流监测器, 具有兼容 $I^2C/$ SMBus 的接口, 并可与 1.2V、1.8V、3.3V 和 5.0V 等 广泛的数字总线电压兼容。该器件可监测外部检测电阻 上的电压,并报告电流、总线电压和功率值。


INA236 具有可编程 ADC 转换时间和均值计算功能。 该器件还具有可编程校准值,与内部乘法器结合使用 时,可直接读取电流值(单位为安培)和功率值(单位 为瓦特)。该器件可监测 IN- 引脚上的总线电压,并可 以在过流和欠流情况以及过压和欠压情况下发出警报。 由于在电流测量模式下具有高输入阻抗,因此可以使用 所需的更大电流检测电阻来测量小值系统电流。

INA236 可针对独立于电源电压的 - 0.3V 至 48V 的共 模总线电压检测电流。该器件由一个 1.7V 至 5.5V 的 单电源供电,在正常运行条件下消耗 300 μA 的电源电 流(典型值)。可以将该器件置于低功耗待机模式,该 模式下的典型工作电流为 2.2µA。

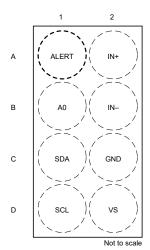
封装信息(1)

器件型号 ⁽²⁾	封装	封装尺寸 (标称值)
INA236	DSBGA (8)	0.745mm × 1.508mm
	SOT-23 (8)	1.60mm × 2.90mm

- 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。
- A和B器件地址选项中提供了INA236。有关A和B器件之间 的地址差异,请参阅表 7-1。

高侧或低侧感测应用

内容


1 特性	1	7.4 器件功能模式	14
2 应用		7.5 编程	15
3 说明	1	7.6 寄存器映射	18
4 修订历史记录	2	8 应用和实现	23
5 引脚配置和功能	3	8.1 应用信息	<mark>2</mark> 3
6 规格	4	8.2 典型应用	2
6.1 绝对最大额定值	4	8.3 电源相关建议	29
6.2 ESD 等级	4	8.4 布局	
6.3 建议的工作条件	4	9 器件和文档支持	32
6.4 热性能信息	4	9.1 器件支持	32
6.5 电气特性	<mark>5</mark>	9.2 文档支持	
6.6 时序要求 (I ² C)	<mark>7</mark>	9.3 接收文档更新通知	32
6.7 时序图	<mark>7</mark>	9.4 支持资源	32
6.8 典型特性	8	9.5 商标	32
7 详细说明	12	9.6 静电放电警告	32
7.1 概述	12	9.7 术语表	32
7.2 功能模块图	12	10 机械、封装和可订购信息	32
7.3 特性说明	12		

4 修订历史记录

Changes from Revision C (December 2022) to Revision D (August 2023)	Page
• 将积分非线性典型值从 ±2m% 更改为 ±1.5m%	5
• 添加了积分非线性最大值 ±6m%	5
Changes from Revision B (May 2022) to Revision C (December 2022)	Page
• 添加了 DDF 封装	1
• 更新了表 7-1 以显示 INA236 器件选项	15
Changes from Revision A (August 2021) to Revision B (May 2022)	Page
 更改了图 6-18 	8
• 将从断电模式完全恢复的时间从 40ms 更改为 100μs	14
Changes from Revision * (May 2021) to Revision A (August 2021)	Page
• 将数据表标题从"INA236 带 I2C 接口的 48V 16 位高精度电流、电压和功率』	监测器"更改为"INA236 带 I2C
接口的 48V 16 位超精密电流、电压和功率监测器"	1
• 将数据表状态从"预告信息"更改为"量产数据"	

English Data Sheet: SBOSA81

5 引脚配置和功能

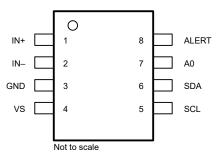


图 5-2. DDF 封装 8 引脚 SOT-23 (顶视图)

图 5-1. YBJ 封装 8 凸点 DSBGA (顶视图)

表 5-1. 引脚功能

	引脚		华型	Диц.
名称	DDF (SOT-23)	YBJ (DSBGA)	类型	说明
A0	7	B1	数字输入	地址引脚。连接到 GND、SCL、SDA 或 VS。表 7-1 列出了引脚设置和相应的地址。
警报	8	A1	数字输出	多功能警报,开漏输出。该引脚会发出警报以报告故障情况,也可以配置为 在转换完成时通知主机。
GND	3	C2	接地	模拟和数字接地。
IN -	2	B2	模拟输入	电流检测负输入。对于高侧应用,连接至感测电阻的负载侧。对于低侧应 用,连接至感测电阻的接地侧。针对该引脚进行总线电压测量。
IN+	1	A2	模拟输入	电流检测正输入。对于高侧应用,连接至检测电阻的总线电压侧。对于低侧应用,连接至感测电阻的负载侧。
SCL	5	D1	数字输入	串行总线时钟线路、开漏输入。
SDA	6	C1	数字 输入/输出	串行总线数据线,开漏输入/输出
vs	4	D2	电源	电源,1.7V 至 5.5V

6 规格

6.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

		最小值	最大值	单位
Vs	电源电压		6	V
V. V.	差分 (V _{IN+}) - (V _{IN-})	- 26	26	V
V _{IN+} , V _{IN-}	共模	GND - 0.3	50	V
V _{IO}	SDA、SCL、ALERT、A0	GND - 0.3	6	V
	到任一引脚的输入电流		5	mA
	开漏数字输出电流 (SDA、ALERT)		10	mA
T _A	工作温度	-55	150	°C
T _J	结温		150	°C
T _{stg}	贮存温度	- 65	150	°C

⁽¹⁾ 超出*绝对最大额定值*的运行可能会对器件造成永久损坏。*绝对最大额定值*并不表示器件在这些条件下或在*建议的工作条件*以外的任何 其他条件下能够正常运行。如果超出*建议的工作条件*、但在*绝对最大额定值*范围内使用,器件可能不会完全正常运行,这可能影响器件 的可靠性、功能和性能并缩短器件寿命。

6.2 ESD 等级

			值	单位
		人体放电模型 (HBM),符合 ANSI/ESDA/JEDEC JS-001,所有引脚 ⁽¹⁾	±2000	
V _(ESD)	静电放电	充电器件模型 (CDM),符合 ANSI/ESDA/JEDEC JS-002 标准,所有引脚 ⁽²⁾	±1000	V

- (1) JEDEC 文档 JEP155 指出: 500V HBM 能够在标准 ESD 控制流程下安全生产。
- (2) JEDEC 文件 JEP157 指出: 250V CDM 可实现在标准 ESD 控制流程下安全生产。

6.3 建议的工作条件

在自然通风条件下的工作温度范围内测得(除非另有说明)

		最小值	标称值	最大值	单位
V _{CM}	共模输入范围	GND - 0.3		48	V
Vs	工作电源电压范围	1.7		5.5	V
T _A	环境温度	-40		125	°C

6.4 热性能信息

		INA		
<u>热指标⁽¹⁾</u>		DDF (SOT23)	YBJ (DSBGA)	单位
		8 引脚	8 引脚	
R ₀ JA	结至环境热阻	146.8	62.2	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻	70.5	0.5	°C/W
R ₀ JB	结至电路板热阻	67.1	20.4	°C/W
Ψ_{JT}	结至顶部特征参数	4.1	0.3	°C/W
Y_{JB}	结至电路板特征参数	66.7	20.2	°C/W
R _{θ JC(bot)}	结至外壳(底部)热阻	不适用	不适用	°C/W

(1) 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标应用报告。

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

6.5 电气特性

在 T_A = 25°C , V_S = 3.3V , V_{SENSE} = V_{IN+} - V_{IN-} = 0mV , V_{IN-} = V_{BUS} = 12V 时测得 (除非另有说明)

参数	测试条件	最小值	典型值	最大值	单位
共模抑制	V_{CM} = -0.3 V 至 48V, T_A = -40 °C 至 125°C	136	150		dB
平平	ADCRANGE = 0	-81.9175		81.92	mV
本件电阻电压制入框 固	ADCRANGE = 1	-20.4794		20.48	mV
采样电阻失调电压	V _{CM} = 12V		±1	±5	μV
采样电阻失调电压偏移	T _A =-40°C 至 +125°C		±5	±25	nV/°C
IN- 总线失调电压			±1	±7.5	mV
IN- 总线失调电压温漂	T _A = -40°C 至 +125°C		±10	±30	μV/°C
电源抑制比 (电流测量)	V _S = 1.7V 至 5.5V,T _A = -40°C 至 125°C		±0.5	±2.5	μV/V
电源抑制比 (电压测量)	V_S = 1.7V 至 5.5V, T_A = $^-$ 40°C 至 125°C, V_{IN-} = 50mV		±0.5	±2.5	mV/V
IN- 输入阻抗	总线电压测量模式		1.05		ΜΩ
输入泄漏	IN+、IN-、关断模式		0.1	5	nA
输入偏置电流	IN+、IN-、电流测量模式		0.1	10	nA
		1		I	
差分输入阻抗 (IN+ 至 IN-)	分流或电流测量模式, V _{IN+} - V _{IN-} < 82mV		140		kΩ
ADC 分辨率	T _A = −40°C 至 125°C		16		位
	采样电阻电压,ADCRANGE = 0		2.5		μV
1 个最低有效位 (LSB) 阶跃幅度	采样电阻电压,ADCRANGE = 1		625		nV
	总线电压		1.6		mV
	CT 位 = 000	133	140	147	μs
	CT 位 = 001	194	204	214	μs
	CT 位 = 010	315	332	349	μs
ADC 转换时间	CT 位 = 011	559	588	617	μs
(T _A = -40°C 至 125°C)	CT 位 = 100	1.045	1.100	1.155	ms
	CT 位 = 101	2.01	2.116	2.222	ms
	CT 位 = 110	3.948	4.156	4.364	ms
	CT 位 = 111	7.832	8.244	8.656	ms
采样电阻电压增益误差			±0.015	±0.1	%
采样电阻电压增益误差偏移	T _A = −40°C 至 +125°C			30	ppm/°C
V _{IN-} 电压增益误差			±0.015	±0.1	%
V _{IN-} 电压增益误差温漂	T _A = −40°C 至 +125°C			30	ppm/°C
积分非线性	ADCRANGE = 0,线性最佳拟合, T _A = −40°C 至 +125°C		±1.5	±6	m%
差分非线性			±0.1		LSB
I	1	1			
	V _{SENSE} = 0mV		300	380	μA
静态电流	I _Q 与温度间的关系,T _A = -40°C 至 +125°C			500	μA
	关断		2.2	3	μA
	参数 共模抑制 采样电阻电压输入范围 采样电阻失调电压 IN- 总线失调电压 IN- 总线失调电压温漂电源抑制比(电流测量) IN- 输入阻抗输入泄漏 输入偏置电流 差分输入阻抗(IN+至IN-) ADC 分辨率 1 个最低有效位(LSB)阶跃幅度 ADC 转换时间(TA = -40°C至 125°C) 采样电阻电压增益误差 采样电阻电压增益误差 VIN-电压增益误差温漂 VIN-电压增益误差温漂 积分非线性 差分非线性	少数 測试条件 大楼和制 VCM = -0.3V 至 48V , TA = -40°C 至 125°C 采样电阻电压输入范围 ADCRANGE = 0 ADCRANGE = 1 ADCRANGE = 1 采样电阻失调电压 VCM = 12V 采样电阻失调电压 TA = -40°C 至 +125°C IN- 总线失调电压温漂 TA = -40°C 至 +125°C 电源抑制比 (电流测量) VS = 1.7V 至 5.5V , TA = -40°C 至 125°C 电源抑制比 (电流测量) JS*C , VIN = 50mV IN- 输入阻抗 (N+ 输入阻抗 (IN+ 第IN-) 分流或电流测量模式 参价输入阻抗 (IN+ 至IN-) 分流或电流测量模式 ADC 分辨率 TA = -40°C 至 125°C 平样电阻电压 , ADCRANGE = 0 采样电阻电压 , ADCRANGE = 0 采样电阻电压 , ADCRANGE = 1 总线电压 CT 位 = 000 CT 位 = 001 CT 位 = 001 CT 位 = 101 CT 位 = 101 CT 位 = 101 CT 位 = 101 CT 位 = 101 CT 位 = 111 CT 位 = 111 采样电阻电压增益误差 TA = -40°C 至 +125°C VIN. 电压增益误差 ADCRANGE = 0 , 线性最佳拟合 , TA = -40°C 至 +125°C 老分非线性 ADCRANGE = 0 , 线性最佳拟合 , TA = -40°C 至 +125°C *** *** *** ** *** *** **	参数 測试条件 最小值 共模判制 V _{CM} = -0.3V 至 48V , T _A = -40°C 至 136 Z样中国电压输入范围 ADCRANGE = 0 -81.9175 ADCRANGE = 1 -20.4794 采样电阻失调电压 V _{CM} = 12V 采样电阻失调电压(新) T _A = -40°C 至 +125°C IN- 总线失调电压温漂 T _A = -40°C 至 +125°C 电凝抑制比 (电流测量) V _S = 1.7V 至 5.5V , T _A = -40°C 至 125°C 电凝抑制比 (电流测量) V _S = 1.7V 至 5.5V , T _A = -40°C 至 125°C IN- 输入阻抗 (IN+ 流) 总线电压测量模式 输入编置电流 IN+ 、IN- 、电流测量模式 参介编入阻抗 (IN+ 至 IN-) 分流或电流测量模式 , V _{IN+} - V _{IN-} < 82mV	其機抑制 V _{CM} = -0.3V 至 48V , T _A = -40°C 至 136 150 采样电阻电压输入范围 ADCRANGE = 0 -81.9175 ADCRANGE = 1 -20.4794 -20.4794 采样电阻失调电压 V _{CM} = 12V ± 1 采样电阻失调电压 T _A =-40°C 至 +125°C ± 5 N- 总线失调电压 ± 1 IN- 总线失调电压温源 T _A = -40°C 至 +125°C ± 10 电滤抑制比 V _S = 1.7V 至 5.5V , T _A = -40°C 至 125°C ± 10.5 (电滤测量) V _S = 1.7V 至 5.5V , T _A = -40°C 至 125°C ± 10.5 IN-输入阻抗 总线电压测量模式 1.05 输入通输 IN+、IN-、关所模式 0.1 输入偏置电流 IN+、IN-、电流测量模式 0.1 差分输入阻抗 (IN+ 室 IN-) 分流或电流滤测量模式 , V _{IN+} - V _{IN} < 82mV 140	多数 測试条件 最小值 表型值 最大值 其機抑制 V _{CM} = -0.3V 至 48V , T _A = -40°C 至 136 150 果样电阻电压输入范围 ADCRANGE = 0 -81.9175 81.92 ADCRANGE = 1 -20.4794 20.48 采样电阻失调电压 V _{CM} = 12V ±1 ±5 采样电阻失调电压偏移 T _A =-40°C 至 +125°C ±5 ±25 IN- 总线失调电压温源 T _A =-40°C 至 +125°C ±10 ±30 NA 总线失调电压温源 T _A =-40°C 至 +125°C ±0.5 ±2.5 + usaphalt V _S = 1.7V 至 5.5V , T _A = -40°C 至 125°C ±0.5 ±2.5 + usaphalt V _S = 1.7V 至 5.5V , T _A = -40°C 至 125°C ±0.5 ±2.5 + usaphalt V _S = 1.7V 至 5.5V , T _A = -40°C 至 125°C ±0.5 ±2.5 + usaphalt V _S = 1.7V 至 5.5V , T _A = -40°C 至 125°C ±0.5 ±2.5 + usaphalt V _S = 1.7V 至 5.5V , T _A = -40°C 至 125°C ±0.5 ±2.5 + usaphalt V _S = 1.7V 至 5.5V , T _A = -40°C 至 125°C ±0.5 ±2.5 + usaphalt V _S = 1.7V 至 5.5V , T _A = -40°C 至 125°C ±0.1 ±0.1

 $\underline{\text{c}}\ \text{T}_{\text{A}}$ = 25°C , V_{S} = 3.3V , V_{SENSE} = $\text{V}_{\text{IN+}}$ - $\text{V}_{\text{IN-}}$ = 0mV , $\text{V}_{\text{IN-}}$ = V_{BUS} = 12V 时测得(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
SMBUS						
	SMBUS 超时			28	35	ms
数字输入/输出	<u> </u>	,				
	输入电容			3		pF
V _{IH}	逻辑输入电平,高	V _S = 1.7V 至 5.5V,T _A = -40°C 至 +125°C	0.9		5.5	V
V _{IL}	逻辑输入电平,低	V _S = 1.7V 至 5.5V,T _A = -40°C 至 +125°C	0		0.4	V
V _{HYS}	Hysteresis			130		mV
V _{OL}	逻辑输出电平,低	I _{OL} = 3mA,V _S = 1.7V 至 5.5V,T _A = -40°C 至 +125°C	0		0.3	V
	数字泄漏输入电流	$0 \leqslant V_{INPUT} \leqslant V_{S}$	-1		1	μΑ

6.6 时序要求 (I²C)

		最小值	标称值 最大值	单位
I ² C 总线(央速模式)			
F _(SCL)	I ² C 时钟频率	1	400	kHz
t _(BUF)	STOP 和 START 条件间的总线空闲时间	600		ns
t _(HDSTA)	重复 START 条件后的保持时间。在此周期后,生成第一个时钟。	100		ns
t _(SUSTA)	重复启动条件设置时间	100		ns
t _(SUSTO)	停止条件设置时间	100		ns
t _(HDDAT)	数据保持时间	10	900	ns
t _(SUDAT)	数据设置时间	100		ns
$t_{(LOW)}$	SCL 时钟低电平周期	1300		ns
t _(HIGH)	SCL 时钟高电平周期	600		ns
t _F	数据下降时间		300	ns
t _F	时钟下降时间		300	ns
t _R	时钟上升时间		300	ns
t _R	时钟上升时间 (SCLK ≤ 100kHz)		1000	ns
I ² C 总线(i	高速模式)	•		
F _(SCL)	I ² C 时钟频率	10	2940	kHz
t _(BUF)	STOP 和 START 条件间的总线空闲时间	160		ns
t _(HDSTA)	重复 START 条件后的保持时间。在此周期后,生成第一个时钟。	100		ns
t _(SUSTA)	重复启动条件设置时间	100		ns
t _(SUSTO)	停止条件设置时间	100		ns
t _(HDDAT)	数据保持时间	10	125	ns
t _(SUDAT)	数据设置时间	20		ns
t _(LOW)	SCL 时钟低电平周期	200		ns
t _(HIGH)	SCL 时钟高电平周期	60		ns
t _F	数据下降时间		80	ns
t _F	时钟下降时间		40	ns
t _R	时钟上升时间		40	ns

6.7 时序图

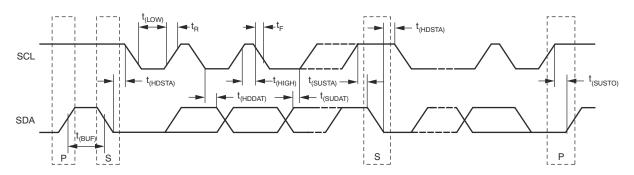
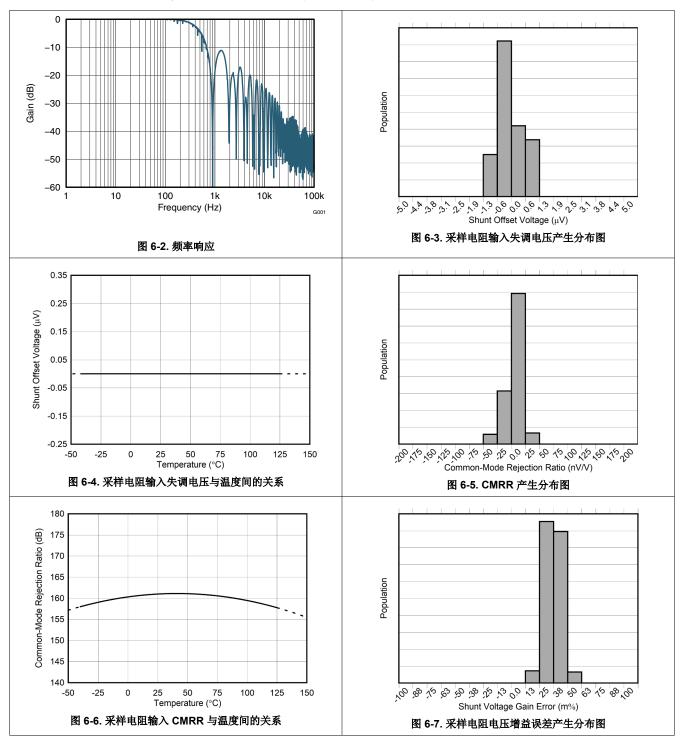
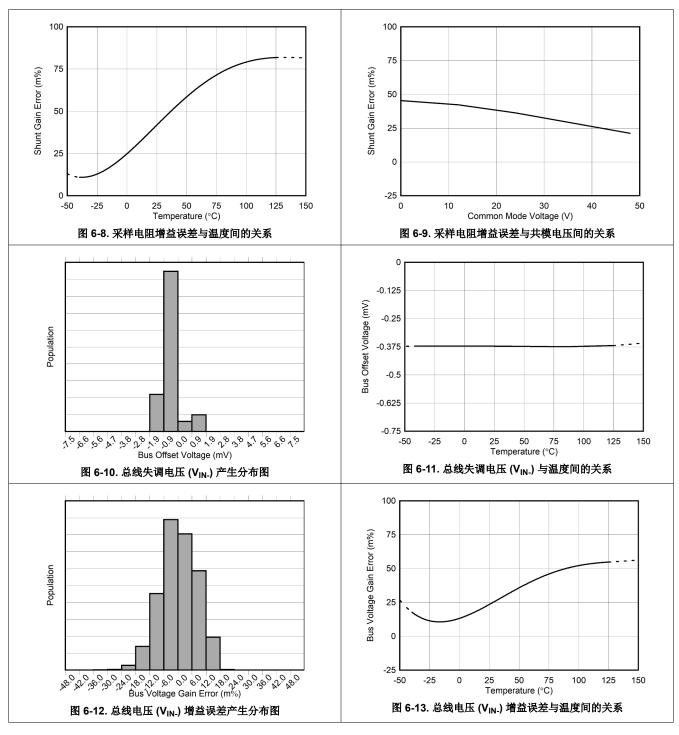



图 6-1. I²C 时序图

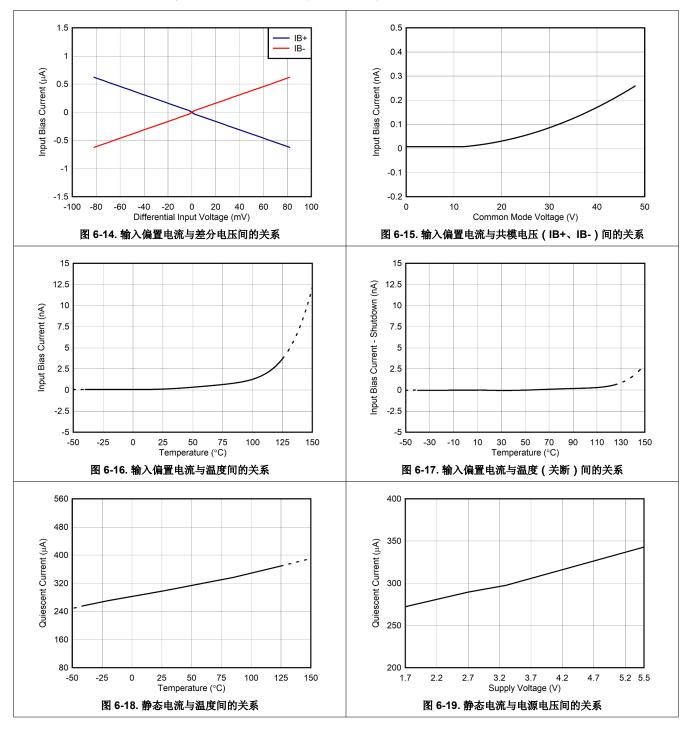
6.8 典型特性


在 T_A = 25°C , V_{VS} = 3.3V , V_{CM} = 12V 以及 V_{SENSE} = (V_{IN+} - V_{IN-}) = 0mV 时测得(除非另有说明)

English Data Sheet: SBOSA81

6.8 典型特性 (continued)

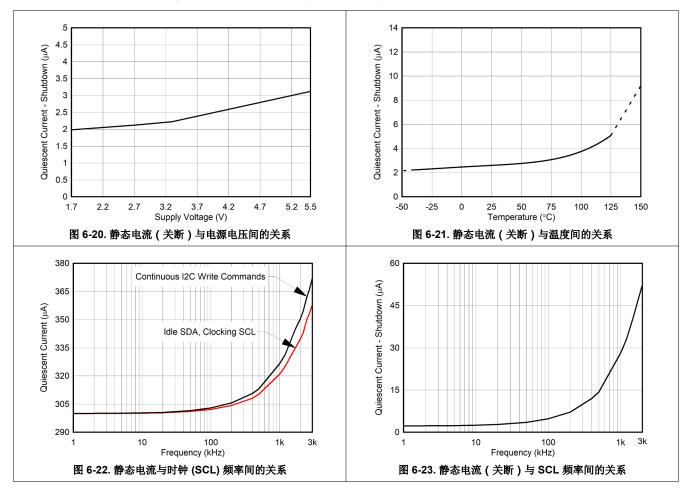
在 T_A = 25°C , V_{VS} = 3.3V , V_{CM} = 12V 以及 V_{SENSE} = (V_{IN+} - V_{IN-}) = 0mV 时测得(除非另有说明)



English Data Sheet: SBOSA81

6.8 典型特性 (continued)

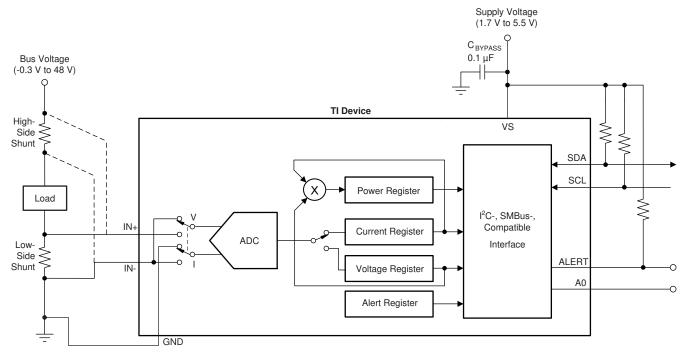
在 T_A = 25°C , V_{VS} = 3.3V , V_{CM} = 12V 以及 V_{SENSE} = (V_{IN+} - V_{IN-}) = 0mV 时测得(除非另有说明)


Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

6.8 典型特性 (continued)

在 T_A = 25°C , V_{VS} = 3.3V , V_{CM} = 12V 以及 V_{SENSE} = (V_{IN+} - V_{IN-}) = 0mV 时测得(除非另有说明)



7详细说明

7.1 概述

INA236 是一款具有 I²C 和 SMBus 兼容接口的数字电流检测放大器。该器件会报告检测到的电流,并具有可编程的超出范围限制,可在电流超出正常工作范围时发出警报。集成式模数转换器 (ADC) 可设置为不同的取平均值模式,并可针对连续运行或触发运行进行配置。*器件寄存器* 提供了有关 INA236 的详细寄存器信息。

7.2 功能模块图

7.3 特性说明

7.3.1 集成式模数转换器 (ADC)

INA236 集成了一个低失调 16 位 Δ - Σ ADC。该 ADC 进行了多路复用,可处理分流电压和总线电压测量。相对于 IN- 和 GND 进行总线电压测量。分流电压测量是对负载电流流经分流电阻器时产生的电压的差分测量,该值在 IN+ 和 IN - 引脚之间测得。分流电压测量的最大失调电压仅为 5μ V,最大增益误差为 0.1%。对于给定的分流电阻器值,分流电压测量的低失调电压可在轻负载条件下提高精度。低失调电压的另一个优势是,能够准确检测到检测电阻上的较低压降,从而允许使用较低值的分流电阻器。低值分流电阻器可降低电流检测电路中的功率损耗,有助于提高终端应用的功率效率。

由于 IN+ 和 IN- 引脚处的总线共模和 VS 引脚处的电源电压互相独立,所以无需专门考虑电源时序;因此,总线共模电压与电源电压可在对方关闭时存在。

7.3.2 功率计算

图 7-1 显示电流和功率是在分流电压和总线电压测量之后计算得出。功率的计算基于之前的电流计算值和最新的总线电压测量值。如果加载到校准寄存器的值为零,则报告的功率值也为零。这些电流值和功率值被认为是中间值(除非平均数计算设置为 1)并存储在一个内部累加寄存器中。每次测得样本之后,新计算出的电流值和功率值被附加到这个累加寄存器内,直到测量所有样本并计算它们的平均值。在测量了所有样本并且相应的电流和功率计算已经完成之后,针对每个此类参数的累加平均值加载到相应的输出寄存器中,而从这里可读取这些值。这些计算在后台执行,并不会增加总体转换时间。

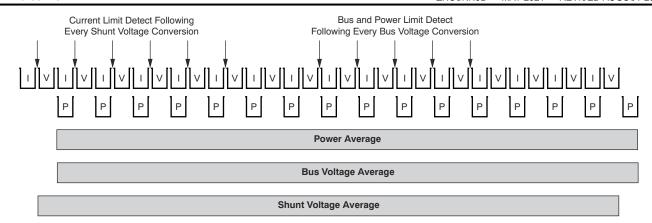


图 7-1. 功率计算方案

7.3.3 低偏置电流

执行电流测量时,INA236 具有非常低的输入偏置电流,这提供了几个优势。INA236 的低输入偏置电流可降低器件在工作和关断状态下消耗的电流。低偏置电流的另一个优势是,它允许在信号转换为数字数据之前使用输入滤波器来抑制高频噪声。在传统的数字电流检测监控器中,增加输入滤波器是以降低精度为代价的。然而,由于存在低偏置电流,由输入滤波器导致的精度下降可降至更低程度。低偏置电流的另一个优势是能够使用更大的分流电阻器来准确地感测更小的电流。使用更大的分流电阻值使器件能够准确地监测亚毫安范围内的电流。

当感测到的电流为零时,INA236 中的偏置电流最小。随着电流开始增加,分流电阻器上的差分压降增加,从而导致偏置电流增加(请参阅图 6-14)。

INA236 仅在进行电流测量时才具有低偏置电流,在进行总线电压测量时,IN-的阻抗将降低。在总线电压测量期间,IN-引脚将连接到一个阻抗约为 $1M\Omega$ 的内部电阻分压器。将 ADC 配置为仅执行电流测量将使器件始终具有低偏置电流。

7.3.4 低压电源和宽共模电压范围

INA236 的电源电压范围为 1.7V 至 5.5V。该器件能够在 1.7V 电压下运行,因此可用于 1.8V 电源轨。即使电源电压为 1.7V,该器件也可以监控高达 48V 的电压轨上的电流。这种宽共模工作范围使得该器件可用于共模电压超过电源电压轨的许多应用。

7.3.5 ALERT 引脚

INA236 有一个屏蔽/使能寄存器 (06h),可以对 ALERT 引脚进行编程,以在必要时响应单一用户定义的事件或转换就绪通知。该屏蔽/使能寄存器允许从五个可用功能中选取一个功能来监控和设置转换就绪位(CNVR,屏蔽/使能寄存器)以控制 ALERT 引脚的响应。基于要监控的功能,通过向警报限值寄存器输入一个值,来设置用于置位 ALERT 引脚的相应阈值。

ALERT 引脚可实现对几个可用警报功能中的某一个进行监控,从而确定是否已经超过了一个用户定义的阈值。可被监控的五个警报功能如下:

- 采样电阻电压高于限值 (SOL)
- 采样电阻电压低于限值 (SUL)
- 总线电压高于限值 (BOL)
- 总线电压低于限值 (BUL)
- 功率高于限值 (POL)

ALERT 引脚是一个开漏输出。当在屏蔽/使能寄存器中选择的警报功能超过在警报限值寄存器中设定的值时,这个引脚被置为有效。每次只能启用和监控这些警报功能中的一个。如果多个警报功能被启用,在最高有效位位置选择的功能获得优先级并对警报限值寄存器值做出响应。例如,如果 SOL 和 SUL 都被选,当"采样电阻电压高于限值"寄存器超过"警报限值"寄存器中的值的时候,ALERT 引脚变为有效。

Product Folder Links: INA236

Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

也可以在警报引脚处监测器件的转换就绪状态,以便在器件完成前一个转换并准备好开始新的转换时通知用户。转换准备就绪位 (CVRF) 可与警报功能中的一个在 ALERT 引脚上被监控。如果一个警报功能和 CNVR 位均启用,以在 ALERT 引脚处进行监控,那么在将 ALERT 引脚置为有效后,必须在警报之后读取屏蔽/使能寄存器中的 CVRF 位 (D3) 和 AFF 位 (D4) 以确定警报来源。如果不需要转换准备就绪特性,并且 CNVR 位未被设定,那么基于启用的警报功能,ALERT 引脚只对一个超过的警报限值做出响应。

如果警报功能未被使用,ALERT 引脚可保持悬空,从而不会影响器件的运行。

请参阅图 7-1,了解将警报限值寄存器中的值与相应的转换值进行比较时的相对时序。例如,如果被启用的警报功能为采样电阻电压高于限值 (SOL),则在每次采样电阻电压转换之后,比较警报限值寄存器中的值与测得的采样电阻电压,确定是否测量值已经超过设定的限值。只要测得的电压超过警报限值寄存器内设定的值,AFE 位 (D4,屏蔽/启用寄存器)就被置为高电平有效。除了 AFE 位被置为有效,按照警报极性位(APOL,D1,屏蔽/使能寄存器),ALERT 引脚也被置为有效。如果警报锁存被启用,AFE 位和 ALERT 引脚在配置寄存器被写入或者屏蔽/使能寄存器被读取之前保持有效。

总线电压警报功能(BOL和BUL,屏蔽/使能寄存器)在每次总线电压转换后将测得的电压值与警报限值寄存器相比较,如果超过了限制阈值的话,此功能就将AFE 位和ALERT 引脚置为有效。

功率高于限值警报功能(POL,屏蔽/使能寄存器)也会在每次总线电压测量值转换后将计算得出的功率值与限制阈值进行比较,如果超过了限制阈值,即将 AFF 位和 ALERT 引脚置为有效。

警报功能将已编程的警报限值与每个相应转换的结果进行比较。因此,如果信号的平均值不超过警报限值,则可以在一个转换周期内发出警报。基于这个中间转换的警报的触发可比更新的平均输出数据寄存器更快地检测到范围之外的事件。借助警报功能,可使用这种快速检测能力创建针对快速变化情况的警报限值,并通过对平均输出值进行软件监控创建针对持续时间较长情况的限值。

7.4 器件功能模式

7.4.1 连续运行与触发运行

INA236 有两种运行模式(连续和触发),这些模式确定进行这些转换之后 ADC 如何运行。当 INA236 处于正常运行模式(即配置寄存器的 MODE 位设置为"111")时,它按顺序连续转换一个分流电压读数和一个总线电压读数。

在触发模式下,将任意触发的转换模式写入配置寄存器 (0h)(即配置寄存器的 MODE 位设置为 001)会触发一个单次转换。这个动作会产生一个测量的单一集合。为了触发另外一个单次转换,配置寄存器必须被再次写入,即使在模式不发生变化的情况下也是如此。

虽然可随时读取 INA236,并且来自上次转换的数据仍可用,但提供的转换就绪标志位(CVRF 位,屏蔽/使能寄存器)可帮助协调单次或触发转换。CVRF 位在所有转换、平均值计算、和乘法操作在一个单周期内完成之后被设定。

在以下情况下, CVRF 位被清除:

- 1. 写入配置寄存器,除非为省电模式配置 MODE 位的时候;或者
- 2. 读取屏蔽/使能寄存器。

7.4.2 器件关断

除了两种运行模式(连续和触发)之外,INA236还有一种断电模式,可减少静态电流和输入偏置电流。断电模式减少了器件未使用时漏电源的影响。从断电模式完全恢复需要 100µs。器件保持在省电模式中,直到其中一个激活模式设置被写入到配置寄存器中。

7.4.3 上电复位

当 V_S 降至低于 0.95 V (典型) 时,所有寄存器复位为其默认值,此时将置位上电复位 (POR)。默认上电寄存器值显示在每个寄存器描述的复位列中。表 7-2 提供了指向寄存器描述的链接。

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

7.4.4 取平均值操作和转换时间考虑

INA236 具有针对分流电压和总线电压测量的可编辑转换时间。针对这些测量的转换时间可在最快 140 μs 到最长 8.244ms 之间进行选择。转换时间设置结合可编程取平均值模式,可将 INA236 配置成在一个指定应用中优化可用的时序要求。例如,如果一个系统要求数据每 5ms 读取一次,那么可将 INA236 的转换时间设定为 588 μs,并且取平均值模式设定为 4。这个配置使得数据大约每 4.7ms 更新一次。还可针对分流电压和总线电压测量,将 INA236 配置成具有不同的转换时间设置。此类方法在总线电压往往相对稳定的应用中比较常见。相对于分流电压测量,这个情况减少了总线电压测量所花费的时间。分流电压转换时间可设定为 4.156ms,总线电压转换时间设定为 588 μs,并且取平均值模式设定为 1。这个配置也使得数据大约每 4.7ms 更新一次。

在转换时间设置和使用的取平均值模式之间可找到折衷办法。通过有效地过滤信号,取平均值特性能够大大提升测量精度。通过这种方法,INA236 可以减少测量中的噪声,此噪声可能源自耦合到信号的噪声。平均数越多,INA236 在减少测量的噪声成分方面就越高效。

所选的转换时间也会对测量精度产生影响。图 7-2 显示了多个转换时间,以说明噪声对测量的影响。为了实现尽可能高的测量精度,应根据系统的时序要求,在允许的最长转换时间和最大数量的平均数之间进行折衷。

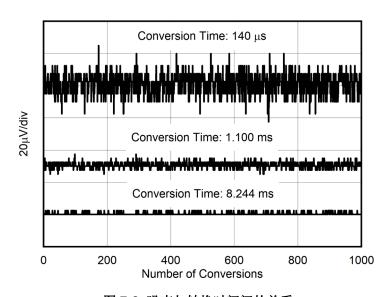


图 7-2. 噪声与转换时间间的关系

7.5 编程

7.5.1 I²C 串行接口

INA236 在 SMBus 和 I²C 接口上均仅作为目标器件运行。通过开漏 SDA 和 SCL 线路实现到总线的连接。SDA 和 SCL 引脚特有的集成式峰值抑制滤波器和施密特触发器可大大减少输入峰值和总线噪声的影响。尽管此器件将峰值抑制功能集成到数字 I/O 线路中,但采用适当的布局技术有助于最大限度地减少进入通信线路的耦合量。 这个引入的噪声可能从两条通信线路本身之间的电容耦合信号边沿或者从其他出现在系统中的开关噪声源产生。在一个印刷电路板 (PCB) 上两层之间与接地并联的路由走线通常能减少通信线路间的耦合效应。将通信线路屏蔽可减少有害噪声耦合进入数字 I/O 线路的可能性,而有害噪声耦合可能会被错误地解释为开始或停止命令。

INA236 对于快速模式(高达 400kHz)和高速模式(高达 2.94MHz)支持传输协议。对于所有数据字节,首先传输最高有效字节,并遵循 SMBus 3.0 传输协议。

要与 INA236 通信,控制器必须首先通过一个目标地址字节来寻找目标器件的地址。目标地址字节包括 7 个地址位和 1 个方向位,这个方向位表明这个操作将是读取还是写入操作。

INA236 使用单个地址引脚 A0。表 7-1 展示了 A0 的可能配置以及器件 A 和 B 版本的相应地址。INA236 在每个总线通信上对 A0 引脚的状态进行采样。在接口上发生任何活动之前,必须确定 A0 引脚状态。当将 SDA 引脚连

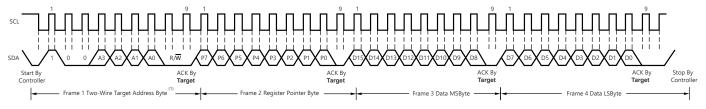
Copyright © 2023 Texas Instruments Incorporated

Submit Document Feedback

接到 A0 以设置器件地址时,务必要在 I2C 地址的 MSB 上添加额外的 100ns 保持时间,从而确保器件寻址正确。A 和 B 器件选项,每个选项具有四个唯一地址,允许用户在系统中连接多达八个器件,而不会发生 I²C 地址冲突。

A0	INA236 器件选项	INA236B 器件选项
GND	1000000	1001000
VS	1000001	1001001
SDA	1000010	1001010
SCL	1000011	1001011

表 7-1. 地址引脚和目标地址


7.5.2 通过 I²C 串行接口写入和读取

通过向 INA236 上特定寄存器的指针写入适当的值,可实现对该寄存器的访问。有关寄存器和对应地址的完整列表,请参阅*寄存器映射*。寄存器指针的值(请参阅图 7-5)是 R/\overline{W} 位为低电平时目标地址字节之后传输的第一个字节。对此器件的每次写入操作都需要一个寄存器指针值。

写入寄存器的过程从控制器传输的第一个字节开始。这个字节为目标地址,其中 RW 位为低电平。然后,器件确认接收到一个有效地址。控制器传输的下一个字节是要访问的寄存器的地址。此寄存器地址值将寄存器指针更新为指向所需的内部器件寄存器。 下两个字节被写入由寄存器指针进行寻址的寄存器。器件确认收到每个数据字节。控制器可以通过生成启动或停止条件来终止数据传输。

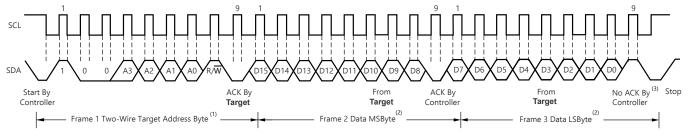
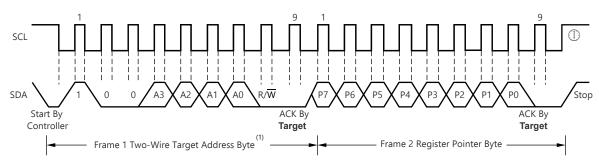

从器件读取时,写入操作存储在寄存器指针中的最后一个值确定在读取操作期间应该读取哪一个寄存器。为了将寄存器指针更改为进行读取操作,必须在寄存器指针中写入一个新值。要完成此写入,应在 R/W 位为低电平时发出一个目标地址字节,后跟寄存器指针字节。无需额外的数据。然后,控制器会生成一个启动条件,并在 R/W 位为高电平时发送目标地址字节,以启动读取命令。下一个字节由目标器件发送,是寄存器指针所指示的寄存器的最高有效字节。该字节后跟一个来自控制器的确认;然后目标器件发送最低有效字节。控制器可能会(也可能不会)确认收到第二个数据字节。控制器可在接收任何数据字节时生成非确认,或生成启动或停止条件,来终止数据传输。如果需要从同一寄存器进行重复的读取操作,则不必一直发送寄存器指针字节;此器件将保持寄存器指针的值,直到该值被下一个写入操作所更改。

图 7-3 显示了写入操作时序图。图 7-4 显示了读取操作时序图。这些图显示了读取/写入 16 位寄存器的过程。首先发送的寄存器字节为最高有效字节,之后是最低有效字节。

- A. 通过 A0 地址引脚的设置可确定目标地址字节的值。请参阅表 7-1。
- B. 此器件不支持数据包错误检查 (PEC),也不执行时钟扩展。

图 7-3. 写入字格式的时序图



A. 通过 A0 地址引脚的设置可确定目标地址字节的值。请参考表 7-1。

Instruments www.ti.com.cn

- 从最后寄存器指针位置开始读取数据。如果需要一个全新的寄存器,必须更新寄存器指针。请参考图7-5。
- C. 也可能发送控制器的 ACK。
- 此器件不支持数据包错误检查 (PEC), 也不执行时钟扩展。

图 7-4. 读取字格式的时序图

A. 通过 A0 地址引脚的设置可确定目标地址字节的值。请参阅表 7-1。

图 7-5. 典型寄存器指针设定

7.5.3 高速 I²C 模式

当总线空闲时, SDA 和 SCL 线路都被上拉电阻拉至高电平。控制器生成一个启动条件,后跟一个有效的串行字 节, 其中包含高速 (HS) 控制器代码 00001XXX。该传输在不高于 400kHz 的快速 (400kHz) 模式和标准 (100kHz) (F/S) 模式上进行。此器件不对 HS 控制器代码进行确认,但的确会识别此代码并切换其内部滤波器以支持 2.94MHz 运行。

然后,控制器生成重复启动条件(重复启动条件与启动条件具有相同的时序)。在这个重复的启动条件之后,协 议与 F/S 模式一致,除非允许的传输速度高达 2.94 MHz。不要使用停止条件,而是使用重复的启动条件将总线保 持在 HS 模式。停止条件结束 HS 模式并切换器件的所有滤波器以支持 F/S 模式。

7.5.4 通用广播复位

通过通用广播地址 0000 000 (最后一个 R/W 位设置为 0)寻址,实施对多个器件的通用广播复位。然后是以下数 据字节 0000 0110 (06h)。

接收到这个 2 字节序列后, 所有设计用于响应通用广播地址的器件都将复位。总线上的所有 INA236 器件都将执 行软复位操作并返回默认上电条件

7.5.5 通用广播开始字节

通过通用广播地址 0000 000 (最后一个 R/W 位设置为 1) 寻址,实施对多个 INA236 器件的通用广播 ADC 转换 启动命令。无需其他数据字节。请注意,总线上使用通用广播启动命令的其他器件也会触发转换启动。

7.5.6 SMBus 警报响应

INA236 设计为响应 SMBus 警报响应地址。SMBus 警报响应为简单目标器件提供一个快速故障识别。当警报出 现时,控制器可以广播警报响应目标地址(0001 100)(读取/写入位设为高电平)。在此警报响应之后,任何生成 警报的目标器件都会通过确认警报响应并在总线上发送其地址来标识其自身。

警报响应能够同时激活几个不同的目标器件,这一点与 I²C 通用广播相似。如果多于一个目标器件试图进行响 应,那么采用总线仲裁规则。在仲裁中失败的器件不会生成确认,在该器件赢得仲裁前会继续将警报线路保持为 低电平。

7.6 寄存器映射

7.6.1 器件寄存器

表 7-2 列出了 INA236 寄存器。表 7-2 中未列出的所有寄存器位置都应视为保留的存储单元,并且不应修改寄存器内容。

表 7-2. INA236 寄存器

地址	寄存器名称	寄存器大小(位)	复位值	节
0h	配置寄存器	16	4127h	转到
1h	分流电压寄存器	16	0000h	转到
2h	总线电压寄存器	16	0000h	转到
3h	功耗寄存器	16	0000h	转到
4h	Current Register	16	0000h	转到
5h	校准寄存器	16	0000h	转到
6h	屏蔽/使能寄存器	16	0000h	转到
7h	警报限值寄存器	16	0000h	转到
3Eh	制造商 ID 寄存器	16	5449h	转到
3Fh	器件 ID 寄存器	16	A080h	转到

复杂的位访问类型经过编码可适应小型表单元。表 7-3 显示了用于此部分中访问类型的代码。

表 7-3. 器件访问类型代码

访问类型	代码	说明
读取类型		
R	R	读取
写入类型		
W	W	写入

7.6.1.1 配置寄存器 (地址 = 0h) [复位 = 4127h]

配置寄存器如表 7-4 所示。

表 7-4. 配置寄存器字段说明

位	字段	类型	复位	说明
15	RST	R/W		将该位设置为"1"会生成一个与上电复位相同的系统复位。 将所有寄存器复位为默认值,然后它们会自行清除。 0b = 正常运行 1b = 系统复位将寄存器自行清除为默认值
14-13	被保留	R	10b	保留值始终返回 10b
12	ADCRANGE	R/W	0b	启用在 IN+ 和 IN - 间选择分流满量程输入。 0b = ±81.92mV 1b = ±20.48mV

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

表 7-4. 配置寄存器字段说明 (continued)

D _r	eta con			付益子校说明 (CONTINUEQ)
位	字段	类型	复位	Ü, III
11-9	AVG	读/写	000b	设置要取平均值的 ADC 转换结果数。平均值计算完成后,更新回读寄存器。
				000b = 1
				001b = 4
				010b = 16
				011b = 64
				100b = 128
				101b = 256
				110b = 512
				111b = 1024
8-6	VBUSCT	R/W	100b	设置 VBUS 测量的转换时间
				$000b = 140\mu s$
				001b = 204μs
				010b = 332µs
				011b = 588µs
				100b = 1100μs 101b = 2116μs
				110b = 4156µs
				111b = 8244µs
5-3	VSHCT	R/W	100b	设置 SHUNT 测量的转换时间
3-3	VOLICI	I V/VV	1000	以直 SHONT 拠重的投機的同 000b = 140μs
				001b = 204µs
				010b = 332µs
				011b = 588µs
				100b = 1100µs
				101b = 2116µs
				110b = 4156µs
				111b = 8244µs
2-0	MODE	R/W	111b	运行模式,可选择模式使器件在关断模式、连续模式或触发模式下运行。 该模式还允许用户选择多路复用器设置,以针对总线电压和分流电压测量 设置连续或触发模式。 000b = 关断
				001b = 触发分流电压,单次
				010b = 触发总线电压,单次
				011b = 触发分流电压和总线电压,单次
				100b = 关断
				101b = 连续分流电压
				110b = 连续总线电压
				111b = 连续分流和总线电压

返回到汇总表。

7.6.1.2 分流电压寄存器 (地址 = 1h) [复位 = 0000h]

分流电压寄存器存储电流分流电压读数 V_{SHUNT} ,如表 7-5 中所示。负数以二进制补码格式表示。通过对绝对值二进制数进行补数操作并加 1 来生成一个负数的二进制补码。MSB="1"表示负数。

示例:对于 V_{SHUNT} = -80mV 的值:

- 1. 取绝对值:80 mV
- 2. 将这个值转变为一个完整的十进制数 (80mV÷2.5μV)=32000
- 3. 将这个值转换为二进制 = 0111 1101 0000 0000
- 4. 最这个二进制结果作补数操作 = 1000 0010 1111 1111

5. 将"1"添加到补码以创建二进制补码结果 = 1000 0011 0000 0000 = 8300h

如果取平均数操作被启用,那么这个寄存器显示平均后的值。

表 7-5. 分流电压寄存器字段说明

位	字段	类型	复位	说明
15-0	VSHUNT	R	0000h	分流输出上测得的差分电压。二进制补码值。

返回到汇总表。

7.6.1.3 总线电压寄存器 (地址 = 2h) [复位 = 0000h]

总线电压寄存器如表 7-6 所示。

该寄存器将只返回正值。如果取平均数操作被启用,那么这个寄存器显示平均后的值。

表 7-6. 总线电压寄存器字段说明

位	字段	类型	复位	说明
15	保留	R	0b	该位返回零,因为共模电压仅为正
14-0	VBUS	R	0000h	这些位读出系统的总线电压

返回到汇总表。

7.6.1.4 功率寄存器 (地址 = 3h) [复位 = 0000h]

功率寄存器如表 7-7 所示。

如果取平均数操作被启用,那么这个寄存器显示平均后的值。功率寄存器通过将电流寄存器的十进制值乘以总线电压寄存器的十进制值来记录功率(以瓦特为单位)。这是一个无符号结果。

表 7-7. POWER 寄存器字段说明

位	字段	类型	复位	说明
15-0	POWER	R	0000h	该位返回系统中功率的计算值。 这是一个无符号结果。

返回到汇总表。

7.6.1.5 电流寄存器 (地址 = 4h) [复位 = 0000h]

电流寄存器如表 7-8 所示。

如果取平均数操作被启用,那么这个寄存器显示平均后的值。将分流电压寄存器中的十进制值乘以校准寄存器的十进制值可以得出电流寄存器的值。

表 7-8. CURRENT 寄存器字段说明

位	字段	类型	复位	说明
15-0	CURRENT	R	0000h	计算得出的电流输出(单位为安培)。二进制补码值。

返回到汇总表。

7.6.1.6 校准寄存器(地址 = 5h)[复位 = 0000h]

必须对表 7-9 中显示的校准寄存器进行编程,以便在初始上电或下电上电事件后接收有效的电流和功率结果。

该寄存器为器件提供分流电阻的值,此分流电阻用于产生测量的差分电压。它还设定电流寄存器的分辨率。对该寄存器进行编程可设置 Current_LSB 和 Power_LSB。

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

表 7-9. 校准寄存器字段说明

位	字段	类型	复位	说明
15	保留	R	0h	
14-0	SHUNT_CAL	R/W	0000h	执行分流电压至电流转换所需的编程值。

返回到汇总表。

7.6.1.7 屏蔽/使能寄存器 (地址 = 6h) [复位 = 0000h]

屏蔽/使能寄存器如表 7-10 所示。

表 7-10. 屏蔽/使能寄存器字段说明

位	字段	类型	复位	· 开放/ 文化可行 奋于权 远 为 说明
15	SOL(分流高于限制)	R/W	0b	如果分流电压转换结果高于限值寄存器中编程的值,那么将该位设为高电平可将 ALERT 引脚配置为有效。
14	SUL (分流低于限制)	R/W	0b	如果分流电压转换结果低于限值寄存器中编程的值,那么将该位设为高电平可将 ALERT 引脚配置为有效。 如果设置了分流高于限制,则不能将该位设为高电平。
13	BOL(总线高于限制)	R/W	0b	如果总线电压转换结果高于限值寄存器中编程的值,那么将该位设为高电平可将 ALERT 引脚配置为有效。 如果设置了分流高于限制或分流低于限制,则不能将该位设为高电平。
12	BUL(总线低于限制)	R/W	0b	如果总线电压转换结果低于限值寄存器中编程的值,那么将该位设为高电平可将 ALERT 引脚配置为有效。 如果设置了分流高于限制、分流低于限制或总线高于限制,则不能将该位设为高 电平。
11	POL(功率高于限制)	R/W	0b	如果功率结果高于限值寄存器中编程的值,那么将该位设为高电平可将 ALERT 引脚配置为有效。 如果设置了分流高于限制、分流低于限制、总线高于限制或总线低于限制,则不能将该位设为高电平。
10	CNVR(转换就绪)	R/W	0b	当转换就绪标志(位 3)被置为有效,表明此器件已经为下次转换做好准备时,将该位设为高电平可将 ALERT 引脚配置为有效。 0b = 禁用 ALERT 引脚上的转换就绪标志 1b = 启用 ALERT 引脚上的转换就绪标志
9-6	保留	R	0000b	
5	MemError	R	0b	CRC 或 ECC 错误
4	AFF(警报功能标志)	R	0b	警报功能标志-虽然在 ALERT 引脚上一次只能监控一个警报功能,但也可以启用转换就绪以使 ALERT 引脚有效。在一个警报之后读取警报功能标志位使用户能够确定报警源是否为警报功能。 当警报锁存使能位设置为锁存模式时,仅当读取屏蔽/使能寄存器时,才会清除警报功能标志位。当警报锁存使能位设置为透明模式时,在下一次不会导致警报条件的转换之后,才会清除警报功能标志位。
3	CVRF(转换就绪标志)	R	ОЬ	虽然可随时读取此器件,并且来自上次转换的数据可用,但提供的转换就绪标志位可帮助协调单次或触发转换。转换就绪标志位是在所有转换、平均值计算和乘法运算均完成之后设置。在以下情况下,将清除转换就绪标志位:1.)写入配置寄存器(断电选择除外)2.)读取屏蔽/使能寄存器
2	OVF (数学溢出)	R	0b	如果算术运算导致一个溢出错误的话,该位被置为 '1'。它表示电流和功率值也许 是无效的。

表 7-10. 屏蔽/使能寄存器字段说明 (continued)

位	字段	类型	复位	说明	
1	APOL (警报极性)	R/W	0b	警报极性位设定 ALERT 引脚极性。	
				0b = 正常(低电平有效,开漏)	
				1b = 反相(高电平有效)	
0	LEN(警报锁存使能)	R/W	Ob	当警报锁存使能位设置为透明模式时,如果故障条件已被清除,则 ALERT 引脚和警报功能标志 (AFF) 位复位为空闲状态。 当警报锁存使能位设置为锁存模式时,ALERT 引脚和 AFF 位在故障后保持有效,直到已读取此寄存器标志。 必须设置该位,才能使用 I2C 警报响应功能。 0b = 透明 1b = 锁存的 ALERT 引脚	

返回到汇总表。

7.6.1.8 警报限值寄存器 (地址 = 7h) [复位 = 0000h]

警报限值寄存器如表 7-11 所示。

表 7-11. 警报限值寄存器字段说明

位	字段	类型	复位	说明
15-0	限值	R/W	0000h	警报限值寄存器包含用于与在屏蔽/使能寄存器中选择的寄存器相比较
				的值来确定是否超过一个限值。 必须对分流过压限制使用二进制补码值。输入的限值应与目标寄存器 的格式相匹配

返回到汇总表。

7.6.1.9 制造商 ID 寄存器 (地址 = 3Eh) [复位 = 5449h]

制造商 ID 寄存器如表 7-12 所示。

表 7-12. MANUFACTURE_ID 寄存器字段说明

位	字段	类型	复位	说明
15-0	MANUFACTURE_ID	R	5449h	以 ASCII 格式读回 TI

返回到汇总表。

7.6.1.10 器件 ID 寄存器 (地址 = 3Fh) [复位 = A080h]

器件 ID 寄存器如表 7-13 所示。

表 7-13. DEVICE_ID 寄存器字段说明

	位	字段	类型 复位		说明	
	15-3	DIEID	R	A080h	存储器件标识位	
Ī	3-0	保留	R	0h	始终读为 0	

返回到汇总表。

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

8应用和实现

备注

以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。

8.1 应用信息

INA236 是一款具有 I²C 和 SMBus 兼容接口的电流分流监控器。该器件监控分流压降,可计算 IN- 引脚处的电流和总线电压,从而确定功率。可编程校准值、转换时间和取平均值(与内部乘法器结合使用时)可实现电流值(单位为安培)和功率值(单位为瓦特)的直接读取。

8.1.1 器件测量范围和分辨率

INA236 器件支持分流电压测量的两个输入范围。IN+和IN-引脚之间支持的满量程差分输入可以是 ±81.92mV 或 ±20.48mV,具体取决于配置寄存器 (0h) 中的 ADCRANGE 位。IN-引脚上的总线电压测量范围为 0V 至52.42V,但受工艺额定值限制,不超过最大工作电压。

表 8-1 描述了分流器和总线电压测量的满量程电压及其相关的分辨率。

	农 U I ADO M 重任 E							
参数	满量程值	分辨率						
八块工厅	±81.92mV (ADCRANGE = 0)	2.5µV/LSB						
分流电压 	±20.48mV (ADCRANGE = 1)	625nV/LSB						
总线电压	0V 至 52.4V (将可用范围限制为建议的工作电压)	1.6mV/LSB						

表 8-1. ADC 满量程值

分别通过分流电压寄存器 (1h) 和总线电压寄存器 (2h) 读取器件的分流电压和总线电压测量值。分流电压和总线电压寄存器中的数字输出为 16 位。由于系统中的双向电流,分流电压测量值可以是正值或负值;因此,分流电压寄存器中的数据值可以是正值,也可以是负值。总线电压寄存器数据值始终为正值。通过将数字值乘以其各自的分辨率大小,可以将输出数据直接转换为电压。

此外,该器件还可灵活地报告计算出的电流(以安培为单位)和功率(以瓦特为单位),如*电流和功率计算*中所述。

8.1.2 电流和功率计算

为了使 INA236 以安培为单位报告电流值,必须在校准寄存器中写入一个恒定的转换值,该值取决于所选的 CURRENT_LSB 以及应用中使用的分流电阻。校准寄存器的值根据方程式 1 计算得出。CURRENT_LSB 项是存储电流的 CURRENT 寄存器的所选 LSB 步长。方程式 2 显示 CURRENT_LSB 的最小值基于最大预期电流,它直接定义 CURRENT 寄存器的最大分辨率。虽然 CURRENT_LSB 值越小分辨率越高,但为了简化 CURRENT 的转换,通常为 CURRENT_LSB 选择较高的整数(不高于 8x)值。

R_{SHUNT} 项是用于在 IN+ 和 IN - 引脚产生差分电压的外部分流器的电阻值。ADCRANGE = 0 时,使用方程式 1。ADCRANGE = 1 时,SHUNT CAL 的值必须除以 4。

$$SHUNT_CAL = \frac{0.00512}{Current_LSB \times R_{SHUNT}}$$
 (1)

其中

- 0.00512 是一个内部固定值,用于确保适当地保持调节。
- CURRENT_LSB 是以安培为单位的电流步长的选定值。该值必须大于或等于 CURRENT_LSB (最小值),但 小于 8 倍 CURRENT_LSB (最小值),以便减少分辨率损失。
- ADCRANGE = 1 时, SHUNT CAL 的值必须除以 4。

$$CURRENT_LSB (minimum) = \frac{Maximum Expected Current}{2^{15}}$$
(2)

请注意,电流是根据 SHUNT_CAL 寄存器中设置的值进行分流电压测量后计算得出的。如果加载到 SHUNT_CAL 寄存器的值为零,则通过 CURRENT 寄存器报告的电流值也为零。

使用计算值对 SHUNT_CAL 寄存器进行编程后,可以从 CURRENT 寄存器中读取以安培为单位的测量电流。使用方程式 3 计算由 CURRENT_LSB 调节的最终值:

其中

• CURRENT 是从 CURRENT 寄存器中读取的值

可以从 POWER 寄存器将功率值读取为 16 位值。使用方程式 4 将功率转换为瓦特值:

Power [W] =
$$32 \times CURRENT_LSB \times POWER$$
 (4)

其中

- POWER 是从 POWER 寄存器中读取的值。
- CURRENT_LSB 是为方程式 1 中所用电流计算的 lsb 大小选择的值。

有关使用这些公式的设计示例,请参阅详细设计过程。

8.1.3 ADC 输出数据速率和噪声性能

INA236 的噪声性能和有效分辨率取决于 ADC 转换时间。该器件还支持数字平均值计算功能,有助于进一步降低数字噪声。此器件可选择 ADC 转换时间和数据平均值计算功能,这种灵活性提高了信噪比,并以更低的偏移量实现更高的动态范围。较低信号电平下的噪声分布主要由系统噪声控制,而系统噪声主要由 1/f 噪声或白噪声组成。通过增加转换时间和平均值数量,可以提高 ADC 的有效分辨率。

表 8-2 总结了器件支持的输出数据速率转换设置。最快的转换设置为 140µs。典型的无噪声分辨率表示为基于器件测量数据的有效位数 (ENOB)。ENOB 是根据噪声峰-峰值计算的,这可确保考虑完整的噪声分布。

表 8-2. INA236 噪声性能

输出采样平均值计算	输出采样周期 [ms]	无噪声 ENOB (±81.92mV)	无噪声 ENOB (±20.48mV)
	2.44		(ADCRANGE = 1)
			11.1
			11.1
			11.7
			12.2
			12.5
			13.4
			14.1
			14.7
			12.1
			12.4
			12.9
			13.4
			13.7
			14.7
			14.7
			15.7
			13.1
			13.4
			14.1
		16.0	14.4
16	17.6	16.0	15.1
16	33.856	16.0	15.7
16	66.496	16.0	15.7
16	131.904	16.0	16.0
64	8.96	15.7	13.7
64	13.056	16.0	14.4
64	21.248	16.0	15.1
64	37.632	16.0	15.7
64	70.4	16.0	15.7
64	135.424	16.0	16.0
64	265.984	16.0	16.0
64	527.616	16.0	16.0
128	17.92	16.0	14.1
128	26.112	16.0	15.1
128	42.496	16.0	15.7
128	75.264	16.0	15.7
128	140.8	16.0	16.0
128	270.848	16.0	16.0
128	531.968	16.0	16.0
128	1055.232	16.0	16.0
256	35.84	16.0	14.7
256	52.224	16.0	15.7
256	84.992	16.0	15.7
256	150.528	16.0	16.0
	(1 1 1 1 1 1 1 1 1 1 1 1	輸出采样用期 [ms] 輸出采样用期 [ms] 1 0.14 1 0.204 1 0.332 1 0.588 1 1.1 1 2.116 1 4.156 1 8.244 4 0.56 4 0.816 4 1.328 4 2.352 4 4.4 4 16.224 4 32.976 16 2.24 16 3.264 16 3.264 16 9.408 16 9.408 16 9.408 16 9.408 16 17.6 16 33.856 6 64.496 16 131.904 64 8.96 64 70.4 64 70.4 64 70.4 64 70.4 64 527.61	(ADCRANGE = 0)

表 8-2. INA236 噪声性能 (continued)

ADC 转换时间周期 [µs]	输出采样平均值计算 [采样量]	输出采样周期 [ms]	无噪声 ENOB (±81.92mV) (ADCRANGE = 0)	无噪声 ENOB (±20.48mV) (ADCRANGE = 1)
1100	256	281.6	16.0	16.0
2116	256	541.696	16.0	16.0
4156	256	1063.936	16.0	16.0
8244	256	2110.464	16.0	16.0
140	512	71.68	16.0	15.1
204	512	104.448	16.0	15.7
332	512	169.984	16.0	16.0
588	512	301.056	16.0	16.0
1100	512	563.2	16.0	16.0
2116	512	1083.392	16.0	16.0
4156	512	2127.872	16.0	16.0
8244	512	4220.928	16.0	16.0
140	1024	143.36	16.0	15.7
204	1024	208.896	16.0	16.0
332	1024	339.968	16.0	16.0
588	1024	602.112	16.0	16.0
1100	1024	1126.4	16.0	16.0
2116	1024	2166.784	16.0	16.0
4156	1024	4255.744	16.0	16.0
8244	1024	8441.856	16.0	16.0

8.1.4 滤波和输入考虑

测量电流通常会产生较多噪声,这种噪声难以定义。通过允许在配置寄存器 (0h) 中独立选择转换时间和平均值数量,INA236 为滤波提供了几个选项。转换时间可针对分流电压和总线电压测量独立设置,从而更加灵活地配置和监控电源总线。

内部 ADC 基于一个 $\Delta - \Sigma$ 前端,该前端的采样率为 500kHz(±10% 最大值)。此架构具有良好的固有噪声抑制能力;但是,在采样率谐波或非常接近采样率谐波处发生的瞬变可能会引起问题。这些信号的频率为 1MHz 或更高,可通过在器件输入端加入滤波来管理这些信号。高频使得在滤波器上使用低值串联电阻成为可能,而这对测量准确度的影响可以忽略。通常,仅当瞬态恰好出现在 500kHz(±10% 最大值)采样率(大于 1MHz)的谐波上时,才需要对器件输入进行滤波。使用尽可能低的串联电阻值(通常为 100 Ω 或者更少)和一个陶瓷电容器的滤波器。该电容器的建议值介于 0.1μ F 和 1μ F 之间。图 8-1 显示了在输入端添加滤波器的器件。

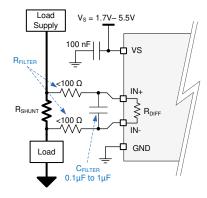


图 8-1. 输入滤波

English Data Sheet: SBOSA81

对于器件输入,过载条件是另外一个考虑因素。器件输入在输入端可承受 26V 的额定电压。差分电压过大,会使分流器负载侧对地短路,导致分流器承受完整的电源电压(只要电源或者储能电容器能够支持此电压)。消除对地短路可能导致电感反冲,而电感反冲可能超过器件的 26V 差分和 48V 共模额定值。电感反冲电压应由具有足够储能电容的齐纳类型瞬变吸收器件(通常称为*瞬变吸收器*)来控制。*具有瞬态稳定性的电流分流监控器参考设计*介绍了一款高侧电流分流监控器(用于测量电流检测电阻器上产生的电压),并介绍了如何更好地保护电流检测器件免受瞬态过压情况的影响。

对于在分流器的一侧或两侧没有大型储能电解质的应用,施加到输入上的电压的过量 dV/dt 可能会导致输入过应力条件。硬物理短路非常可能是导致此事件的原因,过量的 dV/dt 会在具有大电流的系统中激活 ESD 保护功能。测试表明,通过添加与器件的每个输入串联的 10Ω 电阻器,可充分保护输入免受 dV/dt 故障(高达器件的 48V 电压额定值)的影响。按照注释中给出的范围选择这些电阻器对准确度产生的影响最小。

8.2 典型应用

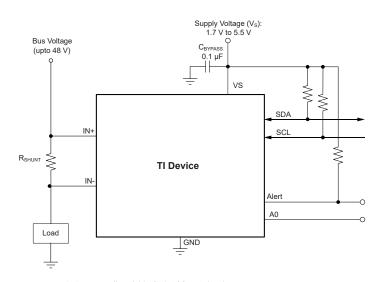


图 8-2. 典型的高侧检测电路配置, INA236

8.2.1 设计要求

INA236 测量电流通过电流感测电阻器 (R_{SHUNT}) 时产生的电压。该器件还在校准时测量总线电源电压并计算功率。它还具有警报功能,可以对 ALERT 引脚进行编程,以响应用户定义的事件或转换就绪通知。

表 8-3 列出了图 8-2 中所示电路的设计要求。

设计参数	示例值
电源电压 (Vs)	3.3V
总线电源轨 (V _{CM})	12V
平均电流	6A
过流故障阈值	9A
监控的最大电流 (I _{MAX})	10A
ADC 范围选择 (V _{SENSE_MAX})	±81.92mV

表 8-3. 设计参数

8.2.2 详细设计过程

此设计示例介绍了选择分流电阻器、对校准寄存器进行编程、设置正确的故障阈值以及如何正确调节器件返回的值的过程。

8.2.2.1 选择分流电阻

使用表 8-3 中的值,根据所选 ADC 范围内待感测的最大电流 (I_{MAX}) 和最大允许感测电压 (V_{SENSE_MAX}) 计算分流电阻的最大值。在最大电流下工作时,差分输入电压不得超过器件的最大满量程范围 V_{SENSE_MAX} 。对于给定的设计参数,使用方程式 5 计算出 R_{SHUNT} 的最大值为 8.192m Ω 。小于最大计算值的最接近的标准电阻值为 8.0m Ω 。可以使用较小的电阻器来尽可能降低功率损耗,但这样会降低精度。所选分流电阻器必须具有足够的功率,以便在所需工作温度下处理最大负载时的功率损耗。

$$R_{SHUNT} < \frac{V_{SENSE_MAX}}{I_{MAX}}$$
 (5)

8.2.2.2 配置器件

对 INA236 进行编程的第一步是正确设置器件配置寄存器 (0h)。初始上电时,配置寄存器设置为复位值(请参阅表 7-4)。在默认上电状态下,器件设置为在 ±81.92mV 范围内进行测量,而 ADC 持续转换分流电压和总线电压 (IN - 处的电压)。如果默认上电条件不符合设计要求,则需要在每次 V_S 下电上电事件后正确设置这些寄存器。

8.2.2.3 对分流校准寄存器进行编程

分流校准寄存器需要在每次进行 V_S 上电时正确编程,以便器件根据电流正确地报告任何结果。第一步是使用方程式 2 计算电流的最小 LSB 值。在最大预期电流为 10A 的情况下应用该公式,得出最小 LSB 大小为 305.17578 μ A。INA236 允许选择的 Current_LSB 比最小 LSB 大 8 倍之多。本例中使用的值为 500 μ A。将方程式 1 应用于 Current_LSB 和分流电阻器的选定值,会导致分流校准寄存器设置为 1280d (500h)。如果未能设置分流校准寄存器的值,将导致基于电流的任何结果为零值。读取分流电压、总线电压或设置警报限值不需要对该寄存器进行编程。

8.2.2.4 设置所需的故障阈值

INA236 能够在多种不同的故障条件下将警报引脚置为有效,如 ALERT 引脚 所述。需要通过对屏蔽/使能寄存器 (6h) 进行适当编程,来选择将警报引脚置为有效所需的故障条件。可通过将所需跳变阈值编程到警报限值寄存器 (7h) 中来设置故障阈值。

例如,通过将屏蔽/使能寄存器中的 SOL 位设置为 1 来选择一个过流故障条件。必须在警报限值寄存器中对过流条件所需的阈值进行编程。在此示例中,过流阈值为 9.0A,电流检测电阻的值为 8.0mΩ,提供的分流电压限制为 72mV。一旦知道了分流电压限值,分流过压限制寄存器的值就可通过将分流电压限值除以分流电压 LSB 大小来计算。

在本例中, 计算出的警报限值寄存器的值为 72mV / 2.5 μV = 28800d (7080h)。

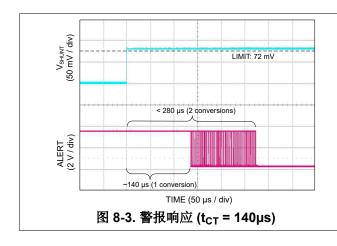
在 V_S 下电上电事件后,存储在警报限值寄存器中的值将设置为默认值,并且需要在每次通电时重新编程。

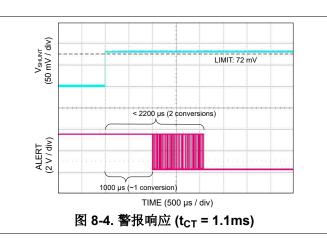
8.2.2.5 计算返回值

下面的表 8-4 显示了假定表 8-3 中所示设计要求的寄存器值。显示了配置、校准、屏蔽/使能和警报限值寄存器的用户编程值,以及分流电压、电流、总线电压和功率的返回值。通过将返回值乘以 LSB 值来计算参数值。

寄存器	内容	LSB 值	计算得出的值
配置 (0h)	16679d (4127h)	_	_
校准 (5h)	1280d (500h)	_	_
屏蔽/使能 (6h)	32768 (8000h)	_	_
警报限值 (7h)	28800d (7080h)	2.5 μ V/LSB	28800 × 2.5 μ V = 0.072V
分流电压 (1h)	19200d (4B00h)	2.5μV/LSB	19200 × 2.5 μ V = 0.048V
总线电压 (2h)	7500d (1D4Ch)	1.6 mV/LSB	7500 × 1.6mV = 12V
电流 (4h)	12000d (2EE0h)	500μA/LSB	12000 × 500μA = 6A

表 8-4. 计算返回值


表 8-4. 计算返回值 (continued)


寄存器	内容	LSB 值	计算得出的值		
功率 (3h)	4500d (1194h)	电流 LSB x 32 = 16mW/LSB	4500 × 16mW = 72W		

采用二进制补码格式的分流电压和电流返回值。采用二进制补码格式时,二进制中的负值表示为返回值的最高有效位中有一个 1。这些值可以转换为十进制,方法是首先反转所有位并加 1 以获得无符号二进制值。然后,应将该值转换为十进制,并施加负号。

8.2.3 应用曲线

图 8-3 显示了在转换时间 (t_{CT}) 为 140µs 且平均值计算设置为 1 的情况下,对于 72mV 分流过压限制的 ALERT 引脚响应。图 8-4 显示了对于同一限制的响应,但转换时间增加至 1.1ms。对于这些图中显示的示波器屏幕截图,在 ALERT 通道上启用了持久性。图 8-3 和图 8-4 显示了 ALERT 响应时间如何根据故障条件相对于 INA236 的内部 ADC 时钟发生的时间而变化。对于刚刚超过限制阈值的故障情况,ALERT 引脚的响应时间可以在一到两个转换周期之间变化。如前所述,故障事件发生时间相对于内部 ADC 转换周期开始时间的时序导致出现这种变化。对于大大超过限制阈值的故障事件,警报可在不到一个转换周期内响应。

8.3 电源相关建议

图 8-2 显示器件输入电路可在共模电压超出电源电压 V_S 的情况下准确测量信号。例如,可对 VS 电源引脚施加 5V 的电压,而监测到的总线电源电压(共模电压)可能高达 48V。无论是否为器件供电,该器件的输入引脚也均可承受完整 -0.3V 至 48V 范围内的电压。

将所需的电源旁路电容器尽可能靠近器件的电源引脚和接地引脚放置以确保稳定性。电源旁路电容器的容值通常为 0.1µF。采用高噪声或高阻抗电源的应用可能需要额外的去耦电容器来抑制电源噪声。

8.4 布局

8.4.1 布局指南

使用开尔文连接或 4 线制连接将输入引脚(IN+和IN-)连接到感测电阻。 这些连接技术可确保在输入引脚之间 仅检测电流检测电阻阻抗。电流感测电阻布线不良通常会导致在输入引脚之间存在额外的电阻。 鉴于电流感测电阻的欧姆值非常低,任何额外的高载流阻抗都会导致严重的测量误差。电源旁路电容器的位置应尽可能靠近电源 引脚和接地引脚。

Product Folder Links: INA236

8.4.2 布局示例

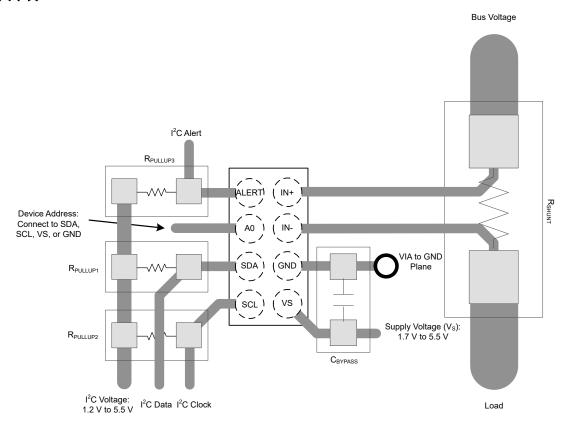


图 8-5. INA236 布局示例 DSBGA(高侧)

English Data Sheet: SBOSA81

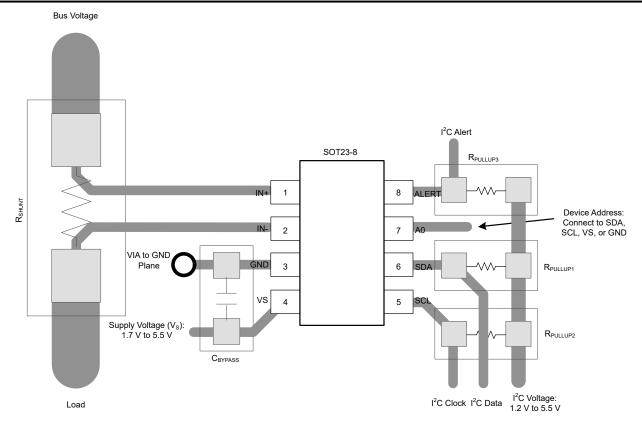


图 8-6. INA236 布局示例 DDF(高侧)

9 器件和文档支持

9.1 器件支持

9.1.1 开发支持

相关开发支持请参阅以下资源:

INA234EVM 和 INA236EVM 用户指南 (SBOU264)

9.2 文档支持

9.2.1 相关文档

请参阅以下相关文档:

- 德州仪器 (TI), 具有瞬态稳定性的电流分流监控器参考设计 (TIDU473)
- 德州仪器 (TI), INA234EVM 和 INA236EVM 用户指南 (SBOU264)

9.3 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*订阅更新* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

9.4 支持资源

TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。

9.5 商标

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

9.6 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

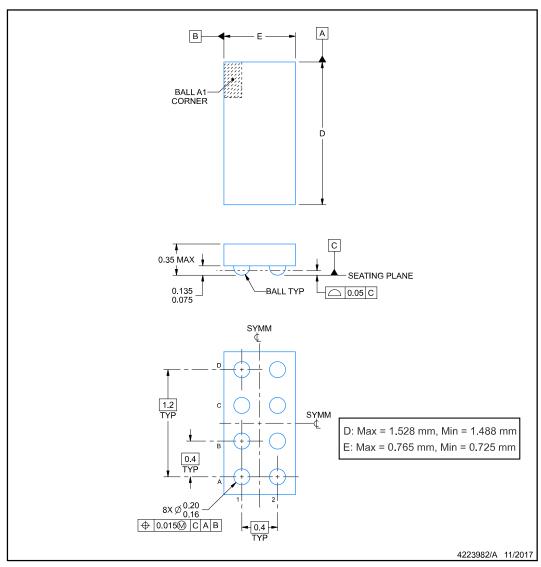
9.7 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

10 机械、封装和可订购信息

下述页面包含机械、封装和订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

Submit Document Feedback


Copyright © 2023 Texas Instruments Incorporated

PACKAGE OUTLINE

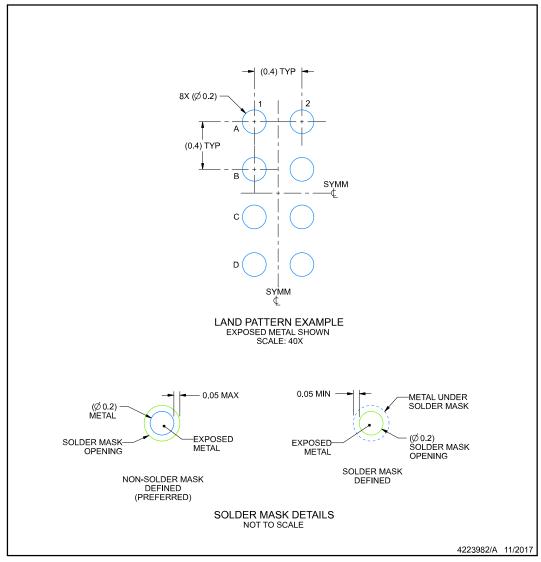
YBJ0008

DSBGA - 0.35 mm max height

DIE SIZE BALL GRID ARRAY

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.



EXAMPLE BOARD LAYOUT

YBJ0008

DSBGA - 0.35 mm max height

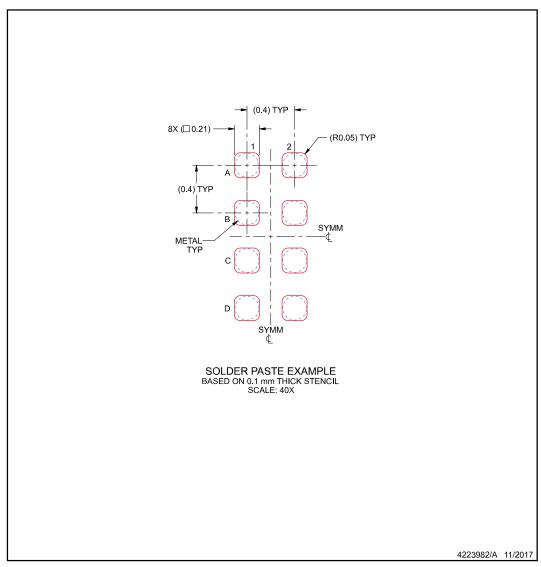
DIE SIZE BALL GRID ARRAY

NOTES: (continued)

3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated



EXAMPLE STENCIL DESIGN

YBJ0008

DSBGA - 0.35 mm max height

DIE SIZE BALL GRID ARRAY

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

www.ti.com 24-Jul-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
INA236AIDDFR	Active	Production	SOT-23-THIN (DDF) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2QRF
INA236AIDDFR.A	Active	Production	SOT-23-THIN (DDF) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2QRF
INA236AIDDFR.B	Active	Production	SOT-23-THIN (DDF) 8	3000 LARGE T&R	-	NIPDAU	Level-1-260C-UNLIM	-40 to 125	2QRF
INA236AIYBJR	Active	Production	DSBGA (YBJ) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 125	1KZ
INA236AIYBJR.A	Active	Production	DSBGA (YBJ) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 125	1KZ
INA236BIDDFR	Active	Production	SOT-23-THIN (DDF) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	31BF
INA236BIDDFR.A	Active	Production	SOT-23-THIN (DDF) 8	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 125	31BF
INA236BIDDFR.B	Active	Production	SOT-23-THIN (DDF) 8	3000 LARGE T&R	-	NIPDAU	Level-1-260C-UNLIM	-40 to 125	31BF
INA236BIYBJR	Active	Production	DSBGA (YBJ) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 125	104
INA236BIYBJR.A	Active	Production	DSBGA (YBJ) 8	3000 LARGE T&R	Yes	SNAGCU	Level-1-260C-UNLIM	-40 to 125	104

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

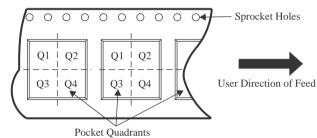
www.ti.com 24-Jul-2025

and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

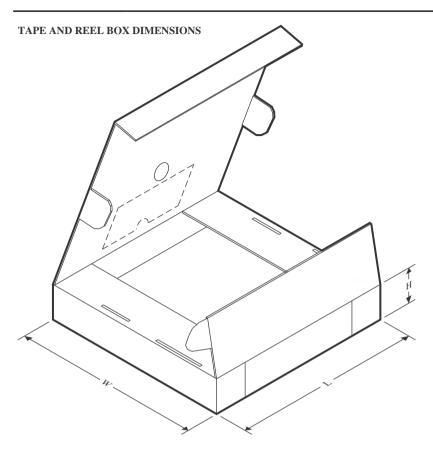
www.ti.com 8-Jul-2025


TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

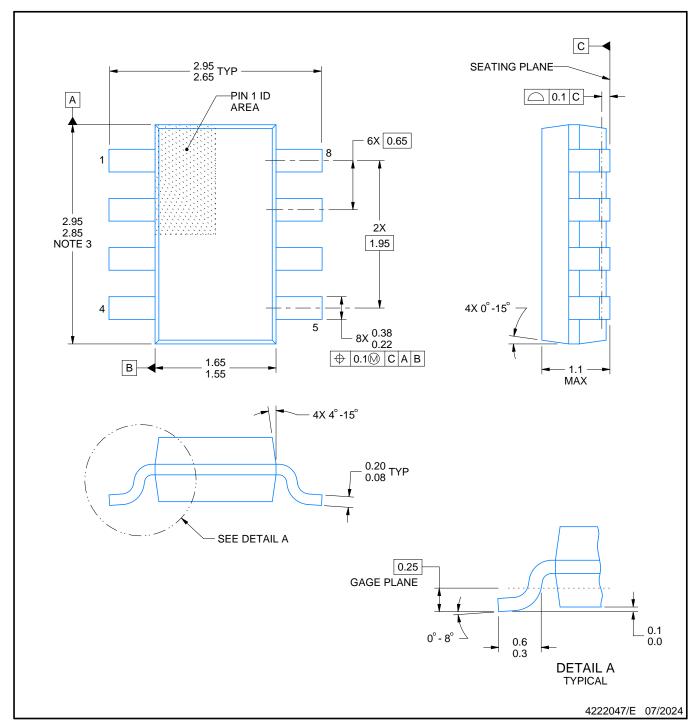
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
INA236AIDDFR	SOT-23- THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA236AIYBJR	DSBGA	YBJ	8	3000	180.0	8.4	0.84	1.62	0.43	2.0	8.0	Q1
INA236AIYBJR	DSBGA	YBJ	8	3000	180.0	8.4	0.84	1.62	0.43	2.0	8.0	Q1
INA236BIDDFR	SOT-23- THIN	DDF	8	3000	180.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
INA236BIYBJR	DSBGA	YBJ	8	3000	180.0	8.4	0.84	1.62	0.43	2.0	8.0	Q1
INA236BIYBJR	DSBGA	YBJ	8	3000	180.0	8.4	0.84	1.62	0.43	2.0	8.0	Q1

www.ti.com 8-Jul-2025

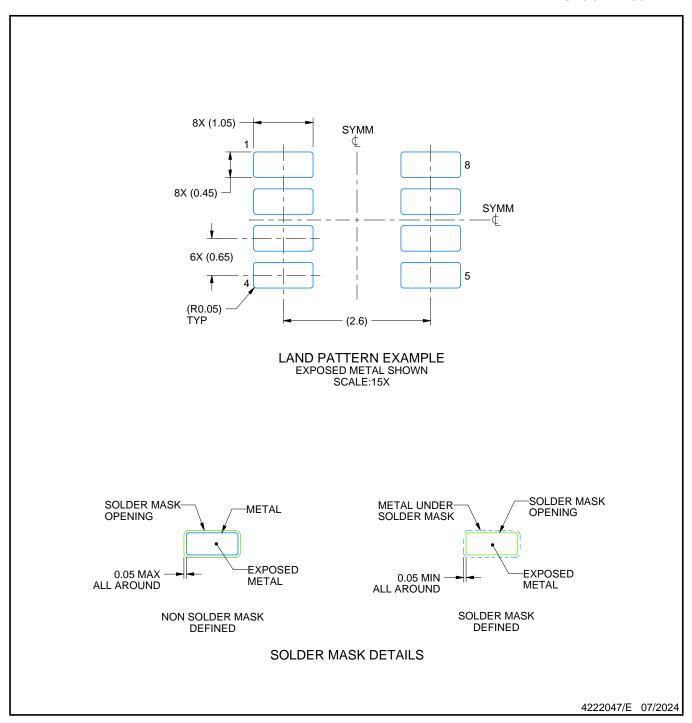


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
INA236AIDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
INA236AIYBJR	DSBGA	YBJ	8	3000	182.0	182.0	20.0
INA236AIYBJR	DSBGA	YBJ	8	3000	182.0	182.0	20.0
INA236BIDDFR	SOT-23-THIN	DDF	8	3000	210.0	185.0	35.0
INA236BIYBJR	DSBGA	YBJ	8	3000	182.0	182.0	20.0
INA236BIYBJR	DSBGA	YBJ	8	3000	182.0	182.0	20.0

PLASTIC SMALL OUTLINE

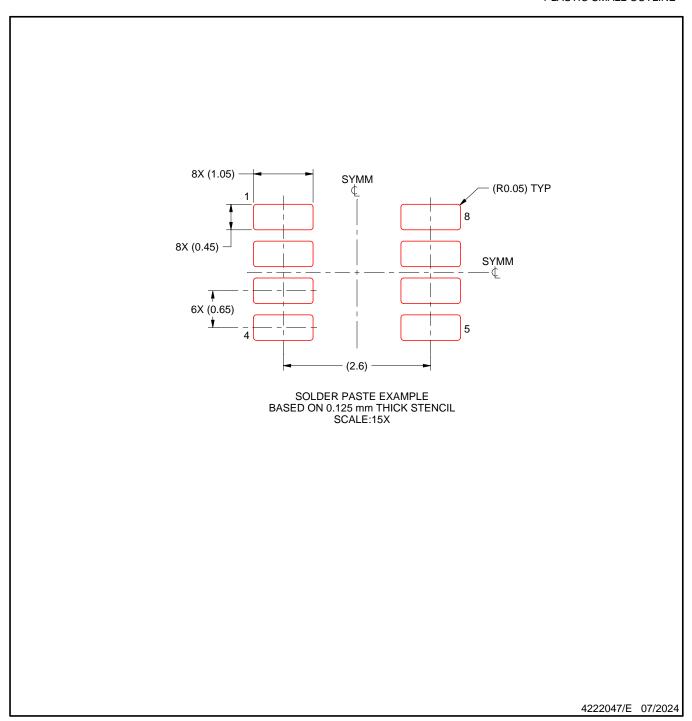
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.

PLASTIC SMALL OUTLINE



NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.
- 5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

PLASTIC SMALL OUTLINE

NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司