DRV8824 ZHCSQT3K - OCTOBER 2009 - REVISED JANUARY 2022 # DRV8824 步进电机控制器 IC # 1 特性 - PWM 微步进电机驱动器 - 内置微步进分度器 - 最高 1/32 微步进 - 多种衰减模式: - 混合衰减 - 慢速衰减 - 快速衰减 - 8.2V 至 45V 宽工作电源电压范围 - 最大驱动电流为 1.6A (24V 且 $T_A = 25^{\circ}C$ - 简单的 STEP/DIR 接口 - 低电流睡眠模式 - 内置 3.3V 基准输出 - 小型封装和外形尺寸 - 保护特性: - 过流保护 (OCP) - 热关断 (TSD) - VMx 欠压锁定 (UVLO) - 故障条件指示引脚 (nFAULT) ## 2 应用 - 自动柜员机 - 验钞机 - 视频安保摄像机 - 打印机 - 扫描仪 - 办公自动化设备 - 游戏机 - 工厂自动化 - 机器人 # 3 说明 DRV8824 可为打印机、扫描仪以及其他自动化设备应 用提供集成型电机驱动器解决方案。此器件具有两个 H 桥驱动器和一个微步进分度器,并且专门用来驱动一个 双极步进电机。输出驱动器块包含被配置为全 H 桥的 N 沟道功率 MOSFET,以驱动电机绕组。DRV8824 能够从每个输出驱动高达 1.6A 的电流 (在 24V 和 25°C下,具有适当的散热)。 一个简单的步进/方向接口可轻松连接到控制器电路。 模式引脚可实现全步进到 1/32 步进模式的电机配置。 可以配置衰减模式以便可以使用慢速衰减、快速衰减或 混合衰减。低功耗睡眠模式可将部分内部电路关断,从 而实现极低的静态电流和功耗。这种睡眠模式可通过专 用的 nSLEEP 引脚来设定。 为过流、短路、欠压锁定和过温提供内部关断功能。通 过 nFAULT 引脚指示故障情况。 #### 器件信息(1) | 器件型号 | 封装 | 封装尺寸(标称值) | |----------|-------------|-----------------| | DRV8824 | HTSSOP (28) | 9.70mm × 6.40mm | | DI(V0024 | VQFN (28) | 5.00mm × 5.00mm | 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 微步进电流波形 # **Table of Contents** | 1 7.3 Feature Description | | |---|--| | 7.4 Device Functional Modes | 17 | | 0 A P | 19 | | | 19 | | 0.0 T : 1.4 !! !! | | | | 23 | | | <mark>23</mark> | | | <mark>23</mark> | | | 23 | | | 24 | | O F 114-i1-i | 24 | | 40 D | 25 | | | 25 | | | 25 | | 9 11 Mechanical, Packaging, and Orderable | 25 | | | 8 Application and Implementation 8.1 Application Information 8.2 Typical Application 9 Layout 9.1 Layout Guidelines 9.2 Layout Example 9.3 Thermal Considerations 9.4 Power Dissipation 9.5 Heatsinking 10 Device and Documentation Support 10.1 Community Resources 10.2 Trademarks 11 Mechanical, Packaging, and Orderable | # **4 Revision History** 注:以前版本的页码可能与当前版本的页码不同 | Changes from Revision J (July 2014) to Revision K (January 2022) | Page | |--|------------------| | Updated RHD pinout | 3 | | Added additional external component to connect to the VCP pin | | | • Updated the Handling Ratings table to and ESD Ratings table and moved T _{stq} to the Absolu | | | Ratings table | | | Corrected device part number | | | • Added | 25 | | Changes from Revision I (June 2014) to Revision J (July 2014) | Page | | • 更新了首页上的图像 | 1 | | • Update the continuous motor drive output current value in Absolute Maximum Ratings | 5 | | Updated typical t _{DEG} time | 6 | | Updated text and equations in #8.2.2 | 20 | | Updated #9.1 and image | <mark>22</mark> | | Layout Example image updated. | 23 | | Changes from Revision H (December 2013) to Revision I (June 2014) | Page | | • 根据全新 TI 标准更新了数据表:添加了章节并重新组织了材料 | 1 | | Updated pin description for AVREF and BVREF | | | Added power supply ramp rate to Absolute Maximum Ratings | 5 | | Added minimum voltage for V _{IL} and removed typical | 6 | | - Updated parameter descriptions in $\it Timing \ Requirements$ and $\it t_{WAKE}$ minimum and maximum | m <mark>7</mark> | | Changes from Revision G (August 2013) to Revision H (December 2013) | Page | | Changed in Electrical Characteristics table, section DECAY INPUT third row | 6 | # 5 Pin Configuration and Functions 图 5-1. PWP Package 28-Pin HTSSOP Top View 图 5-2. RHD Package 28-Pin VQFN Top View 表 5-1. Pin Functions | | PIN | | I/O ⁽¹⁾ | DESCRIPTION | EXTERNAL COMPONENTS OR CONNECTIONS | |------------------|--------|-------|--------------------|------------------------|---| | NAME | PWP | RHD | | DESCRIPTION | EXTERNAL COMPONENTS ON CONNECTIONS | | POWER AND GROUND | | | | | | | GND | 14, 28 | 3, 17 | _ | Device ground | | | VMA | 4 | 7 | _ | Bridge A power supply | Connect to motor supply (8.2 to 45 V). Both pins must be | | VMB | 11 | 14 | _ | Bridge B power supply | connected to same supply, bypassed with a 0.1-µF capacitor to GND, and connected to appropriate bulk capacitance. | | V3P3OUT | 15 | 18 | 0 | 3.3-V regulator output | Bypass to GND with a 0.47- μ F 6.3-V ceramic capacitor. Can be used to supply VREF. | Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback # 表 5-1. Pin Functions (continued) | | PIN | | | 2 5-1. FIII FUIICIIOIIS | | | | | |---------|-----|-----|--------------------|--------------------------------------|--|--|--|--| | NAME | PWP | RHD | I/O ⁽¹⁾ | DESCRIPTION | EXTERNAL COMPONENTS OR CONNECTIONS | | | | | CP1 | 1 | 4 | Ю | Charge pump flying capacitor | Connect a 0.01 II E 50 V connector between CR1 and CR2 | | | | | CP2 | 2 | 5 | Ю | Charge pump flying capacitor | · | | | | | VCP | 3 | 6 | Ю | High-side gate drive voltage | Connect a 0.1- μ F 16-V ceramic capacitor. A 1-M Ω resistor can be connected to VM to accelerate discharge of the VCP capacitor. | | | | | CONTROL | | | | | | | | | | nENBL | 21 | 24 | ı | Enable input | Logic high to disable device outputs and indexer operation, logic low to enable. Internal pulldown. | | | | | nSLEEP | 17 | 20 | ı | Sleep mode input | Logic high to enable device, logic low to enter low-power sleep mode. Internal pulldown. | | | | | STEP | 22 | 25 | I | Step input | Rising edge causes the indexer to move one step. Internal pulldown. | | | | | DIR | 20 | 23 | I | Direction input | Level sets the direction of stepping. Internal pulldown. | | | | | MODE0 | 24 | 27 | I | Microstep mode 0 | | | | | | MODE1 | 25 | 28 | I | Microstep mode 1 | MODE0 through MODE2 set the step mode: full, 1/2, 1/4, 1/8/
1/16, or 1/32 step. Internal pulldown. | | | | | MODE2 | 26 | 1 | I | Microstep mode 2 | The state of s | | | | | DECAY | 19 | 22 | I | Decay mode | Low = slow decay, Open = mixed decay,
High = fast decay. Internal pulldown and pullup. | | | | | nRESET | 16 | 19 | 1 | Reset input | Active-low reset input initializes the indexer logic and disables the H-bridge outputs. Internal pulldown. | | | | | AVREF | 12 | 15 | I | Bridge A current set reference input | Reference voltage for winding current set. Normally AVREF | | | | | BVREF | 13 | 16 | I | Bridge B current set reference input | and BVREF are connected to the same voltage. Can be connected to V3P3OUT. | | | | | NC | 23 | 26 | _ | No connect | Leave this pin unconnected. | | | | | STATUS | | | | | | | | | | nHOME | 27 | 2 | OD | Home position | Logic low when at home state of step table | | | | | nFAULT | 18 | 21 | OD | Fault | Logic low when in fault condition (overtemperature, overcurrent) | | | | | OUTPUT | | | | | | | | | | ISENA | 6 | 9 | Ю | Bridge A ground / Isense | Connect to current sense resistor for bridge A. | | | | | ISENB | 9 | 12 | Ю | Bridge B ground / Isense | Connect to current sense resistor for bridge B. | | | | | AOUT1 | 5 | 8 | 0 | Bridge A output 1 | Connect to bipolar stepper motor winding A. | | | | | AOUT2 | 7 | 10 | 0 | Bridge A output 2 | Positive current is AOUT1 → AOUT2 | | | | | BOUT1 | 10 | 13 | 0 | Bridge B output 1 | Connect to bipolar stepper motor winding B. | | | | | BOUT2 | 8 | 11 | 0 | Bridge B output 2 | Positive current is BOUT1 → BOUT2 | | | | ⁽¹⁾ Directions: I = input, O = output, OD = open-drain output, IO = input/output # **6 Specifications** # **6.1 Absolute Maximum Ratings** over operating free-air temperature (unless otherwise noted) (1) (2) | | | MIN | MAX | UNIT | |----------------------|--|-----------|-------------|------| | V _(VMx) | Power supply voltage | - 0.3 | 47 | V | | V _(VMx) | Power supply ramp rate | | 1 | V/µs | | | Digital pin voltage | - 0.5 | 7 | V | | V _(xVREF) | Input voltage | - 0.3 | 4 | V | | |
ISENSEx pin voltage ⁽⁴⁾ | - 0.8 | 0.8 | V | | | Peak motor drive output current, t <1 μs | Internall | y limited | А | | | Continuous motor drive output current ⁽³⁾ | | 1.6 | А | | | Continuous total power dissipation | See | #6.4 | | | TJ | Operating virtual junction temperature | - 40 | 150 | °C | | T _{stg} | Storage temperature | - 60 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - 2) All voltage values are with respect to network ground pin. - (3) Power dissipation and thermal limits must be observed. - (4) Transients of ±1 V for less than 25 ns are acceptable. ## 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|---------------|--|-------|------| | \/ | Electrostatic | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) | ±2000 | V | | V _(ESD) | discharge | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾ | ±500 | V | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ## **6.3 Recommended Operating Conditions** | | | MIN | NOM | MAX | UNIT | |----------------------|---|-----|-----|-----|------| | $V_{(VMx)}$ | Motor power supply voltage range ⁽¹⁾ | 8.2 | | 45 | V | | V _(xVREF) | VREF input voltage ⁽²⁾ | 1 | | 3.5 | V | | I _{V3P3} | V3P3OUT load current | | | 1 | mA | - (1) All V_M pins must be connected to the same supply voltage. - (2) Operational at VREF between 0 and 1 V, but accuracy is degraded. #### **6.4 Thermal Information** | | | DRV | | | |------------------------|--|--------------|------------|------| | | THERMAL METRIC(1) | PWP (HTSSOP) | RHD (VQFN) | UNIT | | | | 28 PINS | 28 PINS | _ | | R ₀ JA | Junction-to-ambient thermal resistance | 38.9 | 35.8 | °C/W | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 23.3 | 25.1 | °C/W | | R ₀ JB | Junction-to-board thermal resistance | 21.2 | 8.2 | °C/W | | ψJT | Junction-to-top characterization parameter | 0.8 | 0.3 | °C/W | | ∮ ЈВ | Junction-to-board characterization parameter | 20.9 | 8.2 | °C/W | | R _{θ JC(bot)} | Junction-to-case (bottom) thermal resistance | 2.6 | 1.1 | °C/W | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. # **6.5 Electrical Characteristics** over operating free-air temperature range of -40°C to 85°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------|--|--|-------|------|------|------------| | POWER S | SUPPLIES | | | | | | | I _{VMx} | VMx operating supply current | V _(VMx) = 24 V, f _{PWM} < 50 kHz | | 5 | 8 | mA | | I _{VMxQ} | VMx sleep mode supply current | V _(VMx) = 24 V | | 10 | 20 | μ А | | V3P3OUT | regulator | | | | | | | ., | | I _{OUT} = 0 to 1 mA, V _(VMx) = 24 V, T _J = 25°C | 3.18 | 3.30 | 3.42 | | | V_{3P3} | V3P3OUT voltage | I _{OUT} = 0 to 1 mA | 3.10 | 3.30 | 3.50 | V | | LOGIC-LI | EVEL INPUTS | | - | | | | | V _{IL} | Input low voltage | | 0 | | 0.7 | V | | V _{IH} | Input high voltage | | 2 | | 5.25 | V | | V _{HYS} | Input hysteresis | | | 0.45 | | ٧ | | I _{IL} | Input low current | $V_{(VIN)} = 0$ | - 20 | | 20 | μА | | I _{IH} | Input high current | V _(VIN) = 3.3 V | | | 100 | μ A | | R _{PD} | Internal pulldown resistance | nENBL, nRESET, DIR, STEP, MODEx | | 100 | | k Ω | | . 5 | · | nSLEEP | | 1 | | ΜΩ | | nHOMF I | nFAULT OUTPUTS (OPEN-DRAIN | | | · | | 101 | | V _{OL} | Output low voltage | I _O = 5 mA | | | 0.5 | V | | I _{OH} | Output high leakage current | V _O = 3.3 V | | | 1 | <u>μ</u> Α | | DECAY IN | | V ₀ 0.0 V | | | ' | μД. | | V _{IL} | Input low threshold voltage | For slow decay mode | T | | 0.8 | V | | V _{IH} | Input high threshold voltage | For fast decay mode | 2 | | 0.0 | | | | | 1 of fast decay filode | | | 100 | | | I _{IN} | Input current | | - 100 | 400 | 100 | μA | | R _{PU} | Internal pullup resistance | | | 130 | | kΩ | | R _{PD} | <u> </u> | | | 80 | | kΩ | | H-BRIDG | | | | | | | | $R_{DS(ON)}$ | Internal pulldown resistance | V _(VMx) = 24 V, I _O = 1 A, T _J = 25°C | | 0.63 | | Ω | | | | $V_{(VMx)} = 24 \text{ V}, I_O = 1 \text{ A}, T_J = 85^{\circ}\text{C}$ | | 0.76 | 0.90 | | | R _{DS(ON)} | LS FET on resistance | $V_{(VMx)} = 24 \text{ V}, I_O = 1 \text{ A}, T_J = 25^{\circ}\text{C}$ | | 0.65 | | Ω | | | | V _(VMx) = 24 V, I _O = 1 A, T _J = 85°C | | 0.78 | 0.90 | | | I _{OFF} | Off-state leakage current | | - 20 | | 20 | μА | | MOTOR E | DRIVER | _ | | | | | | f_{PWM} | Internal PWM frequency | | | 50 | | kHz | | t _{BLANK} | Current sense blanking time | | | 3.75 | | μ S | | t _R | Rise time | V _(VMx) = 24 V | 100 | | 360 | ns | | t _F | Fall time | V _(VMx) = 24 V | 80 | | 250 | ns | | t _{DEAD} | Dead time | | | 400 | | ns | | PROTEC | TION CIRCUITS | | | | | | | V _{UVLO} | VMx undervoltage lockout voltage | V _(VMx) rising | | 7.8 | 8.2 | V | | I _{OCP} | Overcurrent protection trip level | | 1.8 | | 5 | Α | | t _{DEG} | Overcurrent deglitch time | | | 3 | | μs | | | | 1 | 1 | 400 | | 20 | | T _{TSD} | Thermal shutdown temperature | Die temperature | 150 | 160 | 180 | °C | | T _{TSD} | Thermal shutdown temperature T CONTROL | Die temperature | 150 | 160 | 180 | ~C | #### www.ti.com.cn over operating free-air temperature range of -40°C to 85°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------|--------------------------------|--|-------|-----|-----|------| | V _{TRIP} | xISENSE trip voltage | V _(xVREF) = 3.3 V, 100% current setting | 635 | 660 | 685 | mV | | ΔI _{TRIP} | Current trip accuracy | $V_{(xVREF)}$ = 3.3 V , 5% current setting | - 25% | | 25% | | | | (relative to programmed value) | $V_{(xVREF)}$ = 3.3 V , 10% to 34% current setting | - 15% | | 15% | | | | | V _(xVREF) = 3.3 V, 38% to 67% current setting | - 10% | | 10% | | | | | $V_{(xVREF)}$ = 3.3 V, 71% to 100% current setting | - 5% | | 5% | | | A _{ISENSE} | Current sense amplifier gain | Reference only | | 5 | | V/V | # **6.6 Timing Requirements** | | | | MIN | MAX | UNIT | |---|-----------------------|--|-----|-----|------| | 1 | f_{STEP} | Step frequency | | 175 | kHz | | 2 | t _{WH(STEP)} | Pulse duration, STEP high | 2.8 | | μs | | 3 | t _{WL(STEP)} | Pulse duration, STEP low | 2.8 | | μs | | 4 | t _{SU(STEP)} | Setup time, command before STEP rising | 200 | | ns | | 5 | t _{H(STEP)} | Hold time, command after STEP rising | 200 | | ns | | 6 | t _{ENBL} | Enable time, nENBL active to STEP | 200 | | ns | | 7 | t _{WAKE} | Wakeup time, nSLEEP inactive high to STEP input accepted | | 1 | ms | 图 6-1. Timing Diagram # **6.7 Typical Characteristics** # 7 Detailed Description ## 7.1 Overview The DRV8824 is an integrated motor driver solution for bipolar stepper motors. The device integrates two NMOS H-bridges, current sense, regulation circuitry, and a microstepping indexer. The DRV8824 can be powered with a supply voltage between 8.2 to 45 V and is capable of providing an output current up to 1.6 A full-scale. A simple STEP/DIR interface allows for easy interfacing to the controller circuit. The internal indexer is able to execute high-accuracy microstepping without requiring the processor to control the current level. The current regulation is highly configurable, with three decay modes of operation. Fast, slow, and mixed decay can be selected depending on the application requirements. A low-power sleep mode is included which allows the system to save power when not driving the motor. # 7.2 Functional Block Diagram # 7.3 Feature Description ### 7.3.1 PWM Motor Drivers The DRV8824 contains two H-bridge motor drivers with current-control PWM circuitry. ☒ 7-1 shows a block diagram of the motor control circuitry. 图 7-1. Motor Control Circuitry Note that there are multiple VMx motor power supply pins. All VMx pins must be connected together to the motor supply voltage. ## 7.3.2 Current Regulation The current through the motor windings is regulated by a fixed-frequency PWM current regulation, or current chopping. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage and inductance of the winding. After the current hits the current chopping threshold, the bridge disables the current until the beginning of the next PWM cycle. In stepping motors, current regulation is used to vary the current in the two windings in a semi-sinusoidal fashion to provide smooth motion. The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor connected to the xISEN pins, multiplied by a factor of 5, with a reference voltage. The reference voltage is input from the xVREF pins. The full-scale (100%) chopping current is calculated in 方程式 1. $$I_{CHOP} = \frac{V_{(xREF)}}{5 \times R_{ISENSE}}$$ (1) #### Example: If a 0.5- Ω sense resistor is used and the xVREF pin is 3.3 V, the full-scale (100%) chopping current will be 3.3 V / (5 × 0.5 Ω) = 1.32 A. The reference voltage is scaled by an internal DAC that allows fractional stepping of a bipolar stepper motor, as described in
7.3.5. #### 7.3.3 Decay Mode During PWM current chopping, the H-bridge is enabled to drive current through the motor winding until the PWM current chopping threshold is reached. 7-2 shows this as case 1. The current flow direction shown indicates positive current flow. After the chopping current threshold is reached, the H-bridge can operate in two different states, fast decay or slow decay. In fast decay mode, after the PWM chopping current level has been reached, the H-bridge reverses state to allow winding current to flow in a reverse direction. As the winding current approaches 0, the bridge is disabled to prevent any reverse current flow. 37-2 shows fast decay mode as case 2. In slow decay mode, winding current is re-circulated by enabling both of the low-side FETs in the bridge. 7-2 shows this as case 3. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 图 7-2. Decay Mode The DRV8824 supports fast decay, slow decay, and a mixed decay mode. Slow, fast, or mixed decay mode is selected by the state of the DECAY pin – logic low selects slow decay, open selects mixed decay operation, and logic high sets fast decay mode. The DECAY pin has both an internal pullup resistor of approximately 130 k Ω and an internal pulldown resistor of approximately 80 k Ω . This sets the mixed decay mode if the pin is left open or undriven. Mixed decay mode begins as fast decay, but at a fixed period of time (75% of the PWM cycle) switches to slow decay mode for the remainder of the fixed PWM period. This occurs only if the current through the winding is decreasing (per 表 7-2); if the current is increasing, then slow decay is used. ### 7.3.4 Blanking Time After the current is enabled in an H-bridge, the voltage on the xISEN pin is ignored for a fixed period of time before enabling the current sense circuitry. This blanking time is fixed at $3.75~\mu$ s. Note that the blanking time also sets the minimum on time of the PWM. ### 7.3.5 Microstepping Indexer Built-in indexer logic in the DRV8824 allows a number of different stepping configurations. The MODE0 through MODE2 pins are used to configure the stepping format, as shown in 表 7-1. 表 7-1. Stepping Format | MODE2 | MODE1 | MODE0 | STEP MODE | |-------|-------|-------|---| | 0 | 0 | 0 | Full step (2-phase excitation) with 71% current | | 0 | 0 | 1 | 1/2 step (1-2 phase excitation) | | 0 | 1 | 0 | 1/4 step (W1-2 phase excitation) | | 0 | 1 | 1 | 8 microsteps/step | | 1 | 0 | 0 | 16 microsteps/step | | 1 | 0 | 1 | 32 microsteps/step | | 1 | 1 | 0 | 32 microsteps/step | | 1 | 1 | 1 | 32 microsteps/step | Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback 表 7-2 shows the relative current and step directions for different settings of MODEx. At each rising edge of the STEP input, the indexer travels to the next state in the table. The direction is shown with the DIR pin high; if the DIR pin is low, the sequence is reversed. Positive current is defined as xOUT1 = positive with respect to xOUT2. Note that if the step mode is changed while stepping, the indexer advances to the next valid state for the new MODEx setting at the rising edge of STEP. The home state is 45°. This state is entered at power-up or application of nRESET. This is shown in $\frac{1}{8}$ 7-2 by the shaded cells. The logic inputs DIR, STEP, nRESET, and MODEx have an internal pulldown resistors of 100 k Ω 表 7-2. Relative Current and Step Directions | 1/32 | ★ 7-2. Relative Current and Step Directions 1/16 1/8 1/4 1/2 FULL STEP WINDING CURRENT WINDING CURRENT | | | | | ELECTRICAL | | | |------|---|------|------|------|-----|------------|------|-------| | STEP | STEP | STEP | STEP | STEP | 70% | A | В | ANGLE | | 1 | 1 | 1 | 1 | 1 | | 100% | 0% | 0 | | 2 | | | | | | 100% | 5% | 3 | | 3 | 2 | | | | | 100% 10% | | 6 | | 4 | | | | | | 99% | 15% | 8 | | 5 | 3 | 2 | | | | 98% | 20% | 11 | | 6 | | | | | | 97% | 24% | 14 | | 7 | 4 | | | | | 96% | 29% | 17 | | 8 | | | | | | 94% | 34% | 20 | | 9 | 5 | 3 | 2 | | | 92% | 38% | 23 | | 10 | | | | | | 90% | 43% | 25 | | 11 | 6 | | | | | 88% | 47% | 28 | | 12 | | | | | | 86% | 51% | 31 | | 13 | 7 | 4 | | | | 83% | 56% | 34 | | 14 | | | | | | 80% | 60% | 37 | | 15 | 8 | | | | | 77% | 63% | 39 | | 16 | | | | | | 74% 67% | | 42 | | 17 | 9 | 5 | 3 | 2 | 1 | 71% | 71% | 45 | | 18 | | | | | | 67% | 74% | 48 | | 19 | 10 | | | | | 63% | 77% | 51 | | 20 | | | | | | 60% | 80% | 53 | | 21 | 11 | 6 | | | | 56% | 83% | 56 | | 22 | | | | | | 51% | 86% | 59 | | 23 | 12 | | | | | 47% | 88% | 62 | | 24 | | | | | | 43% | 90% | 65 | | 25 | 13 | 7 | 4 | | | 38% | 92% | 68 | | 26 | | | | | | 34% | 94% | 70 | | 27 | 14 | | | | | 29% | 96% | 73 | | 28 | | | | | | 24% | 97% | 76 | | 29 | 15 | 8 | | | | 20% | 98% | 79 | | 30 | | | | | | 15% | 99% | 82 | | 31 | 16 | | | | | 10% | 100% | 84 | | 32 | | | | | | 5% | 100% | 87 | | 33 | 17 | 9 | 5 | 3 | | 0% | 100% | 90 | | 34 | | | | | | - 5% | 100% | 93 | | 35 | 18 | | | | | - 10% | 100% | 96 | | 36 | | | | | | - 15% | 99% | 98 | Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated # 表 7-2. Relative Current and Step Directions (continued) | 表 7-2. Relative Current and Step Directions (continued) | | | | | | | | | | | |---|--------------|-------------|-------------|-------------|------------------|----------------------|----------------------|---------------------|--|--| | 1/32
STEP | 1/16
STEP | 1/8
STEP | 1/4
STEP | 1/2
STEP | FULL STEP
70% | WINDING CURRENT
A | WINDING CURRENT
B | ELECTRICAL
ANGLE | | | | 37 | 19 | 10 | | | | - 20% | 98% | 101 | | | | 38 | | | | | | - 24% | 97% | 104 | | | | 39 | 20 | | | | | - 29% | 96% | 107 | | | | 40 | | | | | | - 34% | 94% | 110 | | | | 41 | 21 | 11 | 6 | | | - 38% | 92% | 113 | | | | 42 | | | | | | - 43% | 90% | 115 | | | | 43 | 22 | | | | | - 47% | 88% | 118 | | | | 44 | | | | | | - 51% | 86% | 121 | | | | 45 | 23 | 12 | | | | - 56% | 83% | 124 | | | | 46 | | | | | | - 60% | 80% | 127 | | | | 47 | 24 | | | | | - 63% | 77% | 129 | | | | 48 | | | | | | - 67% | 74% | 132 | | | | 49 | 25 | 13 | 7 | 4 | 2 | - 71% | 71% | 135 | | | | 50 | | | | | | - 74% | 67% | 138 | | | | 51 | 26 | | | | | - 77% | 63% | 141 | | | | 52 | | | | | | - 80% | 60% | 143 | | | | 53 | 27 | 14 | | | | - 83% | 56% | 146 | | | | 54 | | | | | | - 86% | 51% | 149 | | | | 55 | 28 | | | | | - 88% | 47% | 152 | | | | 56 | | | | | | - 90% | 43% | 155 | | | | 57 | 29 | 15 | 8 | | | - 92% | 38% | 158 | | | | 58 | | | | | | - 94% | 34% | 160 | | | | 59 | 30 | | | | | - 96% | 29% | 163 | | | | 60 | | | | | | - 97% | 24% | 166 | | | | 61 | 31 | 16 | | | | - 98% | 20% | 169 | | | | 62 | | | | | | - 99% | 15% | 172 | | | | 63 | 32 | | | | | - 100% | 10% | 174 | | | | 64 | | | | | | - 100% | 5% | 177 | | | | 65 | 33 | 17 | 9 | 5 | | - 100% | 0% | 180 | | | | 66 | | | | _ | | - 100% | - 5% | 183 | | | | 67 | 34 | | | | | - 100% | - 10% | 186 | | | | 68 | | | | | | - 99% | - 15% | 188 | | | | 69 | 35 | 18 | | | | - 98% | - 20% | 191 | | | | 70 | | 1.5 | | | | - 97% | - 24% | 194 | | | | 71 | 36 | | | | | - 96% | - 29% | 197 | | | | 72 | | | | | | - 94% | - 34% | 200 | | | | 73 | 37 | 19 | 10 | | | - 92% | - 38% | 203 | | | | 74 | - | | | | | - 90% | - 43% | 205 | | | | 75 | 38 | | | | | - 88% | - 47% | 208 | | | | 76 | | | | | | - 86% | - 51% | 211 | | | | 77 | 39 | 20 | | | | - 83% | - 56% | 214 | | | | 78 | 55 | | | | | - 80% | - 60% | 217 | | | | 70 | | | | | | 0070 | 0070 | 411 | | | # 表 7-2. Relative Current and Step Directions (continued) | | | | | | | a Step Directions | · | · | | | | |--------------|--------------|-------------|-------------|-------------|------------------|----------------------|----------------------|---------------------|--|--|--| | 1/32
STEP | 1/16
STEP | 1/8
STEP | 1/4
STEP | 1/2
STEP | FULL STEP
70% | WINDING CURRENT
A | WINDING CURRENT
B | ELECTRICAL
ANGLE | | | | | 79 | 40 | | | | | - 77% | - 63% | 219 | | | | | 80 | | | | | | - 74% | - 67% | 222 | | | | | 81 | 41 | 21 | 11 | 6 | 3 | - 71% | - 71% | 225 | | | | | 82 | | | | | | - 67% - 74% | | 228 | | | | | 83 | 42 | | | | | - 63% | - 77% | 231 | | | | | 84 | | | | | | - 60% | - 80% | 233 | | | | | 85 | 43 | 22 | | | | - 56% | - 83% | 236 | | | | | 86 | | | | | | - 51% | - 86% | 239 | | | | | 87 | 44 | | | | | - 47% | - 88% | 242 | | | | | 88 | | | | | | - 43% | - 90% | 245 | | | | | 89 | 45 | 23 | 12 | | | - 38% | - 92% | 248 | | | | | 90 | | | | | | - 34% | - 94% | 250 | | | | | 91 | 46 | | | | | - 29% | - 96% | 253 | | | | | 92 | | | | | | - 24% | - 97% | 256 | | | | | 93 | 47 | 24 | | | | - 20% | - 98% | 259 | | | | | 94 | | | | | | - 15% | - 99% | 262 | | | | | 95 | 48 | | | | | - 10% | - 100% | 264 | | | | | 96 | | | | | | - 5% | - 100% | 267 | | | | | 97 | 49 | 25 | 13 | 7 | | 0% | - 100% | 270 | | | | | 98 | | | | | | 5% | - 100% | 273 | | | | | 99 | 50 | | | | | 10% | - 100% | 276 | | | | | 100 | | | | | | 15% | - 99% | 278 | | | | | 101 | 51 | 26 | | | | 20% | - 98% | 281 | | | | | 102 | | | | | | 24% | - 97% | 284 | | | | | 103 | 52 | | | | | 29% | - 96% | 287 | | | | | 104 | | | | | | 34% | - 94% | 290 | | | | | 105 | 53 | 27 | 14 | | | 38% | - 92% | 293 | | | | | 106 | | | | | | 43% | - 90% | 295 | | | | | 107 | 54 | | | | | 47% | - 88% | 298 | | | | | 108 | | | | | | 51% | - 86% | 301 | | | | | 109 | 55 | 28 | | | | 56% | - 83% | 304 | | | | | 110 | | | | | | 60% | - 80% | 307 | | | | | 111 | 56 | | | | | 63% | - 77% | 309 | | | | | 112 | | | | | | 67% | - 74% | 312 | | | | | 113 | 57 | 29 | 15 | 8 | 4 | 71% | - 71% | 315 | | | | | 114 | | | | | | 74% | - 67% | 318 | | | | | 115 | 58 | | | | | 77% | - 63% | 321 | | | | | 116 | | | | | | 80% | - 60% | 323 | | | | | 117 | 59 | 30 | | | | 83% | - 56% | 326 | | | | | 118 | | |
| | | 86% | - 51% | 329 | | | | | 119 | 60 | | | | | 88% | - 47% | 332 | | | | | 120 | | | | | | 90% | - 43% | 335 | | | | Instruments www.ti.com.cn | 表 7-2. Relative Current and Step Direc | tions (continued) | |--|-------------------| |--|-------------------| | 1/32
STEP | 1/16
STEP | 1/8
STEP | 1/4
STEP | 1/2
STEP | FULL STEP
70% | WINDING CURRENT
A | WINDING CURRENT
B | ELECTRICAL
ANGLE | |--------------|--------------|-------------|-------------|-------------|------------------|----------------------|----------------------|---------------------| | 121 | 61 | 31 | 16 | | | 92% | - 38% | 338 | | 122 | | | | | | 94% | - 34% | 340 | | 123 | 62 | | | | | 96% | - 29% | 343 | | 124 | | | | | | 97% | - 24% | 346 | | 125 | 63 | 32 | | | | 98% | - 20% | 349 | | 126 | | | | | | 99% | - 15% | 352 | | 127 | 64 | | | | | 100% | - 10% | 354 | | 128 | | | | | | 100% | - 5% | 357 | ### 7.3.6 nRESET, nENBL and nSLEEP Operation The nRESET pin, when driven active low, resets internal logic, and resets the step table to the home position. It also disables the H-bridge drivers. The STEP input is ignored while nRESET is active. The nENBL pin is used to control the output drivers and enable or disable operation of the indexer. When nENBL is low, the output H-bridges are enabled, and rising edges on the STEP pin are recognized. When nENBL is high, the H-bridges are disabled, the outputs are in a high-impedance state, and the STEP input is ignored. Driving nSLEEP low puts the device into a low-power sleep state. In this state, the H-bridges are disabled, the gate drive charge pump is stopped, the V3P3OUT regulator is disabled, and all internal clocks are stopped. In this state, all inputs are ignored until nSLEEP returns high. When returning from sleep mode, some time (approximately 1 ms) needs to pass before applying a STEP input, to allow the internal circuitry to stabilize. The nRESET and nENBL pins have internal pulldown resistors of 100 kΩ. The nSLEEP pin has an internal pulldown resistor of 1 M Ω . #### 7.3.7 Protection Circuits The DRV8824 is protected against undervoltage, overcurrent, and overtemperature events. #### 7.3.7.1 Overcurrent Protection (OCP) An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than the OCP time, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. The device remains disabled until either nRESET pin is applied, nSLEEP is toggled low and high, or VMx is removed and re-applied. Overcurrent conditions on both high and low side devices, that is, a short to ground, supply, or across the motor winding, all result in an overcurrent shutdown. Note that overcurrent protection does not use the current sense circuitry used for PWM current control, and is independent of the I_{SENSE} resistor value or xVREF voltage. #### 7.3.7.2 Thermal Shutdown (TSD) If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. After the die temperature has fallen to a safe level, operation automatically resumes. #### 7.3.7.3 Undervoltage Lockout (UVLO) If at any time the voltage on the VMx pins falls below the UVLO threshold voltage, all circuitry in the device will be disabled and internal logic will be reset. Operation resumes when V_(VMx) rises above the UVLO threshold. #### 7.4 Device Functional Modes #### 7.4.1 STEP/DIR Interface The STEP/DIR interface provides a simple method for advancing through the indexer table. For each rising edge on the STEP pin, the indexer travels to the next state in the table. The direction it moves in the table is Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback ## 7.4.2 Microstepping The microstepping indexer allows for a variety of stepping configurations. The state of the indexer is determined by the configuration of the three MODE pins (refer to $\frac{1}{2}$ 7-1 for configuration options). The DRV8824 supports full step up to $\frac{1}{32}$ microstepping. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated # 8 Application and Implementation ### 备注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. # **8.1 Application Information** The DRV8824 is used in bipolar stepper control. The microstepping motor driver provides additional precision and a smooth rotation from the stepper motor. The following design is a common application of the DRV8824. ## 8.2 Typical Application 图 8-1. Typical Application Diagram #### 8.2.1 Design Requirements 表 8-1 gives design input parameters for system design. 表 8-1. Design Parameters | DESIGN PARAMETER | REFERENCE | EXAMPLE VALUE | |----------------------------|-----------------|-----------------------| | Supply voltage | VMx | 24 V | | Motor winding resistance | R _L | 1.0 Ω/phase | | Motor winding inductance | LL | 3.5 mH/phase | | Motor full step angle | θ step | 1.8°/step | | Target microstepping level | n _m | 8 microsteps per step | | Target motor speed | V | 120 rpm | | Target full-scale current | I _{FS} | 1.25 A | #### 8.2.2 Detailed Design Procedure ### 8.2.2.1 Stepper Motor Speed The first step in configuring the DRV8824 requires the desired motor speed and microstepping level. If the target application requires a constant speed, then a square wave with frequency f_{step} must be applied to the STEP pin. If the target motor startup speed is too high, the motor will not spin. Make sure that the motor can support the target speed or implement an acceleration profile to bring the motor up to speed. For a desired motor speed (v), microstepping level (n_m), and motor full step angle (θ_{step}), $$f_{\text{step}} \text{ (}\mu\text{steps / sec ond)} = \frac{v \left(\frac{\text{rotations}}{\text{minute}}\right) \times 360 \left(\frac{\circ}{\text{rotation}}\right) \times n_{\text{m}} \left(\frac{\mu\text{steps}}{\text{step}}\right)}{60 \left(\frac{\text{sec onds}}{\text{minute}}\right) \times \theta_{\text{step}} \left(\frac{\circ}{\text{step}}\right)}$$ (2) $$f_{\text{step}} \text{ (}\mu\text{steps / sec ond)} = \frac{120 \left(\frac{\text{rotations}}{\text{minute}}\right) \times 360 \left(\frac{\circ}{\text{rotation}}\right) \times 8 \left(\frac{\mu\text{steps}}{\text{step}}\right)}{60 \left(\frac{\text{sec onds}}{\text{minute}}\right) \times 1.8 \left(\frac{\circ}{\text{step}}\right)}$$ (3) $\theta_{\mbox{ step}}$ can be found in the stepper motor data sheet or written on the motor itself. For the DRV8824, the microstepping level is set by the MODE pins and can be any of the settings in $\frac{1}{8}$ 7-1. Higher microstepping will mean a smoother motor motion and less audible noise, but will increase switching losses and require a higher f_{step} to achieve the same motor speed. ## 8.2.2.2 Current Regulation In a stepper motor, the set full-scale current (I_{FS}) is the maximum current driven through either winding. This quantity depends on the xVREF analog voltage and the sense resistor value (R_{SENSE}). During stepping, I_{FS} defines the current chopping threshold (I_{TRIP}) for the maximum current step. The gain of DRV8824 is set for 5 V/V. $$I_{FS}(A) = \frac{xVREF(V)}{A_v \times R_{SENSE}(\Omega)} = \frac{xVREF(V)}{5 \times R_{SENSE}(\Omega)}$$ (4) Submit Document Feedback To achieve I_{FS} = 1.25 A with R_{SENSE} of 0.4 Ω , xVREF should be 2.5 V. #### 8.2.2.3 Decay Modes The DRV8824 supports three different decay modes: slow decay, fast decay, and mixed decay. The current through the motor windings is regulated using a fixed-frequency PWM scheme. This means that after any drive phase, when a motor winding current has hit the current chopping threshold (I_{TRIP}), the DRV8824 will place the winding in one of the three decay modes until the PWM cycle has expired. Afterward, a new drive phase starts. The blanking time, t_{BLANK} , defines the minimum drive time for the current chopping. I_{TRIP} is ignored during t_{BLANK} , so the winding current may overshoot the trip level. ## 8.2.3 Application Curves # **Power Supply Recommendations** The DRV8824 is designed to operate from an input voltage supply $(V_{(VMx)})$ range between 8.2 and 45 V. Two 0.01- μ F ceramic capacitors rated for VMx must be placed as close as possible to the VMA and VMB pins respectively (one on each pin). In addition to the local decoupling caps, additional bulk capacitance is required and must be sized accordingly to the application requirements. #### 9.1 Bulk Capacitance Bulk capacitance sizing is an important factor in motor drive system design. It depends on a variety of factors including: - Type of power supply - · Acceptable supply voltage ripple - · Parasitic inductance in the power supply wiring - Type of motor (brushed DC, brushless DC, stepper) - Motor startup current - · Motor braking method The inductance between the power supply and motor drive system limits the rate current can change from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in voltage. The designer must size the bulk capacitance to meet acceptable voltage ripple levels. The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate-sized bulk capacitor. 图 9-1. Example Setup of Motor Drive System With External Power Supply ### 9.2 Power Supply and Logic Sequencing There is no specific sequence for powering-up the DRV8824. It is okay for digital
input signals to be present before VMx is applied. After VMx is applied to the DRV8824, it begins operation based on the status of the control pins. Product Folder Links: DRV8824 ### 9 Layout ## 9.1 Layout Guidelines The VMA and VMB pins should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of $0.01~\mu F$ rated for VMx. This capacitor should be placed as close to the VMA and VMB pins as possible with a thick trace or ground plane connection to the device GND pin. The VMA and VMB pins must be bypassed to ground using a bulk capacitor. This component may be an electrolytic. If VMA and VMB are connected to the same board net, a single bulk capacitor is sufficient. A low-ESR ceramic capacitor must be placed in between the CP1 and CP2 pins. TI recommends a value of 0.01 µF rated for VMA and VMB. Place this component as close to the pins as possible. A low-ESR ceramic capacitor must be placed in between the VMA and VCP pins. TI recommends a value of 0.1 μ F rated for 16 V. Place this component as close to the pins as possible. Also, an optional 1-M Ω resistor may be placed between VCP and VMA to accelerate discharge of the VCP capacitor. Bypass V3P3 to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as close to the pin as possible. #### 9.2 Layout Example 图 9-1. Layout Recommendation #### 9.3 Thermal Considerations The DRV8824 has TSD, as described in # 7.3.7.2. If the die temperature exceeds approximately 150°C, the device is disabled until the temperature drops to a safe level. Any tendency of the device to enter TSD is an indication of either excessive power dissipation, insufficient heatsinking, or too high an ambient temperature. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback ### 9.4 Power Dissipation Power dissipation in the DRV8824 is dominated by the power dissipated in the output FET resistance, or $R_{DS(ON)}$. Average power dissipation when running a stepper motor can be roughly estimated by 方程式 5. $$P_{TOT} = 4 \times R_{DS(ON)} \times \left(I_{OUT(RMS)}\right)^{2}$$ (5) #### where - P_{TOT} is the total power dissipation - $R_{DS(ON)}$ is the resistance of each FET - I_{OUT(RMS)} is the RMS output current being applied to each winding $I_{OUT(RMS)}$ is equal to the approximately 0.7× the full-scale output current setting. The factor of 4 comes from the fact that there are two motor windings, and at any instant two FETs are conducting winding current for each winding (one high-side and one low-side). The maximum amount of power that can be dissipated in the device is dependent on ambient temperature and heatsinking. Note that $R_{DS(ON)}$ increases with temperature, so as the device heats, the power dissipation increases. This must be taken into consideration when sizing the heatsink. ### 9.5 Heatsinking The PowerPAD™ package uses an exposed pad to remove heat from the device. For proper operation, this pad must be thermally connected to copper on the PCB to dissipate heat. On a multi-layer PCB with a ground plane, this can be accomplished by adding a number of vias to connect the thermal pad to the ground plane. On PCBs without internal planes, copper area can be added on either side of the PCB to dissipate heat. If the copper area is on the opposite side of the PCB from the device, thermal vias are used to transfer the heat between top and bottom layers. For details about how to design the PCB, refer to TI application report SLMA002, *PowerPAD™ Thermally Enhanced Package* and TI application brief SLMA004, *PowerPAD™ Made Easy*, available at www.ti.com. In general, the more copper area that can be provided, the more power can be dissipated. It can be seen that the heatsink effectiveness increases rapidly to about 20 cm², then levels off somewhat for larger areas. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated # 10 Device and Documentation Support # **10.1 Community Resources** ### 10.2 Trademarks PowerPAD™ is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 # 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Copyright © 2022 Texas Instruments Incorporated www.ti.com 23-May-2025 #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/
Ball material | MSL rating/
Peak reflow | Op temp (°C) | Part marking | |-----------------------|----------|---------------|-------------------|-----------------------|------|-------------------------------|----------------------------|--------------|--------------| | | (1) | (2) | | | (3) | (4) | (5) | | (6) | | DRV8824PWP | Obsolete | Production | HTSSOP (PWP) 28 | - | - | Call TI | Call TI | -40 to 85 | DRV8824 | | DRV8824PWPR | Active | Production | HTSSOP (PWP) 28 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DRV8824 | | DRV8824PWPR.A | Active | Production | HTSSOP (PWP) 28 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DRV8824 | | DRV8824PWPR.B | Active | Production | HTSSOP (PWP) 28 | 2000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DRV8824 | | DRV8824RHDR | Active | Production | VQFN (RHD) 28 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DRV8824 | | DRV8824RHDR.A | Active | Production | VQFN (RHD) 28 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DRV8824 | | DRV8824RHDR.B | Active | Production | VQFN (RHD) 28 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -40 to 85 | DRV8824 | | DRV8824RHDT | Obsolete | Production | VQFN (RHD) 28 | - | - | Call TI | Call TI | -40 to 85 | DRV8824 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # PACKAGE OPTION ADDENDUM www.ti.com 23-May-2025 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF DRV8824: Automotive : DRV8824-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects # **PACKAGE MATERIALS INFORMATION** www.ti.com 21-Mar-2025 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | DRV8824PWPR | HTSSOP | PWP | 28 | 2000 | 330.0 | 16.4 | 6.9 | 10.2 | 1.8 | 12.0 | 16.0 | Q1 | | DRV8824RHDR |
VQFN | RHD | 28 | 3000 | 330.0 | 12.4 | 5.3 | 5.3 | 1.1 | 8.0 | 12.0 | Q2 | www.ti.com 21-Mar-2025 ## *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-------------|--------------|-----------------|------|------|-------------|------------|-------------| | DRV8824PWPR | HTSSOP | PWP | 28 | 2000 | 350.0 | 350.0 | 43.0 | | DRV8824RHDR | VQFN | RHD | 28 | 3000 | 346.0 | 346.0 | 33.0 | 4.4 x 9.7, 0.65 mm pitch SMALL OUTLINE PACKAGE This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. # PowerPAD[™] TSSOP - 1.2 mm max height SMALL OUTLINE PACKAGE #### NOTES: PowerPAD is a trademark of Texas Instruments. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153. - 5. Features may differ or may not be present. SMALL OUTLINE PACKAGE NOTES: (continued) - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004). - 9. Size of metal pad may vary due to creepage requirement. - Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented. SMALL OUTLINE PACKAGE NOTES: (continued) - 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 12. Board assembly site may have different recommendations for stencil design. 5 x 5 mm, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) ^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. # 重要通知和免责声明 TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司